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Abstract. We will extend the well-known Church encoding of Boolean logic into λ-calculus
to an encoding of McCarthy’s 3-valued logic into a suitable infinitary extension of λ-calculus
that identifies all unsolvables by ⊥, where ⊥ is a fresh constant. This encoding refines to
n-valued logic, for n ∈ {4, 5}. Such encodings also exist for Church’s original λI-calculus.

By way of motivation we consider Russell’s paradox, exploiting the fact that the same
encoding allows us also to calculate truth values of infinite closed propositions in this
infinitary setting.

In memory of Corrado Böhm

Böhm’s theorem [Böhm68] was instrumental in proving the equivalence between an op-
erational semantics and a denotational semantics of the λ-calculus and inspired Baren-
dregt [Bar77a, Bar84] to define the concept of Böhm tree, a first version of which had been
introduced by Böhm and Dezani [BDC74]. Böhm trees have later been redefined as the
normal forms in a suitable infinitary extension of λ-calculus by Kennaway et al. [KKSdV97].
Böhm trees and their generalisations are now another established way to capture the semantic
content of a λ-term [KdV03, SdV11a]. In this paper Böhm trees play a crucial role: we use
Böhm trees to encode (even infinite) propositions in λ-calculus and to calculate their values.

1. Motivation and overview

In this paper we will extend the well-known Church encoding of Boolean logic into λ-calculus
to an encoding of n-valued logic (for 3 ≤ n ≤ 5) into an appropriate infinitary extension
of λ-calculus. The extension we use in case of n = 3 is the extension that identifies all
unsolvables by ⊥ such that the normal forms of the lambda terms are their Böhm trees. By
way of motivation we will now consider Russell’s paradox. Any notation that is used in this
section will be explained in Section 2 and 3.

Key words and phrases: lambda calculus, many-valued logic, meaningless term, generalised Böhm tree,
Russell’s paradox.
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1.1. Russell’s Paradox. This paradox arises if we, somewhat näıvely, consider the set R
of all sets that are not a member of themselves and then wonder whether R ∈ R. We get as
paradoxical consequence that R ∈ R if and only if R /∈ R. As noted by Church [Chu41] at
the heart of this paradox lies the λ-term (the application pp is interpreted as p 3 p)

P ≡ (λp.¬(pp))(λp.¬(pp))

which has no finite normal form and therefore is neither true or false.1 Like the well-known
λ-term Ω ≡ (λx.xx)(λx.xx), the term P has the property that any of its reducts can be
further reduced to a redex. Therefore it has no head normal form. Hence P is an unsolvable
term. It allows the following infinite reduction

P → ¬P → ¬(¬P )→ ¬(¬(¬P ))→ . . .

The limit ¬(¬(¬(¬(. . .)))) of this reduction is an infinite proposition. Unexpected, perhaps,
but not necessarily paradoxical.

1.2. Infinite λ-calculus and Böhm trees. In the past [KdV03, SdV11a] we have devel-
oped a family of infinitary λ-calculi, each depending on a set of meaningless terms U . The set
of terms underlying these extensions is the set Λ∞⊥ of lambda terms obtained by interpreting
the usual λ-calculus syntax extended with one fresh symbol ⊥ coinductively. We use this
set U ⊆ Λ∞⊥ of meaningless terms to add a new rewrite rule to λβ that allows us to rewrite
meaningless terms to ⊥. Cf. Section 2 for a precise description of this rule.

The set US of unsolvable λ-terms is the best known example of such a set of meaningless
terms. The corresponding infinitary extension λ∞β⊥US

of the finite λ-calculus λβ is confluent
and normalising for a suitable notion of possibly infinite reduction. The Böhm tree of a finite
λ-term is precisely its normal form in λ∞β⊥US

. In particular the Böhm tree of an unsolvable
is ⊥.

So with this encoding in the λ-calculus in mind we no longer need be afraid of infinite
propositions. By inspecting the Böhm trees of the encoding of infinite closed propositions we
will find that they are either lambda terms representing a Boolean or they are unsolvable.

1.3. Encoding three-valued logic in infinitary λ-calculus. Thus we are led to extend
the Church encoding to an encoding of three-valued logic in infinitary λ-calculus λ∞β⊥US

, by
mapping the third value to ⊥. Inspection of the truth tables then reveals that the Church
encoding of Boolean logic now has naturally been extended to a Church encoding of what is
called McCarthy’s three-valued logic [McC63]. In particular we find that the infinite term
¬(¬(¬(. . .))) that we encountered in our analysis of Russell’s paradox is neither true nor
false but ⊥.

1.4. Encoding four- and five-valued logic. We will further note that the set of unsolvable
λ-terms that get identified by ⊥ can be split into three subsets closed under infinite reduction
and substitution. Repeating the above construction now with three new truth values instead
of ⊥ we find that the Church encoding also encodes a five-valued McCarthyan logic. That
five-valued logic and its four-valued sub-logic have been studied earlier by Bergstra and Van
de Pol [BvdP96, BvdP11].

1The notation ¬ for the λ-term λb.bTF is recalled at page 6.
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1.5. Church’s λI-calculus. When Church started his work on λ-calculus around or before
1928, his motivation was to use the λ-calculus as the basis for a symbolic logic that could serve
as the foundation of mathematics [Chu32]. Church’s hope was that by using non-classical
logic (in which he had shown an early interest [Chu28]) he could side step the Paradoxes
without having to introduce Zermelo’s set axioms or Russell’s type theory, that he both
judged as somewhat artificial.

This is not what happened. He discovered with his students Kleene and Rosser that
the lambda definable functions corresponded exactly to the recursive functions [Kle36b,
Kle36a, Chu36b]. In the build-up to that result Kleene and Rosser managed to prove the
inconsistency of his logical system [KR35] while Church himself was still publicly hopeful
that not only his system could be paradox-free but also escape Gödel’s incompleteness
theorem [Chu34]. A disaster. Fortunately, the λ-calculus itself was consistent by the Church-
Rosser theorem [CR36]. Various papers under preparation had to be rewritten. Church
rebounded almost immediately with his formulation of the Church-Turing thesis [Chu36b]
and his negative solution of Hilbert’s Entscheidungsproblem [Chu36a] (there is no algorithm
that can decide whether a given formula of the first order arithmetic is provable or not).

Church’s goal, a paradox free system of symbolic logic, led him to the choice of the
λI-calculus in which an abstraction λx.M is only accepted as well-formed term if it contains
x as a free variable. For him only terms with a finite normal form where significant and for
this he rejected, what we now call, the classical lambda calculus which has terms that have
a normal form although they also have subterms which do not [Chu41].

It is a natural question to ask whether an encoding of 3-valued logic is possible in the
λI-calculus. We recall that there is a Church encoding for Boolean logic in the λI-calculus.
Barendregt has shown that the unsolvable terms in λI-calculus are exactly the λI-terms
without a finite normal form. This means that the Böhm tree of a λI-term is either its finite
normal form or ⊥. No infinite terms or reductions are needed in case of λI-calculus to define
Böhm trees. Thus the above encoding of McCarthy’s three-valued logic can be quite simply
repeated in Church’s λI-calculus. For the details see Section 4.2.

Yet, while this encoding is undoubtedly well within Church’s technical means, the Böhm
tree concept seems in conflict with his intuition of meaning. The Böhm tree construction
gives meaning to any term: the terms without a finite normal form which Church considers
meaningless/insignificant are given the “meaning” ⊥ in this extension of λI-calculus with
the ⊥-rule.as

1.6. Overview of this paper. In Section 2 we assume familiarity with the finite λ-calculus
and briefly introduce relevant notation and facts from the infinitary λ-calculus. In Section 3
we recall the encoding of Boolean valued logic and explain how to extend this to an encoding
of three-valued logic. Then we show how this encoding can be refined to four- and five
valued logic. In Section 4 we discuss Böhm trees for Church’s λI-calculus and show that
three valued logic can also be encoded in λI-calculus. Finally Section 5 is a brief conclusion.

2. Infinite λ-calculus

We will recall notation, concepts and facts from infinitary λ-calculus, while assuming
familiarity with λβ, by which we denote the finite λ-calculus with β-reduction and no
η-reduction [Chu41, Bar84]. We will use → and →→ for respectively one step β-reduction
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and finite β-reduction. We will use ≡ to indicate syntactical identity modulo α. We will use
the following special terms.

K ≡ λxy.y Ω ≡ (λx.xx)λx.xx
I ≡ λx.x Θ ≡ (λxy.y(xxy))λxy.y(xxy)

We will now explain how to construct infinite extensions of the finite λ-calculus that
are confluent and normalising. We begin with the observation that finite reduction is not
finitely normalising: for instance, the finite term Θx has an infinite reduction

Θx→ x(Θx)→ x(x(Θx))→ . . .

This is a converging reduction (think of terms as trees and take the standard metric on
trees) with an infinite term as limit:

x(x(x(. . .)))

We can add infinite λ-terms to the finite λ-terms by reading the usual syntax definition
(where x ranges over some countable set of variables) of finite λ-terms coinductively:

M ::= x | λx.M | (MM)

We will write Λ∞ for this set of finite and infinite λ-terms. Using →→→ for a possibly infinite
converging reduction, we can now write

Θx→→→ x(x(x(. . .)))

Later in the paper we will encounter the infinite term λyλyλy . . . as the limit of the converging
reduction

ΘK→ K(ΘK)→ λy.ΘK→→ λyλy.ΘK→→ λyλyλy.ΘK→→→ λyλyλy . . .

These two examples show that by adding infinite terms and infinite reductions to the finite
lambda calculus, we obtain that some finite terms without a finite normal form now have
converging reductions to an infinite normal form. But we have lost confluence of the finite
λ-calculus. E.g. the finite term (λx.I(xx))(λx.I(xx)) has a finite reduction to Ω and an
infinite converging reduction to I(I(I(. . .))). Both reducts have the property that they
can only reduce to themselves. Hence they cannot be joined by either finite or converging
reductions. This example also shows that this extension of the finite lambda calculus is not
normalising.

Yet, it is possible to build (in fact many different) infinitary extensions of λβ which
are confluent and normalising for finite and convergent reductions, and finite and infinite
terms [KKSdV97, KvOdV99, KdV03, SdV11a]. We need to do three things. First, we add a
new symbol ⊥ to the syntax of λ-terms and consider the set Λ∞⊥ of finite and infinite terms
over the extended coinductive syntax. Second, we choose a set U of λ-terms in Λ∞. Third,
we add a new reduction ⊥U -rule on Λ∞⊥ that will allow us to identify the terms of U by the
new symbol ⊥:

M [⊥ := Ω] ∈ U M 6= ⊥
(⊥U )

M → ⊥
For a given U we denote this infinite extension by λ∞β⊥U

. In a series of papers [KKSdV97,

KvOdV99, KdV03, SdV11a] we have determined a collection of necessary and sufficient
axioms that the set U must satisfy in order for λ∞β⊥U

to be a converging and normalising
infinite λ-calculus.
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We call such sets sets of meaningless terms. The choice of a set U of meaningless terms
is akin to the choice of a semantics for lambda calculus: together the normal forms in λ∞β⊥U
form a model of the λ-calculus. The intuition is that the elements of a meaningless set are
undefined, that is, have no meaning or are insignificant. In order for such a model to be
consistent the set U has to be a proper subset of Λ∞.

Definition 2.1 ([SdV11a]). U ⊆ Λ∞ is called a set of (finite or infinite) meaningless terms,
if it satisfies the axioms of meaninglessness:

(1) Axiom of Root-activeness: R ⊆ U . (R defined below)
(2) Axiom of Closure under β-reduction: If M →→→β N then N ∈ U for all M ∈ U .
(3) Axiom of Closure under Substitution: If M ∈ U then any substitution instance of M is an

element of U .
(4) Axiom of (Weak) Overlap: Either for each λx.P ∈ U , there is some W ∈ U such that

P →→→β Wx , or alternatively (λx.P )Q ∈ U , for any Q ∈ Λ∞⊥ .

(5) Axiom of Indiscernibility: Define M
U↔ N if M can be transformed into N by replacing

pairwise disjoint subterms of M in U by terms in U . If M
U↔ N then M ∈ U ⇔ N ∈ U .

(6) Axiom of Consistency: U 6= Λ.

This construction is inspired by the definition of Böhm tree [Bar84]. If one takes for U
the set US of unsolvables [Bar77b], then the resulting infinite λ-calculus λ∞β⊥US

is confluent
and normalising for β⊥US reduction. The Böhm tree of a finite λ-term M can equivalently
be described as its unique normal form in λ∞β⊥US

[KKSdV97]. Here a (possibly infinite)
closed term M in Λ∞ is called solvable if MN1 . . . Nk →→β I for some sequence N1, . . . , Nk

with k ≥ 0. An open lambda term is called solvable if its closure is solvable. A λ-term is
called unsolvable if it is not solvable. The set of unsolvables is the largest set for which this
construction works. A λ-term is unsolvable if an only if it has no finite β-reduction to a
head normal form [Bar84].

The smallest set of meaningless terms [KKSdV97, Ber96] is the set R of terms that are
root-active (or mute). A λ-term M is root-active if any reduct of M can further reduce to a
redex. The classical root-active term is Ω. The unsolvable ΩI is not root-active. Note that
the definition of a root-active term allows for free variables. The normal forms in λ∞β⊥R

are
exactly the Berarducci trees.

The Lévy-Longo trees can be obtained if one performs this construction over the set of
terms without a weak head normal form. In general there are uncountably many sets of
meaningless terms [SdV11a]. The collection of normal forms of each such λ∞β⊥U

is a model
of the λ-calculus λβ. The axioms are chosen such that different sets of meaningless terms
give rise to different consistent models.

Church considered the terms without finite normal form as insignificant [Chu41, Bar84].
We recognise that the set of terms in Λ∞ without a finite normal form is not a set of
meaningless terms [KvOdV99, KdV03] in the sense of Definition 2.1, because it is not closed
under reduction. The term KIΩ has an infinite reduction, because its subterm Ω has. Yet
KIΩ reduces to the finite normal form I. We will come back to this in Section 4.2.
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3. Encoding many-valued logic in λ-calculus

In this section we will extend the familiar Church encoding of Boolean logic to many-valued
logic using ideas from Böhm trees and infinitary λ-calculus. We don’t know precise reference
to the original Church encoding. As Landin remarks in [Lan64]:

In particular Church and Curry, and McCarthy and the ALGOL 60 authors,
are so large a part of the history of their respective disciplines as to make
detailed attributions inevitably incomplete and probably impertinent.

Berarducci and Böhm have vastly generalised the Church encoding [BB85].

3.1. Encoding Boolean logic in λ-calculus. In “the History of Lisp” [McC78] John
McCarthy mentions his “invention of the true conditional expression

if M then N1 else N2

which evaluates only one of N1 and N2 according to whether M is true or false” and also
his “desire for a programming language that would allow its use” in the period 1957-8. He
also recalls “the conditional expression interpretation of Boolean connectives” as one of the
characterising ideas of LISP. By this he means concretely the if-then-else construct (when
applied to Boolean expressions only) which in combination with the truth values T and F
can be used as a basis for propositional logic [McC60] with the following natural definitions:

¬ ≡ λm.if m then F else T
∧ ≡ λmn.if m then n else F
∨ ≡ λmn.if m then T else n
→ ≡ λmn.if m then n else T

(3.1)

Barendregt’s book [Bar84] records two elegant encodings of the Booleans and the if-
then-else construct. One encodes into the classical λ-calculus and the other into the more
restricted λI-calculus preferred by Church [Chu32, Chu41]. The latter we will discuss in
Section 4.2. The former is the simplest:

T ≡ λxy.x
F ≡ λxy.y
if B then M else N ≡ BMN

It is easy to see that if-then-else behaves as intended in this encoding. When B reduces to
T and F, we have respectively:

if T then M else N →→ M
if F then M else N →→ N

(3.2)

With help of (3.2) it is straightforward to verify that the standard truth tables of Figure 1
for Boolean valued propositional logic hold in λ-calculus. Boolean logic commonly deals with

¬
T F
F T

∧ T F
T T F
F F F

∨ T F
T T T
F T F

→ T F
T T F
F T T

Figure 1: Boolean-valued propositional logic
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finite propositions. The set of finite propositions can be defined formally with an inductive
syntax, where p ranges over some possibly infinite set of propositional variables:

φ ::= p | T | F | (φ ∧ φ) | (φ ∨ φ) | (φ→φ) | ¬φ (3.3)

It is not hard to prove by induction that all closed finite propositions have a unique finite
normal form:

Lemma 3.1. Let φ be a finite closed proposition. Then φ has a unique finite normal form,
which is either T or F.

3.2. Encoding infinitary propositions in infinitary λ-Calculus. Infinite propositions
can be used to model certain while statements. For instance Bergstra and Ponse [BP11]
model while ¬a test b as the potentially infinite solution of the recursive equation

W = if a then T else (if b then W else W )

By reading the syntax definition (3.3) coinductively we obtain the set of finite and infinite
propositions.

In the introduction we showed how Russell’s paradox leads to the infinite proposition
¬(¬(¬(. . .))). The encoding of this infinite proposition in λ-calculus is the infinite term

(((. . .)FT)FT)FT

which is an infinite normal form with an infinite left spine and no head normal form. Hence
this encoding of the Russel’s paradox is unsolvable.

Not all infinite propositions reduce to infinite left spines: for instance, the infinite
proposition

P1 ≡ T ∧ (T ∧ . . .) ≡ T ∧ P1 ≡ TP1T ≡ (λxy.x)P1T→ P1

is root-active. Also, some infinite propositions reduce just to T or F: for instance, the term

P2 ≡ T ∨ (T ∨ (T ∨ (. . .))) ≡ T ∨ P2 ≡ TTP2 ≡ (λxy.x)TP2 → T

These examples show that some infinite propositions reduce to a Boolean, but not all. The
latter have in common that their Böhm tree is ⊥.

Theorem 3.2. Let φ be a finite or infinite closed proposition. Then the Böhm tree of φ is
either T, F or ⊥.

Proof. By coinduction!

The missing detail in the above “proof” follows from the corollary of the next lemma:

Lemma 3.3. Let U be an unsolvable λ-term in Λ. Then ¬U , U ∧N , U ∨N and U→N are
all unsolvable terms.

Proof. Immediate from the definitions. For instance, suppose ¬U is solvable; then

(¬U)N1 . . . Nn →→ I

for some N1, . . . , Nn. But ¬U ≡ UFT. Hence U is solvable. Therefore, unsolvability of U
implies the unsolvability of ¬U .

Corollary 3.4. The Böhm trees of ¬⊥, ⊥ ∧N , ⊥ ∨N and ⊥→N are all equal to ⊥.

Proof. Eg., B(¬⊥) = B(¬U) = B(UFT) = ⊥
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¬
T F
F T
⊥ ⊥

◦∧ T F ⊥
T T F ⊥
F F F F
⊥ ⊥ ⊥ ⊥

◦∨ T F ⊥
T T T T
F T F ⊥
⊥ ⊥ ⊥ ⊥

→ T F ⊥
T T F ⊥
F T T T
⊥ ⊥ ⊥ ⊥

Figure 2: McCarthy’s left-sequential three-valued propositional logic

3.3. Encoding three-valued McCarthy logic with help of Böhm trees. Theorem 3.2
suggests an experiment: what logic do we obtain if we repeat the encoding of Section 3.1
with three truth values {T,F,⊥} instead of two? Using Lemma 3.4 we can extend the
truth tables of Boolean-valued logic to the truth tables of Figure 2. These are exactly the
truth tables of McCarthy’s left-sequential three-valued propositional logic. We will use the
notation of [BBR95] and write ◦∧ and

◦∨ for the conjunction and disjunction in left-sequential
logic.

McCarthy discovered left-sequential three-valued propositional logic in his search for a
suitable formalism for a mathematical theory of computation [McC63]. In the context of a
language for computational (partial) functions he introduced conditional expressions of the
form

(p1 → e1, . . . , pn → en)

where the pi are propositional expressions that evaluate to true or false. The idea is that
the value of the whole conditional expression is the value of the expression ei for the first pi
with value true. If all pi have value false then the conditional expression is undefined. To
allow that the evaluation of an expression can be inconclusive, McCarthy stated the rule to
evaluate conditional expressions more precisely:

If an undefined p occurs before a true p or if all p’s are false or if the e
corresponding to the first true p is undefined, then the form is undefined.
Otherwise, the value of the form is the value of the e corresponding to the
first true p.

Now the propositional connectives can be defined with help of conditional expressions.

¬p ≡ (p→ F,T→ T)
p◦∧q ≡ (p→ q,T→ F)
p
◦∨q ≡ (p→ T,T→ q)
p→q ≡ (p→ q,T→ T)

(3.4)

for which McCarthy then derives the very same truth tables of Figure 2. In the presence
of the third truth value, undefined, the left sequential conjunction and disjunction are no
longer commutative.

Guzman and Squier [GS90] gave a complete axiomatisation of McCarthy’s logic, cf.
Figure 3. They also gave the following definition of conditional using the left-sequential
connectives.

Lemma 3.5. if B0 then B1 else B2 = (B0◦∧B1)
◦∨(¬B0◦∧B2) for all B0, B1, B2 ∈ {T,⊥,F}.

Proof. After applying the definitions of the logical operators it remains to show that

B0B1B2 = (B0B1F)T((B0FT)B2F) (3.5)

The argument now is by inspection.
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(1) ¬T = F
(2) ¬⊥ = ⊥
(3) ¬¬x = x
(4) ¬(x◦∧y) = ¬x◦∨¬y
(5) x→ y = ¬x◦∨y
(6) x◦∧(y◦∧z) = (x◦∧y)◦∧z
(7) T◦∧x = x
(8) x

◦∨(x◦∧y) = x
(9) x◦∧(y

◦∨z) = (x◦∧y)
◦∨(x◦∧z)

(10) (x
◦∨y)◦∧z = (x◦∧z)

◦∨(¬x◦∧y◦∧z)
(11) (x◦∧y)

◦∨(y◦∧x) = (y◦∧x)
◦∨(x◦∧y)

Figure 3: Complete axiomatisation of McCarthy’s left-sequential three-valued propositional
logic by Guzman and Squire

• B0 = T. Since Txy = x, it is sufficient to show that B1 = B1TF. This follows by
inspection of the three options for B1 ∈ {T,⊥,F}.
• B0 = ⊥. Then ⊥B1⊥ = ⊥ = (⊥B1F)T((⊥FT)B2F).
• B0 = F. Since Fxy = y, it is enough to show that B2 = TB2F, which follows by Txy = x.

In the remainder of the paper we will ignore implication as it can be defined from ¬
and

◦∨.

3.4. Refining the encoding from three-valued to four- and five-valued logic. In
the previous section we identified unsolvable λ-terms with ⊥, their (possibly infinite) normal
form in the infinitary λ-calculus λ∞β⊥US

. We used ⊥ as third truth value besides T and F.

We can refine this idea using the observation of [SdV11b] that the set of unsolvables is the
union of three pairwise disjoint sets, each closed under substitution and infinite reduction.

At the basis of this observation lies the simple and well known fact that any finite
λ-term has one of two forms, where m,n range over natural numbers:

λx1 . . . xn.xMm . . .M1

λx1 . . . xn.(λxP )QMm . . .M1

The former expression is called a head normal form and the redex (λxP )Q in the latter is
called the head redex. Wadsworth has shown that repeated head reduction of a term M
terminates in a head normal form if and only if M has one, and also that having a head
normal form is equivalent to being solvable. A reduction in which each step reduces a head
redex is called a head reduction [Bar84, see Section 8.3]

Hence any unsolvable term M has an infinite head reduction. One of the following
scenarios must hold for M .

• M has an infinite head reduction to a term of the form λxλxλx . . . (modulo renaming).
Example ΘK→→→ λxλxλx . . ..
• M has an infinite head reduction to a term of the form λx1 . . . λxn.((((. . .)M3)M2)M1).

An example Θλx.xy →→→ (((. . . y)y)y).
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• M has a finite head reduction to a term of the form λx1 . . . xn.(λxP )QMm . . .M1 in which
the head redex (λx.P )Q is root active. The term Ω is an example.

These three mutually exclusive fates of unsolvable terms lead to the following definition.

Definition 3.6 ([SdV11b]). (1) HA = {M ∈ Λ∞ |M →→β N and N is a head active form}
where N is a head active form if M = λx1 . . . xn.RP1 . . . Pk and R is root-active.

(2) IL = {M ∈ Λ∞ |M →→→β N and N is an infinite left spine form} where N is an infinite
left spine form if N = λx1 . . . xn.((. . . P2)P1.

(3) O = {M ∈ Λ∞ |M →→→β O}.
The three sets can be characterised alternatively using the notion of Berarducci tree

which can reveal more detail of a term than Böhm trees do.

Lemma 3.7. (1) M ∈ HA if and only if the Berarducci tree of M is of the form

λx1 . . . xn.⊥Nm . . . N1

for some natural numbers n,m.
(2) M ∈ IL if and only if the Berarducci tree of M is of the form

λx1 . . . xn.((((. . .)N3)N2)N1)

for some natural numbers n.
(3) M ∈ O if and only if the Berarducci tree of M is λx1x2x3 . . ., ie. O.

The union of the HA, IL and O is the set of unsolvables. With help of these three sets
we can refine the notion of Böhm reduction. We will represent each set by its own truth
value. Instead of replacing unsolvable all λ-terms by ⊥ we will now replace the elements
in HA, IL and O by, respectively, the constants ⊥HA, ⊥IL and ⊥O, so that instead of
one ⊥-reduction →⊥ we have now three reduction rules, that we denote by →⊥HA , →⊥IL
and →⊥O . We will use ⊥HA, ⊥IL and ⊥O as truth values next to T and F to interpret
five-valued propositional logic.

In the same fashion, if we split the unsolvables in only two sets HA and IL ∪ O and
introduce besides ⊥HA a single constant ⊥IL∪O to replace the elements in IL ∪ O, we have
the ingredients to interpret four-valued propositional logic.

These constructions work because of the following theorem.

Theorem 3.8. (1) Let Λ∞⊥HA⊥IL⊥O
be the set of finite and infinite λ-terms constructed

with the symbols ⊥HA, ⊥IL and ⊥O. Then the infinitary λ-calculus λ∞β⊥HA⊥IL⊥O
is

confluent and normalising for (strongly) convergent reduction.
(2) Let Λ∞⊥HA⊥IL∪O

be the set of finite and infinite λ-terms constructed with the symbols ⊥HA
and ⊥IL∪O. Then the infinitary λ-calculus λ∞β⊥HA⊥IL∪O

is confluent and normalising

for (strongly) convergent reduction.

Proof. Both follow from Lemma 3.7 and two facts from [KKSdV97], namely that λ∞β⊥R
is

confluent and normalising, and that ⊥R-reduction can be postponed over β-reduction.

We will now encode five-valued logic in λ-calculus using the same logical operators as
before together with the five truth values from {T,F,⊥HA,⊥IL,⊥O}. Similarly using the
four truth values from {T,F,⊥HA,⊥IL∪O} we will encode four-valued logic.

We need an analogue of Corollary 3.4.

Lemma 3.9. Let U be a λ-term in HA (IL, O and IL ∪ O ). Then ¬U , U◦∧N , U
◦∨N

and U→N are all terms in HA (IL, O and IL ∪ O).
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Proof. Immediate from the definitions. For instance, suppose U ∈ HA, that is suppose the
Berarducci tree of U is of the form λx1 . . . xn.⊥Nm . . . N1. Then the Berarducci tree of ¬U
is the Berarducci tree of (λx1 . . . xn.⊥Nm . . . N1)FT. One easily sees that ¬U is an element
of HA.

Corollary 3.10. (1) The normal forms in λ∞β⊥HA⊥IL⊥O
of ¬⊥X , ⊥X ◦∧N , ⊥X

◦∨N and

⊥X→N are all equal to ⊥X for X ∈ {HA, IL,O}.
(2) The normal forms in λ∞β⊥HA⊥IL∪O

of ¬⊥X , ⊥X ◦∧N , ⊥X
◦∨N and ⊥X→N are all equal

to ⊥X for X ∈ {HA, IL ∪ O}.

Theorem 3.11. (1) Let φ be a finite or infinite closed proposition with truth values from
{T,F,⊥HA,⊥IL,⊥O}. Then the normal form of φ in λ∞β⊥HA⊥IL

O is either T, F, ⊥HA,
⊥IL or ⊥O.

(2) Let φ be a finite or infinite closed proposition with truth values from {T,F,⊥HA,⊥IL∪O}.
Then the normal form of φ in λ∞β⊥HA⊥IL∪O

is either T, F, ⊥HA or ⊥IL∪O.

Proof. By coinduction!

Using Corollary 3.10, it is straightforward to calculate the truth tables for a four-valued
logic encoded in λ-calculus:

¬
T F
F T
⊥HA ⊥HA
⊥IL∪O ⊥IL∪O

◦∧ T F ⊥HA ⊥IL∪O
T T F ⊥HA ⊥IL
F F F F F
⊥HA ⊥HA ⊥HA ⊥HA ⊥HA
⊥IL∪O ⊥IL∪O ⊥IL∪O ⊥IL∪O ⊥IL∪O

◦∨ T F ⊥HA ⊥IL∪O
T T T T T
F T F ⊥HA ⊥IL∪O
⊥HA ⊥HA ⊥HA ⊥HA ⊥HA
⊥IL∪O ⊥IL∪O ⊥IL∪O ⊥IL∪O ⊥IL∪O

Figure 4: Left-sequential four-valued propositional logic

As it happens, this four-valued propositional logic has been studied by Bergstra and
Van de Pol [BvdP96, BvdP11]. In the context of process algebra enriched with conditional
statements the need for many-valued logic arises in case a condition evaluates to a truth
value (e.g., error/exceptions and divergences) different from true or false. This led Bergstra
and his colleagues to a study of a great many of versions of three-, four- and even five-valued
logic [BBR95, BP98, BP00, BP99].

For the four-valued logic of Figure 4 Bergstra and Van de Pol gave a complete axioma-
tisation in [BvdP96, BvdP11]. See Figure 5. They use m (meaningless) for ⊥HA and d
(divergence) for ⊥IL∪O. These names make some sense here as well. The terms in IL ∪ O
can be called diverging as they have limits with infinite left spines. On the other hand,
terms in HA reduce by definition to terms of the form M = λx1 . . . xn.RP1 . . . Pk with R
is root-active. This term R is meaningless, in the sense that it will not reveal any further
information how long one may reduce it.
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(1) ¬d = d
(2) ¬m = m
(3) ¬T = F
(4) ¬¬x = x
(5) T◦∧x = x
(6) F◦∧x = F
(7) x

◦∨y = ¬(¬x◦∧¬y)
(8) x◦∧(y◦∧z) = (x◦∧y)◦∧z
(9) (x

◦∨y)◦∧z = (¬x◦∧y◦∧z) ∨ (x◦∧z)
◦∨(x◦∧z)

Figure 5: Bergstra and Van de Pol’s axiomatisation of left-sequential four-valued proposi-
tional logic

The axioms in Figure 5 have been selected carefully: each is independent of the others.
They also note that Axiom (11) of Figure 3,

(x◦∧y)
◦∨(y◦∧x) = (y◦∧x)

◦∨(x◦∧y)

does not hold in four-valued logic. We can recognise that in our context if we substitute
⊥HA for x and ⊥IL∪O for y. Then by Lemma 3.9 we see immediately that the left-hand
side of the axiom reduces to ⊥HA, while the right-hand side reduces to ⊥IL∪O.

Similarly, the truth tables for the five- valued logic encoded in λ-calculus are as follows:

¬
T F
F T
⊥HA ⊥HA
⊥IL ⊥IL
⊥O ⊥O

◦∧ T F ⊥HA ⊥IL ⊥O
T T F ⊥HA ⊥IL ⊥O
F F F F F F
⊥HA ⊥HA ⊥HA ⊥HA ⊥HA ⊥HA
⊥IL ⊥IL ⊥IL ⊥IL ⊥IL ⊥IL
⊥O ⊥O ⊥O ⊥O ⊥O ⊥O

◦∨ T F ⊥HA ⊥IL ⊥O
T T T T T T
F T F ⊥HA ⊥IL ⊥O
⊥HA ⊥HA ⊥HA ⊥HA ⊥HA ⊥HA
⊥IL ⊥IL ⊥IL ⊥IL ⊥IL ⊥IL
⊥O ⊥O ⊥O ⊥O ⊥O ⊥O

Figure 6: Left-sequential five-valued propositional logic

Finally using Corollary 3.10, it is also straightforward to calculate the truth tables
of a five-valued logic encoded in λ-calculus. See Figure 6. This the five-valued logic that
Bergstra and Van de Pol left implicit in their final remark in [BvdP11] that their complete
axiomatisation generalises to five- and higher valued logics, as long as one adds axioms of
the form ¬p = p for each new truth value p.
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4. Encoding three-valued logic in the finite λI-calculus

The λ-calculus that Church used in his unfortunate attempt towards a foundation of
mathematics was the λI-calculus. This calculus differs from the common λ-calculus λβ by a
restriction on the set of λ-terms. Terms in the λI-calculus only contain abstractions of the
form λx.M if x occurs free in M . For example the terms λxy.x and λxy.y that we used for
the Booleans are now forbidden. So we cannot use the Church encoding of Boolean logic as
before.

The consequence of this restriction is that terms in the λI-calculus have two properties
Church deemed important: (i) if a term has a finite normal form, it cannot have an infinite
reduction, and (ii) if a term has a finite normal form then all its subterms must also have a
normal form [Chu41]. These properties don’t hold in the classical λ-calculus.

4.1. Another encoding of the Booleans. Barendregt gave in fact two encodings for the
Booleans in his book [Bar84]. Besides the previous well-known encoding of the Booleans he
also defined an encoding of the Booleans in the spirit of Church, because the new encodings
of the Booleans are terms in the λI-calculus.

TI = λxy.yIIx
FI = λx.xIII

In this case we cannot derive (3.2). Instead we get

if TI then M else N →→ NIIM
if FI then M else N →→ MIIIN

(4.1)

Yet by inspection of each of the four concrete options for M,N ∈ {TI,FI} we find that

NIIM →→ M
MIIIN →→ N

(4.2)

Combining (4.1) with (4.2) gives us (3.2) for all Booleans M,N ∈ {TI,FI}. Hence also this
less well-known encoding validates the truth tables of Boolean propositional logic.

4.2. Böhm trees in the finite λI-calculus. Church strongly preferred the λI-calculus
over the unrestricted λ-calculus. For him the natural notion of the meaning of a λ-term is
its finite normal form, provided it exists. Terms without finite normal form he considered to
be meaningless or, in his own alternative wording, insignificant [Chu41]. In the λI-calculus
terms without finite normal form can safely be identified. In the unrestricted calculus this
leads to inconsistency [Bar84, Proposition 2.2.4].

In fact, Barendregt [Bar73] has shown that the unsolvable terms in the λI-calculus are
precisely the terms without finite normal form. Klop [Klo75] gave a simpler proof. They did
not consider the Böhm tree construction. But in setting of the λI-calculus the Böhm tree
construction simplifies enormously. There is no need to consider infinite terms and infinite
reductions. We just add the fresh symbol ⊥ to the syntax of the λI-calculus plus the rule

M →⊥ ⊥, whenever M [⊥ := Ω] has no finite normal form.

Let us denote this extension of the λI-calculus by λIβ⊥. The extension λIβ⊥ is confluent
and normalising in the finitary sense, and the Böhm tree of any λI-term equals either ⊥
or is a finite ⊥-free normal form. In the past we have overlooked this construction, after
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observing that the set of λI-terms is not closed under infinite β-reduction. In the limit a
bound variable may “drop off”. For instance, consider λv.Θ(λxyz.xy)v. Since

λv.Θ(λxyz.xy)v → λv.(λxyz.xy)(Θ(λxyz.xy))v →→ λvλz.Θ(λxyz.xy)v

we find that the finite λI-term λv.Θ(λxyz.xy)v has an infinite reduction to the infinite term
λvλzλzλz . . . which is no longer a λI-term.

The above ⊥-rule resolves this problem, because now the term λv.Θ(λxyz.xy)v reduces
in one step to ⊥. In λIβ⊥ there is no need to consider infinite reduction as any finite λI-term
has a finite reduction to finite Böhm tree in λIβ⊥. Hence we can encode three valued-logic
in λIβ⊥ if we take as truth values TI,FI and ⊥.

Lemma 4.1. Let U be an unsolvable λI-term. Then ¬U , U◦∧N , U
◦∨N and U→N are all

unsolvable λI-terms, when N is a λI-term.

Proof. By Lemma 3.3 it remains to show that ¬U , U◦∧N , U
◦∨N and U→N are λI-terms.

But this follows from the fact that TI and FI are λI-terms.

Thus, despite a different encoding of the Booleans, we find the same truth tables of
McCarthy’s left-sequential three-valued propositional logic of Figure 2. Note that the
earlier partition in Section 3.4 of the unsolvables based on the form of the left spine of
their Berarducci tree applies verbatim to λI-terms. Hence, also this second encoding of
the Booleans refines to an encoding of the same earlier four- and five-valued logics in the
λI-calculus.

4.3. Why Curry’s Paradox does not apply. We end with noting that Curry’s Paradox
does not apply to the finite λI-calculus because the above infinitary extension is consistent.

Contemporaneously with Church, Curry had been searching for a symbolic logic that
could serve as foundation of mathematics. The technique by which Kleene and Rosser [KR35]
found the inconsistency in the symbolic logic of Church also applied to some of the systems
of illative combinatoric logic that Curry was exploring. In contrast to Church, Curry had not
committed himself to an underlying philosophy. He considered the Kleene-Rosser paradox
an helpful instrument in the search for “stronger and stronger systems which are consistent”
as well as “weaker and weaker systems which are inconsistent” [CF58].

In 1942 Curry published a short and self-contained argument to show the inconsistency
for the type of symbolic logics that he and Church were working on. Curry showed that
that any combinatory complete system, like e.g. λ-calculus, with an implication operator
satisfying:

X → X

(X → (X → Y ))→ (X → Y )

is inconsistent. The elegant short proof of the Curry’s Paradox can be found in [CF58, Bar84].
As the infinitary extensions λβ and the λI-calculusλ-calculus are consistent (the normal

forms of T and F are not equal in them) the Curry’s Paradox does not apply to them. More
direct: the implication X → Y does not satisfy the above two conditions for implication: if
X is ⊥ then both expressions reduce to ⊥ for any value of Y .
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5. Conclusion

The idea to solve Russell’s paradox with three-valued logic is not at all new. Feferman gave
various pointers in [Fef84]. But the conjunctions and disjunctions of the three-valued logics
that are considered for that purpose all seem to be commutative in contrast to those in the
left-sequential McCarthy logic that we use here.

It is possible to further refine the encoding to an encoding of∞-valued logic in λ-calculus.
The new truth values then correspond to the different shapes of left spine that unsolvables
can have. We see no further use for that.
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