
The Languages of History-Dependent Automata

Vincenzo Ciancia1, Emilio Tuosto2, and Nikos Tzevelekos3

1 Institute for Logic, Language and Computation, University of Amsterdam
2 Department of Computer Science, University of Leicester
3 Department of Computer Science, University of Oxford

Abstract. History-Dependent Automata have been seminal in the study and au-

tomation of mobile process calculi, and have contributed substantial insights in

the specification of computation with names. However successful, these machines

have not been studied as language acceptors. We initiate just such a study here.

We introduce the notion of language-accepting history-dependent automata over

infinite alphabets. Moreover, we relate them to existing formalisms for languages

over infinite alphabets, in particular to the recently introduced Fresh-Register Au-

tomata. Finally, we examine their closure properties and their inherent minimisa-

tion capabilities, the latter due to the incorporated notion of symmetries.

1 Introduction

Automata and languages over infinite alphabets have seen a remarkably increasing in-

terest over the last few years. The motivation has stemmed from a range of seemingly

distant fields where infinite alphabets naturally arise: from process calculi and the study

of mobility; to programming languages and the semantics of generative dynamic be-

haviours; and to XML-based languages and the ensuing formal languages over data

words. Such formalisms include register automata [14], pebble automata [21] and data

monoids [1], to mention but a few. A particularly successful formalism for mobile pro-

cess calculi which has not been studied yet in relation to language acceptance is that of

History-Dependent Automata (HDAs). We initiate just such a study here.

The initial motivation behind HDAs was the introduction of an algorithmic, syntax-

free description of mobile computation [18, 22] emerging from agents which interact

in a dynamically evolving communication environment. The dynamics of the environ-

ment is captured by the notion of name which can be created fresh and exchanged by

agents. Names are pervasive in mobility and can be used to represent communication

channels, threads, sessions, cryptographic keys, etc. For instance, using names to repre-

sent channel identifiers one implements, through fresh name creation and dissemination

(extrusion), the dynamic creation of new private communication channels. This is done

e.g. in the π-calculus [17], the paradigmatic language for mobile computation.

A language-accepting HDA consists of a set of states, each equipped with a finite

set of names. Apart from the initial state, the specific choice of names for each state

is immaterial. Such names have internal scope: they act as name-representatives, or

place-holders, for the actual names which populate the state of the automaton during

computation. On the other hand, the initial state contains actual names upon which the

automaton will base its computation. Each transition of the automaton contains a label

involving names from the source state together with an injective map which matches

the names of the target state to those of the source, with the provision that some names

in the label or in the target may not correspond to any name in the source state but rather

to “fresh” names. Following these maps from a given state in the computation back to

the initial state and adding also fresh names on the way, the representative names of

each state are mapped to actual names. The inputs to be accepted at each stage in the

computation involve precisely these latter names. Consider, for example, the following

automaton H with states q0, q1, and q2

q0

a

q1

a

q2⋆

⋆

a

where both q1 and q2 contain a single name a while q2 contains no names. The symbol

⋆ represents a fresh name. Thus, following the uppermost transition from q0 to q1, H
will accept a fresh name, say b, and move to q1; the mapping of the transition stipulates

that the internal name a in q1 represents, in fact, the name a. Then H will accept the

symbol a and terminate in q2. On the other hand, if H follows the lowermost transition

from q0 to q1 at the beginning, it will accept a fresh b and move to q1 but, this time, the

name a in q1 will represent the fresh name b. Thus, in the next step the automaton will

accept b and terminate. Note how the same state q1 is instantiated with two different

names in each of the traversals of H. Hence, the language accepted comprises all words

ba and bb where a is fixed and b 6= a.

In this paper we introduce the notion of language-accepting HDA (§3) and establish

the closure properties and expressiveness of these automata (§4). In doing so, we com-

pare them to Register Automata (RAs) and in particular we single out classes of HDAs

which precisely correspond to register automata [14] and fresh-register automata [25]

respectively. As a result, language equivalence is undecidable for non-deterministic

HDAs operating on an alphabet of letters of unary size, but we can decide emptiness and

bisimilarity. We then turn our attention to canonical representations of our machines

(§5) through minimal models. When computing with names and freshness, as observed

in [22] and recently rediscovered in [2], in order to compute minimal representatives it

is necessary to use some information about the symmetry of internal names of states,

specifying which ones have equivalent roles. HDAs are constructed inside the theory of

named sets [22] which naturally features name symmetries. For a class of HDAs called

symmetrised-deterministic HDAs, we show that minimal models can be computed by

use of a partition refinement algorithm.

Related work The research on Register Automata (RAs) [14, 21], is the most relevant

to our work. HDAs and RAs are similar machines but they hinge on different principles

and have been independently developed by communities focussed on different goals.

For example, HDAs yield an automata-theoretic model of process calculi and have been

extensively examined under the lens of effective representation and minimisation [9],

which has led to practical implementations [10]. On the more technical level, HDAs are

higher-level machines with a built-in notion of symmetry, which permit operations on

automata (e.g. minimisation, composition) to be implemented in a direct, relabelling-

free fashion. We envisage these two approaches as complementary.

Another very relevant recent work is [2], which studies notions of automata over

structures generalising nominal sets [11] by use of canonical categorical constructions.

The approach provides a generalised framework for nominal automata. Our approach,

on the other hand, is at a more concrete level: it provides specific automata constructions

and establishes their intrinsic properties. Moreover, the automata we consider take into

account local and global freshness. We find these research directions closely connected

and expect to relate them in future work.

Other related recent works on nominal languages are [12, 15]. In [12] algebraic de-

scriptions of nominal languages (in particular, nominal Kleene algebras) are studied

together with representation properties of their languages. On the other hand, the lan-

guages examined in [15] involve words with binders and yield automata with stack

structures, much different from the ones examined herein.

2 Background

Notational conventions. Let f : A → B be a function. The domain and the image of

f are respectively denoted as dom(f) and Im(f); if f is partial (written f : A ⇀ B),

dom(f)
def
= {x ∈ A | ∃y ∈ B.f(x) = y}. Also, f|S is the restriction of f on S ⊆ A

and idA is the identity on a set A. The update at a with b of f is the function such that

f [a 7→ b](a)
def

= b, and f [a 7→ b](x)
def

= f(x) if x 6= a.

We give a brief account of nominal sets [11] and named sets [22].

Through the paper we fix A to be a countably infinite set of atoms or names. We

write Perm for the group of finite permutations of A, i.e. those bijections π : A → A

such that the set {a | π(a) 6= a} is finite. The transposition of a, b ∈ A is denoted by

(a b) and, for each finite S ⊆ A, Grp(S) is the collection of all groups (wrt composi-

tion) of permutations on S.

Definition 1. A nominal set is a set X along with an action for Perm , that is, a func-

tion · : Perm ×X → X such that, for all x ∈ X and π, π′ ∈ Perm: idA · x = x and

(π ◦ π′) · x = π · (π′ · x) . Also, each x ∈ X has finite support, namely, there exists a

finite S ⊆ A such that, for all π ∈ Perm , π|S = idS =⇒ π · x = x.

We shall write each nominal set (X, ·) simply as X . For any x ∈ X , there is a

unique minimal set Supp(x) ⊆ A supporting it, called the support of x. Given two

permutations π and π′, whenever π|Supp(x)
= π′

|Supp(x)
, we have π ·x = π′ ·x. Therefore,

an injective function ρ into A whose domain includes Supp(x) can also be “applied”

to x by a choice of a permutation that agrees with ρ on Supp(x). We may make no

distinction between the two cases and write ρ · x when ρ is defined on Supp(x).
See Appendix A for a few examples of nominal sets.

Definition 2. A named set is a pair (Q, GQ) whereQ is a set and GQ : Q →
⋃

S Grp(S)
associates to each element its symmetry. For each q ∈ Q, with GQ(q) ∈ Grp(S), the

set of internal names of q is |q|Q
def

= S.

The elements of a named set are equipped with a group of permutations over a finite set

of internal names. These permutations establish how the internal names of an element

may be exchanged preserving its intended semantics. Note that in general neither a

named set (Q, GQ) nor its underlying set Q are nominal sets. We often omit subscripts

from GQ and | |Q and denote a named set (Q, GQ) simply by Q.

3 History-dependent automata as acceptors

Hereafter, we fix a nominal set Σ as our alphabet of letters. Thus, letters may feature

arbitrarily many names, symmetries, etc. (see Appendix A). In particular, our letters

include distinguished constants ⋆ and ⊛which will be used to represent name-freshness.

Definition 3. Let Q be a named set and q ∈ Q. A transition from q is a tuple t =

(q′, ℓ, σ, f), written q
ℓ,f
−−→
σ

q′, where:

– q′ ∈ Q is the destination state and ℓ ∈ Σ is the label of t,
– σ : |q′| → |q| ∪ Im(f) is an injective function,

– the freshness annotation f : {⋆,⊛} ⇀ Supp(ℓ) is an injective partial map such

that |q| ∩ Im(f) = ∅ and Supp(ℓ) ⊆ |q| ∪ Im(f).

The role of σ is to relate the local names of the destination state q′ of the transition

and the local names of the source state q. Transitions have a name allocation capability,

expressed by the freshness annotation f . A name a ∈ Im(f) is symbolically treated

as a place-holder which will be used to accept any fresh name. In particular, there are

two levels of freshness: if a = f(⋆) then a represents any locally fresh name, i.e. any

b which does not occur in the current computation step; if a = f(⊛) then a represents

any globally fresh name, i.e. any b which has not occurred in the whole computation.

Definition 4. A history-dependent automaton (HDA) over Σ is a quadruple H =
(Q, tr , q0, F) where:

– Q is a finite named set of states, q0 ∈ Q the initial state, and F ⊆ Q the final ones;

– tr is the transition function mapping each q ∈ Q to a finite set of transitions from q.

Additionally, for each q ∈ Q and πq ∈ G(q), the following closure property must hold

(q′, ℓ, σ, f) ∈ tr(q) =⇒ (q′, π[f] · ℓ, π[f] ◦ σ, f) ∈ tr(q) (1)

where π[f]
def

= πq ∪ {(f(u), f(u)) | u ∈ {⋆,⊛} ∩ dom(f)}.

The closure property (1) makes HDAs compressible: the set of transitions is satu-

rated using the symmetry of the source state, so that a canonical choice of a transition

may be used to represent all the generated ones. The states of an HDA form a named

set. In effect, names in states are internal and have a place-holding utility. The accepted

words are built on the actual names instantiating them. Thus, the semantics of a state q
is defined by use of an assignment ρ : |q| → A to actual names. Moreover, a history H
of occurred names is needed in order to implement global name-freshness. These con-

structs are packed into configurations, which are the semantic counterparts of states.

Fix an HDA H = (Q, tr , q0, F). The set C of configurations on Q consists of all

triples (q, ρ,H) such that ρ : |q| → A is an injective function and H ⊆ A is finite.

Acceptance for H relies on the notion of configuration graph, defining which symbols

of the alphabet are accepted in a configuration (q, ρ,H). Let Σ⋆ be the words over

Σ (namely the finite sequences of letters of Σ), ǫ denote the empty word, and let ℓw
denote the concatenation of ℓ ∈ Σ and w ∈ Σ⋆. The permutation action overΣ induces

the permutation action over Σ⋆ defined by π · ǫ
def
= ǫ and π · (ℓw′)

def
= (π · ℓ)(π · w′).

Definition 5. Let −→⊆ C ×Σ × C be the smallest relation induced by the rule:

q
ℓ,f
−−→
σ

q′

(q, ρ,H)
ρ′·ℓ
−−→ (q′, ρ′ ◦ σ,H ∪ Supp(ρ′ · ℓ))

ρ′ =



















ρ if dom(f) = ∅

ρ[f(⋆) 7→ a] if dom(f) = {⋆}

ρ[f(⊛) 7→ b] if dom(f) = {⊛}

ρ[f(⋆) 7→ a][f(⊛) 7→ b] if dom(f) = {⋆,⊛}

for all a ∈ A \ Im(ρ) and b ∈ A \ (H ∪ |q0| ∪ {a}).
The configuration graph of H is the graph corresponding to the LTS of −→. We write

−→→ for the extension of −→ to finite words.1 The language accepted by (q, ρ,H) is:

L(q, ρ,H) = {w ∈ Σ⋆ | (q, ρ,H)
w
−→→(q′, ρ′, H ′) ∧ q′ ∈ F} .

The language accepted by H is L(q0, id |q0|, ∅).

The above definition of reduction between configurations is essentially split into four

cases according to the domain of the freshness annotation f . The first case specifies the

semantics of transitions that do not allocate names. Notice the role of σ which relates

the internal names of the destination state q′ to those of q, which are mapped into actual

names by ρ. The composition ρ ◦ σ therefore updates the map ρ so that it correctly

operates on the names of q′. Since the names of each label ℓ outgoing from q are also

internal to q itself, ρ is applied to ℓ in turn. The history H is enlarged to keep track of

the names used in each label. The next two rules are similar, respectively dealing with

local and global freshness; the former requires a new name to be fresh w.r.t. the names

assigned to q by ρ. The latter avoids all names of the current computation, namely all

names which have appeared in the past, therefore they are in H , and all names in the

initial state.2 The last rule deals with the simultaneous allocation of locally and globally

fresh names; this requires to choose two names that differ from any names in the state

(like a) or any name in the computation (like b). Notice that, in the target configuration,

ρ′ has to be pre-composed with σ so to guarantee that the names of q′ are correctly

interpreted. Also, the configuration graph of H may be infinite, while H is not.

The following proposition establishes equivariance [11] of the map associating to

each configuration its language, and clarifies the role of symmetries.

Proposition 6. If (q, ρ,H) ∈ C and ρ′ : A → A is an injective map, then L(q, ρ′ ◦
ρ, ρ′(H)) = ρ′ · L(q, ρ,H). Also, for all π ∈ G(q), L(q, π,H) = L(q, id |q|, H).

Remark 7. Global freshness makes automata more expressive, as studied in [25], and

requires the history to be carried along during computation. Note that, although the

whole history of the computation is kept in each configuration, the automata can use it

only to establish global freshness and have otherwise no access to it, e.g. they are not

in position to check whether a specific name has appeared before another one in the

history. On the other hand, the sub-class of HDAs where the global freshness symbol

⊛ does not appear enjoys a memory-bound acceptance process, as the H component of

configurations can be safely removed.

1 Formally, we set: (q, ρ,H)
ǫ
−→→(q, ρ,H) and (q, ρ,H)

ℓw
−−→→(q′, ρ′,H ′) if there is (q′′, ρ′′,H ′′)

such that (q, ρ,H)
ℓ
−→ (q′′, ρ′′,H ′′)

w
−→→(q′, ρ′,H ′).

2 This is because of our design choice to include an empty history in initial configurations.

Example 8. Consider an idealised system where an unbounded number of processes

can access, in a mutually exclusive way, a fixed number of shared identical resources.

Each process can use at most one resource at a time, by acquiring and eventually re-

leasing it. We construct an HDA whose language characterises the correct executions of

the system, that is, those in which each process acquires at most one resource at a time

and eventually releases it. Such a language contains words of arbitrary length made of

letters drawn from an infinite alphabet.

Suppose there are n shared resources. We identify processes by atoms in A and

take our alphabet to consist of letters ↑a or ↓a denoting the acquisition or release

of a resource by process a respectively. The permutation action is defined by: π· ↑a
def
= ↑π(a) and π· ↓a

def
= ↓π(a). Let a1, . . . , an ∈ A be n distinct names. We define an

HDA Hn as follows. The named set of states is {q0, . . . , qn}, |qi|
def
= {a1, . . . , ai} and

Gqi
def
= {id{a1,...,ai}}.3 The initial state is q0, which is also the only accepting state. For

all i ∈ {0, . . . , n− 1},

– qi has one qi
↑b,⋆ 7→b
−−−−→

σ
qi+1, where σ

def
= id |qi|[ai+1 7→ b] and b ∈ A \ {a1, . . . , an};

– qi+1 has i + 1 transitions qi+1
↓a,∅
−−−→

σ
qi, where a ∈ {a1, . . . , ai+1} and σ is some

canonical injection from {a1, . . . , ai} to {a1, . . . , ai+1} \ {a}.

The first type of transitions are acquire transitions, the other release ones. For example,

for n = 3 we obtain the following HDA.

q0 q1 q2 q3
↑b, ⋆ 7→ b/σ1 ↑b, ⋆ 7→ b/σ2 ↑b, ⋆ 7→ b/σ3

↓a1 , ∅/τ1

↓a1 , ∅/τ 1

2

↓a2 , ∅/τ 2

2

↓a1 , ∅/τ 1

3

↓a2 , ∅/τ 2

3

↓a3 , ∅/τ 3

3

σ1 = {a1 7→ b}, σ2 = {a1 7→ a1, a2 7→ b}, σ3 = {a1 7→ a1, a2 7→ a2, a3 7→ b}, τ1 = ∅, τ 1

2 = {a1 7→ a2},

τ 2

2 = {a1 7→ a1}, τ
1

3 = {a1 7→ a2, a2 7→ a3}, τ
2

3 = {a1 7→ a1, a2 7→ a3}, τ
3

3 = {a1 7→ a1, a2 7→ a2}.

Given a word w = ℓ1 . . . ℓm, let ↑ w denote the size of the set {i | ∃a ∈ A : ℓi =↑a}
and similarly for ↓ w. The language accepted by Hn is:

L = { ℓ1 . . . ℓm | ∀i. ℓi = ↓a =⇒ ∃j < i. ℓj = ↑a (2)

∧ ∀i. ℓi = ↑a =⇒ ∃i < j. ℓj = ↓a (3)

∧ ∀i < j. ℓi = ℓj = ↑a =⇒ ∃i < h < j. ℓh = ↓a (4)

∧ ∀i < j. ℓi = ℓj = ↓a =⇒ ∃i < h < j. ℓh = ↑a (5)

∧ ∀i. ↑(ℓ1 · · · ℓi) − ↓(ℓ1 · · · ℓi) ≤ n } (6)

Conditions (2) and (3) state that every release (resp. acquire) transition of process a is

preceded (resp. followed) by an acquire (resp. a release) one of a. By (4), a process a
cannot acquire a resource, say r, while holding another one and, by (5), a cannot release

r without first acquiring it. Finally, (6) states that the total number of currently allocated

resources does not exceed n.

3 Note that the dynamically allocated entities are processes, not the resources they use.

We now define bisimilarity for HDAs in terms of configuration graphs. Two states

q and q′ in isolation cannot be compared, due to locality of names, but it is necessary to

establish a partial correspondence between |q| and |q′|. Therefore, we consider bisimi-

larity of configurations instead of states. The names of two configurations (q1, ρ1, H1)
and (q2, ρ2, H2) are partially related by the injections ρ1 and ρ2.

Definition 9. A relation R ⊆ C × C is a simulation if (q1, ρ1, H1)R(q2, ρ2, H2)

implies that if q1 is final then q2 is final, and for each (q1, ρ1, H1)
a
−→ (q′1, ρ

′
1, H

′
1)

there is (q2, ρ2, H2)
a
−→ (q′2, ρ

′
2, H

′
2) such that (q′1, ρ

′
1, H

′
1)R(q′2, ρ

′
2, H

′
2). If both R and

R−1 are simulations, R is a bisimulation. Two HDAs H1 and H2 are bisimilar, written

H1 ∼ H2, if there is a bisimulationR such that (q01, id |q01|, ∅)R(q02, id |q02|, ∅), where

q0i is the initial state of Hi.

4 Expressiveness

We study the expressiveness of our machines by relating them to other classes of au-

tomata over infinite alphabets, and in particular to register automata. Since such classes

of automata are typically presented with unary transitions (i.e., transitions labelled ei-

ther with a register name or with a symbol from a finite alphabet), we restrict our at-

tention to a (unary) alphabet Σu such that finitely many elements have empty support

while the support of infinitely may others is a singleton atom. Formally, Σu

def
= A ∪ C,

where C is a finite set with C ∩ A = ∅.

4.1 Unary HDAs and FRAs

The restriction to Σu allows to significantly simplify the definition of our automata by

embedding freshness annotations within labels. Formally, we consider labels

ℓ ∈ Σu ∪ {⋆,⊛}

and a transition from q is now written q
ℓ
−→
σ

q′, where σ : |q′| → |q| ∪ ({ℓ} ∩ {⋆,⊛}) is

an injective map.

Definition 10. A unary history-dependent automaton (UHDA) H is an HDAs on Σu

with transitions defined as above. The configuration graph of a UHDA H = (Q, tr , q0, F)

is produced as follows. Given (q, ρ,H) ∈ C and q
ℓ
−→
σ

q′,

– if ℓ ∈ C then (q, ρ,H)
ℓ
−→ (q′, ρ ◦ σ,H);

– if ℓ ∈ |q| then (q, ρ,H)
ρ(ℓ)
−−→ (q′, ρ ◦ σ,H ∪ {ρ(ℓ)});

– if ℓ = ⋆ and a ∈ A \ Im(ρ) then (q, ρ,H)
a
−→ (q′, ρ[⋆ 7→ a] ◦ σ,H ∪ {a});

– if ℓ = ⊛ and b ∈ A \ (H ∪ |q0|) then (q, ρ,H)
b
−→ (q′, ρ[⊛ 7→ b] ◦ σ,H ∪ {b}).

Example 11. Consider the program (7) below written in a higher-order CBV language

with ML-style integer references [20] where the reference type is populated by names.

x : ref ⊢ λyref . if (x == y) then newref else y : ref → ref (7)

(7) returns a function F of type ref → ref which compares the name x (of reference type

and known both to the program and its environment) with its input name y (of reference

type). When x equals y, F returns newref, which evaluates to a fresh name (different

function calls will return different fresh names). Otherwise, it returns back y. Thus, the

behaviour of (7) can be described by the following FHDA H.

|q0| = |q1| = {a}, |q2| = {a, b}

σ1 = (a 7→ a), σ2 = (a 7→ a, b 7→ ⋆)

q0 q1

q2

a, σ1

⋆, σ2

⊛, σ1

b, σ1

The accepted language L is given as follows. Setting L′(H) = { ac | c /∈ H ∪ {a} }
and L′′ = { cc | c 6= a }, we have that L =

⋃
i Li where L0 = { ǫ } and Li+1 =

{ww′ | w ∈ Li ∧ w′ ∈ L′(Supp(w)) ∪ L′′ }. It is shown in [20] that L (and hence H)

is a precise representation of the observable behaviour of our program.

We now proceed to Fresh-Register Automata; the following definitions are adapted

from [25]. For each natural number n, let [n]
def

= {1, . . . , n} and define

Regn = { θ : [n] ⇀ A | ∀i, j ∈ dom(θ). θ(i) 6= θ(j) }

to be the set of register assignments of size n. Whenever a /∈ Im(θ) and i ∈ [n], we

write θ[i 7→ a] = { (i, a) } ∪ { (j, θ(j)) | j ∈ [n] \ {i} } for the update of θ at i.

Definition 12. A fresh-register automaton (FRA) of n registers is a quintuple A =
(Q, q0, θ0, δ, F) where:

– Q is a finite set of states, q0 ∈ Q is the initial one, and F ⊆ Q are the final ones;

– θ0 ∈ Regn is the initial register assignment;

– δ ⊆ Q× (C ∪ { i, i⋆, i⊛ | i ∈ [n] })×Q is the transition relation.

A is called a register automaton (RA) if there are no q, q′, i such that (q, i⊛, q′) ∈ δ.

RAs are also known in the literature as Finite-Memory Automata (FMA) [14]. A

configuration for A is a triple (q, θ,H) where q ∈ Q, θ ∈ Regn and H is a finite subset

of A. We write Cfra for the set of all configurations of this form. Given an FRA A as

above, we define a transition relation on configurations −→ ⊆ Cfra × Σu × Cfra as

follows. For all (q, θ,H) ∈ Cfra and (q, ℓ, q′) ∈ δ:

– if ℓ ∈ C then (q, θ,H)
ℓ
−→ (q′, θ,H);

– if ℓ = i ∈ dom(θ) then (q, θ,H)
θ(i)
−−→ (q′, θ,H ∪ {θ(i)});

– if ℓ = i⋆ and a /∈ Im(θ) then (q, θ,H)
a
−→ (q′, θ[i 7→ a], H ∪ {a});

– if ℓ = i⊛ and a /∈ H ∪ Im(θ0) then (q, θ,H)
a
−→ (q′, θ[i 7→ a], H ∪ {a}).

The language accepted by A is:

L(A) = {w ∈ Σ∗
u | (q0, θ0, ∅)

w
−→→(q, θ,H) ∧ q ∈ F } .

Two automata are equivalent if they accept the same language. Bisimilarity is defined

in Definition 9, by considering bisimulations in the induced transition graphs. For RAs

the constructions above are simplified by completely ignoring the H-components.

Fact 13 RAs are closed under union, intersection, concatenation and Kleene star; they

are not closed under complementation [14]. Moreover, FRAs are closed under union

and intersection; and not closed under concatenation, Kleene star and complementa-

tion [25]. Finally, for both classes of automata, emptiness and bisimilarity are decid-

able [14, 25]; while universality, equivalence and containment are undecidable [21].

4.2 Correspondence

We next show that UHDAs precisely correspond to FRAs and therefore these classes

of automata are equi-expressive. More precisely, given a UHDA H we effectively con-

struct a bisimilar FRA A, and viceversa. Also, these correspondences project onto UH-

DAs which do not use the ⊛ label and RAs. We thus obtain the results of Corollary 15.

The direction from FRAs to UHDAs is relatively simple: FRAs carry registers

where UHDAs carry internal names. In practice the translation becomes a bit more

elaborate because FRAs may have empty registers, whereas our automata are garbage-

free and use all the names in their supports. The construction is relatively simple and

delegated to the Appendix.

Let now H = (Q, q0, tr , F) be a UHDA such that its states have at most n internal

names. Moreover, let us assume a fixed ordering of A, that is, some injective χ from

A to natural numbers. For each finite S ⊆ A we write ord(S) for the ordering of S
according to χ, i.e. for the sequence a1 . . . an ∈ A∗ such that Supp (a1 . . . an) = S, all

the ai are distinct and, for each i < j, χ(ai) < χ(aj). Note that the specific choice of

χ is immaterial and the following results do not depend on it.

We define an FRA A with n+1 registers which (bi)simulates the behaviour of H as

follows. During computation in H, the internal names of its states may be re-ordered or

deleted. For example, consider the transition τ13 of Example 8 where no name of q3 is

mapped to the internal name a1 of q2, and the internal names are re-ordered. Since the

registers of FRAs are fixed, and cannot be re-ordered nor deleted, in order to simulate

this behaviour an external component needs to be added to the states. This will be a

function f : [n] → [n + 1] which will represent re-orderings by mapping elements of

[n] to elements of [n], and will simulate deletions by mapping elements of [n] to n+ 1.

This means that the “deleted” names will remain in the registers, but the information in

f will allow us to know that these names should not be there. Therefore, if we want to

simulate a locally fresh transition and know that the i-th register, say, contains a deleted

name then we will explicitly add a transition for this register; otherwise, A′ would not

be able to match the deleted name. Finally, note that the reason we need n+1 registers

is that a state q may contain n local names already and H may still have a transition,

say, q
⋆

−−−→
id |q|

q. In A the fresh name will be put in the n+ 1-th register.

Concretely, we define the FRA A = (Q′, q′0, θ
′
0, δ

′, F ′) with n+ 1 registers, where

Q′ = Q× { f : [n] → [n+ 1] | ∀i, j. f(i) = f(j) 6= n+ 1 =⇒ i = j } ,

Q is the set underlying the named set (Q, GQ) and, assuming ord(|q0|) = a01 . . . a0m0 :

– q′0 = (q0, f0), where f0 = { (i, i) | 1 ≤ i ≤ m0 }∪ {(i, n+1) |m0 < i ≤ n+1 }.

– θ′0 maps each 1 ≤ i ≤ m0 to a0i and each i > m0 to #.

– F ′ = {(q, f) ∈ Q′ | q ∈ F}.

– δ′ is given as follows. Assume below that ord(|q|) = a1 . . . am and ord(|q′|) =
a′1 . . . a

′
m′ . If (ℓ, σ, q′) ∈ tr(q) then ((q, f), ℓ′, (q′, f ′)) ∈ δ′, with ℓ′, f ′ given by:

• f ′ = (f̄ ◦ σ′)[ifr 7→ jfr] , where σ′ : [n] → [n+ 1] is defined as:

σ′(i) = n + 1 (if i > m′ or σ(a′i) ∈ {⋆,⊛}) and σ′(i) = j (if σ(a′i) = aj),
and f̄ = f [n+1 7→ n+1]. Moreover, ifr is the index such that σ(a′ifr) ∈ {⋆,⊛},

and jfr is the least index such that jfr /∈ (f ◦ σ′)([n + 1]); in case no such ifr
exists, i.e. σ(|q′|) ∩ {⋆,⊛} = ∅, the notation means f ′ = f̄ ◦ σ′.

• If ℓ ∈ C then ℓ′ = ℓ.
• If ℓ ∈ |q| then ℓ′ = f(i), where ℓ = ai.
• If ℓ = ⋆/⊛ then ℓ′ = j⋆/j⊛, where j = n+ 1 if ℓ /∈ σ(|q′|), and j = f ′(i) if

σ(a′i) = ℓ.
Moreover, if (⋆, σ, q′) ∈ tr(q) then ((q, f), jfr, (q

′, f ′)) ∈ δ′, for each jfr ∈
f−1(n+ 1) and f ′ = (f̄ ◦ σ′)[ifr 7→ jfr], with ifr, f̄ , σ

′ given as above.

We can now establish the following result (proof in the Appendix).

Proposition 14. For H and A as above, H ∼ A.

We have thus shown the equivalence between UHDAs and FRAs. By examining

the precise constructions it is easy to see that UHDAs which do not use globally fresh

transitions are equivalent to RAs in the same sense. We therefore obtain the following.

Corollary 15. – UHDAs are closed under union and intersection; they are not closed

under concatenation, Kleene star and complementation.

– UHDAs which do not use the ⊛ label are closed under union, intersection, concate-

nation and Kleene star; they are not closed under complementation.

For both classes of automata, emptiness and bisimilarity are decidable; universality,

equivalence and containment are undecidable.

A consequence of the above is that global freshness adds expressive power to our

automata. For instance, the language L of the Example 11 cannot be accepted without

⊛-transitions, as it is not RA-accepted [14, Prop. 3].

5 Symmetries and minimal models

A primary question when dealing with models is the existence of computable canonical

ones. In language theory, a procedure for computing a unique canonical representative

of each class of language-equivalent automata allows one to decide language equiva-

lence. We discuss here how to compute canonical models for subclasses of HDAs. In

fact, Corollary 15 implies that language equivalence is not decidable for HDAs. There-

fore, minimal models can be computed for proper subclasses of HDAs, in particular,

we use a minimisation procedure for HDAs. Such procedure is based on a notion of

partition refinement for HDAs which hinges on symmetries [22, 10]. This is the main

reason for the inclusion of symmetries in Definition 2 (see Appendix D).

Recall the definition of HDA bisimilarity (Definition 9). It is easy to see that bisim-

ilarity implies language equivalence. A more interesting question is to find classes of

HDAs where language equivalence implies bisimilarity. One such class is easily identi-

fied in the deterministic HDAs, defined as the ones whose configuration graph is deter-

ministic. A larger class is given in the following definition.

Definition 16. Call an HDA H = (Q, tr , q0, F) symmetrised-deterministic (sdHDA)

iff. for each q ∈ Q, at least a final state q′ ∈ F is reachable from q, and for any two

transitions q
ℓ1,f1
−−−→
σ1

q1 and q
ℓ2,f2
−−−→
σ2

q2 having the same source, whenever there is a

permutation ι such that ι · ℓ1 = ℓ2, and ι is the identity on |q|, then q1 = q2, and there

is π ∈ G(q1) such that ι ◦ σ1 ◦ π = σ2.

In an sdHDA, pairs of transitions that may accept the same symbol must lead to

the same state, modulo a permutation in its symmetry. Such pairs of transitions are

characterised by the existence of an assignment of fresh names to fresh names ι that

makes two labels equal. Lemma 17 below demonstrates the purpose of Definition 16

and allows us to show the subsequent proposition (proofs in the Appendix).

Lemma 17. For all configurations (q, ρ,H) of an sdHDA, whenever there are two tran-

sitions with the same sources and labels in the configuration graph, say (q, ρ,H)
a
−→

(q1, ρ1, H
′) and (q, ρ,H)

a
−→ (q2, ρ2, H

′), then L(q1, ρ1, H ′) = L(q2, ρ2, H ′).

Proposition 18. On sdHDAs, language equivalence and bisimilarity coincide.

The minimal automaton of an sdHDA is its bisimilarity quotient. Minimisation is

performed as in [10], with some extra care taken in order to cater for the inter-matching

of globally and locally fresh transitions, as in [25]. Interestingly, the algorithm also

computes the largest symmetry that preserves the accepted language. The automated

computation of such groups is paramount for efficient verification (see e.g. [8]).

Example 19. Let us construct the minimal automaton (Q, tr , q0, F) for the HDA Hn

of Example 8. We set Q = {q0, . . . , qn} and F = {q0}. The symmetry of each state

qi is the symmetric group over {a1, . . . , ai}, that is, it contains all the permutations of

this set. The transitions are as in the case without symmetry but, due to condition (1) of

Definition 4, only one release transition from each qi+1 to qi needs to be represented.

The remaining transitions are obtained by closure wrt the symmetry of states.

Finally, we remark that symmetries have compact representations. This is due to

a theorem of group theory: a finite permutation group G of cardinality |G| can be

represented using a set of generators [3] of size smaller than log2 |G| (see e.g. [7],

§3.3), whose closure wrt composition is G. For instance, the symmetric group over

{a1, . . . , ai} used in Example 19 can be represented using a transposition of two arbi-

trary elements and a round shift of all the elements. Efficient algorithms can be defined

e.g. for permutation search, which work directly on the generators [16]. These can be

reused in implementations of analysis tools based on HDAs as language acceptors.

6 Concluding remarks

We have studied a class of automata over infinite alphabets, whose main feature is the

presence of names and name allocation. We regard this work as a foundational starting

point for a theory of resource-sensitive language models of computations taking into

account compositionality and existence of canonical models. Our investigation aims

to use these models for applications such as trace-analysis and runtime monitoring of

systems that may have to deal with infinite sets of resources. Therefore, we plan to

investigate efficient recognition procedures and language-theoretic operations (e.g. in-

tersection of automata). Such procedures would make use of the compact representation

of a symmetry by its generators, and of efficient algorithms for permutation groups [16].

A valuable application of the framework is the possibility to use process calculi such

as the CCS or the π-calculus to specify HDAs. Combining our results with process

calculi mapped on HDAs (e.g. [22, 10]) would make it possible to use typical process

algebraic operators to specify languages (e.g. to specify monitors, trace-analyses and

parsers) for systems with infinite alphabets.

References

1. M. Bojanczyk. Data monoids. In Proceedings of STACS, pp. 105-116, 2011.
2. M. Bojanczyk, B. Klin, and S. Lasota. Automata with group actions. In Proceedings of

LICS, pp. 355-364, 2011.
3. C. C. Sims. Computational methods in the study of permutation groups. In John Leech,

editor, Computational Problems in Abstract Algebra. Pergamon (Oxford), 1970.
4. V. Ciancia. Accessible Functors and Final Coalgebras for Named Sets. PhD thesis, Dip. di

Informatica, Pisa, 2008.
5. V. Ciancia, A. Kurz, and U. Montanari. Families of symmetries as efficient models of re-

source binding. Electr. Notes Theor. Comput. Sci., 264(2):63–81, 2010.
6. V. Ciancia and U. Montanari. Symmetries, local names and dynamic (de)-allocation of

names. Inf. Comput., 208:1349–1367, 2010.
7. J. D. Dixon and B. Mortimer. Permutation Groups, vol. 163 of GTM. Springer, 1996.
8. E. Emerson and S. Sistla. Symmetry and model checking. In Formal Methods in System

Design, vol. 9, n. 1-2, pp. 105-131, 1994.
9. G. Ferrari, U. Montanari, and M. Pistore. Minimizing Transition Systems for Name Passing

Calculi: A Co-algebraic Formulation. In Proceedings of FOSSACS, pp. 129–143, 2002.
10. G. Ferrari, U. Montanari, and E. Tuosto. Coalgebraic Minimisation of HD-automata for the

π-Calculus in a Polymorphic λ-Calculus. TCS, 331:325–365, 2005.
11. M. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. In Proceedings

of LICS, pp. 214–224, 1999.
12. M. J. Gabbay and V. Ciancia. Freshness and name-restriction in sets of traces with names.

In Proceedings of FOSSACS, vol. 6604 of LNCS, pp. 365–380, 2011.
13. F. Gadducci, M. Miculan, and U. Montanari. About permutation algebras, (pre)sheaves and

named sets. Higher-Order and Symbolic Computation, 19(2-3):283–304, 2006.
14. N. Kaminski, M. Francez. Finite-memory automata. TCS, 134(2):329–363, 94.
15. A. Kurz, T. Suzuki, and E. Tuosto. Towards nominal formal languages. CoRR,

abs/1102.3174, 2011.
16. E. M. Luks. Permutation Groups and Polynomial Time Computation. DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, 11:139–175, 1993.
17. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I and II. Inf. and

Comp., 100(1):1–40, 41–77, September 1992.
18. U. Montanari and M. Pistore. History-dependent automata. Technical Report TR-98-11,

Dip. di Informatica, Pisa, 1998.
19. U. Montanari and M. Pistore. π-Calculus, Structured Coalgebras, and Minimal HD-

Automata. In Proceedings of MFCS, vol. 1983 of LNCS, 2000.
20. A. S. Murawski and N. Tzevelekos. Algorithmic nominal game semantics. In ESOP, 2011.
21. F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite alpha-

bets. ACM Trans. Comput. Logic, 5(3):403–435, 2004.
22. M. Pistore. History Dependent Automata. PhD thesis, Dip. di Informatica, Pisa, 1999.
23. S. Staton. Name-passing process calculi: operational models and structural operational

semantics. PhD thesis, University of Cambridge, 2007.
24. E. Tuosto. Non-Functional Aspects of Wide Area Network Programming. PhD thesis, Dip.

di Informatica, Pisa, 2003.
25. N. Tzevelekos. Fresh-register automata. In Proceedings of POPL, pp. 295-306, 2011.

A Examples of nominal sets

Every set X is a nominal set with trivial action, π · x = x, in which case every x ∈ X
has empty support. More interestingly:

– The set A is a nominal set under the “natural” action π·a = π(a), each π ∈ Perm

and a ∈ A; observe that, of each a ∈ A, Supp(a) = {a}.

– The set A∗ of finite words of names is a nominal set under the action π·a1 · · · an =
π(a1) · · ·π(an); in this case, Supp(a1 · · · an) = {a1, . . . , an}.

– The set Pfn(A) of finite sets of names is a nominal set under the action π · S =
{π(a) | a ∈ S}, in which case Supp(S) = S.

Moreover, disjoint unions, products, etc. of nominal sets form nominal sets by defining

the permutation action componentwise. Note the intrinsic symmetry of elements in the

latter case above: for example, taking S = {a, b} we have (a b) · S = S, even if (a b)
actually fixes neither a nor b. Although a and b are in Supp(S), they are interchangeable

inside S. They are two distinct names whose local meaning is the same.

B Proofs

Proof (Proposition 14). We say that an FRA-configuration is reachable if it can be

reached from the initial configuration. We show that the following relation is a bisimu-

lation.

R = { ((q, ρ,H), ((q, f), θ,H)) | ((q, f), θ,H) reachable ∧ ord(|q|) = a1 . . . am

∀i. (1 ≤ i ≤ m =⇒ θ(f(i)) = ρ(ai)) ∧ (m < i ≤ n =⇒ f(i) = n+ 1) }

Suppose that ((q, ρ,H), ((q, f), θ,H)) ∈ R and (q, ρ,H)
ℓ
−→ (q′, ρ′, H ′). Recall that

ord(|q|) = a1 . . . am and say that ord(|q′|) = a′1 . . . a
′
m′ . We do case analysis on the

underlying transition, focussing on ℓ ∈ A; the case of ℓ ∈ C is similar and simpler.

If the transition is some (q′, ak, σ) ∈ tr(q) then ℓ = ρ(ak) and ((q, f), f(k), (q′, f ′)) ∈

δ′ with f ′ = f ◦ σ′. Thus, ((q, f), θ,H)
θ(f(k))
−−−−→ ((q′, f ′), θ,H ′) where θ(f(k)) =

ρ(ak) = ℓ by hypothesis. We still need to show that ((q′, ρ′, H ′), ((q′, f ′), θ,H ′)) ∈ R,

that is, that the stated conditions are satisfied. The configuration is clearly reachable.

Moreover, for each 1 ≤ i ≤ m′ we have ρ′(a′i) = ρ(σ(a′i)) = ρ(aj) = θ(f(j)) =
θ(f(σ′(i))) = θ(f ′(i)), where σ(a′i) = aj (in particular, j = σ′(i) ≤ n). Finally, for

each m′ < i ≤ n we have f ′(i) = f̄ ◦ σ′(i) = f̄(n+ 1) = n+ 1, as required.

If the transition is some (q′, ⋆, σ) ∈ tr(q) and ℓ /∈ Im(θ) then ((q, f), k⋆, (q′, f ′)) ∈ δ′,

and thus ((q, f), θ,H)
ℓ
−→ ((q′, f ′), θ′, H ′) with θ′ = θ[k 7→ ℓ]. If ⋆ /∈ σ(|q′|) then

k = n+1 and f ′ = f̄ ◦ σ′. Moreover, for each 1 ≤ i ≤ m′ we have θ′(f ′(i)) = ρ′(a′i)
as above, noting that σ(a′i) = aj with j ≤ n, and for each m′ < i ≤ n we have f ′(i) =
n+1. On the other hand, if σ(a′ifr) = ⋆ then k = f ′(ifr), i.e. k = jfr, the minimum index

such that jfr /∈ f̄ ◦σ′([n]). Note that σ′ maps ifr to n+1, thus jfr < n+1. We have that

θ′(f ′(ifr)) = θ′(jfr) = ℓ and ρ′(a′ifr) = ρ[⋆ 7→ ℓ]◦σ(aifr) = ℓ. The rest of the conditions

are shown as above. Thus, in both cases we get ((q′, ρ′, H ′), ((q′, f ′), θ′, H ′)) ∈ R.

If the transition is some (q′,⊛, σ) ∈ tr(q) then work as above, using also the fact that

((q, f), θ,H) is reachable.

If the transition is some (q′, ⋆, σ) ∈ tr(q) and ℓ = θ(k) then, since ℓ /∈ ρ|q|, k > m
and by hypothesis f(k) = n + 1. Thus, ((q, f), jfr, (q

′, f ′)) ∈ δ′ with jfr = k and

therefore ((q, f), θ,H)
ℓ
−→ ((q′, f ′, θ,H ′). If ⋆ /∈ σ(|q′|) then work as above. Oth-

erwise, if ⋆ = σ(a′ifr) then f ′ = (f̄ ◦ σ′)[ifr 7→ jfr] and θ(f ′(ifr)) = θ(jfr) = ℓ
while ρ′(a′ifr) = (ρ[⋆ 7→ ℓ] ◦ σ)(a′ifr) = ℓ. The rest of this case is as above, and thus

((q′, ρ′, H ′), ((q′, f ′), θ,H ′)) ∈ R.

The above argument shows that R is a simulation. Now suppose ((q, f), θ,H)
ℓ
−→

((q′, f ′), θ′, H ′) with ℓ ∈ A and ord(|q′|) = a′1 . . . a
′
m′ . We do a case analysis on

the underlying transition.

If the transition is some ((q, f), j, (q′, f ′)) ∈ δ′ and ℓ = θ(j) = ρ(ai) then, by hypoth-

esis, j = f(i) and thus j /∈ f−1(n + 1). Thus, ((q, f), j, (q′, f ′)) ∈ δ′ is due to some

(ai, σ, q
′) ∈ tr(q) and thus (q, ρ,H)

ℓ
−→ (q′, ρ′, H ′). We can now check as above that

the conditions are satisfied and therefore ((q′, ρ′, H ′), ((q′, f ′), θ′, H ′)) ∈ R.

If the transition is some ((q, f), j, (q′, f ′)) ∈ δ′ and ℓ = θ(j) /∈ ρ(|q|) then f(j) =
n + 1, and ((q, f), j, (q′, f ′)) ∈ δ′ is due to some (⋆, σ, q′) ∈ tr(q). We therefore ob-

tain (q, ρ,H)
ℓ
−→ (q′, ρ′, H ′) and we can check that ((q′, ρ′, H ′), ((q′, f ′), θ′, H ′)) ∈ R.

The other two cases involve the transitions containing labels of the form j⋆/j⊛, which

have one corresponding A′-transition each. These cases are resolved in a similar man-

ner to the above. ⊓⊔

Proof (Lemma 17). By injectivity of ρ and definition of configuration graph, under the

hypothesis of Lemma 17, it is not difficult to see that the symbol a is accepted by two

transitions in the form q
ℓ1,f1
−−−→
σ1

q1, and q
ℓ2,f2
−−−→
σ2

q2 such that there is ι as in Definition 16

satisfying ι(ℓ1) = ℓ2. By definition of sdHDA, there is π ∈ Gq1 such that ι◦σ1◦π = σ2.

By Prop. 6, L(q1, π,H) = L(q1, id,H). Then by how ρ1 and ρ2 are obtained from σ1

and σ2 (see Definition 5), and Prop. 6 again we get the thesis. ⊓⊔

Proof (Proposition 18). We show that language equivalence is a bisimulation. Consider

two configurations c1 and c2 accepting the same language. Consider a transition c1
a
−→

c′1. Observe that by Lemma 17, for all the transitions c1
a
−→ c′′1 we have L(c′1) =

L(c′′1). We have to prove that there is a transition c2
a
−→ c′2 such that L(c′1) = L(c′2).

By language equivalence of c1 and c2, and the first condition in Definition 16, there

certainly is at least a transition c2
a
−→ c′2, and by Lemma 17 all such transitions go into

configurations that accept the same language. Reasoning on the possible derivatives, we

have that L(c′1) = {w | aw ∈ L(c1)} and similarly L(c′2) = {w | aw ∈ L(c2)}. By

language equivalence again, we have the thesis. ⊓⊔

C From FRAs to UHDAs

Let us assume A = (Q, q0, θ0, δ, F) is an FRA of n registers, and let us fix b1, . . . , bn
to be distinct names such that dom(θ0) ⊆ {b1, . . . , bn}. Following [25], we effectively

construct a bisimilar FRA A of n registers where each state is decorated with a subset

of [n] specifying its non-empty registers. The automaton has the same transitions as

A, but for blocking transitions, that is, transitions of the form ((q, S), i, (q′, S′)) where

i /∈ S: such transitions are not allowed in A. Concretely, A = (Q, q0, θ0, δ, F) where

Q = Q× P([n]), q0 = (q0, dom(θ0)), F = { (q, S) | q ∈ F } and:

δ = { ((q, S), ℓ, (q′, S)) | (q, ℓ, q′) ∈ δ ∧ (ℓ ∈ C ∨ ℓ ∈ S) }

∪ { ((q, S), i⋆/i⊛, (q′, S′)) | (q, i⋆/i⊛, q′) ∈ δ ∧ S′ = S ∪ {i} }

As in [25, Section 3], we can show that A ∼ A. We now construct the FHDA H =
(Q′, tr ′, q′0, F

′) as follows.

– Q′ = { (Q, G) | G(q, {i1, . . . , im}) = id{bi1 ,...,bim} }. In particular, each (q, S) has

local names |(q, S)|Q′ = {bi | i ∈ S}.

– q′0 = (q0, dom(θ0)), F
′ = { (q, S) | q ∈ F }, and tr ′ is given by:

• if ((q, S), ℓ, (q′, S)) ∈ δ and ℓ ∈ C then ((q′, S), ℓ, id |(q,S)|) ∈ tr ′(q, S);

• if ((q, S), i, (q′, S)) ∈ δ then ((q′, S), bi, id |(q,S)|) ∈ tr ′(q, S);

• if ((q, S), i⋆/i⊛, (q′, S′)) ∈ δ then ((q′, S′), ⋆/⊛, id |(q,S)|[i 7→ ⋆/⊛]) ∈ tr ′(q, S).

In effect, H works exactly as A, only using bi where A would use i, and [i 7→ ⋆/⊛]
where A would use i⋆/⊛. It is thus straightforward to show the following.

Proposition 20. Let A, A, and H be as above. The following relation is a bisimulation

and hence A ∼ A ∼ H.

R = { (((q, S), θ,H), ((q, S), ρ,H)) | dom(θ) = S ∧ ∀i ∈ S. θ(i) = ρ(bi) }

D Symmetries and canonical models in HDAs

The following example is adapted from [22], § 6.6.2 and shows that symmetries are

needed for canonical models. Consider two HDAs

H1 = ({q}, tr1, q, {q}) and H2 = ({q}, tr2, q, {q})

such that |q| = {a, b}, the symmetry of q is the singleton {id |q|} for both H1 and H2,

and

tr1(q) = {(q, a, id |q|, ∅), (q, b, id |q|, ∅)}, tr2(q) = {(q, a, (a b), ∅), (q, b, (a b), ∅)}

Note that H1 and H2 differ only for the symmetries of the name mappings on their

transitions; in fact, they accept the same language.

The canonical representative ofH1 andH2 is the automatonH = ({q′}, tr ′, q′, {q′}),
with G(q′) = {id |q|, (a b)}, and tr ′(q′) containing the same transitions as tr1(q) ∪
tr2(q), with q′ in place of q.

