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In this paper we introduce a strong form of eta reduction called etabang that we use to

construct a confluent and normalising infinitary lambda calculus, of which the normal forms

correspond to Barendregt’s infinite eta Böhm trees. This new infinitary perspective on the set

of infinite eta Böhm trees allows us to prove that the set of infinite eta Böhm trees is a model

of the lambda calculus. The model is of interest because it has the same local structure as

Scott’s D∞-models, i.e. two finite lambda terms are equal in the infinite eta Böhm model if

and only if they have the same interpretation in Scott’s D∞-models.
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1. Introduction

In the classical finitary lambda calculus (Barendregt, 1984), one can express that the

fixpoint combinator Y (= λf.(λx.f(xx))(λx.f(xx))) can reduce to terms of the form

λf.fn((λx.f(xx))(λx.f(xx))), for any n > 0, but not that Y has an infinite reduction to the to

the infinite term λf.fω, where fω is convenient shorthand for the infinite term f(f(f(. . .))).

In the infinitary lambda calculus, the set Λ of finite λ-terms is extended to explicitly include

infinite terms such as λf.fω and the notation allows for finite and infinite reductions. This

makes it possible to define the concept of Böhm tree directly in the notational framework

of the infinitary lambda calculus, in contrast to (Barendregt, 1984) where Böhm trees are

defined with their own notational machinery.

Infinitary lambda calculus allows an alternative definition of the notion of tree as normal

form. Figure 1 summarises the correspondences between the infinitary lambda calculi and

the trees which have been studied so far. All these calculi include a notion of ⊥-reduction

and they are all proved to be confluent and normalising before except for the one on the

last row (Berarducci, 1996; Kennaway et al., 1995a; Kennaway et al., 1997; Kennaway and

de Vries, 2003; Severi and de Vries, 2002; Severi and de Vries, 2011). From any infinitary

lambda calculus which is confluent and normalising, we can construct a model of the finite

lambda calculus by defining the interpretation of a term to be exactly the (infinite) normal

form of that term (or equivalently the tree of that term).

The infinitary lambda calculi sketched in the first four rows of Figure 1 are variations of

λ∞β⊥ = (Λ∞⊥ ,−→β⊥). By changing the ⊥-rule, we obtain different notions of trees. If we

take the terms without head normal form as meaningless terms, then we obtain an infinitary

lambda calculus which is confluent and normalising. The normal form of a term in this calculus
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Reduction Rules Normal forms

β-rule Böhm trees
⊥-rule for terms without head normal form

β-rule Lévy-Longo trees
⊥-rule for terms without weak head normal form

β-rule Berarducci trees
⊥-rule for terms without top normal form

β-rule Parametric trees
⊥-rule parametrised by a set of weakly meaningless terms

β-rule η-Böhm trees
η-rule
⊥-rule for terms without head normal form

β-rule ∞η-Böhm trees
η!-rule
⊥-rule for terms without head normal form

Fig. 1. Trees as infinite normal forms

correspond to the Böhm tree of this term. The collection of normal forms of this calculus forms

a model of the lambda beta calculus, better known as Barendregt’s Böhm model (Barendregt,

1984). Similarly, by reducing terms without weak head normal form to ⊥, we capture the

notion of Lévy-Longo tree (Kennaway et al., 1995a; Kennaway et al., 1997; Kennaway and

de Vries, 2003) and this gives rise to the model of Lévy-Longo trees. Also by reducing terms

without top head normal form to ⊥, we capture the notion of Berarducci tree (Berarducci,

1996; Kennaway et al., 1995a; Kennaway et al., 1997; Kennaway and de Vries, 2003) which

gives rise to the model of Berarducci trees.

The infinitary lambda calculi λ∞β⊥ with a ⊥-rule parametric on a set of (weakly) meaning-

less terms encompasses the previous three cases (Kennaway and de Vries, 2003; Severi and

de Vries, 2011). This method to construct models of the lambda beta calculus is quite flex-

ible as there is ample choice for the set of meaningless terms (Severi and de Vries, 2005a;

Severi and de Vries, 2005b; Severi and de Vries, 2011). Because the collection of sets of

weakly meaningless terms is uncountable, we get an uncountable class of models which are

not continuous (Severi and de Vries, 2005a).

The infinitary lambda calculus λ∞β⊥η = (Λ∞⊥ ,−→β⊥η) sketched in the last but one row incor-

porates the η-rule (Severi and de Vries, 2002). This calculus captures the notion of η-Böhm

tree, which can be described as the eta-normal form of a Böhm tree, and gives rise to an

extensional model of the lambda calculus that has the same local structure as Coppo, Dezani

and Zacchi’s filter model D∗∞ (Coppo et al., 1987).

The last row in Figure 1 represents the contribution of this paper. The infinitary lambda

calculus λ∞β⊥η! = (Λ∞⊥ ,−→β⊥η!) is constructed with the η!-rule, a strengthening of the η-rule.

The notion of η!-reduction is based on the observation that the explicit syntactic character-

isation of infinite eta expansions in the definition of infinite eta Böhm trees in (Barendregt,

1984) can be succinctly redefined as strongly converging eta-expansions in the terminology of

infinitary rewriting. The power of η!-reduction is such that it reduces the Böhm tree of J to

I, see Figure 2. The main complication of this paper will be to prove that λ∞β⊥η! is confluent

and normalising. As direct consequences of this result, we will first obtain an alternative def-
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Finite λ-term Böhm tree η-Böhm tree ∞η-Böhm tree

I = λx.x BT(I) = I ηBT(I) = I ∞ηBT(I) = I

1 = λxy.xy BT(1) = 1 ηBT(1) = I ∞ηBT(1) = I

J = Y(λfxy.x(fy)) BT(J) = λxy0.x

λy1.y0

λy2.y1

ηBT(J) = λxy0.x

λy1.y0

λy2.y1

∞ηBT(J) = I

Fig. 2. Difference between the notions of Böhm, η-Böhm and ∞η-Böhm trees

inition of the notion of ∞η-Böhm tree of a lambda term as its normal form in λ∞β⊥η! which is

more compact than the one in (Barendregt, 1984; Barbanera et al., 1998; Bakel et al., 2002).

Second, we can show that the set of ∞η-Böhm trees is an extensional model of the finite

lambda calculus. The model of ∞η-Böhm trees is of interest because it has the same local

structure as Scott’s D∞-models, i.e. two finite lambda terms have the same normal form in

λ∞β⊥η! if and only if they are equal in D∞ (Hyland, 1975; Wadsworth, 1976).

It may appear at first sight that extending an infinitary lambda calculus with η or η! should

not be complicated. However, the two lambda calculi of Lévy-Longo and Berarducci trees do

not seem to accept any variations on the ⊥-rule without losing confluence. There is a critical

pair between the η-rule (η!-rule) and the ⊥-rule for terms without weak head normal form:

λx.Ωx
⊥
zzzzvvvvvvv η

"" ""EEEEEEE

λx.⊥ ⊥

The ⊥-step follows from the fact that the term Ωx has no weak head normal form. This pair

can be completed only if λx.⊥ −→⊥ ⊥ which is true only for the ⊥-rule that equates terms

without head normal form. For a counterexample of confluence for β⊥η and β⊥η! where the

⊥-rule equates terms without top normal form, we use the term Ωη = λx0.(λx1.(. . .)x1)x0.

Similar to Ω which β-reduces to itself in only one step, this term η-reduces to itself in only

one step. The term Ωη can be obtained as the fixed point of 1 = λxy.xy. The body of

the outermost abstraction in Ωη is rootactive (it always reduces to a β-redex) and hence

Ωη −→⊥ λx.⊥. The span

Y1
βη

���������� η

    @  @@@@@@

Ω

⊥
����������

Ωη

⊥
"" ""DDDDDDD

⊥ λx.⊥

can only be joined if λx.⊥ −→⊥ ⊥.

Section 2 recalls some notions of infinitary lambda calculus and introduces the definition of

η!-reduction. Section 3 studies properties of mainly −→η! and −→η−1 on their own. Section 4



P.Severi F.J. de Vries 4

proves two strip lemmas for η! and β. Section 5 proves that outermost ⊥-reduction commutes

with η!. Section 6 proves confluence and normalisation of the infinitary lambda calculus λ∞β⊥η!.

Section 7 explains in detail the connection between the infinite eta Böhm trees and the normal

forms in λ∞β⊥η!. Section 8 shows that the set of the normal forms of λ∞β⊥η! is an extensional

model of the finite lambda calculus.

2. Infinitary Lambda Calculus

2.1. The set Λ∞⊥ of finite and infinite terms

Infinitary lambda calculus provides a single framework for finite lambda terms and infinite

terms. Infinite extensions of finite lambda calculus were introduced around 1994 following

similar developments in first order term rewriting initiated by Dershowitz and Kaplan (Be-

rarducci, 1996; Kennaway et al., 1997). As starting point for this paper we are interested in

one particular extension λ∞β⊥ of the finite lambda calculus defined in (Kennaway et al., 1997),

namely the extension in which the normal forms correspond to the Böhm trees of (Baren-

dregt, 1984). The set Λ∞⊥ of finite and infinite terms of λ∞β⊥ can conveniently be defined as

metric completion of the finite terms for a suitable chosen metric. In spirit, this construction

goes back at least to Arnold and Nivat (Arnold and Nivat, 1980). The metric context will

also be used to define transfinite converging reductions.

We will now briefly recall this construction from (Kennaway et al., 1997). Throughout we

assume familiarity with basic notions and notations from (Barendregt, 1984).

2.1 Definition [Set Λ⊥ of finite lambda terms with ⊥]: Let Λ⊥ be the set of finite λ-

terms given by the inductive grammar:

M ::= ⊥ | x | (λxM) | (MM)

where x is a variable from some fixed countable set of variables V.

We follow the usual conventions on syntax. Terms and variables will respectively be written

with (super- and subscripted) letters M,N and x, y, z. Terms of the form (M1M2) and (λxM)

will respectively be called applications and abstractions. A context C[ ] is a term with a hole

in it, and C[M ] denotes the result of filling the hole by the term M , possibly capturing some

free variables of M .

2.2 Notation: We will also use the following abbreviations for terms in Λ⊥:

I = λx.x Ω = (λx.xx)λx.xx

K = λxy.x Y = λf.(λx.f(xx))(λx.f(xx)))

1 = λxy.xy J = Y(λfxy.x(fy))

2.3 Definition [Subterm at a certain position]: Let M ∈ Λ⊥ and p be any finite se-

quence of 0, 1 and 2’s. We will use 〈〉 for the empty sequence. The subterm M |p of a term

M ∈ Λ⊥ at position p (if there is one) is defined by induction as usual:

M |〈〉 = M (λxM)|0p = M |p (MN)|1p = M |p (MN)|2p = N |p

2.4 Definition [Depth of a subterm at a certain position]: Let M ∈ Λ⊥. The length

L(p) of a position p is the number of 2’s in p. The depth at which a subterm N occurs in M

is the length of the position p of N in M .
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(λxy.x • ) •

y z

depth 0

depth 1

Fig. 3. Graph representation of (λx.xy)z that respects our notion of depth

Figure 3 shows a graph representation of (λxy.xy)z that respects our notion of depth.

We define now the truncation of a term M at depth n as the term obtained by replacing all

subterms at depth n by ⊥.

2.5 Definition [Truncation]: Let M ∈ Λ⊥. The truncation of M at depth n is defined by

induction on M as follows.

M0 = ⊥ (λx.M)n+1 = λx.Mn+1

⊥n+1 = ⊥ (MN)n+1 = Mn+1Nn

xn+1 = x

Note that for truncating an abstraction λx.M at depth n + 1, we truncate the body M at

the same depth n+ 1. For the application MN , we truncate the argument N at depth n but

the operator M is truncated at depth n+ 1. For example, (λx.xy)1 = λx.x⊥.

2.6 Definition [Metric]: Let M,N ∈ Λ⊥. We define a metric on Λ⊥ as follows: d(M,N) = 0,

if M = N and d(M,N) = 2−m, where m = max{n ∈ N |Mn = Nn}.

For example, if M = (x(y(zu)) and N = (x(y(zv)) then d(M,N) = 2−3.

2.7 Definition [Set Λ∞⊥ of finite and infinite terms]: The set Λ∞⊥ is defined as the met-

ric completion of the set of finite lambda terms Λ⊥ with respect to the metric d.

From now on, M,N, . . . will be assumed to belong to Λ∞⊥ unless we state otherwise.

The set Λ∞⊥ is constructed to contain all Böhm trees. For example, the term x(x(x . . .)) belongs

to Λ∞⊥ . It does not contain the terms λx.λx. . . . or ((. . .)x)x which are typical Lévy-Longo

or Berarducci trees (Longo, 1983; Lévy, 1976; Abramsky and Ong, 1993; Berarducci, 1996;

Kennaway et al., 1997).

2.8 Notation: We will also use the following abbreviations for terms in Λ∞⊥ :

J∞ = λxy0.x(λy1.y0(λy2.y1(. . .))) Ey = λy1.y(λy2.y1(. . .)) for any y ∈ V

Note that J∞ = λxy0.xEy0 and Ey0 = λy1.y0Ey1 .

Definitions 2.3, 2.4 and 2.5 can all be extended to infinite terms in Λ∞⊥ in the obvious way.

The notion of depth of the hole in C[ ] can be defined in the same way as the depth of a

subterm at a certain position (see Definition 2.4).

2.9 Definition [Prefix]: Let M,N ∈ Λ∞⊥ . We say that M is a prefix of N (we write M � N)

if M is obtained from N by replacing some subterms of N by ⊥

2.2. Converging Reductions

In this section we define the notion of strongly converging reduction.

2.10 Definition [Reduction]: We call a binary relation −→ρ on Λ∞⊥ a reduction relation,

if −→ρ is closed under contexts, that is, if M −→ρ N implies C[M ] −→ρ C[N ].
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2.11 Definition [Infinitary Lambda Calculus]: Let −→ρ be a reduction relation on Λ∞⊥ .

We call the pair (Λ∞⊥ ,−→ρ) an infinitary lambda calculus. Instead of (Λ∞⊥ ,−→ρ), we simply

write λ∞ρ .

For an infinitary lambda calculus λ∞ρ and ordinals α we define reduction sequences of any

transfinite ordinal length α.

2.12 Definition [Strongly Converging Reductions (Kennaway and de Vries, 2003)]:

A strongly convergent ρ-reduction sequence of length α (an ordinal) is a sequence

{Mβ | β ≤ α} of terms in Λ∞⊥ such that Mβ −→ρ Mβ+1 for all β < α, besides

Mλ = limβ<λMβ for every limit ordinal λ ≤ α and limi→λ di = ∞ where di is the depth of

the redex contracted at Mi −→ρ Mi+1 for every limit ordinal λ ≤ α.

Strongly converging reduction is a key concept of infinite rewriting (Kennaway et al., 1995b;

Kennaway et al., 1997) that generalises and includes finite reduction. Intuitively, an infinite

reduction is strongly converging when the depth of the position of the application of the

reduction rules goes to infinity along the reduction sequence. Cauchy converging reduction

sequence do not behave so nicely as strongly converging reductions (Kennaway et al., 1997;

Simonsen, 2004). Hence strongly converging reduction is the natural notion of reduction to

study. This preference is reflected in the next notation.

2.13 Notation:

M −→ρ N denotes a one step reduction from M to N ;

M −→→ρ N denotes a finite reduction from M to N ;

M −→→→ρ N denotes a strongly converging reduction from M to N .

M −→=,ρ N denotes equality or one step reduction from M to N .

We will sometimes write the depth of the contracted redex on top of the arrows. For example,

M
m−→ρ N denotes a reduction step where the contracted redex is at depth m.

Many notions of finite lambda calculus apply and/or extend now more or less straightfor-

wardly to an infinitary lambda calculus λ∞ρ . A term M in λ∞ρ is in ρ-normal form if there is

no N in λ∞ρ such that M −→ρ N .

2.14 Definition: Let λ∞ρ = (Λ∞⊥ ,−→ρ).

λ∞ρ is confluent if ρ←←←− ◦ −→→→ρ ⊆ −→→→ρ ◦ ρ←←←−.

λ∞ρ is normalising if for all M ∈ Λ∞⊥ there exists an N in ρ-normal form such that M −→→→ρ N .

Let α be an ordinal. λ∞ρ is α-compressible if for all M,N such that M −→→→ρ N there exists

a reduction from M to N of length at most α.

The ρ-normal form of M is a term N in ρ-normal form such that M −→→→ρ N . If λ∞ρ is

confluent and normalising, it induces a total function, denoted by nfρ, from Λ∞⊥ to Λ∞⊥ such

that nfρ(M) gives the ρ-normal form of M . The set of ρ-normal forms over Λ∞⊥ is denoted by

nfρ(Λ∞⊥ ) and the set of ρ-normal forms over Λ is denoted by nfρ(Λ).

2.3. The Basic Reductions: β, η, η−1 and ⊥-reductions

In this section we extend several notions of reductions on finite lambda calculus to infinite

terms. The β-reduction, denoted by −→β , is the smallest reduction on Λ∞⊥ closed under the

β-rule:

(λx.M)N −→M [x := N ] (β)
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The βh-reduction, denoted by −→βh
, is the β-reduction restricted to head redexes, i.e.

λx1 . . . xn.(λx.P )QN1 . . . Nk −→βh
λx1 . . . xn.P [x := Q]N1 . . . Nk.

The η-reduction, denoted by −→η, is the smallest reduction on Λ∞⊥ closed under the η-rule:

x 6∈ FV (M)
(η)

λx.Mx→M

The η−1-reduction (or the η-expansion), denoted by −→η−1 , is the smallest reduction on Λ∞⊥
closed under the η−1-rule:

x 6∈ FV (M)
(η−1)

M → λx.Mx

We now define the ⊥-rule. The variant that we will use in this paper is the one that equates

terms that have no head normal form. The ⊥-rule is necessary because the infinitary lambda

calculus with only β-reduction is not confluent. For example (Berarducci, 1996),

ΩI

β
����

β
// // I(ΩI)

β
// // I(I(ΩI))

β
// // . . . Iω

Ω

where Ω = (λx.xx)λx.xx, I = λx.x and ΩI = (λx.I(xx))(λx.I(xx)).

Let M ∈ Λ∞⊥ . We say that M is in head normal form (hnf) if M is of the form

λx1 . . . xn.yN1 . . . Nk. We say that M has a head normal form (or is head normalising) if

there exists N in head normal form such that M −→→β N . The terms Ω and λx.⊥x are

examples of terms without head normal form.

The ⊥-reduction, denoted by −→⊥, is the smallest reduction on Λ∞⊥ closed under the ⊥-rule:

M has no head normal form
(⊥)

M −→ ⊥
Next we define the notion of outermost ⊥-redex as a maximal subterm without head normal

form. For example, the term M = x((λy.Ωy)z) has four ⊥-redexes, i.e. Ω, Ωy, λy.Ωy and

(λy.Ωy)z but only the latter is an outermost ⊥-redex.

We will also need a variation of the ⊥-reduction, called ⊥out-reduction, that contracts only

outermost ⊥-redexes and which is not closed under contexts. The ⊥out-reduction, denoted

by −→⊥out
, is defined as the smallest binary relation on Λ∞⊥ such that C[M ] −→⊥out

C[⊥]

whenever M is an outermost ⊥-redex of C[M ].

2.4. The New Reduction: η!-reduction

We will now introduce the notion of η!-rule. It is inspired by Barendregt’s ∞η construction

on Böhm trees (Barendregt, 1984). With the current knowledge of infinite rewriting we see

that this relation ≤η on Böhm trees is nothing else but an alternative definition for strongly

converging η−1-reduction. For η-expansions strong convergence ensures that the expanded

terms remain within Λ∞⊥ and are finitely branching.

We define the η!-rule on Λ∞⊥ as follows:

x −→→→η−1 N x 6∈ FV (M)
(η!)

λx.MN →M
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where −→→→η−1 denotes strongly converging η-expansion. The η!-reduction, denoted by −→η!,

is the smallest reduction on Λ∞⊥ closed under the η!-rule.

The η!-rule does not appear in the finite lambda calculus. Note that the original notion ≤η
in (Barendregt, 1984) is defined on β⊥-normal forms (Böhm trees) only, while η-expansion

−→→→η−1 applies to any term in Λ∞⊥ . It is easy to see that ≤η and −→→→η−1 coincide on the

set of β⊥-normal forms. Hence −→→→η−1 is an extension of ≤η to the set of (possible infinite)

terms containing redexes.

The strength of the new η!-reduction can be demonstrated on the Böhm tree of Wadsworth’s

term J mentioned above. The Böhm tree of J is represented by the term J∞ =

λxy0.x(λy1.y0(λy2.y1(. . .))). We see that J∞ is of the form λxy0.xEy0 where Ey0 =

λy1.y0(λy2.y1(. . .)). The term Ey0 is the limit of a strongly converging η-expansion of the

variable y0:

y0 −→η−1 (λy1.y0y1) −→η−1 (λy1.y0(λy2.y1y2)) −→η−1 . . .Ey0

Therefore J∞ reduces to I in a single η!-step, while J∞ is not even a η-redex.

2.5. The Infinitary Calculus λ∞⊥

The infinitary calculus λ∞⊥ has some straightforward properties worthwhile to state on their

own which have not been stated explicitly before.

Theorem 2.1 (Confluence, normalisation and compression of ⊥). The infinitary

lambda calculus λ∞⊥ is confluent, normalising and ω-compressible. Moreover, M −→→→⊥out

nf⊥(M) for all M ∈ Λ∞⊥ .

Proof: Confluence follows from Lemma 26 in (Kennaway et al., 1999). Depth-first left-most

⊥-reduction is clearly a normalising strategy. Since the depth-first left-most strategy contracts

only outermost redexes, we have that M −→→→⊥out nf⊥(M). It is not difficult to show ω-

compression by adapting the proof of the compression lemma for λ∞β in (Kennaway et al.,

1997) (quite similar to our later proof of Lemma 3.4). �

2.6. The Infinitary Lambda Calculus λ∞β⊥

In this section we recall some properties of the infinitary lambda calculus λ∞β⊥ that will be

used later.

Theorem 2.2 (Confluence, normalisation and compression of β⊥ (Kennaway et al.,

1997; Kennaway and de Vries, 2003)). The infinitary lambda calculus λ∞β⊥ is confluent,

normalising, ω-compressible and satisfies β⊥-postponement: if M −→→→β⊥ N , then M −→→→β

Q −→→→⊥ N for some Q ∈ Λ∞⊥ .

Corollary 2.3 (Existence of ⊥out-reduction). For all M ∈ Λ∞⊥ , we have that M −→→→β

N −→→→⊥out nfβ⊥(M).

Proof: The previous theorem implies that for any M ∈ Λ∞⊥ there has a reduction to nor-

mal form nfβ⊥(M) in λ∞β⊥. By postponement this reduction factors into M −→→→β N −→→→⊥
nfβ⊥(M). This implies that nfβ⊥(M) is a normal form of N in λ∞⊥ . Hence, N −→→→⊥out nf⊥(N)

and nf⊥(N) = nfβ⊥(M) by Theorem 2.1. �
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Lemma 2.4 (β-reducing a prefix). Let M,N ∈ Λ∞⊥ . If M � N and M −→→→β M
′ then

there exists N ′ such that N −→→→β N
′ and M ′ � N ′.

Proof: By induction on the length of the reduction sequence. �

Theorem 2.5 (Monotonicity). Let M,N ∈ Λ∞⊥ . If M � N then nfβ⊥(M) � nfβ⊥(N).

Proof: Let M,N ∈ Λ∞⊥ such that M � N . We prove that nfβ⊥(M) � nfβ⊥(N). By normali-

sation of β⊥ and postponement of ⊥ over β (Theorem 2.2), we have that there exists M ′ such

that M −→→→β M
′ −→→→⊥ nfβ⊥(M). By Lemma 2.4 we have that N −→→→β N

′ and M ′ � N ′

for some N ′. Next we prove that for all n, (nfβ⊥(M ′))n � (nfβ⊥(N ′))n by induction on n.

The base case n = 0 is trivial. Suppose n = h+ 1. We have three cases:

Case M ′ = ⊥. Then (nfβ⊥(M ′))n = ⊥ � (nfβ⊥(N ′))n.

Case M ′ = λx1 . . . xn.y P1 . . . Pk. Then N ′ = λx1 . . . xn.y Q1 . . . Qk.

(nfβ⊥(M ′))n = λx1 . . . xn.y (nfβ⊥(P1))h−k . . . (nfβ⊥(Pk))h

� λx1 . . . xn.y (nfβ⊥(Q1))h−k . . . (nfβ⊥(Qk))h by induction hypothesis

= (nfβ⊥(M ′))n

Case M ′ = λx1 . . . xn.(λy.R)SQ1 . . . Qk. Since M ′ −→→→⊥ nfβ⊥(M), M ′ cannot have head

normal form. Hence (nfβ⊥(M ′))n = ⊥ � (nfβ⊥(N ′))n.

�

Lemma 2.6 (Increasing Truncations). Let M,N ∈ Λ∞⊥ . If M −→β⊥ N then for all n

there exists m ≥ n such that nfβ⊥(Mm) � nfβ⊥(Nn).

Proof in the appendix

Theorem 2.7 (Approximation). Let M ∈ Λ∞⊥ . For all n, there exists m ≥ n such that

nfβ⊥(Mm) � (nfβ⊥(M))n.

Proof: By Theorem 2.2, there exists a strongly convergent reduction sequence of length ω

from M to nfβ⊥(M):

M = M0 −→β⊥ M1 −→β⊥ M2 . . . nfβ⊥(M)

Since this reduction sequence is strongly convergent, for all n there exists Mi such that

(nfβ⊥(M))n = (Mi)
n. By Lemma 2.6, there exists m = mi ≥ mi−1 ≥ . . .m0 = n such that:

nfβ⊥(Mm) = nfβ⊥(Mmi
0 )

� nfβ⊥(M
mi−1

1 )

. . .

� nfβ⊥(Mm0
i ) = nfβ⊥((nfβ⊥(M))n) = nfβ⊥(Mn)

�

Theorem 2.8. Let M ∈ Λ∞⊥ . The following statements are equivalent:

1 There exists a head normal form N such that M −→→→β N .

2 There exists a head normal form N ′ such that M −→→β N
′.

3 There exists a head normal form N ′′ such that M −→→βh
N ′′.

4 There exists a head normal form N ′′′ such that M
0−→→β N

′′′.

Proof in the appendix
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3. Properties of η!-reduction

Before we will deal with the interaction of η!-reduction with β- and ⊥-reduction in the further

sections, we will study a number of useful properties of η!-reduction and η-expansion. First

we show that any η!-reduction is strongly converging. Next we will demonstrate that λ∞η!
and λ∞η−1 are dual calculi in the sense that strongly converging η-expansion and strongly

converging η!-reduction are each others inverse (cf. Lemma 3.2). This allows us to prove that

strongly converging η!-reductions and strongly converging η−1-reductions can be compressed

to reductions of length at most ω. It also permits us to prove that the steps of a strongly

converging η−1-reduction can be ordered according to their depth. Finally we will show in

this section that λ∞η! is confluent and normalising.

3.1. Strong Convergence of η!

We will prove that any η!-reduction (and hence η-reduction) starting from a term in Λ∞⊥ is

strongly converging. This is a direct result of our choice of depth used in the metric completion

Λ∞⊥ of Λ⊥. The infinite term Ωη is an example of a term that is not in Λ∞⊥ . Clearly Ωη η-

reduces to itself by contraction of the η-redex at its root. Therefore Ωη can perform infinitely

many η-reductions at depth zero, and hence, it is not strongly converging.

Lemma 3.1 (Strong convergence of η!). Any η!-reduction sequence in Λ∞⊥ is strongly

convergent.

Proof: Strong convergence of η! reduction follows by a counting argument. For M ∈ Λ∞⊥ ,

let |Mn| denote the number of abstractions in Mn. The number |Mn| decreases by one if

we contract an η!-redex in M at depth n and it remains equal if we contract an η!-redex at

depth m > n. Suppose by contradiction that we have a transfinite η!-reduction sequence that

is not strongly convergent, that is, suppose we have a reduction M0 −→η! M1 −→η! . . . in

which infinitely many reductions occur at depth n. Then infinitely many inequalities in the

sequence

|Mn
0 | ≥ |Mn

1 | ≥ |Mn
2 | ≥ . . .

are strict, which is impossible. Hence the limit of the depth of the contracted redexes in any

sequence M0 −→η! M1 −→η! . . . goes to infinity at each limit ordinal ≤ α. This implies that

all η!-reduction sequences are strongly converging. �

In contrast to η!-reduction, η-expansion need not be strongly converging. For instance the

following infinite sequence of η-expansions is not Cauchy, as the distance between any two

terms in this sequence in this sequence is always 1.

M −→η−1 λy0.My0 −→η−1 λy0y1.My0y1 −→η−1 . . .

3.2. Relation between η−1 and η!

Next, we will show that strongly converging η-expansion is the inverse of strongly converging

η!-reduction: (−→→→η−1)−1 = −→→→η!. In general η!-reduction may need less steps than its

inverse. For example, while an infinite number of eta expansions is necessary to reach Ex
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starting from x, the reverse η!-reduction can be done in only one step.

x
η−1

// (λy1.xy1)
η−1

// (λy1.xλy2.y1y2)
η−1

// //_// Ex

η!

{{

We will make frequent use of this inverse relationship. The proof of the inverse relationship

(Theorem 3.5) will follow from some smaller results and ω-compression lemmas for η! and

η−1. These compression lemmas will simplify many later proofs.

Lemma 3.2 (Inverse of one step reduction). Let M,N in Λ∞⊥ .

1 If M
n−→η−1 N , then N

n−→η! M .

2 If M
n−→η! N , then N

≥n−→→→η−1 M .

Proof: The first statement is trivial. The second statement follows directly from the def-

initions of η! and η−1 as illustrated in the next diagram. If the depth of the η!-redex in

M −→η! N is n then the η−1-redexes in N −→→→η−1 M occur at least at depth n.

C[λx.PQ]
η!

n // C[P ]

η−1 n

��

C[λx.Px]

η−1

>n

ffffLff

�

Lemma 3.3 (Inverse reductions restricted to ω-length). Let M,N in Λ∞⊥ .

1 If M −→→→η! N is of length at most ω then N −→→→η−1 M .

2 If M −→→→η−1 N is of length at most ω then N −→→→η! M .

Proof: We only prove the first item using induction on the length α of the reduction sequence

from M to N . The proof of the second item is similar.

The base case α = 0 is trivial. The successor case α = n + 1 follows easily from Lemma 3.2

and the induction hypothesis, as shown in the next diagram:

M0

η!

n steps

&& &&

IH M1

η!

1 step

##

η−1

ffffLff
Lem 3.2 M2

η−1

ccccGcc

Limit case α = ω. By strong convergence, the number of steps at certain depth n is finite.

We can, then, always split the sequence by depth as follows.

M = M0
η!

≥0
// // M1

η!

≥1
// // M2

// //_// Mω = N

Now consider the last step occurring at depth 0 in this sequence. The position of its redex is

still present in all terms that follow M1, including Mω. By reversing this last η!-step at depth
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0 in the limit Mω we construct the following diagram:

M = M0
η!

≥0
// // C[λx.PQ]

η!

0 //

MMMMMMMMMMMMM

MMMMMMMMMMMMM
C[P ] = M1

η−1≥0

����
���

η!

>0
// //_// Mω = C ′[P ′]

η−1≥0

����
���

C[λx.PQ]
η!

>0
// //_// C ′[λx.P ′Q]

We repeat this process for each step at depth 0 and obtain a term N1 such that:

M
η!

≥0
// //

η!

>0

(( ((P((

M1
η!

>0
// //_// N

η−1≥0

����
���

N1

Since all steps in the η!-reductions sequence from M to N1 occur at depth greater than 0,

the terms M and N1 coincide at depth 0.

Repeating the above argument on the reduction sequence M
≥1−→→→η! N1, we find a term N2

such that N1
≥1−→→→η−1 N2 and M

>1−→→→η! N2. Moreover, M and N2 coincide up to depth 1.

In this way we can construct an η−1-reduction sequence starting from N as indicated in the

next diagram:

M

η!

����
��� η!

>0

$$ $$I$$
η!

>1

$$ $$J$$

η!

>2

$$ $$I$$

=

N
η−1

≥0
// //_// N1

η−1

≥1
// //_// N2

η−1

≥2
// //_// N3 Nω

Because the reduction sequence that start from N is strongly converging, it has a limit, say

Nω. Since each term Ni coincides with M up to depth i, the limit Nω of this sequence is

exactly M . �

Lemma 3.4 (Compression for η−1 and η!). Strongly converging reduction is ω-

compressible in λ∞η−1 and λ∞η! .

Proof: First we consider λ∞η! . The proof proceeds by transfinite induction on the length

of the reduction sequence. By a general argument (Kennaway et al., 1995b; Kennaway and

de Vries, 2003) it is sufficient to prove that a sequence of length ω + 1 can be compressed

into one of length ω. Without loss of generality, we may suppose that we have a strongly

convergent η!-reduction sequence of length ω + 1 as follows:

λx.M0N0
η!
//

η!

��

λx.M1N1
η!
//

η!

��

λx.M2N2
η!

// //_//

η!

����
���

λx.MωNω

η!

��

M0
=,η!

// M1
=,η!

// M2
=,η!

// //_// Mω

Note that Mi −→→→η! Mω and Ni −→→→η! Nω for all i. By Lemma 3.3, Nω −→→→η−1 Ni. Since

λx.MωNω is an η!-redex, we have that x −→→→η−1 Nω. Hence x −→→→η−1 Nω −→→→η−1 Ni and

all terms λx.MiNi in the top row are η!-redexes. Contracting them, we obtain the terms of
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the bottom row. The reduction in the bottom row is the projection of the reduction in the

top row. This way we obtain a sequence of length ω from λx.M0N0 to Mω.

The proof of compression for λ∞η−1 follows a similar pattern, but without the appeal to

Lemma 3.3. �

Lemma 3.4 allows us to remove the conditions on length in Lemma 3.3.

Theorem 3.5 (Inverse reductions). M −→→→η! N if and only if N −→→→η−1 M for any

M,N in Λ∞⊥ .

Thus we have shown at the main result of this section that strongly converging η!-reduction

is the inverse of strongly converging η−1-reduction.

3.3. Confluence of η!

In this section we will show that η!-reduction is confluent. The main ingredients of the proof

are Local Confluence and the Strip Lemma for η!.

Lemma 3.6 (Preservation of η!-redexes by η!). If λx.MN is an η!-redex and N −→→→η!

N ′, then λx.MN ′ is also an η!-redex.

In order to prove the previous lemma, one proves that:

Lemma 3.7 (Preservation of η-expansions of x after η!). If x −→→→η−1 M and M −→→→η!

M ′, then x −→→→η−1 M ′.

Proof in the Appendix.

Lemma 3.8 (Local η!-Confluence). Given M −→η! M1 and M −→η! M2, there exists M3

such that the following diagram holds:

M0
η!

m //

η!n

��

M1

=,η!n

��

M2
=,η!

m // M3

Proof: A case analysis on the relative positioning of the η!-redexes. We prove the case

when the η!-redex λy.PQ is inside the argument N of the other η!-redex λx.MN , i.e. M0 =

C1[λx.MC2[λy.PQ]]. By Lemma 3.6, C2[P ] is an η-expansion of x and we can construct the

following diagram:

C1[λx.M [C2[λy.PQ]]
η!

m //

η!n
��

C1[λx.M [C2[P ]]

η!n
��

C1[M ] C1[M ]

�

Note that the annotation of the reduction depths in the above local confluence diagram

implies that the depth of an η!-redex in a term does not change when we contract an η!-redex

elsewhere in the term.
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Lemma 3.9 (Strip Lemma for η!). Given a strongly converging reduction M −→→→η! P

and a one step reduction M −→η! N , then we can construct the following diagram with

elementary local confluence tiles:

M

η!m

��

η!
// //_// P

=,η!m

��

N
=,η!

// //_// Q

Proof: By Lemma 3.4 (Compression Lemma) we can assume that the sequence has length

ω.

M0
n0

η!
//

η!m

��

M1
n1

η!
//

=,η!m

��

M2
n2

η!
//

=,η!m

��

M3

=,η!m

��

. . . Mω

m =,η!

��

N0
n0

η!
// N1

n1

η!
// N2

n2

η!
// N3 . . . ?

Using Lemma 3.8, we can complete all the subdiagrams except for the limit case. The con-

structed reduction N0 −→η! N1 −→η! N2 −→η! . . . is strongly converging, say with limit Nω.

Either the vertical η!-reduction M0 −→η! N0 got cancelled out in one of the applications

of Local Confluence or not. If it gets cancelled out, then, from that moment on, all vertical

reductions are reductions of length 0, implying that Mω is equal to the limit Nω. Or the

vertical η!-reduction M0 −→η! N0 did not get cancelled out, implying that its residual is

present in Mk, for all k ≥ 0. That is, all Mk with k ≥ 0 are of the form Ck[λx.SkTk], where

all the Ck[ ] have the hole at the same position at depth m, and all Nk with k ≥ 0 are of

the form Ck[Sk]. The limit term Mω is of the form Cω[λx.SωTω] and the hole of Cω is also

at depth m. By Lemma 3.6, λx.SωTω is an η!-redex. Contracting this redex in the limit Mω

we obtain Cω[Sω] which is equal to the limit Nω of the bottom sequence. �

Theorem 3.10 (η!-Confluence). The infinitary calculus λ∞η! is confluent.

Proof: Confluence of λ∞η! can be shown by a simultaneous induction on the length of the

two given coinitial η!-reductions. By compression (Lemma 3.4) we may assume that these

reductions are at most of length ω, so here we don’t need transfinite induction.

The induction proof makes use of so called tiling diagrams (Kennaway and de Vries, 2003),

which can be constructed using the induction hypothesis, Lemma 3.8 (Local Confluence) and

Lemma 3.9 (Strip Lemma). The important thing to note is that the depth of an η!-redex in

a term does not change when we contract an η!-redex elsewhere in the term.

The double limit case is more involved. In that case we can construct the tiling diagram

shown below. The induction hypothesis allows us to construct all proper subtiling diagrams.

It remains to show that the bottom row reduction and the right-most column reduction

strongly converge to the same limit.

Clearly, by the fact that all subtiles are depth preserving, both the bottom row reduction and

the right-most column reduction inherit the strong convergence property from respectively

the top row and the left-most column reductions. Using strong convergence we can show that

for any k there exists k1, k2 such that for all i ≥ k1 and j ≥ k2 the terms Mi,j have the

same prefix up to depth k. Hence the limits of the bottom row reduction and the right-most

column reduction are the same.
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Alternatively, one can check that the conditions of the general tiling diagram theorem in

(Kennaway and de Vries, 2003) are satisfied to conclude that both limits are the same.

M0,0
η!

m0 //

η!n0

��

M0,1
η!

m1 //

η!n0

��

M0,2

η!n0

��

M0,ω

η!n0

��

M1,0
η!

m0 //

η!n1

��

M1,1
η!

m1 //

η!n1

��

M1,2

η!n1

��

M1,ω

η!n1

��

M2,0
η!

m0 // M2,1
η!

m1 // M2,2 M2,ω

Mω,0
η!

m0 // Mω,1
η!

m1 // Mω,2 ?

�

In a similar way one can prove that strongly converging η-expansion is confluent. We skip

the proof, as we don’t need this result in this paper.

3.4. Normalisation of η!-reduction

We finish this section showing that λ∞η! -calculus is normalising in contrast to λ∞η−1-calculus

which is not normalising.

Theorem 3.11 (Normalisation of λ∞η! ). The infinitary lambda calculus λ∞η! is depth-first

left-most normalising.

Proof: Let M0 be some lambda term in λ∞η! . Consider the reduction M0 −→η! M1 −→η!

M2 . . . in which each Mi+1 is obtained from its predecessor Mi by contracting the depth-first

left-most η!-redex in Mi. By Lemma 3.1 this reduction is strongly converging. If it is finite,

then the last term is an η!-normal form. If it is infinite, then by strong convergence it has a

limit Mω. By a reductio ad absurdum Mω must be an η!-normal form as well: For suppose

Mω contains an η!-redex λx.PX at some position p. Then, by strong convergence, there is

an Mn in the reduction that contains a subterm of the formλx.P ′X ′ at position p, while

all reduction steps after Mn take place at depth greater than the depth of λx.P ′X ′. Hence

X ′ −→→→η! X, and so X −→→→η−1 X ′ by Lemma 3.5. We also have that x −→→→η−1 X, because

λx.PX is an η!-redex. Therefore x −→→→η−1 X ′. Thus λx.P ′X ′ must also be an η!-redex in Mn.

Since the later reductions steps in Mn −→→→η! Mω take place at greater depth than λx.P ′X ′.

This contradicts the fact that the reduction M0 −→→→η! Mω is depth-first left-most. �

The combination of the previous result with the confluence of η!-reduction give us uniqueness

of normal forms as corollary:

Corollary 3.12 (Uniqueness of η!-normal forms). Each lambda term in λ∞η! has a unique

η!-normal form.
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4. Commutation Properties for β and η!

In this section we will prove various instances of commutation of β and η! to be used in the

proof of confluence of λ∞β⊥η!.

4.1. Local Commutation for One Step β and One Step η!

The first commutation property that we consider is local commutation for one step β and

one step η!.

Lemma 4.1 (Preservation of η!-redexes by β). If λx.MN is an η!-redex and N −→→→β N
′,

then λx.MN ′ is also an η!-redex.

In order to prove the previous lemma, one proves that if x −→→→η−1 N and N −→→→β N
′, then

x −→→→η−1 N ′. Proof in the appendix.

Lemma 4.2 (Local Commutation of β and η!). If M0 −→η! M1 and M0 −→β M2, then

there exists an M3 such that the following diagram holds:

M0
η!

m //

βn

��

M1

=,βn

��

M2
η!

≥m−1
// //_// M3

Proof: Suppose M0 can do both a β-reduction and an η!-reduction at respectively depths

n and m. We prove only one case. The β-redex is inside the expanded variable term of the

η!-redex, that is M0 is of the form C1[λx.MN ] and N = C2[(λy.P )Q]. By Lemma 4.1, we

have that if N −→β N
′ then λx.MN ′ is also an η!-redex.

C1[λx.MN ]
η!

m //

βn
��

C1[M ]

C1[λx.MN ′]
η!

m // C1[M ]

�

4.2. Strip Lemma for One step β over η!

Next we prove the strip lemma for one step β over η!.

Lemma 4.3 (Strip Lemma for −→β over −→→→η!). Given M −→β P and M −→→→η! N ,

then there exists Q such that:

M

βm

��

η!
// //_// N

=,βm

��

P
η!

// //_// Q
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Proof: The proof is similar to the proof of the strip lemma for η!. By Lemma 3.4 (Compres-

sion Lemma) we can assume that the sequence has length at most ω.

M = M0
n0

η!
//

βm

��

M1
n1

η!
//

=,βm

��

M2
n2

η!
//

=,βm

��

M3

=,βm

��

. . . Mω = N

m =,β

��

N0
≥n0−1

η!
// //_// N1

≥n1−1

η!
// //_// N2

≥n2−1

η!
// //_// N3 . . . ?

Using Lemma 4.2, we can complete all the subdiagrams except for the limit case. Either the

vertical β-reduction got cancelled out in one of the applications of Local Confluence or not.

If it gets cancelled out, then from that moment on all vertical reductions are reductions of

length 0, implying that Mω is equal to the limit Nω. Or, if the vertical β-reduction did not

get cancelled out, then a residual of the β-redex in M is present in all terms Mk. Hence

Mk = Ck[(λx.Pk)Qk] for all k ≥ 0, and in all Ck[ ] the hole occurs at the same position

at depth m, so that all Nk are of the form Ck[Pk]. This holds for the limit terms as well.

Contracting this residual in the limit Mω gives us the limit Nω. �

Lemma 4.4 (Strip Lemma for −→η! over −→→→β). Let X be in β⊥-normal form. If

M = C[λx.M0X] −→η! C[M0] = P and M −→→→β N , then there exists Q such that:

M

η!

��

β
// //_// N

η!

����
���

P
β

// //_// Q

Proof in the appendix

5. Commutation of η! and ⊥out

Full commutation of η! and ⊥ does not hold. Already local commutation of η and ⊥ goes

wrong (cf. (Severi and de Vries, 2002)) when the contracted⊥-redex is not outermost. Take for

instance Ω η!←− λx.Ωx→⊥ λx.⊥. However, for proving confluence of λ∞β⊥η! it is sufficient that

η!-reduction commutes with ⊥out-reduction. Recall that −→⊥out
is the reduction that replaces

an outermost subterm without head normal form by ⊥. The proof of this commutation

property then follows the familiar pattern.

Lemma 5.1 (Local η!⊥out-Commutation). If M0 −→η! M1 and M0 −→⊥out M2, there

exists M3 such that

M0
η!

m //

⊥out n

��

M1

⊥out n

��

M2
=,η!

m // M3

Proof in the appendix.

Lemma 5.2 (Strip Lemma for −→⊥out
over −→→→η!). Given a one step reduction

M −→⊥out
N and a strongly converging reduction M −→→→η! P , then there exists Q such
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that:

M
η!

// //_//

⊥out n

��

P

⊥out n

��

N
η!

// //_// Q

Proof in the appendix.

Lemma 5.3 (Strip Lemma for −→η! over −→→→⊥out). Given a one step reduction M −→η!

N and a strongly converging reduction M −→→→⊥out
P , then there exists Q such that:

M
⊥out

// //_//

η! n

��

P

=,η! n

��

N
⊥out

// //_// Q

Proof in the appendix.

Theorem 5.4 (η!⊥out-Commutation). Strongly converging η!-reduction commutes with

strongly converging ⊥out-reduction: ←←←−η! ◦ −→→→⊥out
⊆ −→→→⊥out

◦ ←←←−η!

Proof: Similar to the confluence proof of η! (Theorem 3.10), but using Lemmas 5.1, 5.2 and

5.3 instead. �

6. Confluence and Normalisation of β⊥η!

We are now ready to prove the main results of this paper concerning confluence and normal-

isation of the infinite extensional lambda calculus λ∞β⊥η!.

Theorem 6.1 (Preservation of β⊥-normal forms by η!). If M −→→→η! N and M is a

β⊥-normal form, then N is a β⊥-normal form.

Proof in the appendix.

Theorem 6.2 (β-normalization of an η-expansion of x). If x −→→→η−1 X, then x −→→→η−1

nfβ(X).

Proof in the appendix.

Theorem 6.3 (Projecting β⊥η!-reductions onto η!-reductions via nfβ⊥). If

M −→→→β⊥η! N then nfβ⊥(M) −→→→η! nfβ⊥(N) and the following diagram commutes:

M0
β⊥η!

// //_//

β⊥
����
���

Mα

β⊥
����
���

nfβ⊥(M0)
η!

// //_// nfβ⊥(Mα)

Proof: We prove for all α, that if M0 −→→→β⊥η! Mα then nfβ⊥(M0) −→→→η! nfβ⊥(Mα), by

induction on α.

Case α = 0. This is trivial.
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Case α = γ + 1. By the induction hypothesis, we have that nfβ⊥(M0) −→→→η! nfβ⊥(Mγ) We

distinguish two cases depending on the last step:

1 If the last step is a β⊥-reduction step, we have that nfβ⊥(Mγ) = nfβ⊥(Mγ+1) by

Theorem 2.2.

M0
β⊥η!

// //_//

β⊥
����
���

(IH)

Mγ

β⊥
����
���

β⊥
//

(Thm 2.2)

Mγ+1

β⊥
��

nfβ⊥(M0)
η!

// //_// nfβ⊥(Mδ) nfβ⊥(Mδ+1)

2 If the last step is an η!-reduction step, then we first normalise the term X of the η!-

redex in Mγ = C[λx.PX]. By Theorem 6.2, x −→→→η−1 nfβ(X). Hence C[λx.P nfβ(X)]

η!-reduces to C[P ]. Then we split the β⊥-reduction sequence from C[λx.Pnfβ(X)] to the

normal form nfβ⊥(Mγ) into a β-reduction sequence followed by a ⊥out-reduction sequence

using Theorems 2.2 and 2.3. This is depicted in the following diagram:

M0
β⊥η!

// //_//

β⊥

����
���

Mγ = C[λx.PX]

β

����
���

η!
//

(Thm 6.2)

C[P ] = Mγ+1

C[λx.P nfβ(X)]

β

����
���

η!
//

(Lem 4.4)

C[P ] = Mγ+1

β

����
���

(IH)

N1

⊥out

����
���

η!
// //_//

(Thm 5.4)

N2

⊥out

����
���

nfβ⊥(M0)
η!

// //_// nfβ⊥(Mγ)
η!

// //_// nfβ⊥(Mγ+1)

Next, applying first the Strip Lemma 4.4 for −→η! with −→→→β and secondly the full

η!⊥out-Commutation Theorem 5.4, we find a term Q such that nfβ⊥(Mγ) −→→→η! Q and

C[P ] −→→→η! ◦ −→→→⊥out
Q. Since nfβ⊥(Mγ) is a β⊥-normal form, so is Q by Theorem 6.1.

Hence by the unicity of β⊥-normal forms in λ∞β⊥ implied by Theorem 2.2 we find that

Q = nfβ⊥(Mγ+1).

Case α = λ. By the induction hypothesis, we have that nfβ⊥(M0) −→→→η! nfβ⊥(Mγ) for all

γ < λ.

M0
β⊥η!

//

β⊥
����
���

M1
β⊥η!

//

β⊥
����
���

M2
// //_//

β⊥
����
���

Mλ

β⊥
����
���

nfβ⊥(M0)
η!
// nfβ⊥(M1)

η!
// nfβ⊥(M2) // //_// N

?
= nfβ⊥(Mλ)

Since all η!-reduction sequences are strongly convergent (Theorem 3.1), the bottom reduction

sequence is strongly convergent, and hence has a limit, say N . To conclude that N is in fact

nfβ⊥(Mλ), it suffices to prove that for all n, Nn = (nfβ⊥(Mλ))n.

By the Approximation Theorem 2.7, we have that there exists m ≥ n such that (Mλ)m −→→→β⊥
nfβ⊥((Mλ)m) = P � (nfβ⊥(Mλ))n. Since M0 −→→→β⊥η! Mλ is strongly convergent, we have
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for some large enough γ0 that for all γ ≥ γ0, (Mγ)m = (Mλ)m. Hence, for all γ ≥ γ0, we have

that P = nfβ⊥((Mλ)m) = nfβ⊥((Mγ)m) � nfβ⊥(Mγ) by Monotonicity of nfβ⊥ (Theorem 2.5).

Hence the terms of the bottom reduction sequence have all the same prefix P from nfβ⊥(Mγ0)

onwards. Hence P is a prefix of their limit N . Therefore Nn = Pn = (nfβ⊥(Mλ))n.

�

Theorem 6.4 (Confluence and normalization of β⊥η!). The infinite extensional lambda

calculus λ∞β⊥η! is confluent and normalising.

Proof: We first prove confluence. Suppose M0 −→→→β⊥η! M1 and M0 −→→→β⊥η! M2. Then

by Theorem 6.3 we project these these β⊥η!-reductions onto nfβ⊥(M0) −→→→η nfβ⊥(M1) and

nfβ⊥(M0) −→→→η nfβ⊥(M2). The η!-Confluence Theorem 3.10 then gives us the term M3 such

that nfβ⊥(M1) −→→→η M3 and nfβ⊥(M1) −→→→η M3. The following diagram illustrates this

proof.

M0

β⊥η!

&& &&L&&LLLLLLLLLLLLLL
β⊥η!

xxxxrxxrrrrrrrrrrrrrr

β⊥

����
���

M1

β⊥

����
���

(Thm 6.3)nfβ⊥(M0)

η!
&& &&L&&

η!
xxxxrxx

(Thm 3.10)

M2

β⊥

����
���

(Thm 6.3)

nfβ⊥(M1)

η!

&& &&L&&

nfβ⊥(M2)

η!

xxxxrxx
M3

Second, normalisation of λ∞β⊥η! follows from normalisation of β⊥-reduction (Theorem 2.2)

and normalisation of η!-reduction (Theorem 3.11): given a term M we β⊥-reduce first to

nfβ⊥(M) and then we η!-reduce further to nfη!(nfβ⊥(M)). �

As a consequence of the previous theorem, we have that β⊥η!- reduction is ω+ω-compressible.

We also have that:

Corollary 6.5 (Uniqueness of β⊥η!-normal forms). The extensional infinite lambda

calculus λ∞β⊥η! has unique normal forms.

7. Infinite eta Böhm trees as Normal Forms

In this section we will see that the infinite eta Böhm tree of a lambda term M denoted by

∞ηBT(M) is nothing else than the η!-normal form of BT(M), the Böhm tree of M , which in

turn is nothing else than nfβ⊥(M).

We begin with the definition of Böhm tree formulated as a term in Λ∞⊥ . The original notion

of Böhm tree defined in (Barendregt, 1984) for finite terms applies to infinite terms as well.

7.1 Definition [Böhm trees]: Let M ∈ Λ∞⊥ . The Böhm tree of a term M (denoted by

BT(M)) is defined by co-recursion as follows.

BT(M) = ⊥ if M has no head normal form

BT(M) = λx1 . . . λxn.y BT(M1) . . .BT(Mm) if M −→→β λx1 . . . λxn.yM1 . . .Mm
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We can this read from this definition an algorithm that starting from the root of a term M

calculates the Böhm tree of M layer by layer. Since the subterms of the Böhm tree are either

a head normal form or ⊥, it is clear that possibly infinite output BT(M) of the algorithm is

the (unique) β⊥- normal form of M .

Remark 7.1. We define Böhm trees as terms in the infinitary lambda calculus and this

definition is given co-recursively. In (Barendregt, 1984) Definition 10.1.4, a Böhm tree is

defined as a function from a set of sequences or positions to a set Σ of labels. Up to a change

of representation, Definition 7.1 is very similar to the informal definition of Böhm trees given

in Definition 10.1.3 in (Barendregt, 1984).

As stated before, the infinitary lambda calculus λ∞β⊥ = (Λ∞⊥ ,−→β⊥) captures the notion of

Böhm trees as normal forms (see Figure 1). We recall the proof of this fact in the following

theorem.

Theorem 7.2 (Böhm trees as β⊥-normal forms). Suppose M ∈ Λ∞⊥ . Then, BT(M) =

nfβ⊥(M).

Proof: It is easy to see that M −→→→β⊥ BT(M) and that BT(M) is in β⊥-normal form. It

follows from Theorem 2.2 that BT(M) = nfβ⊥(M). �

Next we redefine the ∞η-construction of (Barendregt, 1984) using the notation of strongly

converging reduction.

7.2 Definition [Infinite eta Böhm trees]: We define ∞η on Böhm trees in BT(Λ∞⊥ ) co-

inductively as follows:

∞η(⊥) = ⊥
∞η(λx1 . . . λxn.y M1 . . .Mm) = ∞η(λx1 . . . λxn−1.y M1 . . .Mm−1)

if xn −→→→η−1 Mm and xn 6∈ FV(y M1 . . .Mm−1)

∞η(λx1 . . . λxn−1.y M1 . . .Mm−1) = λx1 . . . λxn.y ∞η(M1) . . .∞η(Mm) otherwise

This ∞η-construction contracts layer by layer all the η!-redexes in the Böhm tree BT(M)

of a term M , so that the result is its β⊥η-normal form. We may write ∞η(BT(M)) for

∞η(BTM).

Barendregt’s original definition in (Barendregt, 1984) Proposition 10.2.15 of the infinite eta

expansion differs slightly from the above definition.

It uses the order ≤η on Böhm trees instead of −→→→η−1 . To prove that our definition of infinite

eta Böhm trees coincides with the definition in (Barendregt, 1984), it suffices to prove that

the relations ≤η and −→→→η−1 coincide on β⊥-normal forms.

Lemma 7.3. Let M,N be in β⊥-normal form. Then, M ≤η N if and only if M −→→→η−1 N .

We leave the proof of the above lemma to the reader.

Theorem 7.4 (Infinite eta Böhm trees are β⊥η!-normal forms). Let M ∈ Λ∞⊥ .

1 If M is in β⊥-normal form then nfη!(M) =∞η(M).

2 nfβ⊥η!(M) =∞η(BT(M)).

Proof: For the first part, it is not difficult to prove that M η!-reduces to ∞η(M) and

that ∞η(M) is in η!-normal form. By Corollary 3.12, the η!-normal form is unique, hence
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∞η(M) = nfη!(M). The second part follows from Theorem 6.4, Theorem 7.2 and the previous

part. �

8. The ∞η-Böhm trees as a Model of the Lambda Calculus

In (Barendregt, 1984) the Böhm trees got a role on their own, when with help of the conti-

nuity theorem it was shown that the set of Böhm trees can be enriched to become a model

of the finite lambda calculus λβ . The original definition of Böhm tree used the language of

labelled trees. In this approach, lambda terms and Böhm trees live in different worlds, be-

cause lambda terms got defined with the usual syntax definition. Using infinitary lambda

calculus (Kennaway et al., 1997) this separation is not only no longer necessary but the fact

that the Böhm trees are a model of the finite lambda calculus λβ is shown directly from the

confluence and normalisation properties of λ∞β⊥. Having proved that λ∞β⊥η! is confluent and

normalising, we will show that the infinite eta Böhm trees can be made into a model of λ∞βη.

This is a new result that could not have been proved with a variation of continuity argument

used in (Barendregt, 1984) to prove that the Böhm trees for a model of the finite lambda

calculus. In (Barendregt, 1984) the proof that the set B = BT(Λ) of Böhm-like trees is a

λ-model uses continuity of the context operator. However, this appeal to continuity is not

possible for ∞η-Böhm trees, because neither the abstraction nor the application are continu-

ous (Severi and de Vries, 2005a). For instance, take λx.y⊥ and λx.yx. Then λx.y⊥ � λx.yx,

but ∞ηBT(λx.y⊥) = λx.y⊥ 6� y =∞ηBT(λx.yx).

From the∞η-Böhm trees of the finite lambda terms in Λ we will now construct an extensional

model of the finitary lambda calculus, using the properties of λ∞β⊥η!.

8.1 Definition: We denote the set ∞ηBT(Λ) of ∞η-Böhm trees over Λ by B∞η.

We define the model B∞η as follows:

8.2 Definition: The ∞η-Böhm model is a tuple (B∞η, •, [[ ]]) where B∞η denotes the set

∞ηBT(Λ) of ∞η-Böhm trees over Λ or equivalently the set nfβ⊥η!(Λ) of β⊥η!-normal

forms of finite lambda terms, the application • : B∞η × B∞η → B∞η is defined by

M•N = ∞ηBT(MN) for all M,N in B∞η and for each map ρ from variables to B∞η,

the interpretation [[M ]]ρ : B∞η → B∞η is defined by [[M ]]ρ =∞ηBT(Mρ), where Mρ is the

result of simultaneously replacing each free variable x in M by ρ(x).

8.3 Definition: Let ρ be a map from variables to B∞η. We define ρ(x := N) as a map from

variables to B∞η such that ρ(x := N)(x) = N and ρ(x := N)(y) = ρ(y) for every y 6= x.

We will now show that B∞η is a syntactic λ-model in the sense of (Barendregt, 1984),

Definition 5.3.1. and 5.3.2.

Theorem 8.1. (B∞η, •, [[ ]]) is a syntactical model of the lambda calculus, that is, it satisfies

for all ρ:

1 [[x]]ρ = ρ(x)

2 [[MN ]]ρ = [[M ]]ρ•[[N ]]ρ
3 [[λx.M ]]ρ•P =[[M ]]ρ(x:=P )

4 ρ | FV (M) = ρ′ | FV (M) implies [[M ]]ρ = [[M ]]ρ′

5 if [[M ]]ρ(x:=P ) = [[N ]]ρ(x:=P ) for all P ∈ B∞η, then [[λx.M ]]ρ = [[λx.N ]]ρ
6 [[λxy.xy]]ρ=[[λx.x]]ρ

Proof in the appendix.
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9. Remarks and Future Research

Next, let us briefly compare our proofs of confluence of β⊥η(Severi and de Vries, 2002)

and β⊥η! with the confluence proof of the finite βη⊥ lambda calculus (Theorem 15.2.15(ii)

in (Barendregt, 1984): note the different notation: the symbol Ω is used in (Barendregt, 1984)

for ⊥). The diagram of the latter proof is:

M0

β⊥η!

** **VVVVVVVVVVVVVVVVVVVVVV
β⊥η!

ttttiiiiiiiiiiiiiiiiiiiiii

β⊥|||| β⊥ "" ""

M1

η
����

L1η
oooo

β⊥
"" ""

L2

β⊥
||||

η
// // M2

η
����

nfη(M1)

β⊥η
** **

L

η
����

nfη(M2)

β⊥η
tttt

nfη(L)

At the heart of both proofs is confluence of β⊥-reduction. But what makes these proofs

different is that the proof in (Barendregt, 1984) uses η-normal forms, whereas our proof uses

β⊥-normal forms. Our proof sidesteps the use of postponement of η! over β⊥.

We leave it as an interesting future task to see whether proofs of confluence for finite λβ⊥η
that use complete developments can be generalised to the infinitary setting, as for example,

the older proof of Barendregt, Bergstra, Klop and Volken (Barendregt et al., 1976) and the

proof by van Oostrom (van Oostrom, 1997).

It may be an interesting challenge to see to what extent it is possible to make confluent and

normalising ⊥-extensions of weakly orthogonal systems, be it first or higher order.

We have now seen that the equality relations induced byD∞,D∗∞ and Pω can be characterised

with help of respectively the ∞ηBöhm trees, the ηBöhm trees and the Böhm trees, that is,

with help of the normal forms of respectively the confluent and normalising calculi λ∞β⊥η!,

λ∞β⊥η and λ∞β⊥. Which other models of the lambda calculus allow such characterisations?
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Böhm models. In Rewriting Techniques and Applications, volume 914 of LNCS, pages 257–270.

Springer-Verlag.

Kennaway, J. R., Klop, J. W., Sleep, M. R., and de Vries, F. J. (1995b). Transfinite reductions in

orthogonal term rewriting systems. Information and Computation, 119(1):18–38.

Kennaway, J. R., Klop, J. W., Sleep, M. R., and de Vries, F. J. (1997). Infinitary lambda calculus.

Theoretical Computer Science, 175(1):93–125.

Kennaway, J. R., van Oostrom, V., and de Vries, F. J. (1999). Meaningless terms in rewriting. J.

Funct. Logic Programming, Article 1:35 pp.
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Appendix A. Omitted Proofs for the Section on Infinitary Lambda Calculus

These sections in the appendix contain all omitted proofs.

The following lemma is proved by induction on the depth of the hole in the context.

Lemma A.1. Let C[M ] ∈ Λ∞⊥ and d the depth of the hole in C. If n > d then (C[M ])n =

Cn[Mn−d]. Otherwise (C[M ])n = Cn is a term without a hole.

Lemma A.2. Let P,Q ∈ Λ∞⊥ . Then, Pn[x := Qn] � (P [x := Q])n.
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Proof: This is proved by induction on the lexicographically ordered pair (n, ||Pn||) where

||Pn|| is the number of symbols of Pn. Suppose n > 0 and P = P1P2. Then

Pn[x := Qn] = Pn1 [x := Qn]Pn−12 [x := Qn] by Definition 2.5

� Pn1 [x := Qn]Pn−12 [x := Qn−1]

� (P1[x := Q])n(P2[x := Q])n−1 by induction hypothesis

= (P [x := Q])n by Definition 2.5

�

Back to Lemma 2.6.

Proof: Suppose M = C[P ] →⊥ C[⊥] = N . Let d be the position of the hole in C[[ ]]. By

Lemma A.1, if n ≤ d then Mn = Cn = Nn. Otherwise, Mn = Cn[Pn−d] � Cn[⊥] = Nn. By

Monotonicity (Theorem 2.5), we have that nfβ⊥(Mn) � nfβ⊥(nfβ⊥(Nn)).

Suppose M = C[(λx.P )Q] −→β C[P [x := Q]] = N . Let d be the position of the hole in C[[ ]]

and assume k = n− d > 0.

(C[(λx.P )Q])n+2 = Cn+2[(λx.P k)Qk+1] by Lemma A.1

−→β Cn+2[P k[x := Qk+1]

� Cn[P k[x := Qk]]

� Cn[(P [x := Q])k] by Lemma A.2

= (C[P [x := Q]])n by Lemma A.1

By Confluence (Theorem 2.2) and Monotonicity (Theorem 2.5), we have that nfβ⊥(Mn+2) �
nfβ⊥(nfβ⊥(Nn)). �

We also need a variation of Lemma 2.4 with βh-reduction instead of ⊥out-reduction.

Lemma A.3 (βh-reducing a prefix). Let M,N ∈ Λ∞⊥ . If M � N and M −→→βh
M ′ then

there exists N ′ such that N −→→βh
N ′ and M ′ � N ′.

Proof: By induction on M −→→βh
M ′ . �

Back to Lemma 2.8.

Proof: (i⇒ ii). (Kennaway et al., 1997) Suppose there exists N in head normal form such

that M −→→→β N . We can assume that the length of this reduction is ω by Theorem 2.2. Since

−→→→β is strongly convergent, we have that there exists N ′′ such that:

M
≥0−→→β N

′′ >0−→→→β N

It is easy to show that N ′′ is in head normal form.

(ii⇒ iii). By Theorem 2.2, M −→→β N
′′ −→→→β⊥ nfβ⊥(M). Since N ′′ is in head normal form,

so is nfβ⊥(M). We truncate the normal form of M at depth 1 and apply the well-known results

on head normalisation in finite lambda calculus. By Theorem 2.7, there exists m > 1 such that

nfβ⊥(Mm) � (nfβ⊥(M))1. Hence, nfβ⊥(Mm) is in head normal form because (nfβ⊥(M))1 is

in head normal form. By Theorem 2.2 and the fact that −→→→β⊥ is strongly convergent, we

have that

Mm ≥0−→→β P
>0−→→→β Q −→→→⊥ nfβ⊥(Mm) � (nfβ⊥(M))1

Since the term Mm ∈ Λ⊥ is a finite λ-term and the reduction Mm ≥0−→→β P is finite, we can

now apply Theorem 8.3.11 of (Barendregt, 1984). We have that Mm −→→βh
N for some N



P.Severi F.J. de Vries 26

in head normal form. By Lemma A.3, there exists N ′′ such that M −→→βh
N ′′ and N � N ′′.

Since N is in head normal form, so is N ′′.

(iii⇒ iv) and (iv ⇒ i) are trivial. �

Appendix B. Preservation of η-expansions of x after η!

By postponing the η−1 (or the η!) steps at greater depth, we can re-order the steps in an η−1

(or an η!) reduction sequence by increasing order of depth.

Lemma B.1 (Postponing η−1-steps at greater depth). Let j < i. Then, an η−1-

reduction step at depth i can be postponed over an η−1-reduction step at depth j, that

is:

M1
η−1

i //

η−1 j
��

M2

η−1 j
��

M3
η−1

i // M4

Proof: Suppose M = C[P ]
i−→η−1 C[λx.Px]. Since j < i, the η−1-redex at depth j occurs

either in C or in P but it cannot occur in x. We have that

C[P ]
η−1

i //

η−1 j
��

C[λx.Px]

η−1 j
��

C ′[P ′]
η−1

i // C ′[λx.P ′x]

�

As a consequence of the previous lemma, we obtain:

Lemma B.2 (Sorting η−1-reduction sequences by order of depth). If M −→→→η−1 N ,

then there is either a finite reduction

M = M0
0−→→η−1 M1

1−→→η−1 M2
2−→→η−1 . . .Mn−1

n−1−→→η−1 Mn = N

or an infinite reduction

M = M0
0−→→η−1 M1

1−→→η−1 M2
2−→→η−1 . . .Mω = N

Lemma B.3 (Postponing η!-steps at greater depth). Let j < i. There are only two

possible situations that can occur when we postpone an η!-reduction step at depth i over an

η!-reduction step at depth j:

M1
η!

i //

η! j
��

M2

η! j
��

M3
η!

i // M4

M1
η!

i //

η!

j

!!

M2

η! j
��

M4

Proof: The situation of the second tile occurs when the term M1 contains a term λx.PQ at



The Infinitary Lambda Calculus of the Infinite Eta Böhm Trees 27

depth j and the η!-redex at depth i is inside Q:

C[λx.PQ]
η!

i //

η!

j

''

C[λx.PQ′]

η! j
��

C[P ]

We know that Q′ is an infinite η-expansion of x and we have to show that so is Q. Since Q′

is obtained from Q by applying only one step of η!-reduction, by Lemma 3.2, we can reverse

the reduction from Q to Q′. Hence x −→→→η−1 Q′ −→→→η−1 Q. �

As a consequence of the previous lemma, we obtain:

Lemma B.4 (Sorting η!-reduction sequences by order of depth). If M −→→→η! N ,

then there is either a finite reduction

M = M0
0−→→η! M1

1−→→η! M2
2−→→η! . . .Mn−1

n−1−→→η! Mn = N

or an infinite reduction

M = M0
0−→→η! M1

1−→→η! M2
2−→→η! . . .Mω = N

If x −→→→η−1 M then not all abstractions in M have to be η!-redexes. For example,

x −→→→η−1 λyz.(λu.xEyEu)Ez = M

The first abstraction λy is not an η!-redex. In spite of this, it is possible to undo all the η−1-

steps by doing only a finite number of steps of η! at depth 0. This is proved in the following

lemma which will be used to prove Commutation of β and η!.

Lemma B.5 (Inverting the expansion of a variable). If x −→→→η−1 M , then M
0−→→η! x

and there is a single free occurrence of x in M at depth 0.

Proof: By Theorem 3.5, x −→→→η−1 M implies that M −→→→η! x. By Lemma 3.4 (Compression

Lemma) and Lemma B.4 (Sorting by order of depth), we have that there is either a finite

reduction

M = M0
0−→→η! M1

1−→→η! M2
2−→→η! . . .Mn−1

n−1−→→η! Mn = N = x

or an infinite reduction

M0
0−→→η! M1

1−→→η! M2
2−→→η! . . .Mω = N = x

In both cases, the following case analysis allows us to conclude that M1 = x.

1 If M1 is a variable, then the rest of the reduction sequence from M1 onwards is empty

and M1 = x.

2 Suppose M1 = (PQ). Then all η!-reducts from N1 are applications (including N). This

contradicts the fact that N is a variable.

3 Suppose M1 = λx.P . Then either all reducts from N1 are abstractions (including N) or

this abstraction disappears because it is contracted by an η!-redex. Neither case is possible.

The first option contradicts the fact that N is a variable. The second option contradicts

the fact that in the reduction from M1 to N we contract only redexes at depth strictly

greater than 0.

�
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Local Confluence and the Strip Lemma for η! depend on the following lemma that says that

η!-redexes are preserved by certain η!-reduction sequences.

Lemma B.6. If x
<n−→→η−1 N

≥n−→→→η−1 M and M
n−→→η! M

′, then N
≥n−→→→η−1 M ′.

Proof: Assume x
<n−→→η−1 N

≥n−→→→η−1 M and M
n−→η! M

′. We will now show that N
≥n−→→→η−1

M ′.

From depth considerations it follows that the abstraction of the η!-redex contracted in

M −→η! M
′ got created after N in the reduction x

<n−→→η−1 N
≥n−→→→η−1 M

n−→η! M
′. Since

η−1 does not change the depth of any subterm, once the η!-redex is created, its depth remains

fixed. By omitting the η-expansion step that created the abstraction of the η!-redex plus all

the subsequent η-expansions from y to Q, we construct the reduction sequence at the bottom:

x
<n

η−1

// // N
n

η−1

// // C ′[P ′]
n

η−1

//

≥n

η−1 -- --\--

C ′[λy.P ′y]
≥n

η−1

// //_// C[λy.PQ] = M

nη!

��

C[P ] = M ′

The more general statement of the lemma follows by repeated application of the above.

�

Theorem B.7 (Preservation of η-expansions of x after η!). If x −→→→η−1 M and

M −→→→η! M
′, then x −→→→η−1 M ′. Back to Lemma 3.6.

Proof: By compression of η!-reduction we may assume that the reduction M −→→→η! M
′ is

at most ω steps long. By Theorem B.2, this reduction sequence can be sorted. Two possible

situations can arise:

Case M −→→η! M
′ is finite. We illustrate the proof for a sequence of length 3.

x
0

η−1

// //

0

η−1
&& &&

.
1

η−1

// // .
2

η−1

// // .
η−1

// //_// M0

0η!
����

(= M)

N1
1

η−1

// //

1
η−1

&& &&

.
2

η−1

// // .
η−1

// //_// M1

1η!
����

N2
2

η−1

// //

2
η−1

)) ))S))

.
η−1

// //_// M2

3η!
����
���

N3
η−1

// M3 (= M ′)

By Lemma B.6 we have x −→→→η−1 M1. By Lemma B.2, there exists N1 such that x
0−→→η−1

N1
>0−→→→η−1 M1. By Lemma B.6, we have that N1

>0−→→→η−1 M2. Hence we get x
0−→→η−1

N1
>0−→→→η−1 M2. By Lemma B.2, there exists N2 such that x

0−→→η−1 N1
1−→→η−1 N2

>1−→→→η−1

M2. Again by Lemma B.6, we have that N2
>1−→→→η−1 M3. Once more by Lemma B.2, there

exists N3 such that x
0−→→η−1 N1

1−→→η−1 N2
2−→→η−1 N3

>2−→→→η−1 M3.

Case M −→→→η! M
′ has length ω. By repeated application of the previous argument, we can



The Infinitary Lambda Calculus of the Infinite Eta Böhm Trees 29

construct the diagonal sequence as shown in the following diagram:

x
0

η−1

// //

0

η−1
&& &&

.
1

η−1

// // .
2

η−1

// // .
η−1

// //_// M0

0η!
����

(= M)

N1
1

η−1

// //

1
η−1

&& &&

.
2

η−1

// // .
η−1

// //_// M1

1η!
����

N2
2

η−1

// //

η−1

(( ((Q((

.
η−1

// //_// M2

η!

����
���

Nω = Mω (= M ′)

By construction, the diagonal sequence is strongly convergent and has a limit, say Nω. It is

easy to see that the limits Mω and Nω are the same, because for all k we have Nk+1 and

Mk+1 have the same truncation to depth k. �

Appendix C. Preservation of η-expansions of x after β

For the proof of local commutation, we need to prove preservation of η!-redexes under β-

reduction. The proof follows the same pattern as the proof of preservation of η!-redexes

under η!-reduction (Lemma 3.6).

Lemma C.1. If x
<n−→→η−1 N

≥n−→→→η−1 M and M
≥n−→β M

′ then N
≥n−→→→η−1 M ′.

Proof: Assume x
<n−→→η−1 N

≥n−→→→η−1 M and M
≥n−→β M

′. We will show N
≥n−→→→η−1 M ′. Since

η−1 does not change the depth of any term, once the β-redex is created, its depth remains

fixed. There are only two ways in which η-expansions can create a β-redex:

1 The application of the β-redex is created before its abstraction in the η-expansion. This

happens as follows:

x
<n

η−1

// // N
≥n

η−1

// // C ′[P ′Q′]
≥n

η−1

//

≥n

η−1 .. ..]..

C ′[(λy.P ′y)Q′]
≥n

η−1

// //_// C[(λy.P )Q] = M

≥nβ
��

C[P [y := Q]] = M ′

Since P ′y −→→→η−1 P and Q′ −→→→η−1 Q and y 6∈ FV (P ′), we have that

P ′Q′ = (P ′y)[y := Q′] −→→→η−1 P [y := Q]

2 The abstraction in the β-redex gets created before its application in the η-expansion.

This happens as follows:

x
<n

η−1

// // N
≥n

η−1

// // C ′[λy.P ′]
≥n

η−1

//

≥n

η−1 .. ..]..

C ′[λz.(λy.P ′)z]
≥n

η−1

// //_// C[λz.(λy.P )Q] = M

≥nβ
��

C[λz.P [y := Q]] = M ′
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Since P ′ −→→→η−1 P and z −→→→η−1 Q, we have that

λy.P ′ =α λz.P
′[y := z] −→→→η−1 λz.P [y := Q]

�

Theorem C.2 (Preservation of η-expansion of x by β). If x −→→→η−1 M and M −→→→β

M ′, then x −→→→η−1 M ′. Back to Lemma 4.1.

Proof: By strong convergence, we can assume that the β-reduction sequence is of the form

M0
≥0−→→β M1

≥1−→→β M2 . . .. Now we can proceed similarly as in the proof of Theorem B.7

while exploiting Lemmas B.2 and C.1 instead. �

Appendix D. Strip lemma for one step η! over infinitely many β’s

The full strip lemma for β over η! is harder than the strip lemma for η! over β (see Lemma

4.3). The difficulty lies in the fact that, due to overlap, the residuals of an η! redex are

not always immediately η! redexes themselves. We illustrate this with an example. Consider

M = (λx.zX)Q, where x −→→→η−1 λy1y2y3.xy1y2y3 = X and Q is some arbitrary term. What

are the residuals of the η!-redex λx.zX in M after contracting the β-redex (λx.zX)Q? We

have that

M = (λx.zX)Q −→β z(λy1y2y3.Qy1y2y3)

−→η! z(λy1y2.Qy1y2)

−→η! z(λy1.Qy1)

−→η! zQ

Only the first of these consecutive η!-redexes is readily present in λy1y2y3.Qy1y2y3. From

the next two redexes only their λ’s are present in λy1y2y3.Qy1y2y3. These lambda’s are η!-

redexes “in waiting”. The residuals in λy1y2y3.Qy1y2y3 of the original η!-redex λx.zX will

be the three abstractions λy3.Qy1y2y3, λy2y3.Qy1y2y3 and λy1y2y3.Qy1y2y3 in spite of the

fact that not all of them are η!-redexes. We make this precise with underlining. To track the

residuals of λx.zX, we will not only underline the λ of λx.zX but also all the λ’s in X, i.e.

(λx.zX)Q where X = λy1λy2λy3.xy1y2y3.

To simplify matters a bit, we will not do this in full generality. Instead we will do this only

with η!-redexes of the form λx.MN where N is an η-expansion of x which is in β⊥-normal

form, because such expansions have a straightforward format:

Lemma D.1. If x −→→→η−1 X and X is in β⊥-normal form, then X is of the form

λy1 . . . yn.xY1 . . . Yn, where x 6= yi, yi −→→→η−1 Yi and Yi is in β⊥-normal form for each

1 ≤ i ≤ n.

Proof: The reduction steps in x −→→→η! X can be sorted by depth with Lemma B.2, so that we

may assume without loss of generality that x −→→→η! X is of the form x
0−→→η−1 X1

>0−→→→η−1 X.

Because X is a β⊥-normal form, X1 must be of the form λy1 . . . yn.xy1 . . . yn as can be shown

with a proof by induction on n: if the expansions steps at depth 0 would be executed at other

positions than the sequence of positions that leads to λy1 . . . yn.xy1 . . . yn a β-redex would be

introduced and all further terms in the sequence would contain a β-redex, contradicting the

normal form of the final term X.

Now, because the deeper reductions in X1
>0−→→→η−1 X do not alter the left spine of X1, it
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follows that also X must be of the shape λy1 . . . yn.xY1 . . . Yn where yi −→→→η−1 Yi and Yi is

in β⊥-normal form for each 1 ≤ i ≤ n.

�

In the proof of the restricted strip lemma for one step η! over β we will employ the underlining

technique of (Barendregt, 1992) to track the residuals of η!-redexes of the particular form

λx.PX where X is an η-expansion of x in β⊥-normal form. To introduce this technique in

the infinitary setting, we extend the set Λ∞⊥ to Λ∞⊥ which will contain underlined terms of the

following form only:

λy1 . . . λyn.MY1 . . . Yn

where Yi ∈ Λ∞⊥ is in β⊥-normal form, Yi is an η-expansion of yi and Yi is obtained by

underlining all λs in Yi. for all 1 ≤ i ≤ n.

D.1 Definition [Family of sets Ex for x ∈ V]: We define a family of sets Ex on x ∈ V by

simultaneous induction:

X ::= x | λx1 . . . λxn.xX1 . . . Xn

where Xi ∈ Exi for all 1 ≤ i ≤ n.

D.2 Definition [Set Λ⊥ of underlined finite lambda terms with ⊥]: We define the

set Λ⊥ of underlined finite λ-terms by induction:

M ::= ⊥ | x | (λxM) | (MM) | λx1 . . . λxn.MX1 . . . Xn

where x ∈ V, xi 6∈ FV (M) and Xi ∈ Exi for all 1 ≤ i ≤ n.

The metric d on Λ can be easily extended to terms in Λ⊥ and in each of the Ex.

D.3 Definition [Sets of underlined finite and infinite terms]: 1 Let x ∈ V. The set

E∞x is the metric completion of the set Ex with respect to the metric d.

2 The set Λ∞⊥ is the metric completion of the set of underlined finite lambda terms Λ⊥
with respect to the metric d.

Now we are ready to define underlined η!- and β-reduction.

D.4 Definition: 1 Let −→η! be the smallest binary relation on Λ∞⊥ containing the rule

X ∈ E∞x x 6∈ FV (M)
(η!)

λx.MX →M

and closed under contexts.

2 Let −→β be the smallest binary relation on Λ∞⊥ containing the following rule:

(λx.P )Q→ P [x := Q] (β)

and closed under contexts.

The definition of −→β is correct in the sense that Λ∞⊥ is closed under underlined β-reduction:

one sees easily that X[x := Q] ∈ Λ∞⊥ holds for any X ∈ E∞x and any Q ∈ Λ∞⊥ .

We will frequently use situations where Xi ∈ E∞x and xi 6∈ FV (M) for all 1 ≤ i ≤ n, in which

case we have the reductions:

λx1 . . . λxn.MX1 . . . Xn −→→η! M
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and

(λx1λx2 . . . λxn.MX1X2 . . . Xn)Q→β λx2 . . . λxn.MX1[x1 := Q]X2 . . . Xn

We will denote the union of −→β and −→β by −→ββ .

As in the finitary setting we need mechanisms to remove the underlining:

D.5 Definition [Removing underlinings]: Let M ∈ Λ∞⊥ .

1 We define |M | ∈ Λ∞⊥ as the result of removing all the underlinings in M .

2 We define ϕ(M) ∈ Λ∞⊥ as the result of contracting all η!-redexes from M by co-recursion

as follows.

ϕ(x) = x

ϕ(PQ) = ϕ(P )ϕ(Q)

ϕ(λx.P ) = λx.ϕ(P )

ϕ(λx1 . . . λxn.MX1 . . . Xn) = ϕ(M)

Note that ϕ(M) is in η!-normal form for all M ∈ Λ∞⊥ .

For example, ϕ((λx.zX)I) = zI where X = λy1λy2λy3.xy1y2y3.

Lemma D.2.

1 If X ∈ E∞x then x −→→→η−1 |X|.
2 Let X be a β⊥-normal form. If x −→→→η−1 X then X ∈ E∞x where X is the result of

underlining all abstractions in X.

Proof: 1 Suppose X ∈ E∞x . It is not difficult to show that X = λy1 . . . λyn.xY1 . . . Yn and

Yi ∈ E∞yi for all 1 ≤ i ≤ n using Definitions D.1 and D.3. We consider the η−1-reduction

sequence: x −→→η−1 λy1 . . . λyn.xy1 . . . yn. We repeat a similar argument for each Yi with

1 ≤ i ≤ n as we did for X. This process can be repeated ad infinitum to obtain an

η−1-strongly converging reduction sequence from x to |X|.
2 Suppose x −→→→η−1 X. We construct a Cauchy sequence M1,M2, . . . of terms in Ex
whose limit is X using Lemma D.1. By construction the limit X is an element of E∞x .

The first term M1 in this sequence is x which belongs to Ex. By Lemma D.1, we have

that X = λy1 . . . λyn.xY1 . . . Yn and yi −→→→η−1 Yi for each 1 ≤ i ≤ n. The second term

M2 of the sequence is λy1 . . . λyn.xy1 . . . yn which belongs to Ex. We repeat this process

to construct all the terms in the sequence. The limit of this sequence is X and it belongs

to E∞x by Definition D.3.

�

Lemma D.3. If M −→→→η! N , then |M | −→→→η! |N |.

Proof: This is proved by induction on the length of the reduction sequence. We only prove

it for a reduction sequence of length 1. Suppose λx.MX −→η! M . Then, X ∈ E∞x and

x 6∈ FV (M). By Lemma D.2(i), we have that x −→→→η−1 |X| and hence, λx.MX −→η! M . �

The next lemma is a straightforward consequence of the definition of ϕ.

Lemma D.4. Let X ∈ E∞x . Then ϕ(X) = x.

Lemma D.5. Let M ∈ Λ∞⊥ . Then, there exists a reduction of length at most ω such that

M −→→→η! ϕ(M).
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Proof: Contraction of the η!-redexes using a depth-first left-most strategy gives a reduction

M −→→→η! ϕ(M) of length at most ω. �

Lemma D.6 (ϕ on substitutions). Let M,N ∈ Λ∞⊥ . Then, ϕ(M [x := N ]) = ϕ(M)[x :=

ϕ(N)].

Proof: We prove that (ϕ(M [x := N ]))n = (ϕ(M)[x := ϕ(N)])n for all n by induction on

(n,m) where n is the depth of the truncation and m is the number of abstractions and

applications in M at depth n. �

Lemma D.7 (ϕ on one step β). Let M ∈ Λ∞⊥ .

1 If M
n−→β N then ϕ(M)

n−→β ϕ(N).

2 If M −→β N then ϕ(M) = ϕ(N).

Proof: In both cases, we proceed by induction on the pair (n,m) where n is the depth of

the redex in M and m is the number of abstractions and applications in M at depth n.

1 Suppose n = 0. Then, M = (λx.P )Q
0−→β P [x := Q] = N and we apply Lemma D.6.

The case n > 0 follows by induction hypothesis.

2 The case n > 0 follows by induction hypothesis. Suppose n = 0. Since the only occurrence

of x1 in (λx2 . . . λxn.M0X1X2 . . . Xn) is in X1, we have that:

M = (λx1 . . . λxn.M0X1 . . . Xn)Q

−→β (λx2 . . . λxn.M0X1[x1 := Q]X2 . . . Xn)

= N

Since X1 = λy1 . . . yk.x1Y1 . . . Yk ∈ E∞xi
, we have that:

ϕ(M) = (λx1 . . . λxn.M0X1 . . . Xn)Q by definition of ϕ

= ϕ(M0)ϕ(Q) by definition of ϕ

= ϕ(M0)x1[x1 := ϕ(Q)]

= ϕ(N)ϕ(X1)[x1 := ϕ(Q)] by Lemma D.4

= ϕ(N)ϕ(X1[x1 := Q]) by Lemma D.6

�

The function ϕ does not preserve truncations, i.e. ϕ(Mn) 6= ϕ(M)n. For example, take

M = λx.y(λz.xz). We will define a notion of quasi-truncation which is preserved by ϕ.

The quasi-truncation of a term at depth n truncates the term at depth n except for the

η-expansions X in an η!-redex.

D.6 Definition [Quasi-truncation]: We define quasi-truncation of M at depth n by in-

duction on the lexicographically ordered pair (n,m) where m is the number of abstractions

and applications at depth n:

[⊥]n = ⊥
[M ]0 = ⊥
[x]n+1 = x

[λx.M ]n+1 = λx.[M ]n+1

[MN ]n+1 = [M ]n+1[N ]n

[λx1 . . . λxk.MX1 . . . Xk]n = λx1 . . . λxk.[M ]nX1X2 . . . Xk
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For example, take M = λx.y(y(y . . .))(λz.xz). Then M1 = λx.y⊥⊥ and [M ]1 =

λx.y⊥(λz.xz). Note that ([M ]n)n = Mn for all M ∈ Λ∞⊥ . The function ϕ preserves quasi-

truncations:

Lemma D.8 (Preservation of quasi-truncations). ϕ([M ]n) = ϕ(M)n.

Proof: This is proved by induction on (n,m) where n is the depth of the truncation and m

is the number of abstractions and applications in M at depth n. �

Lemma D.9 (ϕ on many β-steps). Let M ∈ Λ∞⊥ . If M −→→→ββ N has length at most ω,

then ϕ(M) −→→→β ϕ(N).

Proof: We prove it by induction on the length of M −→→→ββ N . The finite case follows from

Lemma D.7. We prove the case when the length is ω. The following diagram can be constructed

by repeated applications of Lemma D.7. Since ϕ preserves the depth of the contracted redex,

we have that the bottom sequence is strongly convergent and the limit exists which is P .

M = M0
n0

ββ
// M1

n1

ββ
// M2

n2

ββ
// . . . Mω = N

ϕ(M0)
n0

=,β
// ϕ(M1)

n1

=,β
// ϕ(M2)

n2

=,β
// . . . P

?
= ϕ(Mω)

It remains to prove that P = ϕ(Mω). By strong convergence, there exists n0 such that for

all n ≥ n0, (Mn)k = (Mω)k and (ϕ(Mn))k = P k. Now [Mn]k = [Mω]k because[Mn]k and

[Mω]k are obtained from (Mn)k and (Mω)k by adding terms of the form X ∈ E∞x which are

in β-normal form. We have

P k = (ϕ(Mn))k by strong convergence

= ϕ([Mn]k) by Lemma D.8

= ϕ([Mω]k) because [Mn]k = [Mω]k

= (ϕ(Mω))k by Lemma D.8

�

Back to Lemma 4.4.

Proof: Let X be an η-expansion of x such that X is a β⊥-normal form. Suppose M =

C[λx.M0X]. In order to track the residuals of this η!-redex, we consider the term M ′ =

C[λx.M0X] where X is the result of underlining all abstractions in X. Then X ∈ E∞x by

Lemma D.2(ii). The reduction M −→→→β N is lifted to M ′ −→→→ββ N
′. Using Lemmas D.3, D.5

and D.9, we obtain the following diagram:

M = C[λx.M0X]

η!

��

β
// //_// N

η!
����
���

M ′ = C[(λx.M0X]
||

jjUUUUUUUUUUU

ϕ
ttiiiiiiiiiiiiiii

ββ
// //_// N ′

||

__@@@@@

ϕ��~~~~~

P
β

// //_// Q

�
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Appendix E. Commutation properties of β and η−1

In this section we will study some precise commutation properties of β and η−1. We need

these properties to prove that η-expansions of head normal forms again have a head normal

form. As a consequence η!-reduction preserves ⊥out-redexes, which plays a crucial role in the

proof of the commutation property for η! and ⊥out in Section 5.

E.1. Strip Lemmas for one step β0 over η−1

In this subsection we concentrate on the strip lemmas for one step β-reductions that takes

place at depth 0 over η-expansion. There is a slight complication, because η-expansions can

create β-redexes as shown by the next example.

(λx.xω)I
η−1

//

β

��

(λy.(λx.xω)y)I
η−1

// (λy.(λz.(λx.xω)z)y)I

β

����

Iω (λy.yω)I
β

oo

In the above η−1-reduction sequence, we have created two extra β-redexes which should be

contracted to get a common reduct. These extra β-redexes are of a special nature, for which

we will introduce the notion of β0-reduction.

E.1 Definition [β0-reduction]: We will introduce the notation M −→β0
N for the situation

where M is of the form C[(λx.P )Q] and N is of the form C[P [x := Q]], while the hole [ ] in

C[ ] occurs at depth 0 and the variable x occurs at depth 1 and exactly once in P .

Note that −→β0
is a restricted form

0−→β .

Examples of β0-redexes are: (λx.yx)I, (λx.y(λz.xz))I and (λxy.y(xK))I. Non-examples are

(λx.xy)I and (λx.yxx)I, as in the former the variable x does not occur at depth 1 and in the

latter the variable x occurs twice.

The next diagram shows the usefulness of this restricted form of β-reduction in the context

of a strip lemma of one-step β over η−1-reduction. Consider the η−1-reduction sequence

(λx.xω)I −→→→η−1 (λy1y2.(λx.x
ω)(λz.y1z)y2)I = N . Then,

(λx.xω)I
η−1

0 // //

β

��

(λy1y2.(λx.x
ω)y1y2)I

η−1

1 //

β0

��

(λy1y2.(λx.x
ω)(λz.y1z)y2)I

β0

��

λy2.(λx.x
ω)Iy2

β

��

η−1

1 // λy2.(λx.x
ω)1y2

β

��

Iω
η−1

0 // (λy2.I
ωy2)

η−1

1 // //_// (λy2.1ωy2)

Lemma E.1 (Local Commutation for one step β0 and one step η−1). Given

M0 −→η−1 M1 and M0 −→β0
M2, there exists M3 such that either one of the following
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diagrams hold:

M0
η−1

m //

(1)β0

��

M1

β0

��

M2
η−1

m // M3

M0
η−1

0 //

(2)β0

��

M1

β0

��

N

β0

��

M2 M3

Proof: A term M0 in Λ∞⊥ can contain a β0-redex (λy.P )Q at depth 0 and an η−1-redex N

at depth m in exactly one of the following situations:

1 The β0-redex (λy.P )Q and the η−1-redex N are not nested, i.e. M0 = C[(λy.P )Q,N ].

This results in an instance of Diagram (1).

2 The β0-redex is inside the η−1-redex, that is M0 is of the form C1[N ], where N ≡
C2[(λy.P )Q]. This case results in an instance of Diagram (1) too.

3 The η−1-redex is part of the body of the abstraction λy.P of the β0-redex, i.e. P −→η−1

P ′. Since η−1 does not affect the depth of the variable y, (λy.P ′)Q remains a β0-redex

and we have

C[(λy.P )Q]
η−1

m //

β0

��

C[(λy.P ′)Q]

β0

��

C[P [y := Q]]
η−1

m // C[P ′[y := Q]]

which is an instance of Diagram (1).

4 The η−1-redex is part of the argument Q of the β0-redex. This results in the following:

C[(λy.P )Q]
η−1

m //

β0

��

C[(λy.P )Q′]

β0

��

P [y := Q]
η−1

m // P [y := Q′]

which corresponds to Diagram (1). Since the variable y occurs only once in P , we need

only one η−1-step from P [y := Q] to P [y := Q′]. And because the depth of this variable

is 1, the depth of that η−1-redex in P [y := Q] is m.

5 Only if m = 0, the η−1-redex coincides with the abstraction λy.P of the β0-redex, that

is M0 is of the form C[NQ] where N ≡ λy.P .

C[(λy.P )Q]
η−1

0 //

β0

��

C[(λx.(λy.P )x)Q]

β0

��

C[(λy.P )Q]

β0

��

C[P [y := Q]] C[P [y := Q]]

The above is an instance of Diagram (2).
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�

Lemma E.2 (Strip Lemma for −→β0
over −→→→η−1 at m > 0).

M
η−1

>0
// //_//

β0

��

P

β0

��

N
η−1

>0
// //_// Q

Proof: By Lemma 3.4 (Compression Lemma), we can assume that the η−1-reduction se-

quence has length at most ω. If the length is finite, then the result follows by repeated

application of Diagram (1) of Lemma E.1. Diagram (2) does not apply as the η-expansions

are performed at depth greater than 0. When the length is ω we construct the diagram:

M0
n0

η−1

//

β0

��

M1
n1

η−1

//

β0

��

M2
n2

η−1

//

β0

��

M3

β0

��

. . . Mω

β0

��

N0
n0

η−1

// N1
n1

η−1

// N2
n2

η−1

// N3 . . . ?

Using Diagram (1) of Lemma E.1, we can complete all the subdiagrams except for the limit

case. Since the η-expansions are performed at depth greater than 0, all Mk with k ≥ 0 are

of the form Ck[(λx.Pk)Qk], where all the Ck[ ] have the hole at the same position at depth

0, and all Pk have exactly one occurrence of x at depth 1. The limit term is of the form

Cω[(λx.Pω)Qω]. The hole of Cω occurs also at depth 0 and x occurs only once in Pω and at

depth 1 because η-expansions do not introduce variables and the existing variables remain at

the same depth. Hence, the residual remains a β0-redex in the limit. Contracting this redex

in the limit Mω reduces to Cω[Pω[x := Qω]] which is equal to the limit Nω of the bottom

sequence. �

E.2. Strip Lemma for one step β at depth 0 over η−1 reduction

We will now prove the strip lemma of
0−→β with −→η−1 using the results of the previous

subsection.

Lemma E.3 (Local Commutation of
0−→β and −→η−1). Given M0

m−→η−1 M1 and

M0
0−→β M2, there exists M3 such that one of the following diagrams hold:

M0
η−1

m //

(1)β0

��

M1

β0

��

M2
η−1

m // M3

M0
η−1

m>0
//

(2)β0

��

M1

β0

��

M2
η−1

≥(m−1)
// //_// M3

M0
η−1

0 //

(3)β0

��

M1

β0

��

N

β0

��

M2 M3

Note the extra information in Diagram (3): the first step of constructed down reduction in

Diagram (3) is a β0-reduction.
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Proof: A term M0 can contain a β-redex (λy.P )Q at depth 0 and an η−1-redex N at depth

m. A case analysis leads to the following exhaustive list of possible positions of β-redex and

the η−1-redex relative to each other:

1 The β-redex (λy.P )Q and the η−1-redex N are not nested, i.e. M0 = C[(λy.P )Q,N ].

This case leads to Diagram (1).

2 The β-redex is inside the η−1-redex, that is M0 is of the form C1[N ], where N ≡
C2[(λy.P )Q]. This case leads to Diagram (1).

3 The η−1-redex is part of the body of the abstraction λy.P of the β-redex. This case

leads to Diagram (1).

4 The η−1-redex is part of the argument Q of the β-redex. This case can only happen if

m > 0 and it results in an instance of Diagram (2).

C[(λy.P )Q]
η−1

m //

β 0

��

C[(λy.P )Q′]

β 0

��

C[P [y := Q]]
η−1

≥m−1
// //_// C[P [y := Q′]]

If the variable y occurs infinite times in P , then we need ω-steps to get P [y := Q′] from

P [y := Q]. If there is some occurrence of y at depth 0, then there will be some η−1-redex

in P [y := Q] at depth m− 1.

5 The η−1-redex coincides with the abstraction λy.P of the β-redex, that is M0 is of the

form C[NQ] where N ≡ λy.P . If this happens, M must be 0. It leads to the following

instance of Diagram (3):

C[(λy.P )Q]
η−1

0 //

β0

��

C[(λx.(λy.P )x)Q]

β0

��

C[(λy.P )Q]

β0

��

C[P [y := Q]] C[P [y := Q]]

Note that in the first step on the right vertical line, the contracted outermost β-redex

that got created by the η-expansion is a β0-redex. Again note the informative role of β0
in the formulation of the lemma.

�

The previous local commutation lemma generalises to a finite strip lemma of
0−→β over

−→→η−1 .

Lemma E.4 (Finite Strip Lemma of
0−→β at depth 0 over −→→η−1 at depth 0). Given

a one step reduction M
0−→β P and a finite reduction M

0−→→η−1 N , then there exists Q and
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Q0 such that:

M
η−1

0 // //

β0

��

N

β0

����

Q0

β0

��

P
η−1

0 // // Q

Proof: By induction on the finite length of the η−1-reduction sequence. We show the induc-

tion step.

M

(IH)

η−1

0 // //

β0

��

N

(Lem. E.1)

0

η−1

//

β0

����

N ′

β0

����

Q0

(1),(3)

(Lem. E.3)

0

η−1

//

β0

��

R0

=,β0

��

Q′0

β0

��

P
η−1

0 // // Q
0

=,η−1

// Q′

The top right square follows from a repeated application of Lemma E.1. In the bottom right

square we apply Diagram (1) and (3) of Lemma E.3. Note that Diagram (2) does not apply

because β and η−1 are performed at the same depth. �

Next we prove the strip lemma for one step β reduction over many step η−1.

Lemma E.5 (Strip Lemma for
0−→β over −→→→η−1 at depth greater than 0). If M

0−→β

P and M
>0−→→→η−1 N , then there exists Q such that:

M

0 β

��

η−1

>0
// //_// N

0 β

��

P
η−1

≥0
// //_// Q

Proof: Similar to Lemma E.2 using Lemma E.3 Diagrams (1) and (2). �
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Lemma E.6 (Strip Lemma for β at depth 0 over η−1). Given a one step reduction

M
0−→β P and a strongly converging reduction M −→→→η−1 N , then there exists Q such that:

M

β0

��

η−1

// //_// N

β0
����

P
η−1

// //_// Q

Proof: By Lemma B.2, we can assume that the η−1-reduction sequence is of the form

M
0−→→η−1 M1

>0−→→→η−1 N . The proof is sketched in the following diagram.

M
η−1

0 // //

β0

��

M1

(Lem. E.2)

η−1

>0
// //_//

β0

����

N

β0

����

(Lem. E.4)

(Lem. E.5)β0

��

η−1

>0
// //_//

β0

��

P
η−1

0 // // P1
η−1

≥0
// //_// Q

�

E.3. Commutation properties for restricted β reduction and η-expansion

In this subsection we will consider a particular instance of β-reduction in order to deal with

the β-redexes created by η-expansions from truncated head normal forms. For example,

λx.x⊥⊥ −→η−1 λy.(λx.x⊥⊥)y

λx.x⊥⊥ −→η−1 λx.(λy.x⊥y)⊥

In the first example, we see that the argument of the β-redex that we have created is a

variable, while in the second example the argument is ⊥.

In fact we will define two instances of β-reduction, called respectively βv-reduction, and βV -

reduction in order to deal with β-redexes created by η-expansions starting from a head normal

form.

E.2 Definition [βv and βV -reductions]: Let C[ ] be a context with the hole at depth 0.

1 We define βv-reduction by C[(λx.P )Q] −→βv
C[P [x := Q]] if either Q ≡ y for some

variable y or Q ≡ ⊥.

2 We define βV -reduction by C[(λx.P )Q] −→βV
C[P [x := Q]] if Q is an η-expansion of

either some variable y or ⊥.

Note that M −→βv
N implies M −→βV

N implies M
0−→β N for all M,N ∈ Λ∞⊥ .

For example, (λx.xω)⊥ and (λx.xω)y are βv-redexes and also βV -redexes while the terms

(λx.xω)(λz.⊥z) and (λx.xω)(λz.yz) are βV -redexes but they are not βv-redexes.

We defined βV because βv and η−1 do not commute if the η−1-step is performed at depth

greater than 0. The following diagram can be completed because the right vertical line is a
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βV -step.

(λx.x⊥)y
η−1

1 //

βv

��

(λx.x⊥)(λz.yz)

βV

��

y⊥
η−1

0 // (λz.yz)⊥

Lemma E.7 (Local Commutation of βv and η−1 at depth 0). If M0 −→η−1 M1 and

M0 −→βv M2, then there exists an M3 such that one of the following diagrams holds:

M0
η−1

0 //

(1)βv

��

M1

βv

��

M2
η−1

0 // M3

M0
η−1

0 //

(2)βv

��

M1

βv

��

N

βv

��

M2 M3

Proof: Suppose M0 can do both a βv-redex (λy.P )Q at depth 0 and η−1-redex N at depth

0. The only possible situations in which this can happen are:

1 The βv-redex (λy.P )Q and the η−1-redex N are not nested, i.e. M0 = C[(λy.P )Q,N ].

This case leads to Diagram (1).

2 The βv-redex is inside the η−1-redex, that is M0 is of the form C1[N ], where N ≡
C2[(λy.P )Q]. This case leads to Diagram (1).

3 The η−1-redex is part of the body of the abstraction λy.P of the βv-redex. This case

leads to Diagram (1).

4 The η−1-redex can not be part of the argument Q of the βv-redex, because the η−1-redex

occurs at depth 0.

5 The η−1-redex coincides with the abstraction λy.P of the βv-redex, that is M0 is of the

form C[NQ] where N ≡ λy.P .

C[(λy.P )Q]
η−1

0 //

βv

��

C[(λx.(λy.P )x)Q]

βv

��

C[(λy.P )Q]

βv

��

C[P [y := Q]] C[P [y := Q]]

This case leads to Diagram (2). Note that C[(λx.(λy.P )x)Q] contains a βv-step and a

β0-step. The β0-reduction contracts the outermost redex created by the η-expansion and

the βv-reduction contracts the innermost one.

�

Later we will need a sort of strip lemma of βv over η−1 where the right vertical line is a
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βV -step. For example,

(λx.xω)⊥
η−1

//

βv

��

(λx.xω)(λy.⊥y)

βV

��

⊥ω
η−1

// //_// (λy.⊥y)ω

For the bottom horizontal line, we will define a parallel reduction called η−1v -reduction which

replaces some of the variables and ⊥’s in a term by their η-expansions.

E.3 Definition [Parallel η−1v -reduction]: We define η−1v -reduction on Λ∞⊥ as follows:

M =⇒η−1
v

N if N is obtained from M by replacing each variable x by a term X such

that x −→→→η−1 X and each ⊥ by a term B such that ⊥ −→→→η−1 B.

For example, λx.y⊥⊥x =⇒η−1
v
λx.yB1B2X where X = λz.xz, B1 = λx.⊥x and B2 = λx.⊥X.

Note that the variable y has been replaced by itself, i.e. it has not changed.

Lemma E.8. If M0 =⇒η−1
v
M1 and M1 −→βv

M2, then there exists a term M3 such that:

M0
η−1
v

+3

βv

��

M1

βV

��

M2
η−1
v

+3 M3

Proof: Suppose M0 = C[(λx.P )Q] and (λx.P )Q is a βv-redex. Then Q is either a variable

y or ⊥. The following diagram can be completed

C[(λx.P )Q]
η−1
v

+3

βv

��

C ′[(λx.P ′)Q′]

βV

��

C[P [x := Q]]
η−1
v

+3 C ′[P ′[x := Q′]]

Clearly C[(λx.P ′)Q′] −→βV
C ′[P ′[x := Q′]]. Since Q −→→→η−1 Q′, either y −→→→η−1 Q′ or

⊥ −→→→η−1 Q′ and (λx.P ′)Q′ is a βV -redex.

Next we show that C[P [x := Q]] =⇒η−1
v

C ′[P ′[x := Q′]]. Note that P ′ is obtained from P

by replacing some of the variables or ⊥’s by their η-expansions. Suppose that x has been

replaced in P by its η-expansion. There are now two options for Q:

1 If Q = y then P [x := Q] ≡ P [x := y] and y = Q −→→→η−1 Q′. We replace y by X[x := Q′].

We have that y −→→→η−1 X[x := Q′] because x −→→→η−1 X and y −→→→η−1 Q′.
2 If Q = ⊥ then P [x := Q] ≡ P [x := ⊥] and ⊥ = Q −→→→η−1 Q′. We replace all

the ⊥’s of P [x := ⊥] obtained from substituting x by ⊥ by X[x := Q′]. We have that

⊥ −→→→η−1 X[x := Q′] because x −→→→η−1 X and ⊥ −→→→η−1 Q′.

�

Appendix F. Preservation of Head Normalisation by η! and η−1

In this section we prove that the property “having a reduction to head normal form” is

preserved both by η! and η−1. Both properties will be used in the proof of local commutation

of η! and ⊥out.
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F.1. Preservation of head normalisation by η!

Lemma F.1. If M −→→→η! N and M is a head normal form, then N is a head normal form

as well.

Proof: The reduction M −→→→η! N can be sorted by Lemma B.4, so that it starts with a

finite number of reductions at depth 0 followed by deeper reductions. Clearly each of the

depth 0 reductions preserves the head normal form. And the remaining deeper reductions

can not alter the left spine of the resulting normal form. �

Theorem F.2 (Preservation of Head Normalization by η!). If M −→→→η! N and M has

a head normal form, then so does N .

Proof: Suppose M has a β-reduces to a head normal form H. Then it has a finite β-reduction

to head normal form as well by strong convergence. By repeated application of Lemma 4.3

we construct the diagram:

M
η!
// //_//

β

����

(Lem 4.3)

N

β
����

H
η!
// //_// H ′

By Lemma F.1, H ′ is in head normal form. �

Using the above theorem, we can prove the following result:

Theorem F.3 (Preservation of β⊥-normal forms by η!). If M −→→→η! N and M is a

β⊥-normal form, then N is a β⊥-normal form.

Back to 6.1.

Proof: Using Theorem 3.5, it is equivalent to prove that if N −→→→η−1 M and N is not a

β⊥-normal form then M is not a β⊥-normal form. Suppose that N −→→→η−1 M and N is not

a β⊥-normal form. We have two cases:

1 Suppose N is not a β-normal form. Then N has a subterm that is a β-redex. It is easy

to show by induction on the length of the η−1-reduction sequence that, if N −→→→η−1 M

and N contains a β-redex then so does M .

2 Suppose N is not a ⊥-normal form. Then, N = C[P ] for some P that has no head

normal form. Then, there exists P0 and C0 such that M = C0[P0] and P −→→→η−1 P0. By

Theorem 3.5, P0 −→→→η! P . By Theorem F.2, P0 does not have head normal form. But

that implies that M contains a ⊥-redex.

�

F.2. Preservation of head normalisation by η−1

This is more involved than for η! because of the obvious complication that when M −→η−1 N

and M is in head normal form, then N may not be in head normal form. Consider as an

example of this the head normal form xPQ which η−1-reduces to the term (λy.xPy)Q. The

latter term is not a head normal form itself. However, in this case as well in the general case,

there is a further β-reduction to head normal form.
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Lemma F.4 (Head normalization of η-expansions of a variable). Let x, y1, . . ., yn be

all different variables. If x −→→→η−1 X then X −→→β0
λy1 . . . yn.xY1 . . . Yn, where yi −→→→η−1 Yi

and x does not occur free in Yi for 1 ≤ i ≤ n.

Proof: First we consider a special instance of the lemma. Suppose that x
0−→→η−1 X. By in-

duction on the length of this reduction, it follows that X −→→β0
λy1 . . . yn.xy1 . . . yn. Because,

if the length is zero, we are done, and if the length is non-zero, then x
0−→→η−1 X1

0−→η−1 X.

Now, by induction hypothesis we get X1 −→→β0 H1 ≡ λy1 . . . yn.xy1 . . . yn, so that, with by a

repeated use of Lemma E.1, we obtain the diagram:

H
0

η−1

// // X1

Lem. E.1

0

η−1

//

β0

����

X

β0

����

H1
0

=,η−1

// N

=,β0

��

H2

We distinguish four type of positions where an η-expansion at depth 0 can be performed in

H1:

1 at the position of the subterm xy1 . . . yn. Then N is the head normal form

λy1 . . . ynz.xy1 . . . ynz and H2 = N .

2 between two applications. Then N ≡ λy1 . . . yn.(λz.xy1 . . . yiz)yi+1 . . . yn, so that

N −→β0
H1 and H2 = H1.

3 before an abstraction. Then N ≡ λy1 . . . yiz.(λyi+1 . . . yn.xy1 . . . yn)z, so that N −→β0

H1 and H2 = H1.

We are now ready for the general case. Assume x −→→→η−1 X. By Lemma B.2, we can assume

that this η−1-reduction is of the form x
0−→→η−1 X1

>0−→→→η−1 X. By the above, there exists

some H1 such that X1 −→→β0 H1 = λy1 . . . yn.xy1 . . . yn. Then with a repeated use of Lemma

E.2 we obtain the diagram:

x
η−1

0 // // X1

Lem. E.2

η−1

>0
// //_//

β0

����

X

β0

����

H1
η−1

>0
// //_// H2

Since all the redexes in the bottom η−1-reduction occur at depth greater than 0, H2 is a head

normal form of the form λy1 . . . yn.xY1 . . . Yn where yi −→→→η−1 Yi for all 1 ≤ i ≤ n. �

The previous lemma has an important consequence: we do not need the ⊥-rule to obtain the

β-normal form of an η-expansion of a variable.

Back to Theorem 6.2.

Proof: Suppose x −→→→η−1 X. Then by Lemma F.4 X has a finite β-reduction to a head

normal form λy1 . . . yn.xY1 . . . Yn, where yi −→→→η−1 Yi for each 1 ≤ i ≤ n. We can now repeat

Lemma F.4 and β-reduce all the Yi’s to head normal forms λz1 . . . zni .yiZ1 . . . Zni . And we

can continue the same process on the Zj . In every step of this process we reveal a new layer

of the β-normal form of X. In this way, we construct a strongly converging β-reduction from
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X to its β-normal form nfβ(X). Hence, X −→→→β nfβ(X). By Theorem C.2, we have that

x −→→→η−1 nfβ(X). �

Lemma F.5 (Head normalization of applications of η-expansions of x). If x −→→→η−1

X, then XN1 . . . Nk is head normalising for any N1, . . . , Nk ∈ Λ∞⊥ , and x occurs free as head

variable in XN1 . . . Nk.

Proof: Suppose x −→→→η−1 X. By Lemma F.4, X −→→β λy1 . . . ym.xY1 . . . Ym where yi 6= x

and yi −→→→η−1 Yi for all 1 ≤ i ≤ m. We have two cases:

1 Case m ≤ k. Then,

XN1 . . . Nk −→→β (λy1 . . . ym.xY1 . . . Ym)N1 . . . Nk
−→→β xY

∗
1 . . . Y

∗
mNm+1 . . . Nk

where Y ∗i = Yi[yi := Ni] for all 1 ≤ i ≤ m.

2 Case m > k. Then,

XN1 . . . Nk −→→β (λy1 . . . ym.xY1 . . . Ym)N1 . . . Nk
−→→β λyk+1 . . . ym.xY

∗
1 . . . Y

∗
k Yk+1 . . . Ym

where Y ∗i = Yi[yi := Ni] for all 1 ≤ i ≤ k.

�

The η-expansions of a variable only create β0-redexes but the η-expansions of an arbitrary

head normal form may also create βv-redexes. For example, if H = λx.xP then, we have

several cases depending on where the η-expansion in H is performed:

1 In the subterm xP , i.e. N = λxz.xPz. Then N is in head normal form.

2 Between applications, i.e. N = λx.(λz.xz)P . So we have N −→β0
H.

3 Before the abstraction, i.e. N = λz.(λx.xP )z, in which case N −→βv H.

The combination of β0 and βv (or βV ) does not have nice commuting properties with respect

to η-expansions of head normal forms. In order to prove head normalisation of η-expansions

of an arbitrary head normal form H, we will consider the truncation of H at depth 1. Because

then η-expansions can create only βV -redexes in such truncations.

Lemma F.6 (Head normalization of η-expansions of truncated hnf). Let H ≡
λx1 . . . xm.x⊥ . . .⊥. If H

0−→→η−1 M then there exists H ′ such that M −→→βv
H ′ and

H ′ ≡ λx1 . . . xmy1 . . . yn.x⊥ . . .⊥y1 . . . yn where yi 6= x for all 1 ≤ i ≤ m.

Proof: This is proved by induction on the length of the reduction. We prove the successor

case. Suppose H
0−→→η−1 M1

0−→η−1 M2. By induction hypothesis, there exists H1 in head

normal form such that M1 −→→βv
H1. By a repeated use of Lemma E.7 we obtain the following

diagram:

H
0

η−1

// // M1

Lem. E.7

0

η−1

//

βv

����

M2

βv

����

H1
0

η−1

// N

=,βv

��

H2
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By induction hypothesis, H1 ≡ λx1 . . . xmy1 . . . yn.x⊥ . . .⊥y1 . . . yn where x 6= yi for 1 ≤ i ≤
n. We distinguish 4 type of places where the η-expansion in H1 can take place:

1 at the subterm x⊥ . . .⊥y1 . . . yn, i.e.

N ≡ λx1 . . . xny1 . . . ynz.x⊥ . . .⊥y1 . . . ynz.

Then, N is in head normal form and H2 = N .

2 between two applications, i.e.

N ≡ λx1 . . . xny1 . . . yn.(λz.x⊥ . . .⊥z)⊥ . . .⊥y1 . . . yn.

Then, N −→βv
H1 and H2 = H1.

3 before one of the λyi, e.g.

N ≡ λx1 . . . xny1 . . . yiz.(λyi+1 . . . yn.x⊥ . . .⊥y1 . . . yn)z.

Then, N −→βv
H1 and H2 = H1.

4 before one of the λxi, e.g. N ≡ λx1 . . . xiz.(λxi+1 . . . xmy1 . . . yn.x⊥ . . .⊥y1 . . . yn)z.

Then, N −→βv
H1 and H2 = H1.

�

Lemma F.7 (Parallel η-expansions). Let N ∈ Λ∞⊥ be the truncation of some term at

depth 1. If N
0−→→η−1 M0

>0−→→→η−1 M1 then M0 =⇒η−1
v
M1.

Proof: Assume that N = M1 for some M in Λ∞⊥ and suppose N
0−→→η−1 M0. Then both N

and M0 have only subterms at depth 1 that are either a variable or ⊥. Suppose further that

M0
>0−→→→η−1 M1. Since these η-expansion steps are performed at depth 1 or deeper, we find

that each subterm at depth 1 in M1 is an η-expansion of a subterm at the same position in

M0. Hence, M0 =⇒η−1
v
M1. �

Lemma F.8 (Approximation for η−1). If M −→→→η−1 N then there is a P such that

M1 −→→→η−1 P where N1 � P � N .

Proof: By Lemma 3.4, we can assume that the η−1-reduction sequence has at most length

ω and by Lemma B.2 we can assume it is sorted by increasing order of depth. Suppose the

reduction sequence is finite, i.e.

M = M0
n0−→η−1 M1

n1−→η−1 M2
n2−→η−1 . . .

nm−→η−1 Mm

We construct a reduction sequence from M1 of the form:

M1 = P0
n0−→=,η−1 P1

n1−→=,η−1 P2
n2−→=,η−1 . . .

nm−→=,η−1 Pm

such that (Mi)
1 � Pi �Mi for all 0 ≤ i ≤ m by induction on m.

The case m = 0 is trivial. Next consider the successor case m = k + 1. So, suppose M =

M0 −→→η−1 Mk = C[N ]
nk−→η−1 Mk+1 = C[λx.Nx].

We have two possibilities depending on the depth of the η−1-step:

1 Suppose the depth nk of the η−1-step is 0, i.e. M = M0
0−→→η−1 Mk = C[N ]

0−→η−1

C[λx.Nx] = Mk+1. By induction hypothesis, (Mk)1 � Pk � Mk. Since (Mk)1 � Pk and

the hole in C occurs at depth 0, we have that there exist N1 and C1 such that Pk = C1[N1]
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where C1 � C1 and N1 � N1. Since Pk � Mk, we also have that C1 � C and N1 � N .

By setting Pk+1 = C1[λx.N1x], we have that:

Pk = C1[N1]
0−→η−1 C1[λx.N1x] = Pk+1

where (Mk+1)1 = C1[λx.N1⊥] � C1[λx.N1x] = Pk+1 � C[λx.Nx] = Mk+1.

2 Suppose the depth nk of the η−1-step is greater than 0. Then M = M0
≤nk−→→η−1 Mk =

C[N ]
nk−→η−1 Mk+1 = C[λx.Nx]. Since Pk �Mk (by induction hypothesis), Pk is obtained

from Mk by replacing some of its subterms by ⊥. We have two possibilities:

(a) A subterm of Mk containing N is replaced by ⊥ in Pk, i.e. Mk = C[N ] = C ′[C ′′[N ]]

and Pk = C ′1[⊥] for some C ′1 such that C ′1 � C ′. We set Pk+1 = Pk = C ′1[⊥]. Note

that we also have that (Mk+1)1 = (Mk)1 because the position of the hole in C occurs

at depth nk greater than 0. Hence, (Mk+1)1 = (Mk)1 � Pk = Pk+1 = C ′1[⊥] �
C ′[C ′′[λx.Nx]] = C[λx.Mx] = Mk+1.

(b) Otherwise, Mk = C[N ] = C ′[C ′′[N ]] and Pk = C1[N ] = C ′1[C ′′1 [N1]] where C ′1 � C ′,

C ′′1 � C ′′, N1 � N and the holes of C ′ and C ′1 occur at depth 1. By setting Pk+1 =

C1[λx.N1x], we have that:

Pk = C1[N1]
nk−→η−1 C1[λx.N1x] = Pk+1

By induction hypothesis, (Mk)1 � Pk and C ′1[⊥] = (Mk)1 � Pk = C ′1[C ′′1 [N1]].

Hence C ′1 � C ′1. Hence, (Mk+1)1 = (Mk)1 � C ′1[⊥] � C ′1[C ′′1 [λx.N1x]] = Pk+1 �
C[λx.Nx] = Mk+1.

Finally consider the limit case. Suppose we have a strongly convergent reduction of length ω:

M = M0
n0−→η−1 M1

n1−→η−1 M2
n2−→η−1 . . .Mω

By induction, we can construct the infinite reduction that performs the η-expansions at the

same depth:

M1 = P0
n0−→=,η−1 P1

n1−→=,η−1 P2
n2−→=,η−1 . . . Pω

The above sequence is strongly convergent and hence, it has a limit Pω.

We first prove that (Mω)1 � Pω. There exists n0 such that for all n ≥ n0, (Mn)1 = (Mω)1 and

(Pn)1 = (Pω)1. By induction, (Mn)1 � Pn. Hence, (Mω)1 = (Mn)1 � (Pn)1 = (Pω)1 � Pω.

We prove that Pω � Mω by showing that (Pω)k � (Mω)k for all k. For any k, there exists

n0 such that for all n ≥ n0, (Mn)k = (Mω)k and (Pn)k = (Pω)k. By induction, Pn � Mn.

Hence, (Pω)k = (Pn)k � (Mn)k = (Mω)k. �

Lemma F.9 (Head normalization of η-expansions of hnfs). If H is a head normal

form and H −→→→η−1 M , then M is head normalising.

Proof: Let H = λx1 . . . xm.yN1 . . . Nk. We consider the truncation H1 = λx1 . . . xm.y⊥ . . .⊥
of H at depth 1. If H −→→→η−1 M then there exists M1 � M such that H1 −→→→η−1 M1 by

Lemma F.8. We will show that M1 is head normalising. By Lemma B.2, we can assume that

the η−1-reduction is of the form H1 0−→→η−1 M0
>0−→→→η−1 M1. By Lemma F.7, we have that
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M0 =⇒η−1
v
M1. By Lemma F.6, we have that M0 −→→βv

H0 and H0 is in head normal form.

H1

Lem. F.6

η−1

0 // // M0
η−1
v

+3

Lem. E.8βv

����

M1

βV

����

H0
η−1
v

+3 N

β0

����

H2

Suppose H0 = λy1 . . . yn.zP1 . . . Pl. Then N = λy1 . . . yn.ZQ1 . . . Ql where z −→→→η−1 Z and

Pi −→→→η−1 Qi for 1 ≤ i ≤ l. By Lemma F.5, we have that N is head normalising. Hence M1

is also head normalising. By monotonicity of nfβ⊥, we have that nfβ⊥(M1) � nfβ⊥(M) and

hence, if M1 is head normalising, so is M . �

Theorem F.10 (Preservation of head normalization by η−1). Let M −→→→η−1 N . If M

has a head normal form, so does N .

Proof: Suppose M β-reduces to a head normal form H. By Lemma 2.8, M
0−→→β H. Then,

M
η−1

// //_//

0β

����

(Lem E.6)

N

0β

����

H
η−1

// //_// Q

By Lemma F.9, Q has a head normal form. �

As a consequence of the above theorem and Theorem 3.5 we have the following:

Corollary F.11 (Preservation of ⊥-redexes by η!). Let M −→→→η! N . If M does not

have a head normal form, neither does N .

The fact that the η-expansions of a variable do not contain subterms without head normal

form does not necessarily follow from Theorem ??. Actually, in order to prove that fact, we

will need the following theorem:

Theorem F.12 (Preservation of subterm head normalization by η−1). LetM −→→→η−1

N . If all subterms of M are head normalising then all subterms of N are head normalising

too.

Proof: We prove it by induction on the length of the reduction sequence. First we consider

the one step case. Suppose M = C[P ] −→η−1 C[λx.Px] = N and all subterms of M are head

normalising. Let Q be a subterm of N at position q. We do a case analysis:

1 Q is a subterm of λx.Px.

(a) Q = x. This case is trivial.

(b) Q = Px. Since P is a subterm of M , we have that P is head normalising, i.e.

P −→→β λy1 . . . yk.zP1 . . . Pn. Hence Q = Px −→→β λy2 . . . yk.(zP1 . . . Pn)[y1 := x] is

also head normalising.
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(c) Q = λx.Px. This case is similar to the previous case.

(d) Q is a subterm of P in N , then so it is in M as well, and therefore head normalising.

2 Q is not an subterm of λx.Px. Then at the same position q we find a possible different

subterm Q′ in M . By assumption Q′ is head normalising.

(a) P is a subterm of Q′ then Q′ −→η−1 Q and hence by Theorem F.10, we see that Q

is head normalising.

(b) P is not a subterm of Q′ then Q = Q′, and so Q is head normalising.

Hence we have found that all subterms of N are head normalising.

For any finite reduction M −→→η−1 N we have that, if all subterms of M are head normalising,

then so are all of N . By η−1-compression Lemma 3.4, the remaining situation we have to

consider is a reduction M −→→→η−1 N of length ω. So consider a subterm Q of N at some

depth n. By strong convergence there is M −→→η−1 C[Q′] −→→→η−1 N so that Q′ occurs at

depth n in C[Q′] and Q′ −→→→η−1 Q. Assuming that all subterms of M are head normalising,

it follows from induction hypothesis that all subterms of C[Q′] are head normalising, in

particular Q′. Again, by Theorem F.10, we find that Q is head normalising. �

Corollary F.13 (Preservation of η!-redexes by ⊥). If x −→→→η−1 N then N does

not contain any subterm without head normal form. Hence, if λx.MN is an η!-redex and

λx.MN −→→→⊥ λx.M ′N ′ then N = N ′ and λx.M ′N ′ is an η!-redex.

Appendix G. Omitted Proofs for the Commutation of η! and ⊥out

Back to Lemma 5.1.

Proof: Suppose M0 can do both a ⊥out-reduction and an η!-reduction. Out of the potentially

five relative positions of these two redexes only three are actually possible:

1 The ⊥out-redex U and the η!-redex λx.MN are not nested, i.e. M0 = C[U, λx.MN ].

We have to show that if U is the outermost redex of M0 = C[U, λx.MN ] then U is

also outermost in M1 = C[U,M ]. Using Theorem F.2, U cannot be a subterm of a term

without head normal form. This results in the following diagram.

M0
η!

m //

⊥out n

��

M1

⊥out n

��

M2
η!

m // M3

2 The ⊥out-redex is inside the first term of the η!-redex, that is M0 is of the form

C1[λx.C2[U ]N ]. Using Theorem F.2, similarly to the previous case, we can show that

U is outermost in M1 = C1[C2[U ]]. This results in the same diagram as the previous case.

3 The η!-redex is inside the ⊥out-redex. Corollary F.11 and Theorem F.2 ensure that the

contracted term is still a ⊥out-redex. This results in the following diagram.

C[U ]
η!

m //

⊥out n

��

C[U ′]

⊥out n

��

C[⊥] C[⊥]
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4 The ⊥out-redex is inside the expanded variable term of the η!-redex, that is M0 is of the

form C1[λx.MC2[U ]]. This option is impossible by Corollary F.13.

5 The ⊥out-redex is the body of the η!-redex, that is M0 is of the form C1[λx.U ], where

U ≡MN . This possibility is excluded because U would not be an outermost ⊥-redex.

�

Back to Lemma 5.2.

Proof: By Lemma 3.4 (Compression Lemma), we can assume that the sequence has length

ω.

M0
n0

η!
//

⊥outm

��

M1
n1

η!
//

⊥outm

��

M2
n2

η!
//

⊥outm

��

M3

⊥outm

��

. . . Mω

m ⊥out

��

N0
n0

=,η!
// N1

n1

=,η!
// N2

n2

=,η!
// N3 . . . ?

Using Lemma 5.1, we can complete all the subdiagrams except for the limit case. All the Mk

are of the form Ck[Uk] with the hole at the same position at depth m. The subterm U0 is an

outermost ⊥-redex in M0. All other Uk are terms without head normal form by Corollaries

F.11 and F.13. The limit term is of the form Cω[Uω] and the hole of Cω occurs also at depth

m. By Corollary F.11, Uω does not have head normal form and by Theorem F.2, it cannot

be a subterm of a term without head normal form and, hence, it is a ⊥out-redex. Contracting

this redex in the limit Mω reduces to Cω[⊥] which is equal to the limit Nω of the bottom

sequence. �

Back to Lemma 5.3.

Proof: By (Compression Lemma 3.4 we can assume that the length of the sequence is ω.

M0
n0

⊥out

//

η!m

��

M1
n1

⊥out

//

=,η!m

��

M2
n2

⊥out

//

=,η!m

��

M3

=,η!m

��

. . . Mω

m =,η!

��

N0
n0

⊥out

// N1
n1

⊥out

// N2
n2

⊥out

// N3 . . . ?

Using Lemma 5.1, we can complete all the subdiagrams except for the limit case. Either the

vertical η!-reduction got cancelled out in one of the applications of Local Commutation or

not. If it gets cancelled out, then from that moment on all vertical reductions are reductions

of length 0, implying that Mω is equal to the limit Nω. Or the vertical η!-reduction did not

get cancelled out, implying that its residual is present in Mk for all k ≥ 0. That is all Mk

with k ≥ 0 are of the form Ck[λx.SkTk], where all the Ck[ ] have the hole at the same position

at depth m, and all Nk with k ≥ 0 are of the form Ck[Sk]. The limit term is of the form

Cω[λx.SωTω] and the hole of Cω occurs also at depth m. By Corollary F.13, λx.SωTω is an

η!-redex. Contracting this redex in the limit Mω reduces to Cω[Sω] which is equal to the limit

Nω of the bottom sequence. �

Appendix H. Omitted Proof on ∞η-Böhm tree as a Lambda Model

Back to Lemma 8.1.

Proof: First a remark: note that, because (λx.M)ρ = λx.Mρ(x:=x), we have [[λx.M ]]ρ =

∞ηBT(λx.Mρ(x:=x)).
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1 [[x]]ρ =∞ηBT(xρ) =∞ηBT(ρ(x)) = ρ(x), as ρ(x) ∈ B∞η.

2 We have that
[[MN ]]ρ = ∞ηBT((MN)ρ)

= ∞ηBT(MρNρ)

= ∞ηBT(∞ηBT(Mρ)∞ηBT(Nρ)) by Theorem 6.4

= ∞ηBT([[M ]]ρ[[N ]]ρ)

= [[M ]]ρ•[[N ]]ρ
3 For arbitrary P in B∞η we have that

[[λx.M ]]ρ•P =∞ηBT([[λx.M ]]ρP )

=∞ηBT(∞ηBT(λx.Mρ(x:=x))P )

=∞ηBT((λx.Mρ(x:=x))P ) by Theorem 6.4

=∞ηBT(Mρ(x:=x)(x:=P )) by β-reduction and Theorem 6.4

= [[M ]]ρ(x:=P )

4 ρ | FV (M) = ρ′ | FV (M) implies Mρ = Mρ′ , hence ∞ηBT(Mρ) = ∞ηBT(Mρ′), and

so [[M ]]ρ = [[M ]]ρ′ .

5 Similar to the proof of 18.3.10.i in (Barendregt, 1984):

∀P ∈ B∞η[[M ]]ρ(x:=P ) = [[N ]]ρ(x:=P )

⇒ [[M ]]ρ(x:=x) = [[N ]]ρ(x:=x)
⇒ ∞ηBT(Mρ(x:=x)) =∞ηBT(Nρ(x:=x))

⇒ ∞ηBT(λx.∞ηBT(Mρ(x:=x))) =∞ηBT(λx.∞ηBT(Nρ(x:=x))) by Theorem 6.4

⇒ ∞ηBT(λx.Mρ(x:=x)) =∞ηBT(λx.Nρ(x:=x)) by Theorem 6.4

⇒ ∞ηBT((λx.M)ρ) =∞ηBT((λx.N)ρ)

⇒ [[λx.M ]]ρ = [[λx.N ]]ρ
6 Since λxy.xy −→η! λx.x, we have that ∞ηBT((λxy.xy)ρ) =∞ηBT((λx.x)ρ) and there-

fore [[λxy.xy]]ρ = [[λx.x]]ρ.

�
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