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1 Introduction

In this paper we will prove equivalent an operational and a denotational se-
mantics for lambda calculus with the §-rule. Both semantics are based on the
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set, of rootactive terms, which is the smallest set of computational meaningless
terms that can consistently be equated. The operational semantics that we are
interested in is observational equivalence with respect to rootactive behavior.
The denotational semantics is the model of the Berarducci trees (Berarducci,
1996), which are a more detailed variant of Bohm trees: the main difference
being that rootactive terms instead of terms without a head normal form get
replaced by a dummy symbol L.

Berarducci trees can be best dealt with as the #-_L-normal forms of terms in
the completion AY of the lambda calculus with a new symbol L, infinite terms
and the new rule that replaces f-rootactive terms by L (Berarducci, 1996),
(Kennaway et al., 1997). In the calculus A it is not difficult to see that if two
terms have the same Berarducci tree then they are observationally equivalent.
The converse however is not true, essentially for two reasons. The first reason
is intrinsic for Berarducci trees: the lambda calculus is not powerful enough to
Bohm out the argument of a [-rootactive term. The second reason is similar
to why the analogous statement is not true for Bohm trees, namely the Béhm
out of a subterm can return an n-expansion of it.

Therefore, in a move characteristic for full abstractness problems, we will en-
rich the lambda calculus AY in a rather minimal way with two more constants
O and A with accompanying rules. Any term in the enriched calculus AT,
can reduce in a finite number of steps to a pure A-term and therefore the Be-
rarducci tree of a term in AT, will not contain O and A. For any two terms of
ASoa We can prove that Berarducci tree equality is equivalent to observational
equivalence with respect to rootactive terms.

1.1 Previous Work

Historically, quoting from (Barendregt, 1984)(page 215), “the notion of B6hm
tree is suggested by the original proof of Bohm’s theorem”. Bohm’s theorem
states that given two distinct -n-normal forms there is a context C[ | such
that C[M] = = and C[N] = y, where z,y are arbitrary distinct variables. The
method used to find such a context is called the Béhm out technique (Baren-
dregt, 1984)(Section 10.3).

In (Wadsworth, 1976) Wadsworth, generalizing Bohm’s theorem, shows that
two A-terms M, N have the same Bohm tree modulo infinite n-expansions if
and only if for all contexts C[ | the following holds:

C[M] has a head normal form < C[N] has a head normal form.

The proof technique used to obtain the “if” part is the Bohm out technique.



The same property holds even considering Bohm trees modulo finite n-ex-
pansions and normal forms, as shown in (Hyland, 1975/76). More precisely
Hyland proves, using the Bohm out technique, that two A-terms M, N have
the same Bohm tree modulo finite n-expansions if and only if for all contexts
C1] the following holds:

C[M] has a normal form < C[N] has a normal form.

The results of (Wadsworth, 1976) and (Hyland, 1975/76) can be rephrased as
follows:

The lambda calculus internally discriminates as Bohm tree modulo infinite
(respectively finite) n-expansions when the set of values is the set of head
normal forms (respectively normal forms).

To internally discriminate terms having different Bohm trees Dezani et al.
(Dezani-Ciancaglini et al., 1998b) add to the pure lambda calculus a non-
deterministic choice operator + and an adequate numeral system (as defined
in Section 6.4 of (Barendregt, 1984)). The reduction rules for + are:

M+N-—M and M+ N — N.

Clearly the non-deterministic choice operator allows to define combinators
like Plotkin’s parallel-or (Plotkin, 1977) when one considers may convergence,
under which a term converges if at least one of the possible computations start-
ing from it ends. This extension increases the power of the lambda calculus
to detect convergence internally also in those cases in which a term converges
as soon as at least one of its subterms does, no matter in which order they
are evaluated. This amounts to have the definability of all compact points
in a standard model, that is, by Milner’s theorem (Milner, 1977), to have a
fully abstract interpretation for the language. The numerals play an essential
role to discriminate between a term possessing a head normal form and its
n-expansion, essentially since they can never be applied to an argument, while
all pure A-terms can be seen both as functions and as arguments. This result
is proved using a variation of the Bohm out technique as well as characteristic
terms and test terms (Boudol, 1994).

Instead, Lévy-Longo trees correspond to observational equivalence with re-
spect to weak head normal forms in suitably enriched versions of the lambda
calculus, as shown in (Sangiorgi, 1994), (Boudol and Laneve, 1996), (Dezani-
Ciancaglini et al., 1999). Now, we briefly recall such approaches.

In (Sangiorgi, 1994), Sangiorgi considers the embedding of lazy lambda calcu-
lus in some concurrent calculi. First, Milner’s encoding of lazy lambda calculus
in m-calculus is studied. Then the lazy lambda calculus is enriched with a sim-
ple non-deterministic operator, which, when applied to an argument, either
gives the argument itself or diverges. In both cases the processes are compared



using bisimulation. The proof technique is the Bohm out technique.

Boudol and Laneve (Boudol and Laneve, 1996) introduce a “resource con-
scious” refinement of lambda calculus, in which every argument comes with
a multiplicity. The reduction process (which uses explicit substitutions in an
essential way) remains deterministic, but a deadlock can appear. The terms
are compared by means of the standard observational equivalence. The proof
technique is again the Bohm out technique.

Dezani et al. (Dezani-Ciancaglini et al., 1999) consider the behavior of pure A\-
terms inside contexts of the concurrent lambda calculus as defined in (Dezani-
Ciancaglini et al., 1998a). This calculus is obtained from the pure lambda
calculus (with call-by-value and call-by-name variables) by adding the non-
deterministic choice operator discussed above and a parallel operator ||, whose
main reduction rule is

M—M N-—N
M||[N — M'||N'

(I

where — stands for one-step reduction.

The terms are compared by means of the standard observational equivalence.
The proof technique for proving that observational equivalence implies tree
equality is that of characteristic terms and test terms.

More recently Boudol in (Boudol, 2000) shows that the equivalence on A-terms
induced by the call-by-name CSP transform is Lévy-Longo tree equality.

In order to discriminate pure A-terms having different Berarducci trees, the
paper (Dezani-Ciancaglini et al., 2000) extends the lambda calculus with two
constants O and A. The essential feature of the Bohm-out technique consists
in selecting a subtree of the tree of a term by means of an appropriate context.
The selection of a subtree was performed in the original Bohm algorithm by
substituting a variable in head position by an appropriate combinator. For
Berarducci trees, the top normal forms also include applications that may not
have a variable in head position, as in QQ (where Q = (Az.zz)(\z.2z)). For
these new cases the selection of a subtree can be performed using the constants
O and A. The constants O and A select the operator and the argument of a
closed, -rootstable application. These constants have the following reduction
rules:

O(MN) — M if M is a closed (3-zero term
A(MN) — N if M is a closed [3-zero term



where a [-zero term is defined in Definition 2. For instance, QIT (where I =
Az.z) and QQI are discriminated by the context A(O[ ]). In fact:

A(O(QII)) —s A(QI) — T
A(O(QQI)) —s A(QQ) — Q

All pure A-terms having different Berarducci trees can be discriminated using
these two constants (Dezani-Ciancaglini et al., 2000). However non-pure \-
terms having different Berarducci trees cannot be discriminated only with
these rules. For example, O(AQ2) and O(0O€2) have different Berarducci trees,
though they are observationally equivalent. Hence in this paper we add more
reduction rules for the constants O and A in order to discriminate also non-
pure A-terms.

1.2 Summary

In this paper we consider an extended lambda calculus Aga for which the
equality of Berarducci trees coincides with observational equivalence. This cal-
culus will be a variant of the one presented in (Dezani-Ciancaglini et al., 2000).
As in (Dezani-Ciancaglini et al., 2000) it will contain the constants O and A
that select the operator and argument of a -rootstable application. The set
Aon of terms will be a restriction of the one in (Dezani-Ciancaglini et al., 2000)
and new reduction rules will be added for the constants. In (Dezani-Ciancaglini
et al., 2000), we have proved that Berarducci tree equality coincides with ob-
servational equivalence only for pure A-terms. The new reduction rules will
allow us to extend this result to non-pure A-terms. Hence in this paper, we
will prove:

Theorem 1 For all X,Y € Aoa it holds that they have the same Berarducci
tree if and only if for all contexts C[] € Aoa

C[X] € Rop & C[Y] € Roa

where Roa is the set of BOA-rootactive terms in Aoa.*

The “if” part will be proved by a variation on the Bohm out technique. For the
“only if” part we adapt techniques from infinitary lambda calculus. We will
prove that the Berarducci tree of a term is the unique normal form of the term
in that calculus. Since this normal form always exists and is unique, we can
build a model of the extended lambda calculus in which the interpretations of

* The definition of BOA-rootactive is given in Definition 27.



terms are their Berarducci trees. Hence, our main theorem states that such a
model of the extended lambda calculus is fully abstract.

1.3 Outline

In Section 2 we recall the definition of the finite lambda calculus A and its
infinitary extension AS°. We explain that the Berarducci tree of a term M in
A%° is just its normal form in AS°. However nice the properties of AT, it is not
expressive enough to prove that observational equivalence implies Berarducci
tree equality. Therefore we introduce in Section 3 the infinitary extension
A%%a- It is more expressive than A, but inherits some of its nice properties.
In Section 4 we show for terms in A%, that Berarducci tree equality implies
observational equivalence, and in Section 5 we prove the converse. The final
Section 6 discusses the result.

2 Finite and Infinite Lambda Calculus

This section is to fix notations and concepts. We will recall the infinitary
extension AP of the finite lambda calculus (Berarducci, 1996), (Kennaway
et al., 1997). This is an extension not only with infinite terms but also with
an extra symbol L and a rewrite rule

M # 1 and (-rootactive
M— 1

where (-rootactivity is defined in Definition 4(ii).

The extension AT has the following important properties:

— the infinitary confluence property holds,
— each term has a unique normal form for the combined 3, L reduction,
— each -normal form is also a normal form for the new L rule.

The Berarducci tree of a term M is now the (tree of the) possibly infinite
normal form of M for the 3-L-reduction. In the present paper we will always
identify terms with their trees.



2.1 Finite Lambda Calculus

Our starting point is the finite untyped lambda calculus (Barendregt, 1984).
The set A of finite untyped A-terms is given by the following inductive gram-
mar:

M =i 7 | (M M) | (MM),

where x is a variable from some fixed countable set of variables V. We follow the
usual conventions on syntax. Terms and variables will respectively be written
with (super- and subscripted) letters M, N and z,y, 2. Terms of the form
(M, My) and (AxM) will respectively be called applications and abstractions.
A context C[ ] is a term with a hole in it, and C'[M] denotes the result of filling
the hole by the term M, possibly by capturing some free variables of M. A
term of the form (AzM)N is a (-redex.

We will silently take equivalence classes of terms modulo a change of bound
variables and follow the variable naming convention (Barendregt, 1984)(2.1.13).

We will use the following abbreviations:

ATy Ty M =ger (A1 (Ao Az, M) .. L))
MN, ... Ny =aet (.. (MN}) ... N,)
I =gt \x.x S =qer Azyz.(22)yz K =get \xy.x B =ger Azyz.2(y2)
A =qef Av.xr Ay =gt A.T(AY.2Y) Ay =ger Av.2TM
Q =der AN Qar =dger AyAnr

Y =it (Azy.y(zzy))(Aey.y(zzy))

The reduction relation —4 on A is the smallest binary relation that is closed
under contexts® and contains the rule:

(AeM)N — M[N/z] (B)
and —>Z§ is its reflexive and transitive closure.

The structure of a A-term can be described with help of the notions of 3-zero,
(-rootstable and (-rootactive term.

Definition 2 (Berarducci, 1996) Let M be a A-term in A. If M cannot (3-
reduce to an abstraction, then M 1is called a (-zero term.

5 A relation —, is closed under contexts if M —, N implies C[M] —, C[N] for all
contexts CT |.
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Fig. 1. Tree representation of the infinite S-normal forms of 5, YK and YY.

It is easy to verify that:

Lemma 3 (Berarducci, 1996),(Kennaway et al., 1997) A \-term [-reduces
either to a wvariable, to an abstraction, to an application of the form MN
where M is a (3-zero term, or to a (-redex.

Definition 4 (Kennaway et al., 1997) Let M be a A-term.

(i) If M cannot (-reduce to a (-redex, then M is called (3-rootstable or a
[B-rootstable form.

(11) If for all N such that M can (3-reduce to N, the term N can further be
(B-reduced to a (-redex, then M is called [-rootactive.

For example, €2 is a (-zero term and it is J-rootactive. The term III is an
example of a term which is neither -rootactive nor [-rootstable, because it
can (-reduce to the (-rootstable term I.

Note that:

Lemma 5 (Kennaway et al., 1997) A term can not 3-reduce to a [3-rootstable
form if and only if it is B-rootactive.

A A-term has a [-normal form if it can (-reduce to a term that does not
contain (-redexes anymore. Of course not all finite terms have a finite (-
normal form. Some of these terms however seem to converge to an infinite (-
normal form well beyond the scope of the finite lambda calculus. For example:

QI —3 QII —8 QIII —3 QIIII B .-
YK —% K(YK) =5 Adyo. YK = Ayoyn. YK = ...

YY =5 Y(YY) =5 YY(YY) =5 YY(YY)(YY(YY)) =5 ...

The infinite #-normal forms of these reductions can more clearly be repre-
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Fig. 2. Tree representation of the infinite S-normal forms of BYS and BY.

sented as planar trees instead of linear formulas, see Figure 1.°

For another example, one can calculate that BYS and BY [-reduce to the
same infinite S-normal form Ayz.yz(yz(yz(...))) (see Figure 2). This shows
that infinite reductions are an alternative to adding Scott’s induction to the
lambda calculus (Scott, 1975).7

2.2 Infinite Lambda Calculus

We will now recall the infinitary extension AT (Kennaway et al., 1997). It
provides the proper context to introduce infinite A-terms and converging re-
ductions formally.

We first define the set A | of A-terms extended with a constant L.
Definition 6 The set A | of partial terms is defined by the inductive grammar:
M :=pax| L|(AzM) | (MM), where z € V.

We give a coinductive definition of the set AT of infinite A-terms which is

equivalent to the one given in (Kennaway et al., 1997) and (Kennaway et al.,
1999) as a metric completion.

6 The one-one correspondence between terms and trees is given in Definition 13.

7 Barendregt reformulated Scott’s remark as an open problem: Show that the equa-
tion BYS = BY cannot be proved in lambda calculus without induction. These
terms are proved to be equal in (Kennaway et al., 1997) without using induction,
provided one replaces the finite zig and zags in the definition of S-conversion by
strongly converging S-reductions. Scott’s induction is then implicit in the definition
of equality on the completion.



Definition 7 The set of terms of the infinitary extension A of the pure
lambda calculus is defined by the coinductive grammar® :

M :=coing L |z | AzM) | (MM), where z € V.

Notice that the grammar of A | differs from that of A only for being inductive
instead of coinductive.

We need an explicit definition of distance between two A-terms in order to
characterize A as a metric completion, as it is defined in (Kennaway et al.,
1997) (Kennaway et al., 1999), and to introduce the notion of converging
reduction sequence.

Definition 8 (i) Occurrences are finite words over the set {0,1,2}. Let ()
denote the empty word.

(i1) The subterm M|, of a term M € A at occurrence u is partially defined
by induction on the length of u as usual:
(a) M|() =der M,
(b) ()\«TMO)|0u =def M0|u,
(C) (M1M2)|lu =def M1|u’
(d) (M1M2)|2u —def M2|u
Note that the term M|, may not exist. If it exists, then u is an occurrence
of M.

(11i) The depth of a subterm N at occurrence u of M € AT is the length of
the occurrence u.

(iv) The distance d(M,N) of two terms M, N € AT is 0 if M and N are
identical and it is 27% if k is the length of the shortest occurrence u such
that M|, and N|, exist and differ.

With this distance A9 becomes a metric space: it is easy to verify that A% is
the metric completion of the set A .

We skip the details of extending substitution to infinite terms and refer to
Definition 2 of (Kennaway et al., 1997).

We extend some concepts related to S-reduction from A to A°.

Definition 9 (i) The reduction relation —5 on AT is the smallest binary
relation that is closed under contexts and contains the rule:

(AxM)N — M[N/z] (B)

8 In fact A% is the final coalgebra of the polynomial endofunctor F' : Set — Set
defined by F(X) =14+ V+V x X + X x X, where V is the set of variables. See
(Barr, 1993) for the categorical background.

10



(i1) If M € AS° cannot [B-reduce to an abstraction, then M is called a (3-zero
term.

(11i) A term M € A is called B-rootstable if M[Q/ L] cannot (-reduce to a
(B-redex.

(iv) A term M € A is called (-rootactive if for all N € AY such that
M[Q/ L] can B-reduce to N, the term N can further be (-reduced to a
B-rede.

(v) R is the set of B3-rootactive terms in AT.

(vi) The reduction relation —5, on AS° is the smallest binary relation that is
closed under contexts and contains the two rules:

M # 1 and B-rootactive

(AMM)N — M[N/z] (5)
M— 1

Note that L is a (-rootactive term, since L[Q)/ 1] = Q and Q is S-rootactive.

Definition 10 (i) An infinite reduction My —p, My —51. My —p1 ... is
Cauchy converging with limit M, (notation lim,_,, M, = M) if
Ve > 0.3n.VEk > n.d(My, M,) < €.

(ii) An infinite reduction My —g, My —pg1 My —5, ... is strongly con-
verging with limit M, if lim,_,, M, = M, and lim,_,,d, = w, that is,
VYn.Am.Yk > m.d, > n, where d;. denotes the depth of the redex at occur-
rence v in My, reduced in the reduction step My —51 Mj4q.

(111) We say that a term M has a possibly infinite 3-L-reduction to N (nota-
tion M —»g, N) if either there is a finite 3-L-reduction M —%, N or
there is a strong converging (3-1-reduction starting from M with limit N.

It is well known that without rule L strongly converging reductions jeopar-
dize the confluence property for S-reduction. Unlike finite reductions, Cauchy
converging and even strongly converging (-reductions are not confluent (Be-
rarducci, 1996), (Kennaway et al., 1995), (Kennaway et al., 1997). The finite
term Y (Az.K(Kzy)z) can converge in an infinite S-reduction to the infinite
term K(K(...z)x) not containing y. It can also converge to the infinite term
K(K(...y)y) that does not contain z. Both terms can not be joined; they can
only (-reduce to themselves. A simpler example (Berarducci, 1996) is the term
(Az.I(zz))(Az.I(zx)) which reduces to both © and to I(I...)); also these two
terms cannot be joined.

Strongly converging reductions are Cauchy convergent, but not conversely. For
example, 2 =5 Q0 —5 ... is weakly convergent but not strongly convergent,
as the depth of the reduced redexes is always zero.

We recall here the crucial properties of —#5, reduction which will be use-

11



ful in the following and are proved in (Berarducci, 1996), (Kennaway et al.,
1997), (Kennaway and de Vries, 2000), and we refer the reader to those pa-
pers to know more on this subject. In particular the interested reader will find
there that — 5, reduction has been defined for sequences of transfinite ordinal
length. However these can be compressed into similarly converging reductions
of at most w length with same initial and final terms. The compression lemma
of =3, for terms in A9 easily generalizes to — 3 -reductions of terms in the
extensions considered later in this paper.

Theorem 11 (Berarducci, 1996) (Kennaway et al., 1997) (Kennaway and
de Vries, 2000)

(1) If a term in AP has a B-rootstable form then such a form can be computed
in finitely many steps.
1) The reduction —»3, 1s confluent.
B
i11) Every term in A has a unique 3-L-normal form.
I

2.8  Berarducci Trees as Normal Forms in A

In this section we give the central definition of this paper, i.e. the definition of
Berarducci tree. Since the notion of Berarducci tree will be given as a corecur-
sive function, the codomain of this function has to be given by coinduction.
Hence we first define the codomain of this function, i.e. the set of trees.

Definition 12 The set of trees is defined by the coinductive grammar:

Az Q@
T :=coina L |2 | | |/ N\ , wherex € V.
T T T

It is not difficult to show that this notion of tree is a particular case of the
notion of ¥-labelled tree defined in (Barendregt, 1984) (Definition 10.1.1) as
a partial map from the set of sequence numbers to ¥, where ¥ = {z, Az |
x € V}U{L,@}. In our terminology, a tree is a partial map from the set of
occurrences (see Definition 8(i)) to X.

Definition 13 gives a natural one-one correspondence between trees and terms
of A%°. So in the following we will freely identify trees and terms of AY.

Definition 13 The tree T (M) of the term M € AT is defined by corecursion:

T(L)=1;
T(z) = x;

12



@
T (M, My) = e \T

T(M) (My)

We can now give the definition of Berarducci tree in a graphically pleasing
tree format in the spirit of Barendregt’s definition of Bohm tree (Barendregt,
1984).

Definition 14 (Berarducci, 1996) The Berarducci tree BeT (M) of a term
M € AS° can be constructed via the following corecursive procedure:

(i) if M —% x, then BeT (M) = x;
AT
(ii) if M —% Ax.N, then BeT(M) = |
BeT (N)
(i1i) if M —% My My, where M, is a B-zero term, then

@
BeT (M) = PN ;
B@T(Ml) B@T(MQ)
(iv) otherwise, (exactly when M is S-rootactive) BeT (M) = L.

The infinitary lambda calculus with L-rule AP is an extension of the lambda
calculus that has been so designed that in this extension the Berarducci tree
of a term is nothing else but its unique (possibly infinite) (-1-normal form
that can be found by a possibly infinite reduction.

Theorem 15 (Berarducci, 1996)(Kennaway et al., 1997) The Berarducci tree
BeT (M) of a term M € AT is the unique (3-1-normal form N such that
M —?BL N.

The following result connects Berarducci trees with contexts. It plays a crucial
role in this paper:

Theorem 16 (de Vries, 1997) For all terms M and contexts C[ ] in AT it
holds that BeT (C[M]) = BeT (C[BeT (M)]).

The proof is simple: just recognize that the left hand side and the right hand
side of the equation represent two ways of reducing to the unique 3-_1-normal
form of C[M].

13



2.4 A brief note on Bohm Trees and Lévy-Longo Trees

Bohm Trees (Barendregt, 1984) and Lévy-Longo trees (Lévy, 1976), (Longo,
1983), (de Vries, 1997) can be seen as normal forms in similar extensions as
AS°. The extensions use the same syntax and -rule but have both different and
more L -rules. In all cases the basic idea is that terms “without computational
value” will be replaced by L.

In (Kennaway et al., 1997), (Kennaway et al., 1999) candidate sets of terms

with no computational value that lead to calculi with infinite confluence prop-

erties have been systematically investigated for lambda calculus. Three such

sets resulted: the set of terms without (3-head normal form® (Barendregt,

1984), (Wadsworth, 1976), the set of terms without weak 3-head normal form' (Abramsky
and Ong, 1993) and the set of §-rootactive terms.

The reduction relation —psn, on AT is the smallest binary relation that is
closed under contexts and contains the four rules:

(AzM)N — M[N/z] ()
M — 1, provided M # 1 and has no -head normal form (L)
Ar.L — L (Ly)
LM = L (Lapp)

The normal forms of A-terms with these rules are better know as Béhm trees.

Definition 17 (Barendregt, 1984) The Béhm tree B6T (M) of a A-term M
can be constructed via the following corecursive procedure:

(i) if M —j Azy ... oy My ... My, then
AT1 ... ZpYy

BoT (M) = _— T~ ;
BoT (M) . BoT (My,)
(ii) otherwise, when M has no (-head normal form BT (M) = L.

The reduction reduction relation —ye1, on AT is the smallest binary relation

9 A A-term has a -head normal form when it S-reduces to a term of the form
AT .. Ty My .. M.

10'A A\-term has a weak 3-head normal form when it B-reduces to a term of the form
Ax.M or yMi ... M;.

14



that is closed under contexts and contains the three rules:

(AeM)N — M[N/z] (B)
M — 1, provided M # 1 and has no weak (-head normal form (L)

The normal forms of A-terms with these rules are better known as Lévy-Longo
trees.

Definition 18 (Lévy, 1976), (Longo, 1983) The Lévy-Longo tree LLT (M)
of a A\-term M can be constructed via the following corecursive procedure:

T
(i) if M =% xM, ... My, then LLT (M) = TN ;
LLT (M) ... LLT(M)
Ax
(ii) if M —% A\x.N, then LLT (M) = |
LLT(N)
(111) otherwise, when M has no weak (3-head normal form LLT (M) = L.

Comparing the tree formats we find that the Lévy-Longo tree of a term reveals
at least the same computational content of a term as its Bohm tree does. The
Bohm tree of YK is just |, as YK does not have a head normal form. In
contrast, the Lévy-Longo tree of YK is the infinite term in the centre of Figure
1. Lévy-Longo trees don’t include all infinite normal forms of the finite lambda
calculus: the Lévy-Longo tree of YY is L and not the term depicted in Figure
1. Berarducci trees are very nice from a theoretical point of view in that they
provide the maximal'! “computational” value of a term. From a practical
point of view they seem to be less useful than Bohm trees and Lévy-Longo
trees, being it undecidable whether a term is a (3-zero term or not.

3 The Extended Calculus AT,

The notion of Berarducci tree gives an equivalence relation: two terms in A°
are equivalent if and only if they have the same Berarducci tree (modulo a-
conversion, as defined in (Kennaway et al., 1997)). A completely different way
of comparing terms in AS° is observational equivalence (Morris Jr., 1968), in

' The set of S-rootactive terms is the smallest set of terms in A which can be
mapped into L, such that the corresponding AS® has the unique 3-_L-normal form
property (Kennaway et al., 1997).

15



which we say that M is equivalent to N if:

VO[] € A (C[M] is B-rootactive < C[N] is f-rootactive).

Here we put M and N in various contexts and observe whether the behavior
of M and N in those contexts is the same, that is whether C[M] and C[N]
are both (-rootactive terms. Berarducci tree equality implies observational
equivalence (de Vries, 1997):

Theorem 19 For all M, N € A, BeT (M) = BeT (N) impliesVC[ ] € A
C[M] € RY & C[N] € RY.

PROOF. This can be easily seen with help of Theorem 16 which for any
term M and context C|[] says:

BeT (C[M]) = BeT (C[BeT (M)]).
If M, N are two terms with the same Berarducci tree, then we find that

C[M] € R® & BeT(C[M]) = L & BeT(C[BeT(M)]) = L <
& BeT(C[BeT(N)]) = L < BeT(C[N]) = L & C[N] € RY.

In a similar way we can prove that Bohm and Lévy-Longo tree equality implies
observational equivalence.

The converse of Theorem 19 is not true: observational equivalence does not
imply Berarducci tree equivalence. We show two examples of different nature.
The first one shows that n-convertible terms cannot be discriminated. Con-

AT
|
sider the n-convertible terms A and A, whose Berarducci trees are Q@
VRN
x x
AT
|
Q
/N
and x Ay . Since both terms have no free variables, it is enough

o
/N
z Y
to show that for all M € A, M[z := A] € R & M|z := A,] € RYT.
This is proved by case analysis. We know that M —% N where N is either
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a variable, an abstraction, an application whose operator is a (3-zero term
or a [-rootactive term. The interesting case is when N is an application of
the form zP, ... P,. If P, is a f-zero term then AP, ... P, —3 PP, ... P,,
APy ... P, =5 Pi(\y.Py)...P,, and both terms are -rootstable. If P, (-
reduces to an abstraction then AP; ... P, and A,P; ... P, are -convertible.

The second example shows that even if we consider Berarducci trees modulo 7-
expansions, the converse of Theorem 19 is not true. Consider the terms 22 and

Q@
Q /N

QO whose Berarducci trees are N\ and @) 1. Tt is enough
L L /N
1 1
to prove that for all M € A, M[z := QQ] € R & Mz := QQQ] € RY. The
proof proceeds by case analysis similarly to the previous example.

In order to obtain the converse of Theorem 19, we will extend the lambda
calculus with two new symbols and four new rules.

3.1  Syntax

Associated with the pure lambda calculus A and its extensions A, AT we
define the extensions Apa, Ajoa and ATy, with the constants L,O and A.
First we introduce the syntax of these sets and then the reduction rules.

Definition 20 (i) The extension Aoa of A with the constants O, A is defined
by the inductive grammar:

Vi=ima P | (OV) | (AV) | (AzV) | (VP), where P € A is closed
X i=jpa M |V, where M € A.

(i) The extension A oa of Aoa with partial terms is defined by the inductive
grammar:

Vii=ia P | (OV) | (AV) | (AzV) | (VP), where P € A} is closed
X =g M |V, where M € A,.

(11i) The infinitary extension ATon of Aoa is defined by the inductive gram-
mar:

Vi=ima P | (OV) | (AV) | (AzV) | (VP), where P € AY is closed
X =g M |V, where M € AT.
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These extensions with two new constants O and A are rather minimal since
the syntax definition implies the following conditions:

a term can contain only finitely many occurrences of O and A,

O and A themselves are not terms,

O and A can only be applied to closed terms and

O and A can occur in the argument of an application only if the operator is
O or A.

For example, \x.O(AI) € A oa but I(AI) & A oa.

3.2 Rewrite Rules

We introduce now the reduction relations of the various calculi in a concise
form. We will use some standard notational conventions. Let A’ be some ex-
tension of the set A.

Definition 21 Let —; and —9 be reduction relations on N'.

(i) The reduction relation —15 is defined as the union of the reduction —
with —4.
(i) The reduction relation —7 is the reflexive closure of —.
(111) The reduction relation —7 is the reflexive and transitive closure of —.

In what follows, we need the notions of #-zero, B-rootstable and f-rootactive
term given in Definition 9. We now introduce the notion of OA-uniform term
that will be used in Definition 24 . The idea behind this notion is that the
constants O and A applied to certain terms called OA-uniform will behave like
“constant functions”.

Definition 22 Let A O A" D A. We say that a term in A" is OA-uniform if
it is either an abstraction or a (-rootactive term.

Proposition 23 Let A% D A" D A and M a closed term in A'. Then M —
N where N is either a OA-uniform term or a (3-rootstable application.

PROOF. A closed term either S-reduces to an abstraction, to a -rootactive
term, or to P() where P is a closed [3-zero term.

Now we introduce the reduction rules for the constants O and A that will
allow us to discriminate terms using the Bohm-out technique. If a closed term
is a (-rootstable application then the constant O selects the operator of the
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application and A selects the argument. On the other hand, if the closed term
is OA-uniform the constants O and A behave as “constants functions”.

Definition 24 Let A' O Aoa and M, N be closed terms of A" that do not
contain O or A.

(i) We define the reduction relations —oa on A’ as the smallest binary rela-
tion that is closed under contexts and contains the following rules:

M is 3-zero M is 3-zero
(O-selection) ~ ———————— (A-selection)
O(MN) - M A(MN) - N
M is OA-uniform M is OA-uniform
O-constant) (A-constant)
OM —1 AM — 1

(ii)) An OA-redex is a term in A" of the form OM or AM where M is any
closed term in A' that does not contain O or A.

In (Dezani-Ciancaglini et al., 2000), the constants O and A only performed
respectively the selection of the operator and of the argument of an appli-
cation by rules O-selection and A-selection. By adding the rules O-constant
and A-constant, terms having different Berarducci tree in (Dezani-Ciancaglini
et al., 2000) are equated by reduction. For example, the terms O(AQ) and
0(09Q) were different normal forms in (Dezani-Ciancaglini et al., 2000) and
now they both OA-reduce to I.

Example 25 Let A' D A . The fact that L is a closed (-zero term implies
that:

for all My, ..., M,, N closed \-terms of A" (n >0).

It is easy to show that the reduction —goa eliminates all occurrences of the
constants O and A.

Lemma 26 Let X € ATa. Then there is M € AT such that X —jon M.

PROOF. The proof by induction on the definition of A%, using Proposi-
tion 23 is easy.

We generalize the notions of 3-zero, 3-rootstable and (-rootactive term given
in Definition 9. We say that a JOA-redex is either a (-redex or an OA-redex.
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Definition 27 Let A' D Aoa and p be 3 or SOA.

(i) We say that a term in A" is p-zero if it cannot p-reduce to an abstraction.
(ii) We say that a term X € A’ is p-rootstable if X[Q/ L] cannot p-reduce to
a p-redex.
(i11) We say that a term X € A' is p-rootactive if all the reducts of X[Q2/L]
can p-reduce to p-redexes.

Notice that a term is p-rootactive if and only if it can not p-reduce to a
p-rootstable term.

A short notation for the set of terms in Apa, AT which are 3OA-rootactive
will be handy.

Definition 28 (i) Roa is the set of of terms in Aoa which are BOA-rootactive.
(11) R is the set of of terms in Aya which are SOA-rootactive.

We can characterize the set of rootstable terms for the extended set A9, and
the reduction —goa.

Proposition 29 A term X in ATys is BOA-rootstable if and only if it has
one of the following shapes:

— a variable,
— an abstraction,
— an application of the form M N with M a (3-zero term.

We can also say that SOA-rootactivity and (-rootactivity coincide in the fol-
lowing sense:

Lemma 30 (i) If X € AYToa is BOA-rootactive then there exists a term
M € AT such that X —joa M and M is 3-rootactive.
(11) If X € Ao is (B-rootactive then X € AF.

PROOF.

(i) It follows from Lemma 26.

(i) If X ¢ AT then X = (Azy...2,.Y)M; ... M and either O or A occur in
the head position of Y. Hence either X [-reduces to an abstraction or to
an application whose head is O or A. In both cases, X is (-rootstable.

The last rule we introduce allows us to equate all rootactive terms.

Definition 31 Let A" D A,. We define the reduction relation — | as the
smallest binary relation on A’ that is closed under contexts and contains the
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rule:

X # 1 and X is [-rootactive
X—=1

(L)

where X ranges over \'.

We will now first consider the combinations (—oa, Aoa) and (—s10a, ALoa),
and later (—310a, ATop)-

3.8 Confluence of Finite Reductions in Aoa and A oa

We use the Hindley-Rosen Lemma (Proposition 3.3.5 of (Barendregt, 1984))
to prove that the reduction relations —%0, on Aoa and —%, o4 on Ajon are
confluent. We need a few auxiliary lemmas.

Proposition 32 There is at most one OA-redex in a term belonging to A | oa.
Hence —op is trivially confluent.

PROOF. By induction on the definition of A | oa.

Lemma 33 (i) The relation —7 is confluent in Aoa.
(ii) The relation —%, is confluent in A jon.

PROOF. Because the O and A symbols are not reduced they can be thought
of as fresh free variables. More precisely: X —4 Y ifand only if X[O/x,A/y] —4
Y[O/z,A/y] for all X € Aoa and X —4, Y if and only if X[O/z,A/y] =51
Y[O/xz,A/y] for all X € A oa. Hence part (i) follows from the confluence
property for —4 in A (see (Barendregt, 1984), Theorem 3.28) and part (ii)
follows from the confluence property for —4, in AT (see (Kennaway et al.,
1997), (Kennaway et al., 1999)).

Lemma 34 (i) The relation —¢, commutes with the relation —% in Aoa:

XLYI
OAl on

(ii) The relation —oa commutes with the relation —%, in Ajoa:
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PROOF. We give the proof for —5,0a. The proof for —goa is similar, just
drop all references to — . Suppose that C[AM]| —oa C[N] and C[AM] —4,
X. We distinguish four cases depending on the shape of M and whether the
— .1 reduction reduces a subterm in C[] or in M.

— A —4, reduction step in C[ | can cause substitutions of variables inside
C[]. Since M does not contain free variables, it remains unchanged. Hence
the resulting term will be of the form C'[AM].

C[AM] -5 C'IAM)]
OAl OA
— If M is OA-uniform, a —4, reduction step in M does not affect the redex
AM, because OA-uniform terms are closed under —4,. This gives us the
diagram:
CIAM] 25 claM]
OA lOA

Clll——=C1

— If M = PN where P is a (}-zero term, a — 3, reduction step in P does not
affect the redex A(PN), because -zero terms are closed under —4,. This
gives us the diagram:

C[A(PN)|-25 C[A(P'N)]
OAl lOA

O[N]———C[N]

— Finally if M = PN where P is a 3-zero term, a —g, -reduction step in N
commutes trivially:
CIA(PN)]-25 CIA(PNY)]
OAJ JOA

CIN|———C[N']
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The proof for the cases involving O is similar.

Theorem 35 (i) The relation —j0a is confluent in Aoa.
(i4) The relation —% op is confluent in A oa.

PROOF. The Hindley-Rosen Lemma (Barendregt, 1984) states that if we
know that two reduction relations —] and —; both are confluent, and that
—] commutes with —3, then —7, is confluent. Lemmas 32, 33 and 34 imply
these conditions both for —% and —g,, and for =%, and —g,.

Remark 36 The extended calculus Agpn and the new reduction rules were
chosen carefully in order to get confluent reduction relations. If the O-selection
rule could be applied to open (-zero terms, then (Az.O(zI))K would reduce
to both K and I. If the O-constant rule could be applied to open (3-zero terms,
then (Az.O(2I))Q2 would reduce to both I and €. In both cases, we would loose
confluence.

4 Tree Equality implies Observational Equivalence

The goal of this section is to prove along similar lines as for A% (Theorem 19)
that Berarducci tree equality in A%, implies observational equivalence in
ATon-

Our first step is to define =3, oa-reductions for A%, and show that these
reductions are infinitary confluent. Because terms in AT, contain at most
a finite number of symbols O and A we can base the proof on the infinitary
confluence of A% via a few straightforward lemmas.

Definition 37 The relation —»p 0a is defined as (—»31 U —on)™.

In order to avoid unnecessarily heavy notation we did not define —»3,0a as
a strongly converging reduction of arbitrary ordinal length, as customary in
infinitary lambda calculus (Berarducci, 1996), (Kennaway et al., 1997), (Ken-
naway and de Vries, 2000). However, the reader may check that there is no
loss of generality: any such arbitrary reduction would contain at most finitely
many A, O-reduction steps, and the (_L-reduction sequences in between can
be compressed to §1-reductions of length at most w.
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4.1 Confluence of Strongly Convergent Reductions in ATop

We will prove confluence of strongly convergent reductions in AT, along the
same lines as we proved confluence of finite reductions in A | ga.

Lemma 38 (i) There is at most one OA-redex in a term belonging to ATop-
(i) The relation —g, commutes with the relation —» g, .

PROOF.

(i) By induction on ATH,-

(ii) Similar to the finite case considered in Lemma 34. After construction of
the four base cases the proof proceeds now by induction on the ordi-
nal length of —»3,. The only interesting case is the limit ordinal w: we
construct

[AM] CI[AMI]_>C2[AM2] ............. Cw[AMw]

| lOA Jon Jon

C[N]—— C1 [N}] ——— C [N oo C,[N,]

Observe that the depth of the occurrences of A in the terms on the top
row becomes fixed after a while. If that were not the case, then by the
strongly convergence property there would be no A present in the limit.
Now it is routine to verify that the reduction in the bottom row inherits
the strongly convergence property of the reduction in the top row.

Theorem 39 The relation —%g 0a s confluent in AToa-

y Loa Y,
,BJ_OAl éﬁJ_OA

PROOF. Similar to the proof of Theorem 35 using the Hindley-Rosen Lemma,
Theorem 11(iii) and Lemma 38. Notice that —»3,0a is by definition (—»5,
U —)OA)*.

We have now the tools to conclude the unique normal form property for AT
from the unique normal form property for AP.

Corollary 40 For each term in A, there is a unique normal form N such
that M —*»BL0A N.
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PROOF. Normalization follows from Lemma 26 and normalization of —4,
in AT® (Theorem 11(iii)). Unicity follows from Theorem 39.

4.2 From Tree Equivalence to Observational Equivalence

We have now all the machinery to pull the rabbit out of the hat. First we will
extend the definition of Berarducci tree from terms in AT to terms in ATg,.
We will show the correspondence with the unique normal forms. We will con-
clude with a proof that Berarducci tree equality in A%, implies observational
equivalence in ATp,.

Definition 41 The Berarducci tree BeT : ATop — AT is defined by corecur-
sion on Aoa as follows:

(Z) ZfX —>zOA x then BeT(X) =x;
Ax
(ii) if X —%on o.M then BeT(X) = |
BeT (M)
(i11) if X —50a MN and M is a BOA-zero term then

Q@
BeT (X) = N ;
BeT (M) BeT(N)
(iv) otherwise (exactly when X is BOA-rootactive), BeT (X) = L.

Note that this definition does not need to consider clauses for O, A because of
confluence of —goa and Lemma 26.

Theorem 42 Let X € ATpa-

(i) BeT (X) is in normal form;
(’L’L) X —*»B3L0A BeT(X),
(ii1) BeT (X) is the unique normal form of X.

PROOF.

(i) Suppose that BeT (X) is not in normal form. Then a subtree of BeT (X)
contains a (-redex of the form BeT (M)BeT (N). But M is a fOA-zero
term. A contradiction.

(ii) We consider the strongly convergent reduction sequence obtained by the
depth-first outermost strategy '2. The limit of this sequence satisfies the

12 The depth-first outermost strategy reduces at each step the leftmost redex with
minimal depth. Notice that this strategy applied to XY, where X is a SOA-zero
term and it has an infinite normal form and Y can be reduced, does always reduce
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conditions of the definition of BeT (X). By the coinduction principle, this
limit is BeT (X).
(iii) It follows from the previous parts and Corollary 40.

Corollary 43 For all terms X € ATop and context C[]| € ATy it holds that
BeT (C[BeT (X)]) = BeT (C[X]).

PROOF. Theorem 42(iii) gives the following diagram:

C[X]—22, C[BeT (X))

MOAL lﬁJ_OA

BeT (C[X]) ==BeT (C[BeT (X)])

Finally we can prove that Berarducci tree equality in Apa and ATy, implies
observational equivalence respectively in Apa and ATp,.

Theorem 44 (i) For all X,Y € Aoa, BeT (X) = BeT (Y) implies
VCH € Aoa. C[M] € Roa & C[N] € Roa.
(ii) For all X, Y € ATop, BeT (X) = BeT (Y) implies
VO[] € AToa- ClX] € RTon & CY] € R0
PROOF. We prove (ii) since (i) is a particular case of (ii). Let X,Y be terms

in ATa. Suppose BeT (X) = BeT (V). Let C[] be a context in AT%,. Using
the previous corollary we get:

BeT (C[X]) = BeT (C[BeT (X)])
= BeT (C[BeT (Y)))
= BeT (C[Y)).
Suppose C[X] € R¥a. Then BeT (C[X]) = L. Hence also BeT (C[]Y]) = L.

And so we find that C[Y] € R¥a. We conclude that X and Y are observa-
tionally equivalent.

Y after a finite number of steps. This is because if n is the minimal depth of redexes
in Y, there is always an integer m such that if the depth-first outermost strategy
applied to X after m reduction steps gives X', then the minimal depth of redexes
in X' is greater than n.
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Remark 45 Theorem 44 cannot be proved using approximants as for Bohm
(Dezani-Ciancaglini et al., 1998b) or Lévy-Longo trees (Boudol and Laneve,
1996). This is because application is not continuous with respect to the Be-
rarducci tree topology (see also (Berarducci and Dezani-Ciancaglini, 1999)).
For example, take the context C[ ] = [ ]I and the directed set X = {1, \z.L}.
Clearly, 1L = C[|] X] # LU C[X] = LI. Application is, a fortiori, not monotonic.
Eg L CAz.L,but C[L] =113 1L =C[\z.L].

5 Observational Equivalence implies Tree Equality

In this section we will prove that observational equivalence of terms in AT,
with respect to the extended calculi Aga implies equality of Berarducci trees.
The proof will be a variant of the Bohm out technique (Barendregt, 1984)
defined for Bohm trees.

Some terminology first. The label at the root of a tree T is denoted by root(7T’)
and defined by cases:
Az Q

root(z) = x, root( | ) = Az, root(T /N
1

) = @, and root(L) = L.
T

15

Like in Definition 10.4.6 of (Barendregt, 1984) we will say that an occurrence
is useful to discriminate between two Berarducci trees if the labeled nodes in
all proper prefixes of the occurrence are identical, while the labeled nodes at
the end of the occurrence are different.

Definition 46 An occurrence u is useful for two trees T,T' if root(T|,) =
root(7"|,) for all v < u, but root(T|,) # root(T"|,).

We will use substitutions that map any variable in AS° to a term in {2, QQ}.
More precisely we will consider the substitution o defined by

oq(x) = Q for all variables x

and the substitutions ¢§, one for each variable z, defined by

) QQifr =y
ob(y) =

2 otherwise.
Lemma 47 Let M € AT be a B-zero term and let o be the substitution oq

or of, for some fized x. Then the substitution instance M7 s a closed [(-zero
term.
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PROQOF. By definition of o, M7 is a closed term. Suppose towards a con-
tradiction that M7 (-reduces to an abstraction. Then either M [-reduces to
an abstraction or to a term of the shape yN; ... N, for some variable y. By
hypothesis M is a (-zero term and so it cannot [(-reduce to an abstraction.
Hence M f-reduces to yN; ... N,. This implies M7 S-reduces to QN7 ... N7
or to QOQNY ... N7, which are both closed (-zero terms.

Theorem 48 (i) For all X,Y € Aoa it holds that
VO[] € Aoa C[X] € Roa & C[Y] € Ron = BeT(X) =BeT(Y).
(it) For all X,Y € ATop it holds that

VO[] € ASop C[X] € RSon © ClY] € Ron = BeT(X) =BeT(Y).

PROOF. The proof of (i) and (ii) is essentially the same, since we consider
only the Berarducci trees of X and Y which in both cases belong to A. So
we only show (i). The proof will be by contraposition.

Let X,Y be terms in Apa such that BeT (X) # BeT (Y). Then there exists
an occurrence u that is useful for BeT (X) and BeT (Y'). Depending on what
label we see at the root of BeT (X)|, and BeT (Y)|,, we define a substitution
o as follows:

— If BeT (X)|, =« and BeT (Y)|, =y, let o be o§.
— If BeT (X)|, = z and BeT (Y)|, = L or conversely, let o be 0.
— In all other cases let o be oq.

By induction on the length of u we will define a context C[ ] € Apa that can
discriminate X and Y with respect to o in the sense that either C[X 7] € Roa
and C[Y] € Roa, or vice versa.

Base case: u = ().

— If BeT(X) or BeT(Y) is a leaf, then we choose C[ ]| = [ ] as context to

discriminate X and Y with respect to o.

We have four sub-cases:

- if BeT (X) =2 and BeT (Y) = y then X7 =55, QQ and Y7 =505

- if BeT(X) =z and BeT (Y') = L (or vice versa) then X7 —%,, QQ & Roa
and Y7 € Roa (or vice versa);

- if BeT (X) is not a leaf and BeT (Y) = x (or vice versa) then X7 & Roa
and Y7 =55, 2 € Ropa (or vice versa);

- if BeT (X) is not a leaf and BeT (Y) = L (or vice versa) then X & Roa
and Y7 € Roa (or vice versa).
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Q

~ If BeT(X) = 7 1 with X —%0a M1 M,
BBT(Ml) B@T(MQ)
Az
and BeT (V) = | with X —%o4 Av.Ny (or vice versa),
BGT(NI)

then we choose C[ ] = O] |S2.
By the shape of BeT (X) it follows that M; is a (-zero term. Hence MY is a
closed (-zero term by Lemma 47. ;From this fact and because C[X7] =505
O(MIM3I)Q —on M7, we find that is C[X7] is fOA-rootstable. On the
other hand we find that C[Y“] is BOA-rootactive, because C[Y7] —jop
O()\LL‘.Nl)UQ —0A IQ —8 Q.

Induction step: u =i - v.

@
— Suppose BeT (X) = N with X' —504 MM,
B@T(Ml) B@T(MQ)
Q@
and BeT (V) = PN with ¥ =50, Ni NVo.
BGT(NI) BeT(NQ)

We have two sub-cases:

- If i = 1 then by the induction hypothesis we have a context C'[ ] that dis-
criminates M;, N; with respect to 0. Then we define C[ | = C'[O[ ]]. As
in the base case we get that M/ is a closed [(-zero term. Now clearly
CIX7] —=hoa C'OM7MS)] —oa C'[M7] and similarly C[Y7] —j0a
C'[O(NYNg)| —oa C'[N7]. Hence by induction C] ] discriminates X and
Y with respect to o.

- If on the other hand i = 2, then by the induction hypothesis there is a
context C'[ | that discriminates M, and N, with respect to 0. We now
choose C[ | = C'[A] ]] to discriminate X and Y with respect to o. The proof
proceeds as before. Again M; is a (-zero term, and M7 is a closed (3-zero
term. So we can calculate that C[X7] —5,4 C'[A(M7MS)] —ona C'[MJ]
and similarly we see that C[Y7] =%, C'[A(NYNJ)] —oa C'[Ny]. Hence
by induction C[ ] discriminates X and Y with respect to o.

AT

— Suppose BeT (X) = | with X' =500 Az. My
B@T(Ml)
Q@

13 Notice that BeT(X) = PN does not imply X —joa

BeT (M) BeT (Ma)

@ @
My M, since, for example, BeT (I(Q)) = N = / N .
BeT (1) BeT (IQ2) L 1
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Fig. 3. Berarducci trees of Qz, Q, Qk, and z(zQ(Qz))Q.
Ax
and BeT (V) = | with Y —%0a Az.N;.
BBT(Nl)
Then i = 0. Let C'[ ] be the context that by induction hypothesis dis-
criminates M; and N;. We now choose C[ | = C'[| |o(z)]. We observe

that C[X7] —%0a C'[(A\x.My)?0(x)] —5 C'[M7] and similarly we see that
ClY7] =%oa C'l(Ar.Ny)?0 ()] —5 C'[NY]. Hence, by induction, C | dis-
criminates X and Y with respect to o.

Recapitulating, given the two terms X,Y in Apa and an occurrence u that is
useful to discriminate their Berarducci trees, we have constructed a context
C'[ ] together with a substitution o able to discriminate X and Y. To finish
off the proof we will now build a context from these two ingredients that can
discriminate X and Y:

Cl]=C'l(Azy..xn.[))o(xy) . ..o(z,)],
where x4, ...z, is the set of free variables in X and Y.

Since (Ax1...x,.X)o(z1)...0(x,) and (Azy..2,.Y)o(xy)...0(x,) are closed,
we note that C[X] and C[Y] belong to Aoa. Now, because

CIX] =C'(Azy.xn. X)o(z1) ... 0(x,)] =hoa C'[X7]

and similarly CTY] =304 C'[Y?] and by construction C'[ ] discriminates X, Y
with respect to o, we get that C[X] is fOA-rootactive and C[Y] is not, or vice
versa.

Example 49 The Berarducci trees of some terms considered in this example
are shown in Figure 3.

(i) When M = Q, N = QQ and u = () the above procedure gives us the
empty context as a discriminating context for M and N.

(i) If M = Q, N = Qz, and u = (), then we find that C[ | = (A\z.[ |)Q
discriminates M and N.
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(i11) For M = Qx, N = Qy and v = 2 we find that C[] = A((Azy.[ ])(QQ)Q)
15 a discriminating context.

(iv) Let M = Qp, N = Qk, and v = 2 - 0. The discriminating context we
obtain is C| | = A[ ]€2.

(v) In case of M = x(x2Q(Qx))Q, N = y(yQ(Qy))Q, andu=1-2-2-2, a
discriminating context is C[] = A(A(A(O((Azy.[ )(22)R2)))).

This last case shows the power of the constants O,A. One problem in con-
structing such discriminating contexts is that different occurrences of the same
variable may have to be used to select different arguments. This problem was
solved in the original algorithm of Bohm by using suitable combinators which
equate n-convertible terms (see Section 10.4 of (Barendregt, 1984)) and in
(Sangiorgi, 1994), (Dezani-Ciancaglini et al., 1999), (Dezani-Ciancaglini et al.,
1998hb) by allowing a non-deterministic choice operator. In all these cases the
trick is to replace different occurrences of the same variable by different terms.
Instead, in the above algorithm for Berarducci trees the selection is performed
by the two constants O and A while the variables always get substituted by €2
or Q0.

By Theorems 48 and 44, Berarducci tree equality of terms (possibly non-pure
and/or infinite) coincides with observational equivalence. So the Berarducci
trees build a fully abstract model of the (infinitary) lambda calculus extended
with the constants O and A.

6 Conclusions

In (Sangiorgi, 1994) Sangiorgi proves that by adding well-formed operators
to pure lambda calculus we cannot discriminate more than Lévy-Longo trees
do. As a matter of fact, our operators O,A are not well-formed according
to the Groote-Vaandrager format allowed in (Sangiorgi, 1994). The reason is
that this format does not allow a premise asking for a term to be a closed
[-zero term. In this respect our development completely agrees with that of
Sangiorgi.

Looking back at the present work and the related papers (Dezani-Ciancaglini
et al., 1998b) and (Dezani-Ciancaglini et al., 1999) that define extensions of
pure lambda calculus that can internally discriminate as respectively Bohm
trees and Lévy-Longo trees do, then one can wonder to what extent the chosen
discriminating extensions actually depend on the nature of the problems dealt
with. For instance it is not clear whether there are extensions of lambda calcu-
lus completely different from the present one and which internally discriminate
as Berarducci trees do: we are tempted to conjecture that the extension with
O, A is minimal in the sense that any other extension with the same discrimi-
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natory power contains translations of O, A and their rewrite rules.

Acknowledgement

We thank Vincent van Oostrom for discussions. Moreover we are grateful to
the referees for their useful remarks and suggestions.

References

Abramsky, S., Ong, C.-H. L., 1993. Full abstraction in the lazy lambda calcu-
lus. Inform. and Comput. 105 (2), 159-267.

Barendregt, H. P., 1984. The Lambda Calculus Its Syntax and Semantics,
Revised Edition. North-Holland Publishing Co., Amsterdam.

Barr, M., 1993. Terminal coalgebras in well-founded set theory. Theoret. Com-
put. Sci. 114 (2), 299-315.

Berarducci, A., 1996. Infinite A-calculus and non-sensible models. In: Logic
and algebra (Pontignano, 1994). Dekker, New York, pp. 339-377.

Berarducci, A., Dezani-Ciancaglini, M., 1999. Infinite A-calculus and types.
Theoret. Comput. Sci. 212 (1-2), 29-75, gentzen (Rome, 1996).

Boudol, G., 1994. Lambda-calculi for (strict) parallel functions. Inform. and
Comput. 108 (1), 51-127.

Boudol, G., 2000. Note on the semantics of the call-by-name CSP transform.
Theoret. Comput. Sci. 234, 309-321.

Boudol, G., Laneve, C., 1996. The discriminating power of multiplicities in
the A-calculus. Inform. and Comput. 126 (1), 83-102.

Dezani-Ciancaglini, M., de’Liguoro, U., Piperno, A., 1998a. A filter model for
concurrent A-calculus. STAM J. Comput. 27 (5), 1376-1419 (electronic).
Dezani-Ciancaglini, M., Intrigila, B., Venturini-Zilli, M., 1998b. Bohm’s theo-
rem for B6hm trees. In: ICTCS’98 (Prato, 1998). World Scientific, Oxford,

pp- 1-23.

Dezani-Ciancaglini, M., Severi, P., de Vries, F.-J., 2000. Béhm theorem for
Berarducci trees. In: CATS’00 (Canberra, 2000). Vol. 31(1) of Electronic
Notes in Theoretical Computer Science. Elsevier, pp. 143—-166.

Dezani-Ciancaglini, M., Tiuryn, J., Urzyczyn, P., 1999. Discrimination by par-
allel observers: the algorithm. Inform. and Comput. 150 (2), 153-186.

Hyland, M., 1975/76. A syntactic characterization of the equality in some
models for the lambda calculus. J. London Math. Soc. (2) 12 (3), 361-370.

Kennaway, R., de Vries, F.-J., 2000. Infinitary rewriting, to appear as chap-
ter in a book on term rewriting edited by J. W. Klop. Draft available at:
http://www.mes.le.ac.uk/ ferjan/Distribution/draft.ps.gz.

Kennaway, R., Klop, J. W., Sleep, R., de Vries, F.-J., 1995. Transfinite reduc-

32



tions in orthogonal term rewriting systems. Inform. and Comput. 119 (1),
18-38.

Kennaway, R., Klop, J. W., Sleep, R., de Vries, F.-J., 1997. Infinitary lambda
calculus. Theoret. Comput. Sci. 175 (1), 93-125.

Kennaway, R., van Oostrom, V., de Vries, F.-J., 1999. Meaningless terms in
rewriting. J. Funct. Logic Programming Article 1, 35 pp, article available
at: http://danae.uni-muenster.de/lehre/kuchen/JFLP /articles/1999/A99-
01/A99-01.html.

Lévy, J.-J., 1976. An algebraic interpretation of the A\FK-calculus, and an
application of a labelled A-calculus. Theoret. Comput. Sci. 2 (1), 97-114.
Longo, G., 1983. Set-theoretical models of A-calculus: theories, expansions,

isomorphisms. Ann. Pure Appl. Logic 24 (2), 153-188.

Milner, R., 1977. Fully abstract models of typed A-calculi. Theoret. Comput.
Sci. 4, 1-22.

Morris Jr., J. H., 1968. Lambda calculus models of programming languages.
Ph.D. thesis, M.I.T.

Plotkin, G., 1977. LCF considered as a programming language. Theoret. Com-
put. Sci. 5, 223-256.

Sangiorgi, D., 1994. The lazy lambda calculus in a concurrency scenario. In-
form. and Comput. 111 (1), 120-153.

Scott, D., 1975. Open problem. In: Lambda Calculus and Computer Science
Theory. Vol. 37 of Lecture Notes in Computer Science. Springer, Berlin, p.
369.

de Vries, F.-J., 1997. Bohm trees, bisimulations and observations in lambda
calculus. In: Second Fuji International Workshop on Functional and Logic
Programming Workshop. World Scientific, Singapore, pp. 230-245.

Wadsworth, C. P., 1976. The relation between computational and denotational
properties for Scott’s D,,-models of the lambda-calculus. STAM J. Comput.
5 (3), 488-521.

33



