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Abstract

The quest for the formal certification of properties of systems is one of the most challenging research
issues in the field of formal methods. It requires the development of formal models together with
effective verification techniques. In this paper, we describe a formal methodology for verifying
security protocols based on ideas borrowed from the analysis of open systems, where applications
interact with one another by dynamically sharing common resources and services in a not fully
trusted environment. The methodology is supported by ASPASyA, a tool based on symbolic
model checking techniques.
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1 Introduction

Software applications are evolving towards open architectures. The key aspect
in this shift is the relevance that interaction and dynamics have assumed in the
life of applications. An open system is characterised by being composed of au-
tonomous interacting components, whose configuration may dynamically vary
in time. Moreover, the system architecture may be only partially accessible,
both because of its dynamics and because it may be distributed over different,
non-controllable domains. Hence, interacting components have to coordinate
their behaviour according to the dynamic supply and demand of resources.
This scenario fosters the creation of an environment of services, offered on
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the net and accessed on demand by dynamically binding software components
(which have been previously published and retrieved). The standard example
is provided by the Web Services technology [16].

The advantages of an architectural design of components and services have
been investigated from several different perspectives, as, for instance, the dy-
namic coordination of active components, understood as “the process of build-
ing programs by gluing together active pieces” [11], or the theory about “the
structure of the components of a program/system, their interrelationships, and
principles and guidelines governing their design and evolution over time” [18].
However, despite the many advances obtained, lifting traditional techniques
to the case of services integration in open systems presents a set of recognised
difficulties, which impose an upgrade of the goals and techniques that must
be developed for a mature architectural design, [30,3]. For instance, extra
information must be formalised by the component abstractions, like the as-
sumptions which they are based on and the conditions under which they can
be dynamically integrated/binded into a system. Moreover, these dynamic
systems need affordable verification techniques to express the properties of
interest.

Here, we present a specification and verification methodology tailored for
security protocols. The methodology has been inspired by the more general
context outlined above. It basically considers a protocol as an open sys-
tem where principals (e.g., components), may dynamically join and coordi-
nate themselves in multiple running session of the protocol, where a malicious
component, hereafter called intruder, may “interfere” with the execution of
the protocol. The methodology consists of four steps: 1) Specification of the
behaviour of the principals and the desired property, 2) specification of the
conditions on intended sharing of secrets, 3) specification of the power of the
intruder, in terms of its initial knowledge, 4) automatic verification of whether
the protocol executions, as they have been formalised, do or do not satisfy the
property. We have observed that the results of step 4) can be fruitfully ex-
ploited to iterate steps 2), 3), and 4), according to the insights gained in the
previous iterations about the actual, and often unexpected, behaviour of the
protocol. Also, step 2) has impact on dynamic connections and communica-
tions as well as on the effectiveness of the verification.

The methodology relies on a formal framework introduced in [9,35]. This
consists of a calculus for the formal description of principals enhanced with
linguistic mechanisms for dynamic bindings, and an ad-hoc logic to express the
security properties to be checked. The logic predicates over data exchanged in
the protocol and observed by an intruder in the execution environment, and
also over the “presumed” identities of the principals.
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Moreover, the methodology is supported by a verification environment,
called ASPASyA (Automatic Security Protocol Analysis via a SYmbolic model
checking Approach). In the model checking approach, the system behaviour is
described in terms of a transition system, while properties that must be verified
are represented as logic formulae. The possible models for a formula are rep-
resented by a subset of states, for instance those corresponding to terminating
computations. If the formula “exhaustively” holds in all the significant states,
verification is successful, otherwise a counter example is produced. Among the
advantages of model checking we remind efficiency (e.g., optimized data struc-
tures, like BDDs), and the possibility of being completely automated, [14]. In
our case, symbolic techniques have been adopted to overcome some intrinsic
sources of incompleteness. Namely, during state space generation, constraints
on the possible values of principals’ variables are collected, then ASPASyA
checks whether an assignment for the variables, such that the formula is satis-
fied, does or does not exist. The overall methodology and ASPASyA are quite
human-interactive, both because of the high degree of expertise required by
the problem and its formalisation, and to allow the verification process to be
guided towards the properties of interest. Once the protocol and its properties
are tuned by the user, the automatic verification phase starts. Our framework
naturally allows varying the intruder’s knowledge, the portion of the state
space to be explored, and the specification of implicit assumptions that are
very frequent in security. The user can opportunely mix those three ingre-
dients for checking the correctness of the protocol without modifying neither
the protocol specification nor the specification of the desired properties.

Section 2 and Section 3 review security protocols, and the formal frame-
work, respectively, to put the reader in context. The verification methodology
is illustrated in Section 4. A comparison with similar approaches in literature
is reported in Section 5. Section 6 contains some concluding remarks.

2 Security Protocols: An Overview

Security protocols are intended to control relevant information in a scenario
where some principals communicate through a “public channel”. Relevant in-
formation has a very broad sense, subsuming confidentiality, non-modifiability
or authenticity. On the other hand, the channel is public: It is not possible
to avoid that the exchanged messages are accessed, manipulated or destroyed
by an intruder.

In general, the formal certification of security protocols requires a careful
definition of the underlying assumptions upon which the protocol relies, of
the security property it is supposed to enforce, and also of the hypotheses on
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the capabilities of the intruder. In the following, we briefly review security
protocols, referring to [32,23] for a more comprehensive introduction.

Cryptography

A message m is a plaintext when the information it contains can be obtained
directly from m, while a message n is a cryptogram when the information is
“hidden” in it. Given a cryptographic key k, the message m is encrypted in the
cryptogram n = {m}, and the original information can be retrieved only by
means of the knowledge of the key k. In symmetric cryptography, the same
key k is used for encryption and decryption, while in asymmetric cryptography
one key, called public key, is used for encryption, and a complementary private
key, is used for decryption. Any principal can encrypt a message for another
principal by means of its public key. The latter is the only one that can
decrypt the message with its private key.

Hereafter, we denote the intruder by I, principals by A, B, ..., A~ and A*"
are the private and public keys of a principal A, A~ is the complementary key
of A(i.e. ATif A=A, A~ if A\ = A", and k if A = k is a symmetric key), and
m,n is the pair of messages m and n. For the sake of presentation, we assume
that keys have no structure, i.e. they are simply names. Structured keys add a
source of complexity to the analysis that can be dealt with by the same sym-
bolic techniques illustrated in Section 3 for handling structured, and hence
infinite in number, messages. We adopt the standard working assumption
of perfect encryption: A cryptogram can be decrypted only using its decryp-
tion key, i.e. secrets cannot be guessed, no matter how much information is
possessed.

Notice that an appropriate sharing of keys, which may also be obtained
dynamically, is an essential feature for the correct assignment of the roles
played by the principals in the execution of protocols. For instance, keys and
their ownership may be used to attribute identity to principals.

Protocol specification

A security protocol may be naively thought of as a finite sequence of mes-
sages between two or more principals. There is a great variety of specification
mechanisms for protocols and properties, but traditionally an informal mix of
natural language and ad hoc notation is used. The next example illustrates
the informal specification of a protocol as a list of communication steps.

Example 2.1 The Wide Mouthed Frog (WMF') protocol [10] aims at letting
A send a fresh session key kab, i.e. a key to be used within a limited temporal
interval, to B through a trusted server S. Both A and B share two private
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keys with S (kas and kbs, respectively). The informal specification of WMF
protocol is:

(1) A - S: A {ta, B, kab}ras
(2) S — B: {YfS,A7 lmb}kbs

A sends S its name and a cryptogram with the name of B, the session key
kab and a “fresh” nonce ta. S sends B a cryptogram with the session key kab,
the name of A, and a new nonce ts. Nonces, which are uniquely associated to
a session of the protocol, “approximate” the time-stamps used in the original
formulation (e.g., S would not react to two requests by A with the same
nonce). This makes the presentation simpler without requiring an explicit
representation of time (which, however, can be embedded in our approach). ¢

Note that the above description is not a complete specification. For in-
stance, it does not specify whether or not only B and S must know kab and ts
and who can access the exchanged messages. Moreover, since the intruder can
suitably exploit the information acquired by playing different roles in concur-
rent sessions of the protocol, also the possible interleaving of different sessions,
as well as the security properties expected to be enforced by the protocol, must
be formally specified, as recognised for instance in [10]

Security properties

Protocols have been designed to enforce many security properties. Among
them we consider integrity (the intruder cannot corrupt exchanged cryp-
tograms), secrecy (the intruder cannot know exchanged cryptograms), and
authentication (the intruder cannot let a principal misunderstand the identity
of its partners in the communications). Different kinds of security properties,
like fairness and non-repudiation, will be addressed in future investigations.

Example 2.2 The WMF protocol of Example 2.1 is expected to enforce the
secrecy of kab: In every session its value must be known only by the principals
playing the roles of A, B and S. Moreover, also the authentication of A to B
is desirable: In every session where B receives the message from S, A must
have created kab, in the same session, and asked S to forward it to B. o

Intruder model

We adopt the (widely accepted) Dolev-Yao intruder model [17]: The intruder
is a principal that can interfere with all the communications, e.g. by hiding,
reading and modifying messages, with the only limit of the perfect encryption
hypothesis. The intruder can have some private data, and can store data
exchanged in previous runs of a protocol. It can be characterised in terms
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of its acquired knowledge and formalised as an execution environment that
collects all the sent messages, manipulates and sends them to the principals
waiting for some input.

Let N be a countable set of names, containing nonces and principal names
and K a set of symmetric and asymmetric keys. Then, within this paper, the
set M = {m,n,...} of messages is defined as

M =N | K | MM | {M}y.

The Dolev-Yao intruder is characterised by a set of messages k, the intruder
knowledge, and the messages that can be derived from it, written as k X m, by
splitting known pairs, pairing and encrypting known messages, and decrypting
known cryptograms whose key is known. Decidability of X has been proved
for private key cryptography in [13], and for public key cryptography in [9,35].

Example 2.3 Given k = {{A7'}x, {m}a+, k}, it holds x X {m};. Indeed,
from x X {A™1}; and k M k, it follows x X A~ which allows the decryption
of {m} 4+ obtaining m. Finally, from x X k it follows k X {m}.

3 Formalising Security Protocols

The methodology (introduced in Section 4) relies upon two ingredients: The
cryptographic Interaction Pattern calculus (cIP), and the Protocol Logic (PL),
introduced in [9,35]. The calculus, allows us to formally specify the behaviour
that the principals of a protocol exhibit. Distinguishably, the calculus requires
to explicitly indicate how principals can be connected together, i.e. how keys
can be shared by them. It consists of an instance of the IP-calculus, a process
algebra introduced in [9] for describing the behavioural composition of compo-
nents in open systems. The logic is used to formalise the properties that the
protocol is expected to enforce. It predicates over the intruder knowledge, the
way principals share keys and the data they exchange. Moreover it allows for
quantification over principal instances in order to uniformly express properties
about multiple-runs of protocols.

The cIP calculus

The cIP calculus is a name-passing calculus of the m-calculus family [25].
It extends the IP-calculus with cryptographic primitives, in the style of [1],
and with explicit constructs for the dynamic sharing of keys. A cIP process
AL (X )[E] stands for the principal A that is ready to share keys represented
by its open variables X and behave according to its behavioural expression

E. A behavioural expression consists of a finite sequence of input and output
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actions in(d) or out(d) (over a public channel, whose name is omitted). The
datum d is a message where variables can appear. Open variables are binders
for the free occurrences of X in E; usual scoping rules apply: Occurrences of
variables in input actions are binders, and are denoted as 7z (we assume that
output actions do not contain binders and input actions contain at most one
binder of each variable). A variable can hence be instantiated either when a
communication action is executed, or when the principal is dynamaically con-
nected to its partners in a protocol execution. Note that open variables has
been introduced in [8] as a general mechanism to express the sharing of re-
sources, e.g. communication channels, between components which are dynam-
ically connected together. In this paper, this mechanism has been specialised
to the sharing of cryptographic keys that allow principals to interact within
a protocol run. Names and variables are syntactically distinguished entities,
the former are constant terms, the latter placeholders that can be substituted
with terms or opportunely renamed. A principal must be closed: Variables
must be bound by either input actions or open variables.

Example 3.1 The principals of the WMF protocol are formalised in cIP as
follows:

A & (z,zas)out(A,{ta,z, kab}ras)] B 2 (2bs)[in({?s, 72, 7w} 1ps)]

S & (u,ya,v,yb)[in(u, {7, v, 7 }ya).out({ts, u, r}y)].

Principal A intends to agree on a session key with a partner whose identity
will be assigned to its open variable x when A will join a protocol run, where
S and B may already be present. The open variables zas of A and ya of S,
by being instantiated with the same symmetric key, allow the two principals
to share a key. Similarly, yb and zbs play the same role for .S and B. Finally,
the server S gets the identity of A and B in » and v. o

To model multiple-runs, principals may be replicated in principal instances,
obtained by indexing all variables (open or not) and all names in E with a dis-
tinguished natural number, e.g. A; £ (21, zas;)[out(Ay, {tay, 21, kab }ras, )]
Principal instances with different indexes are distinguished, i.e. A; # As.

Instances run in a context, i.e. a set of running instances that may be
dynamically joined by other instances, causing a further sharing of keys, as
explained below. Notice that the actual sharing is determined off-line as a
mapping from open variables to keys. Indeed, the verification task is not
oriented to determine the “right” sharing of secrets, but in testing whether a
sharing allowing for an attack does or does not exist.

Let C be a (running) context, with n — 1 instances of principals, and ov(C)
the set of the open variables of its principals. Given A4,, = (Xn)[En] a principal
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kX m : Jvy ground s.t. dy ~m

(in)

= = out
(Xi)out(m).E;)UC, x, k) +— ((X;)[E]UC,x,kUm) (o)
C' = join(A;i,v,C) A2 (X)[E] i new
<C>X7 "i> — <CI7X7>HU{Ai7A:_}>

Fig. 1. Context reduction semantics

(join)

instance, and + a partial mapping from ov(C) U X,, to the set of keys, then
the join operation is defined as:

join(An,7,C) = (Xp —dom(y)[Exn] U | (¥ —dom(y))[E"].
(Y)[E']eC

Intuitively, join(A,,~,C) is the context obtained by joining the principal
instance A, to C according to the mapping v. Open variables must be assigned
to symmetric or asymmetric keys according to their usage (that is explicit in
the syntax of the principal). Once assigned, they are no longer open. Note
that after a join operation the context may remain open, i.e. it may contain
open variables for later join operations.

Semantics of contexts

The operational semantics of contexts is given in terms of the Labelled Tran-
sition System (LTS) —— that relates configurations (C, x, k), where C is a
context, y are the bindings due to communications and join executions, and k
is the intruder knowledge. The rules specifying + are reported in Figure 1.
A principal can input a datum, if an appropriately matching ~ message m can
be derived from k, rule (in). All the outputs of the principals are recorded in
K, rule (out), as well as the name and the public key of every principal joining
the context, rule (join). The semantic model of cIP formalises the Dolev-Yao
intruder model. All the communications occur throughout the intruder: It
records all the exchanged messages and the names of the principal instances
that join the context, and it sends messages derived from its knowledge to
principals. In the simplest case it only forwards messages, allowing for the
intended execution of the protocol to take place.

Example 3.2 A configuration of a context of the WMF protocol, joined by
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the principal instances Ag, S and B is ({As, Se, B1}, 0,70), where

zbsi,xass — k

A3 = ()[Out(A;;,{tas,Bhkabg}k)]
A . yag,ybz — k
Sy, = ()[Zn(A:J,,{?t2,B1,?T’2}k).0ut({t82,A3,T’2}k)} and o =
A . Z3,V2 — B
B: = ()[in({?s1,?z1, 7w }r)]
U2 — As

Notice that, even if not intended, this context models the case in which As,
S5 and B; share the same key k. A possible terminating trace leads to the
final intruder knowledge

k= {As, {tas, By, kabs}y, {tss, As, kabs}y},

and mapping

"}/1 — /_Yo{ta3,kab3,ta3,z43,kab3/t2’r2,517$17w1}’
which is generated when the cryptogram {tas, By, kabs} is sent to By (the
match holds) by the environment. o

The cIP calculus offers the possibility of uniformly extending a context
with new instances of principals of the protocol. What it is meant by “uni-
formly” is the fact that variables and names occurring in principal expressions
are labelled with a unique index when instances join the context. This linguis-
tic mechanism allows us to determine which are the instances that originated
the names used through the execution of the protocol as well as to distinguish
between different principals playing the same role.

Some remarks are worth to be done here.

Join is not an operator of the calculus. The way principals are connected
together, namely how keys are initially shared, is typically given beforehand.
Since this is determinant for the aims of protocol verification, it has been de-
scribed at the semantic level, which hence formally describes the consequences
of a new principal joining the running protocol. As it will be discussed in Sec-
tion 4, distinguishably for our methodology, this also provides an efficient
mean to control the conditions of the verification experiment, and to focus on
those initial sharing of secrets which are more significant for the properties
one wants to certify.

Cryptography. Encryption and decryption are embedded into communica-
tions via the notion of matching (rule (in)). This linguistic choice is shared
with a few of other approaches, like [1,6], which, however, adopt different ver-
ification methodologies. Input actions must declare the key with which they
intend to receive and decrypt a cryptogram, and the communication can take
place only if the input and output messages match, namely {m}, ~ {n},-,
with m ~ n. This guarantees a correct use of keys. For instance, {m}
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matches the input message in({?z}), since the symmetric key k decrypts the
cryptogram, while {m};; and {72}y would not match, with k1 # k2. Af-
ter the communication, variable x is instantiated with the content m of the
cryptogram {m}y.

Symbolic analysis. The semantics of cIP contains a source of incomplete-
ness in the choice of the message m, rule (in), among the infinitely many that
can be derived from x as input message for a principal (see [13] about incom-
pleteness in protocol analysis). This leads to an infinite state space problem
that we have addressed by adopting a symbolic approach; this approach con-
sists in delaying the choice of the message and annotating the inputs variables
with a finite representation of the current x, and, hence, of all the messages
that can be derived from it. We represent this, for an input variable x, by
means of the symbolic variable x(k), for “z can assume any message m such
that £ X m”. Symbolically matching messages can be structurally composed
in terms of symbolic variables and standard messages. Future evolutions of
the context, may further specify the values of x(k), for instance when it is
used in place of a key. Symbolic variables allow the existential quantifier of
rule (in) to be replaced by a constructive generation of a finite set of possible
symbolic messages, which works similarly to unification.

Even if in general more assignments for a variable can be possible, their
number is finite (and typically bound by the number of messages added so-far
to the knowledge). Consider, for instance, an input message {?z},. A match-
ing message could be constructed either by knowing the appropriate key A1,
or by means of each suitable matching message, like {m},-1. Such messages
may belong to the initial knowledge or been acquired in previous communi-
cations and hence are finite in number. A symbolic trace represents all the
concrete traces obtained by instantiating its symbolic variables with the mes-
sages derivable from the associated knowledges. Proving the correspondence
of symbolic and concrete traces [9,35] guarantees the correctness of the sym-
bolic verification, which also impacts, together with other optimisations, on
the effectiveness of the method.

PL logic

Security properties are expressed by means of the PL logic (Protocol Logic),
which predicates over the messages derivable from x, the values assumed by
variables and their relationship with the principals that generate and com-
municate them. In our approach, integrity is read as the possibility of fixing
some values, generalising the approach introduced in [1], secrecy as the values
contained or not contained in x, and authentication through relations among
principals’ variables.
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Let §, o be messages, variables, or the name of the intruder I, the formulae

¥, ¢ of PL are
ek | d=0 | YAi:¢p | =¢ | oAV,

where € is read as derivability of the message, =, =, A are equality, negation
and conjunction, and VA.i : ¢ allows for quantification over instances: i is a
variable ranging over instance indexes, possibly occurring as index in ¢.

Example 3.3 A property that the WMF protocol should satisfy is the secrecy
of the session key kab, unless it is intended for I: VA.i: x; # I — kab; & k,

i.e. “for every instance of A, whose partner is not I (the open variable x; of
A is for its partner name), the key generated by A;, kab;, cannot be derived
from x”. o

Truth of formulae depends on the past computation, namely on both &
and assignments Y, hence formulae are checked against models consisting of
pairs k, v produced by terminating traces, since those are the states of interest
where the formula must hold. The notation x |=, ¢ means that x, under the
variable assignment Yy, is a model of the formula ¢. Relation = (for closed
formulae) is defined by the following deduction rules (and the omitted obvious
one for A):

Tix = 0X K MoX K Fx ¢

(=) (€) =)
KEx i =9 “):x(se’{ ’f':xﬁ‘l5

K=y {7/} forall Aj: kX A,

(7).
kEx VAL ¢

Index quantification ranges over the finite number of instances that par-
ticipated to a session, whose name is in x (V). Intuitively, the use of [~ in the
premise of rule (—), intended as the impossibility to prove ¢, is justified by
the fact that, in each rule, formulae in the premises are always “structurally
smaller” than those in the conclusions (and hence the recursive definition =
is well defined). Finally, the lifting of the logic to the case in which sym-
bolic variables occur in formulae as effect of assignments is easy, considering
symbolic variables as conditions of membership to the associated k.

Example 3.4 Considering again the WMF protocol, one may wish to verify
the secrecy property written in its naive form, as ¢ = VA.i : kab; &€ k: “The
session key generated by A is not know by the intruder”. Let us suppose that
we want to let I play the role of a normal principal, namely B. In this case,
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it is sufficient to add a key, say ksi to k. Let us consider the context where S
shares kst with I, and A wants to speak with I:

A 2 ()[0ut(A1,{tCL1,I, kabl}kas)}
S22 ()[in(Ax, {72, 1, 72}k ).out({ts2, A1, 72} si)]
xasy, yas — kas
where, initially, vo = ¢ b, — kst

r,v2 =1

It is easy to verify that
k1 = {A1, S, I, ksi,{Ta,I,kab}y.s,{Ts, A, kab}rsi}
and
v = {zasy,yas — kas, yby — ksi, x1,v9 > I, to > tay, r9 — kabi},

which are produced by a terminating trace of the context, are not a model for
¢. The discovery of this “spurious”, but possible, attack can be easily avoided
by further specifying the property in its original formulation: VA.i : x; # I —
kab; ¢ k. In this case the antecedent of the formula is false, and the trace is
not considered as an attack. This kind of expressiveness of the logic will be
helpful in focusing the verification on “intended” classes of attacks. o

4 The Verification Methodology

Our verification allows the user to directly control and manage many aspects
of the verification process. The methodology consists of four steps:

(i) Initially, the informal narration of the protocol is specified in cIP, and,
accordingly, the security property is formalised by means of a PL formula;

(ii) a formula specifying invariants on the connections of principals is given;
such a formula, hereafter called connection formula, states the constraints
on open variables that the join operation must satisfy so that sharing of
secrets is explicitly specified;

(iii) the intruder knowledge is set according to the power that the verifier
grants to the intruder, for instance public/private keys or messages ac-
quired in previous run of the protocol may be added to k;

(iv) the automatic phase of the verification starts. ASPASyA is invoked and,
depending on the results, steps 2 and 3 are iterated.
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About step 1, the formalisation of the protocol narration cannot be auto-
mated but it requires expertise, for instance to specify open variables of cIP
principals. Nevertheless, some rule of thumbs can be given:

* Initiator usually needs an open variable for connecting to the responder;

« if the identity of the partner is acquired in a communication, then no open
variable should be necessary about the identity of partner (unless checks on
the identity are required);

* an open variable might be necessary when a principal must interact with a
server, in order to share a key.

Also the formalisation of security properties is a complex task that requires
experience. The logic PL can formalise:

* The impossibility for the intruder to know a particular datum d in a run of
the protocol, when checking for secrecy properties;

* the relations between variables of different principals that must hold in every
run, when more complex properties, like authentication, must be verified.

In step 2 a connection formula is specified, in order to constraint the al-
lowed connections and the sharing of keys between principals. Consider, for
instance, principals A and S of the WMF protocol as described in Example 3.1;
if S is trusted, we might be interested in verifying only the executions of the
protocol where (any instance of) A properly shares a secret key with (a cor-
responding instance of) S. This can be expressed by the following connection
formula

bwur 2 VAL 385 zas; = ya; \ xas; € K,

which, intuitively, states that the intruder cannot behave as a server. Connec-
tion formulae, together with the join operation, are a distinguished feature of
our approach. Whenever a join operation is executed, the connection formula
is checked and, if it does not hold, then the analysis of that trace is aborted.
Moreover, formulae constitute a formal device that the user can exploit for
pruning the state space. Indeed, by tuning the connection formula, the user
can formally state assumptions that are usually implicit in the informal pre-
sentation of the protocol (e.g., the trustworthy of the server in the WMF
protocol). The result of a verification session sometimes reveals that some
assumptions on the protocol have not been correctly formalised. By refining
the hypotheses on principal connections, false attacks can be filtered out. Ba-
sically, connection formulae can be exploited for focussing the verification on
those states that are interesting to the verifier.

The join operation and the connection formulae are also a coordination
mechanism for programming and modelling the interactions of processes in
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(1) A—- B: na, A

(2) B— S: na,A,nb,B

(3) S— B: {nb, A, kab}kbs,{na,B7kab}kas Session key exchange

(4) B— A: {na, B,k }gas, {Th, A, k*} 100, nc, {na} yas

(5) A— B: {nc}pav

(6) A— B: ma,{Th, A k™} 0

(7) B— A: mb,{ma}a } Repeated auuthentication
(8) A — B: {mb},a

Fig. 2. The KSL narration

an open system, where components dynamically access running contexts by
connecting to other participants. For instance, considering web services, the
components are the services and new services are built by properly connecting
existing components. In the current practice, this is statically done by the
programmer; while the join operation and the connection formula would allow
the programmers to specify the constraints over the dynamic connections of
their components.

Step 3 specifies the initial knowledge of the intruder so that a protocol
is checked under weaker conditions. This knowledge is mainly used for two
purposes: (i) to let the intruder know some secrets (e.g. compromised keys)
enhancing its attacking power, for instance to test the robustness of the pro-
tocol, and (4) to let the intruder know something about past interactions
between principals (cryptograms exchanged in previous sessions). The lat-
ter is especially useful in finding replay attacks where the intruder exploits
messages appeared in previous session.

Steps 2, 3 and 4 can be iterated in order to tune the connection condi-
tions, and the initial knowledge, according to the results obtained in previous
iterations.

The KSL protocol

In order to explain the methodology, we apply it to the analysis of the KSL
protocol [19] (a simplification of Kerberos [20]). The goal of KSL is the re-
peated authentication between principals A and B that exploit a trusted server
S. The protocol is divided into two parts: An initial exchanging of messages
which establishes a session key between principals, followed by the repeated
authentication part. Repeated authentication is performed by means of an
expiring ticket generated by B for A. Until the ticket is valid (not expired),
A can re-authenticate itself with B without requesting a new session key from
S. The informal specification of KSL is given in Figure 2. Messages (1 = 5)
are the key exchange part whereas messages (6 + 8) are the repeated au-
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(a,ak,b,bk) [ in(?cna, a, 7enb, b). out({cnb, a, kab}yk, {cna, b, kab}ak) |
(b, sk) [ out(na, A). in({na, b, ?r} s, 7tkb, 2bn, {na}.). out({bn},) |
(sk) [ in(?en, Tu). out(cn,u, nb, B). in({nb, u, 7r} sk, Ttka).

out(tka, {nt,u, r}re, nc, {cn}r). in({nc},) |

b
[I> 1> >

Fig. 3. The KSL principals

thentication. Namely, each further interaction between A and B starts from
message (6). Server S shares a symmetric key with each principal. Initiator
A generates a nonce na, and sends it to B. Then B asks S for a new session
key, S generates k% and, in (3), encrypts the session key in two cryptograms
{nb, A, k®} 0. and {na, B, k%®},.s sent to B. Notice that here it is implicitly
assumed that k% (resp. k%) is known only by S and A (resp. B). After de-
crypting {nb, A, k%}+., B assumes that k% is the fresh session key generated
by S and meant to be shared with A (freshness of k% is enforced by nonce
nb).

Message (4) is quite complex and crucial; B sends to A a message con-
taining: (i) the cryptogram {na, B, k®}.s generated by S on message (3),
(ii) the “ticket” {Th, A, k®}., (i) a new nonce nc and (iv) the nonce na
encrypted with k2.

The ticket is a cryptogram encrypted with a key &% that only B knows
and will be used in the second part of KSL; apart from the identity of A, it
contains a generalised time-stamp ' and the session key so that B can check
the validity of the ticket. The nonce nc will be used to prove to B that A
really asked for the session key k%, while the cryptogram {na};. is generated
to witness to A that B has acquired k®. Message (5) closes the first part of
KSL: A sends back nc encrypted with k% so that B is granted that A acquired
the session key.

Principal A knowing k% and the ticket issued by B can re-authenticate
itself performing messages (6 + 8). In (6), B receives a nonce, ma, and the
ticket that B has previously generated for A. If the ticket is valid, B sends
ma encrypted with k% to A together with a new nonce mb, used to ensure
the identity of A in message (8).

Verifying KSL

The first step of our methodology prescribes to provide the cIP formalisation
of each role of the protocol and the formalisation of the property of interest.

L A generalised time-stamp reports the current time of the local clock of B, an indication

of lifetime and an “epoch” identifier to protect B against replay attacks. We refer to [27]
for problems related to time-stamps.
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We first describe the first phase of the protocol, i.e messages (1 + 5), whose
principals are reported in Figure 3. Later, we will describe the rest of the
protocol according to a verification session. This allows us to focus on the
main characteristics of the two phases and also shows how the methodology
accomplishes with the intuitions behind the verification.

It is important to point out the role played by open variables. Principal
S has variables a and b respectively for the identity of the initiator and the
responder. The server needs two further variables, ak and bk that are meant to
store the symmetric keys that S shares with A and B, respectively. Similarly,
A and B use sk for storing the keys they share with S. Notice that variables
are distinct in different principals.

KSL tries to achieve repeated mutual authentication; informally this means
that each time B (connected to S) terminates a run of the protocol, thinking
to have interacted with a A (connected to S) then A has recently executed a
session with B and A actually has been the partner in the communications,
and viceversa. The following PL formula ¢ kg formalises the authentication
property of A to B for the KSL protocol:

VB.A:3S40:3A5: (bi=Bi AN w=A; Nbj=Bi N a; =A;) —
(ena; = naj A cnb; = nby A
r; = kab; A ry = kab; A

cny =na; A ne = bny)

The formula ¥ gy, states that any instance B; is attached to an instance of
the server template S; (b; = B;). Moreover, if B; is the partner of an instance
A; (w = Aj;) that is connected as initiator to S; (a; = A;) then a “correct”
data exchange should take place, provided that A; aimed at authenticating
itself to B; (b; = B;). Correctness of data exchanging holds if: (%) the server
receives the correct nonces (cnb; = nb, and cna; = na;), (i) both B; and
A; obtain the same session key generated by S; (r; = kab; and r, = kab;),
finally, (444) the nonces received by B; are all generated by A; (n¢; = bn; and
cny = na;).

The second step of our methodology requires to specify a connection for-

mula ¢xgr, stating that the server shares private keys with the initiator and
the responder. In PL this is rendered as follows:

OKSL £ vySi: 314_] : (ai = Aj — ak; = Sk]‘) A dB.1: (bz = B, — bk; = Skl).

In words, it is required that for every S; (instance of the server) there is a
connected initiator A; such that ak; and sk; are assigned to the same value:
S; and A; share the same key. This also models the correspondence between
the initiator’s identity and the server’s open variable holding the shared key.
(The rest of ¢xgr states the same property for the responder.) Note that
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| ‘ 3 Instances 4 Instances |
& | & & | e
5 3 g 5 g 5
§ 5 £ § g 5
Join O & < O & <
true 10240 58 0 - - -
¢rsL | 550 12 0 | 13218 | 4:21
s 590 34 0 15723 | 5:07

Table 1
Attack report for the first phase of KSL

drsr, excludes that an instance of A can act as responder. In order to allow
this possibility, we can consider the following formula:

(ﬁIKSL £ vySi: HAJ : (ai = A]‘ — ak; = Skj A b = A]' — bk; = Skj) A
3B.1: (b2 = B; — bk; =sk; N a; = B, — ak; = Skl),

however, we stick to the simpler ¢xg;, for our verification.

Table 1 reports the results of the verification for the first phase of KSL.
We checked various scenarios by varying the number of instances and the
possible connection formulae. Even though no attack has been discovered
in this phase, it is worth noticing how the connection formulae can help in
reducing the size of the state space. For instance, in the case of three instances
of principals, the number of states in a completely unconstrained setting (first
row) is very large compared to the case where one of ¢y, or ¢fq; is used.
This is even more evident when considering the case of four instances; in fact,
the verification with the trivial connection formula requires a unreasonable
amount of time (one day on a 2.4MHz Athlon processor), whereas both ¢ gy
and ¢’ ¢, terminate in few minutes.

Since the first phase of the protocol does not yield any attack, we perform
the verification of KSL by focussing on the second phase of the protocol, i.e.,
on the messages (6 + 8). We consider correct the session key exchange phase,
and check whether an attack can be built during the repeated authentication
phase. Under this hypothesis, at the end of the 5-th message of KSL, we can
safely assume that

e since the intruder is aware of the initial five messages of the session, the
ticket is in the initial knowledge (among other data);

e A (resp. B) thinks that B (resp. A) is running a session protocol as
responder (resp. initiator);

* A and B share a key in the current session;

¢ the key is valid in virtue of a certificate issued by B.

Since we are assuming that the interactions of A and B with S are trusted
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| | 2 Instances 3 Instances | 4 Instances
-~ -~ -~

§ | .5 g § | 5 g § 5 g
Join/Knowl. | © | & < @ & < @ & <
true, Ko 104 | 0.69 0 3878 | 1.53 8 - - -
true, ko 104 | 0.85 0 3878 | 1.89 8 130870 | 2:27 16
PKrSL, Ko 71 | 0.64 0 | 3220 | 150 6 - -
xS, Ro 71 0.80 0 3220 | 1.85 6 52692 1:16 12

Table 2
Attack report for KSL repeated authentication part

and not compromised, we can consider only the principals for A and B:

A 2 (b, sk, tk)[out(nma, {b, A, sk}).in(?mb, {nma}s).out({mb}s)]
B £ (a, sk, tk)[in(?ma, {B, a, sk} ).out(nmb, {ma}sx).in({nmb}s)].

Note that the sharing of the ticket acquired by A in the first phase is here
modelled by the use of the open variable tk of A and B. Actually, A never
uses tk as decryption key (i.e., in an input action) since the key encrypting
the ticket is known only by B. Indeed, A only uses tk in the first output for
communicating the ticket to B. The assumptions on the secrets shared by A
and B, including the correct sharing of data acquired in the previous phase of
the protocol, is formalised by means of the following connection formula:

d_)KSL =3B.l: EA] : tk‘_;‘ =tk — b]' =a N\ Sk]' = sky,

stating that if there are two instances of A and B sharing a ticket, then
they aim at communicating one another (b, = a;) and share a session key
(skj = sky).

The authentication formula to be checked can be stated similarly to what
done for ¥ gy, but it is simpler than ¥y gy because we can ignore the com-
munications with the server:

’LZJKSL 2 VYB.I: JA.j:b; =B A ap=A; — ma; = nma; N mb; =nmb;.

Since the verification of KSL with two instances does not yield any attack
(as reported in Table 2), we describe the case with three participants.

According to the third step of our methodology, we must specify the in-
truder’s knowledge. We have already pointed out that the intruder is aware of
those messages exchanged in the first phase. Hence, the initial knowledge kg
contains the following messages: I, By, By, As, i.e. the instances that joined
the session, and { B, A3, skq }u,, the ticket issued by Bj for Az. These mes-
sages contain variables (e.g., ski, tky,...) that will be instantiated during the
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generation of the initial contexts by means of the join operation. We can think
of kg as a template for a knowledge that compactly specify a set of messages
depending of the join operation. In this case, ASPASyA finds (and reports)
the following attack (among others):

As — I : nmas, {B2, A3, ks}rp2
I — By : nmas, {B2, A3, ks}rp2

(1) 6) I — By : {nmba}s
2)

(3) B2 — I : nmba, {nmas}is

(4)

()

7) I — As: nmbi, {nmas}is
8) Ag — I {nmbl}ks
I — B1 : nmbz,{Bl,Ag,ks}kbl 9) I — Bl : {nmbl}ks

By — I: nmby, {nmba}s

In messages (1 + 3), A3 and B begin the authentication phase; the com-
munications are possible because of the ticket in k. In messages (4 +5), I,
playing the role of Ajs, uses By for encrypting nmb, with ks. At this point, [
can match the input data requested by B, and can subsequently, playing the
role of By, use Aj as an encrypting oracle to obtain {nmb; };s which is needed
to end the protocol run with B;. Hence, the intruder has been able to let B;
believe he was interacting with A3 while he was interacting with I, violating
the authentication property.

Noteworthy, the attack is possible because there is a trace that start from a
context where the join has assigned the same session keys for the two different
tickets (the one in ko and the other generated by Aj in (1)). Observe that
nothing prevents this neither in 1z, nor in ¢xgz; therefore, we could repeat
the verification by imposing this condition (that is indeed, required by the
informal specification of KSL). Nevertheless, this is the hypothesis imposed
in the analysis of KSL reported in [21] where the same attack has been firstly
reported; this analysis is anyway motivated by considering the robustness of
a protocol in presence of weaker assumptions (two tickets that contains the
same session key) that are also realistic.

As a final attempt, we check whether enriching the intruder’s knowledge,
KSL has new flaws. Let us iterate the verification algorithm with the initial
knowledge

Ko = ko U {{BQ, As, Skz}th}

that corresponds to the fact that the intruder has collected the ticket gen-
erated by B, for As. Table 2 collects the results of the verification. First,
observe that there is no difference in using kg or kg (the reason for this is that
the extra message added to kg is generated by the instance A in any case). An-
other aspect to remark is that, looking at the table in the case of 3 instances,
it seems that ¢ gz, cuts off some attacks. However, by analysing the reported
attacks it is possible to recognise that the extra attacks found with the trivial
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connection formula true are special cases of the attack presented previously.
Indeed, in those attacks, the two instances of B use the same session key and
the same key for encrypting the tickets (that is unrealistic). Moreover, the
reported attacks basically correspond to “permutations” of the attack shown
above, namely, they are the same attack where a different indexing of the
instances is used.

We conclude by emphasising the advantage of using join and connection
formulae; indeed, Table 1 and the last two rows of Table 2, show how the
generated state space is dramatically reduced by exploiting a non trivial con-
nection formula, while discovering the same set of attacks. 2

5 Related work

We briefly relate our framework with some verification approaches (and their
related tools) for security protocols based on model checking. The most impor-
tant ones (up to our knowledge) are described in [22,5,36,31,24]. Our analysis
will be more focused on methodological aspects rather than on efficiency is-
sues, because different semantics have been exploited by different frameworks.

The approach in [22] has many similarities with our framework in modeling
security protocols as open systems. There the openness is represented by a
non-completely specified and extendible context. Principals are expressed
in a dialect of the CCS calculus (equipped with cryptographic primitives)
and properties are also given in a suitable logic. The main differences of our
framework wrt [22] are represented by the open variables and the join primitive
that, together with the connection formulae, can be seen as a coordination
mechanism for open systems. Moreover we exploit symbolic techniques to
shrink the state space.

In [5,36] symbolic techniques for generating and analysing traces have been
described. They are based on dialects of the m-calculus for principal represen-
tation while properties are stated as correspondence assertions; in [36] asser-
tions are embedded in principal definitions, violating separation of concerns
(changing the property to be checked leads to a re-formalisation of principal
definitions). We separated more neatly the specification of principals from
that of security properties. Both [5,36] lack the possibility of template defini-
tion, hence every principal instance has to be specified by hand, which may
be long and error prone, and impact on the formalisation of protocols and
properties. For instance, many protocol assumptions depend on the initial
knowledge and secrets sharing and must be explicitly stated in [5,36]. For in-

2 The number of attacks are doubled with respect to the case of three instances because

there are the same attacks where the two instances of A are swapped in the attacks.
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stance, we analysed the KSL protocol using TRUST and, in order to find the
attack reported in Section 4, we had to explicitly state that the tickets must
have the same session key, while the join mechanism of ASPASyA automati-
cally generates and find the flawed context. Both [5,36] offer the possibility to
specify the initial knowledge of the intruder but without any parameterisation
(as done in Section 4).

The approaches in [31,24] are based on the strand space model introduced
in [33,34,12]. Properties are expressed in terms of connections between strands
of different kinds. A strand can be parameterised with variables and a trace
is generated by finding a substitution for which an interaction graph exists.
Principals are represented with terms of a free algebra whereas properties are
specified by a suitable logic. Both approaches provide devices very similar
to our join mechanism but is missing the possibility for the user to impose
constraints on principal connections. Initial knowledge specification is given
by adding data to the strand space, and can be fully parameterised with
variables.

In [15] and [4] encryption/decryption primitives have been embedded into
communication actions. Though the linguistic properties of the resulting cal-
culi are very similar to those in cIP, our verification approach is different with
respect to both [15] and [4]. Indeed, [15] introduces an event-based semantics
where events are defined in terms of the enhanced communication; the se-
mantics is then exploited to draw the relationships among Petri Nets, Strand
Spaces and the inductive proof technique of [29,28]. In [4], this enhanced
synchronisation mechanism simplifies the static analysis of cryptographic pro-
tocols. The main difference wrt [15] and [4] lies in the verification techniques
adopted, which are completely different in the three approaches. Indeed, em-
bedding cryptographic primitive in the communication primitives allows us to
define a symbolic semantics on the top of which our model checking algorithm
works. This also allows us to avoid generating states that are considered not
interesting (according to our working hypothesis). Regarding efficiency issues,
the amount of time used by ASPASyA is comparable to those used by STA
and TRUST (Table 3). ASPASyA is a bit slower than others because it con-
sumes time in generating initial contexts and checking connection formulae.
However, STA stops as soon as the first attack trace is found whereas TRUST
and ASPASyA perform a search over the whole state space. TRUST generates
the largest state space, mainly because it is based on a small step semantics.
ASPASyA and STA have more compact state spaces whose difference lies in
the fact that ASPASyA initially applies the join mechanism.
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Number of states Times
%Q@v & > @”g & >
Protocol w &/QV °§ ?‘:o &/QV °§
NS (2 instances) 55 328 24 0.7 0.06 | 0.07
KSL (2 instances) 39 135 33 0.8 0.04 | 0.04
KSL (4 instances) | 21742 | 69875 - 43 1.8 -
Table 3

Comparing ASPASyA

6 Conclusions

We have addressed the problem of security protocol analysis taking inspiration
from an approach oriented to a more general framework. We have proposed
a verification methodology, and the ASPASyA tool which supports it, and we
have presented the results of some practical experimentations.

The methodology tries to limit as much as possible the sources of errors
in the formalisation process by keeping the different aspects of the formalisa-
tion into clearly separated steps. Importantly, and distinguishing from other
approaches, the specification of the protocol and the property are clearly sep-
arate. Moreover, once the principal behaviours are given in the first step of
the methodology, they remain unchanged. Several verification parameters can
be finely tuned by the verifier, mostly in an intuitive way, like the search space
by means of connection formulae in step two, and the power of the intruder
in step three. Principal connections can be constrained by means of a PL
formula and the intruder power can be augmented by adding information to
its initial knowledge, allowing for discovering attacks where the intruder ex-
ploits information about previous sessions of the protocol, and for testing the
robustness of protocols under unexpected conditions.

The automatic phase of verification is performed at a cost comparable
with similar state of the art tools, also thanks to mechanisms for the selective
pruning of the state space. Experimentally, we have applied the methodology
to the verification of several protocols, some of which have been illustrated in
this paper, detecting all the known flaws (like the one recently reported in [4],
found with techniques not based on model checking).

In order to enhance our methodology, we are planning to extend the frame-
work to handle non atomic keys, hashing functions and time-marked names.
Moreover, along the line of connection formulae, we believe that security prop-
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erties can be exploited as heuristic strategies to “guide” the state exploration
towards states that more likely make the property false.

Finally, we would like to extend the open variables and the constrained join
mechanism, now based on connection formulae, to the more the general case
of open system verification, where open variables represent resources, and the
join is constrained by formulae aimed at guarantee more general composition
properties, as we have initially investigated in [7].
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