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set of roota
tive terms, whi
h is the smallest set of 
omputational meaninglessterms that 
an 
onsistently be equated. The operational semanti
s that we areinterested in is observational equivalen
e with respe
t to roota
tive behavior.The denotational semanti
s is the model of the Berardu

i trees (Berardu

i,1996), whi
h are a more detailed variant of B�ohm trees: the main di�eren
ebeing that roota
tive terms instead of terms without a head normal form getrepla
ed by a dummy symbol ?.Berardu

i trees 
an be best dealt with as the �-?-normal forms of terms inthe 
ompletion �1? of the lambda 
al
ulus with a new symbol ?, in�nite termsand the new rule that repla
es �-roota
tive terms by ? (Berardu

i, 1996),(Kennaway et al., 1997). In the 
al
ulus �1? it is not diÆ
ult to see that if twoterms have the same Berardu

i tree then they are observationally equivalent.The 
onverse however is not true, essentially for two reasons. The �rst reasonis intrinsi
 for Berardu

i trees: the lambda 
al
ulus is not powerful enough toB�ohm out the argument of a �-roota
tive term. The se
ond reason is similarto why the analogous statement is not true for B�ohm trees, namely the B�ohmout of a subterm 
an return an �-expansion of it.Therefore, in a move 
hara
teristi
 for full abstra
tness problems, we will en-ri
h the lambda 
al
ulus �1? in a rather minimal way with two more 
onstantsO and A with a

ompanying rules. Any term in the enri
hed 
al
ulus �1?OA
an redu
e in a �nite number of steps to a pure �-term and therefore the Be-rardu

i tree of a term in �1?OA will not 
ontain O and A. For any two terms of�1?OA we 
an prove that Berardu

i tree equality is equivalent to observationalequivalen
e with respe
t to roota
tive terms.1.1 Previous WorkHistori
ally, quoting from (Barendregt, 1984)(page 215), \the notion of B�ohmtree is suggested by the original proof of B�ohm's theorem". B�ohm's theoremstates that given two distin
t �-�-normal forms there is a 
ontext C[ ℄ su
hthat C[M ℄ = x and C[N ℄ = y, where x; y are arbitrary distin
t variables. Themethod used to �nd su
h a 
ontext is 
alled the B�ohm out te
hnique (Baren-dregt, 1984)(Se
tion 10.3).In (Wadsworth, 1976) Wadsworth, generalizing B�ohm's theorem, shows thattwo �-terms M;N have the same B�ohm tree modulo in�nite �-expansions ifand only if for all 
ontexts C[ ℄ the following holds:C[M ℄ has a head normal form , C[N ℄ has a head normal form.The proof te
hnique used to obtain the \if" part is the B�ohm out te
hnique.2



The same property holds even 
onsidering B�ohm trees modulo �nite �-ex-pansions and normal forms, as shown in (Hyland, 1975/76). More pre
iselyHyland proves, using the B�ohm out te
hnique, that two �-terms M;N havethe same B�ohm tree modulo �nite �-expansions if and only if for all 
ontextsC[ ℄ the following holds:C[M ℄ has a normal form , C[N ℄ has a normal form:The results of (Wadsworth, 1976) and (Hyland, 1975/76) 
an be rephrased asfollows:The lambda 
al
ulus internally dis
riminates as B�ohm tree modulo in�nite(respe
tively �nite) �-expansions when the set of values is the set of headnormal forms (respe
tively normal forms).To internally dis
riminate terms having di�erent B�ohm trees Dezani et al.(Dezani-Cian
aglini et al., 1998b) add to the pure lambda 
al
ulus a non-deterministi
 
hoi
e operator + and an adequate numeral system (as de�nedin Se
tion 6.4 of (Barendregt, 1984)). The redu
tion rules for + are:M +N �!M and M +N �! N:Clearly the non-deterministi
 
hoi
e operator allows to de�ne 
ombinatorslike Plotkin's parallel-or (Plotkin, 1977) when one 
onsiders may 
onvergen
e,under whi
h a term 
onverges if at least one of the possible 
omputations start-ing from it ends. This extension in
reases the power of the lambda 
al
ulusto dete
t 
onvergen
e internally also in those 
ases in whi
h a term 
onvergesas soon as at least one of its subterms does, no matter in whi
h order theyare evaluated. This amounts to have the de�nability of all 
ompa
t pointsin a standard model, that is, by Milner's theorem (Milner, 1977), to have afully abstra
t interpretation for the language. The numerals play an essentialrole to dis
riminate between a term possessing a head normal form and its�-expansion, essentially sin
e they 
an never be applied to an argument, whileall pure �-terms 
an be seen both as fun
tions and as arguments. This resultis proved using a variation of the B�ohm out te
hnique as well as 
hara
teristi
terms and test terms (Boudol, 1994).Instead, L�evy-Longo trees 
orrespond to observational equivalen
e with re-spe
t to weak head normal forms in suitably enri
hed versions of the lambda
al
ulus, as shown in (Sangiorgi, 1994), (Boudol and Laneve, 1996), (Dezani-Cian
aglini et al., 1999). Now, we brie
y re
all su
h approa
hes.In (Sangiorgi, 1994), Sangiorgi 
onsiders the embedding of lazy lambda 
al
u-lus in some 
on
urrent 
al
uli. First, Milner's en
oding of lazy lambda 
al
ulusin �-
al
ulus is studied. Then the lazy lambda 
al
ulus is enri
hed with a sim-ple non-deterministi
 operator, whi
h, when applied to an argument, eithergives the argument itself or diverges. In both 
ases the pro
esses are 
ompared3



using bisimulation. The proof te
hnique is the B�ohm out te
hnique.Boudol and Laneve (Boudol and Laneve, 1996) introdu
e a \resour
e 
on-s
ious" re�nement of lambda 
al
ulus, in whi
h every argument 
omes witha multipli
ity. The redu
tion pro
ess (whi
h uses expli
it substitutions in anessential way) remains deterministi
, but a deadlo
k 
an appear. The termsare 
ompared by means of the standard observational equivalen
e. The proofte
hnique is again the B�ohm out te
hnique.Dezani et al. (Dezani-Cian
aglini et al., 1999) 
onsider the behavior of pure �-terms inside 
ontexts of the 
on
urrent lambda 
al
ulus as de�ned in (Dezani-Cian
aglini et al., 1998a). This 
al
ulus is obtained from the pure lambda
al
ulus (with 
all-by-value and 
all-by-name variables) by adding the non-deterministi
 
hoi
e operator dis
ussed above and a parallel operator k, whosemain redu
tion rule is M �!M 0 N �! N 0 (jj)MkN �!M 0kN 0where �! stands for one-step redu
tion.The terms are 
ompared by means of the standard observational equivalen
e.The proof te
hnique for proving that observational equivalen
e implies treeequality is that of 
hara
teristi
 terms and test terms.More re
ently Boudol in (Boudol, 2000) shows that the equivalen
e on �-termsindu
ed by the 
all-by-name CSP transform is L�evy-Longo tree equality.In order to dis
riminate pure �-terms having di�erent Berardu

i trees, thepaper (Dezani-Cian
aglini et al., 2000) extends the lambda 
al
ulus with two
onstants O and A. The essential feature of the B�ohm-out te
hnique 
onsistsin sele
ting a subtree of the tree of a term by means of an appropriate 
ontext.The sele
tion of a subtree was performed in the original B�ohm algorithm bysubstituting a variable in head position by an appropriate 
ombinator. ForBerardu

i trees, the top normal forms also in
lude appli
ations that may nothave a variable in head position, as in 

 (where 
 � (�x:xx)(�x:xx)). Forthese new 
ases the sele
tion of a subtree 
an be performed using the 
onstantsO and A. The 
onstants O and A sele
t the operator and the argument of a
losed, �-rootstable appli
ation. These 
onstants have the following redu
tionrules: O(MN) �!M if M is a 
losed �-zero termA(MN) �! N if M is a 
losed �-zero term4



where a �-zero term is de�ned in De�nition 2. For instan
e, 
II (where I ��x:x) and 

I are dis
riminated by the 
ontext A(O[ ℄). In fa
t:A(O(
II)) �! A(
I) �! IA(O(

I)) �! A(

) �! 
All pure �-terms having di�erent Berardu

i trees 
an be dis
riminated usingthese two 
onstants (Dezani-Cian
aglini et al., 2000). However non-pure �-terms having di�erent Berardu

i trees 
annot be dis
riminated only withthese rules. For example, O(A
) and O(O
) have di�erent Berardu

i trees,though they are observationally equivalent. Hen
e in this paper we add moreredu
tion rules for the 
onstants O and A in order to dis
riminate also non-pure �-terms.1.2 SummaryIn this paper we 
onsider an extended lambda 
al
ulus �OA for whi
h theequality of Berardu

i trees 
oin
ides with observational equivalen
e. This 
al-
ulus will be a variant of the one presented in (Dezani-Cian
aglini et al., 2000).As in (Dezani-Cian
aglini et al., 2000) it will 
ontain the 
onstants O and Athat sele
t the operator and argument of a �-rootstable appli
ation. The set�OA of terms will be a restri
tion of the one in (Dezani-Cian
aglini et al., 2000)and new redu
tion rules will be added for the 
onstants. In (Dezani-Cian
agliniet al., 2000), we have proved that Berardu

i tree equality 
oin
ides with ob-servational equivalen
e only for pure �-terms. The new redu
tion rules willallow us to extend this result to non-pure �-terms. Hen
e in this paper, wewill prove:Theorem 1 For all X; Y 2 �OA it holds that they have the same Berardu

itree if and only if for all 
ontexts C[ ℄ 2 �OAC[X℄ 2 ROA , C[Y ℄ 2 ROAwhere ROA is the set of �OA-roota
tive terms in �OA. 4The \if" part will be proved by a variation on the B�ohm out te
hnique. For the\only if" part we adapt te
hniques from in�nitary lambda 
al
ulus. We willprove that the Berardu

i tree of a term is the unique normal form of the termin that 
al
ulus. Sin
e this normal form always exists and is unique, we 
anbuild a model of the extended lambda 
al
ulus in whi
h the interpretations of4 The de�nition of �OA-roota
tive is given in De�nition 27.5



terms are their Berardu

i trees. Hen
e, our main theorem states that su
h amodel of the extended lambda 
al
ulus is fully abstra
t.1.3 OutlineIn Se
tion 2 we re
all the de�nition of the �nite lambda 
al
ulus � and itsin�nitary extension �1? . We explain that the Berardu

i tree of a term M in�1? is just its normal form in �1? . However ni
e the properties of �1? , it is notexpressive enough to prove that observational equivalen
e implies Berardu

itree equality. Therefore we introdu
e in Se
tion 3 the in�nitary extension�1?OA. It is more expressive than �1? , but inherits some of its ni
e properties.In Se
tion 4 we show for terms in �1?OA that Berardu

i tree equality impliesobservational equivalen
e, and in Se
tion 5 we prove the 
onverse. The �nalSe
tion 6 dis
usses the result.
2 Finite and In�nite Lambda Cal
ulusThis se
tion is to �x notations and 
on
epts. We will re
all the in�nitaryextension �1? of the �nite lambda 
al
ulus (Berardu

i, 1996), (Kennawayet al., 1997). This is an extension not only with in�nite terms but also withan extra symbol ? and a rewrite ruleM 6= ? and �-roota
tive (?)M ! ?where �-roota
tivity is de�ned in De�nition 4(ii).The extension �1? has the following important properties:{ the in�nitary 
on
uen
e property holds,{ ea
h term has a unique normal form for the 
ombined �;? redu
tion,{ ea
h �-normal form is also a normal form for the new ? rule.The Berardu

i tree of a term M is now the (tree of the) possibly in�nitenormal form of M for the �-?-redu
tion. In the present paper we will alwaysidentify terms with their trees. 6



2.1 Finite Lambda Cal
ulusOur starting point is the �nite untyped lambda 
al
ulus (Barendregt, 1984).The set � of �nite untyped �-terms is given by the following indu
tive gram-mar: M ::=ind x j (�xM) j (MM);where x is a variable from some �xed 
ountable set of variables V. We follow theusual 
onventions on syntax. Terms and variables will respe
tively be writtenwith (super- and subs
ripted) letters M;N and x; y; z. Terms of the form(M1M2) and (�xM) will respe
tively be 
alled appli
ations and abstra
tions.A 
ontext C[ ℄ is a term with a hole in it, and C[M ℄ denotes the result of �llingthe hole by the term M , possibly by 
apturing some free variables of M . Aterm of the form (�xM)N is a �-redex.We will silently take equivalen
e 
lasses of terms modulo a 
hange of boundvariables and follow the variable naming 
onvention (Barendregt, 1984)(2.1.13).We will use the following abbreviations:�x1 : : : xn:M =def (�x1(�x2 : : : (�xnM) : : : ))MN1 : : : Nn =def (: : : (MN1) : : : Nn)I =def �x:x S =def �xyz:(xz)yz K =def �xy:x B =def �xyz:x(yz)� =def �x:xx �� =def �x:x(�y:xy) �M =def �x:xxM
 =def �� 
M =def �M�MY =def (�xy:y(xxy))(�xy:y(xxy))The redu
tion relation !� on � is the smallest binary relation that is 
losedunder 
ontexts 5 and 
ontains the rule:(�xM)N !M [N=x℄ (�)and !�� is its re
exive and transitive 
losure.The stru
ture of a �-term 
an be des
ribed with help of the notions of �-zero,�-rootstable and �-roota
tive term.De�nition 2 (Berardu

i, 1996) Let M be a �-term in �. If M 
annot �-redu
e to an abstra
tion, then M is 
alled a �-zero term.5 A relation!� is 
losed under 
ontexts if M !� N implies C[M ℄!� C[N ℄ for all
ontexts C[ ℄. 7
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�Fig. 1. Tree representation of the in�nite �-normal forms of 
I;YK and YY.It is easy to verify that:Lemma 3 (Berardu

i, 1996),(Kennaway et al., 1997) A �-term �-redu
eseither to a variable, to an abstra
tion, to an appli
ation of the form MNwhere M is a �-zero term, or to a �-redex.De�nition 4 (Kennaway et al., 1997) Let M be a �-term.(i) If M 
annot �-redu
e to a �-redex, then M is 
alled �-rootstable or a�-rootstable form.(ii) If for all N su
h that M 
an �-redu
e to N , the term N 
an further be�-redu
ed to a �-redex, then M is 
alled �-roota
tive.For example, 
 is a �-zero term and it is �-roota
tive. The term III is anexample of a term whi
h is neither �-roota
tive nor �-rootstable, be
ause it
an �-redu
e to the �-rootstable term I.Note that:Lemma 5 (Kennaway et al., 1997) A term 
an not �-redu
e to a �-rootstableform if and only if it is �-roota
tive.A �-term has a �-normal form if it 
an �-redu
e to a term that does not
ontain �-redexes anymore. Of 
ourse not all �nite terms have a �nite �-normal form. Some of these terms however seem to 
onverge to an in�nite �-normal form well beyond the s
ope of the �nite lambda 
al
ulus. For example:
I !� 
II!� 
III!� 
IIII!� : : :YK!�� K(YK)!� �y0:YK!�� �y0y1:YK!�� : : :YY!�� Y(YY)!�� YY(YY)!�� YY(YY)(YY(YY))!�� : : :The in�nite �-normal forms of these redu
tions 
an more 
learly be repre-8
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}}y zFig. 2. Tree representation of the in�nite �-normal forms of BYS and BY.sented as planar trees instead of linear formulas, see Figure 1. 6For another example, one 
an 
al
ulate that BYS and BY �-redu
e to thesame in�nite �-normal form �yz:yz(yz(yz(: : : ))) (see Figure 2). This showsthat in�nite redu
tions are an alternative to adding S
ott's indu
tion to thelambda 
al
ulus (S
ott, 1975). 72.2 In�nite Lambda Cal
ulusWe will now re
all the in�nitary extension �1? (Kennaway et al., 1997). Itprovides the proper 
ontext to introdu
e in�nite �-terms and 
onverging re-du
tions formally.We �rst de�ne the set �? of �-terms extended with a 
onstant ?.De�nition 6 The set �? of partial terms is de�ned by the indu
tive grammar:M :=ind x j ? j (�xM) j (MM); where x 2 V:We give a 
oindu
tive de�nition of the set �1? of in�nite �-terms whi
h isequivalent to the one given in (Kennaway et al., 1997) and (Kennaway et al.,1999) as a metri
 
ompletion.6 The one-one 
orresponden
e between terms and trees is given in De�nition 13.7 Barendregt reformulated S
ott's remark as an open problem: Show that the equa-tion BYS = BY 
annot be proved in lambda 
al
ulus without indu
tion. Theseterms are proved to be equal in (Kennaway et al., 1997) without using indu
tion,provided one repla
es the �nite zig and zags in the de�nition of �-
onversion bystrongly 
onverging �-redu
tions. S
ott's indu
tion is then impli
it in the de�nitionof equality on the 
ompletion. 9



De�nition 7 The set of terms of the in�nitary extension �1? of the purelambda 
al
ulus is de�ned by the 
oindu
tive grammar 8 :M ::=
oind ? j x j (�xM) j (MM); where x 2 V:Noti
e that the grammar of �? di�ers from that of �1? only for being indu
tiveinstead of 
oindu
tive.We need an expli
it de�nition of distan
e between two �-terms in order to
hara
terize �1? as a metri
 
ompletion, as it is de�ned in (Kennaway et al.,1997) (Kennaway et al., 1999), and to introdu
e the notion of 
onvergingredu
tion sequen
e.De�nition 8 (i) O

urren
es are �nite words over the set f0; 1; 2g. Let h idenote the empty word.(ii) The subterm M ju of a term M 2 �1? at o

urren
e u is partially de�nedby indu
tion on the length of u as usual:(a) M jh i =def M ,(b) (�xM0)j0u =def M0ju,(
) (M1M2)j1u =def M1ju,(d) (M1M2)j2u =def M2ju.Note that the term M ju may not exist. If it exists, then u is an o

urren
eof M .(iii) The depth of a subterm N at o

urren
e u of M 2 �1? is the length ofthe o

urren
e u.(iv) The distan
e d(M;N) of two terms M;N 2 �1? is 0 if M and N areidenti
al and it is 2�k if k is the length of the shortest o

urren
e u su
hthat M ju and N ju exist and di�er.With this distan
e �1? be
omes a metri
 spa
e: it is easy to verify that �1? isthe metri
 
ompletion of the set �?.We skip the details of extending substitution to in�nite terms and refer toDe�nition 2 of (Kennaway et al., 1997).We extend some 
on
epts related to �-redu
tion from � to �1? .De�nition 9 (i) The redu
tion relation !� on �1? is the smallest binaryrelation that is 
losed under 
ontexts and 
ontains the rule:(�xM)N !M [N=x℄ (�)8 In fa
t �1? is the �nal 
oalgebra of the polynomial endofun
tor F : Set �! Setde�ned by F (X) = 1 + V + V � X + X � X, where V is the set of variables. See(Barr, 1993) for the 
ategori
al ba
kground.10



(ii) If M 2 �1? 
annot �-redu
e to an abstra
tion, then M is 
alled a �-zeroterm.(iii) A term M 2 �1? is 
alled �-rootstable if M [
=?℄ 
annot �-redu
e to a�-redex.(iv) A term M 2 �1? is 
alled �-roota
tive if for all N 2 �1? su
h thatM [
=?℄ 
an �-redu
e to N , the term N 
an further be �-redu
ed to a�-redex.(v) R1? is the set of �-roota
tive terms in �1? .(vi) The redu
tion relation !�? on �1? is the smallest binary relation that is
losed under 
ontexts and 
ontains the two rules:(�xM)N !M [N=x℄ (�) M 6= ? and �-roota
tive (?)M ! ?Note that ? is a �-roota
tive term, sin
e ?[
=?℄ = 
 and 
 is �-roota
tive.De�nition 10 (i) An in�nite redu
tion M0 !�? M1 !�? M2 !�? : : : isCau
hy 
onverging with limit M! (notation limn!!Mn =M!) if8� > 0:9n:8k � n:d(Mk;M!) < �.(ii) An in�nite redu
tion M0 !�? M1 !�? M2 !�? : : : is strongly 
on-verging with limit M! if limn!!Mn = M! and limn!! dn = !, that is,8n:9m:8k � m:dk > n, where dk denotes the depth of the redex at o

ur-ren
e u in Mk redu
ed in the redu
tion step Mk !�? Mk+1.(iii) We say that a term M has a possibly in�nite �-?-redu
tion to N (nota-tion M !!�? N) if either there is a �nite �-?-redu
tion M !��? N orthere is a strong 
onverging �-?-redu
tion starting from M with limit N .It is well known that without rule ? strongly 
onverging redu
tions jeopar-dize the 
on
uen
e property for �-redu
tion. Unlike �nite redu
tions, Cau
hy
onverging and even strongly 
onverging �-redu
tions are not 
on
uent (Be-rardu

i, 1996), (Kennaway et al., 1995), (Kennaway et al., 1997). The �niteterm Y(�z:K(Kzy)x) 
an 
onverge in an in�nite �-redu
tion to the in�niteterm K(K(: : : x)x) not 
ontaining y. It 
an also 
onverge to the in�nite termK(K(: : : y)y) that does not 
ontain x. Both terms 
an not be joined; they 
anonly �-redu
e to themselves. A simpler example (Berardu

i, 1996) is the term(�x:I(xx))(�x:I(xx)) whi
h redu
es to both 
 and to I(I : : : )); also these twoterms 
annot be joined.Strongly 
onverging redu
tions are Cau
hy 
onvergent, but not 
onversely. Forexample, 
 !� 
 !� : : : is weakly 
onvergent but not strongly 
onvergent,as the depth of the redu
ed redexes is always zero.We re
all here the 
ru
ial properties of !!�? redu
tion whi
h will be use-11



ful in the following and are proved in (Berardu

i, 1996), (Kennaway et al.,1997), (Kennaway and de Vries, 2000), and we refer the reader to those pa-pers to know more on this subje
t. In parti
ular the interested reader will �ndthere that!!�? redu
tion has been de�ned for sequen
es of trans�nite ordinallength. However these 
an be 
ompressed into similarly 
onverging redu
tionsof at most ! length with same initial and �nal terms. The 
ompression lemmaof !!�? for terms in �1? easily generalizes to !!�?-redu
tions of terms in theextensions 
onsidered later in this paper.Theorem 11 (Berardu

i, 1996) (Kennaway et al., 1997) (Kennaway andde Vries, 2000)(i) If a term in �1? has a �-rootstable form then su
h a form 
an be 
omputedin �nitely many steps.(ii) The redu
tion !!�? is 
on
uent.(iii) Every term in �1? has a unique �-?-normal form.2.3 Berardu

i Trees as Normal Forms in �1?In this se
tion we give the 
entral de�nition of this paper, i.e. the de�nition ofBerardu

i tree. Sin
e the notion of Berardu

i tree will be given as a 
ore
ur-sive fun
tion, the 
odomain of this fun
tion has to be given by 
oindu
tion.Hen
e we �rst de�ne the 
odomain of this fun
tion, i.e. the set of trees.De�nition 12 The set of trees is de�ned by the 
oindu
tive grammar:T ::=
oind ? j x j �xT j �T ��� T;;; ; where x 2 V:It is not diÆ
ult to show that this notion of tree is a parti
ular 
ase of thenotion of �-labelled tree de�ned in (Barendregt, 1984) (De�nition 10.1.1) asa partial map from the set of sequen
e numbers to �, where � = fx; �x jx 2 Vg [ f?;�g. In our terminology, a tree is a partial map from the set ofo

urren
es (see De�nition 8(i)) to �.De�nition 13 gives a natural one-one 
orresponden
e between trees and termsof �1? . So in the following we will freely identify trees and terms of �1? .De�nition 13 The tree T (M) of the term M 2 �1? is de�ned by 
ore
ursion:T (?) = ?;T (x) = x; 12



T (�x:N) = �xT (N) ;T (M1M2) = �T (M1) vvvvv T (M2)HHHHH .We 
an now give the de�nition of Berardu

i tree in a graphi
ally pleasingtree format in the spirit of Barendregt's de�nition of B�ohm tree (Barendregt,1984).De�nition 14 (Berardu

i, 1996) The Berardu

i tree BeT (M) of a termM 2 �1? 
an be 
onstru
ted via the following 
ore
ursive pro
edure:(i) if M !�� x, then BeT (M) = x;(ii) if M !�� �x:N , then BeT (M) = �xBeT (N) ;(iii) if M !�� M1M2, where M1 is a �-zero term, thenBeT (M) = �BeT (M1) rrrrrr BeT (M2)LLLLLL ;(iv) otherwise, (exa
tly when M is �-roota
tive) BeT (M) = ?.The in�nitary lambda 
al
ulus with ?-rule �1? is an extension of the lambda
al
ulus that has been so designed that in this extension the Berardu

i treeof a term is nothing else but its unique (possibly in�nite) �-?-normal formthat 
an be found by a possibly in�nite redu
tion.Theorem 15 (Berardu

i, 1996)(Kennaway et al., 1997) The Berardu

i treeBeT (M) of a term M 2 �1? is the unique �-?-normal form N su
h thatM !!�? N .The following result 
onne
ts Berardu

i trees with 
ontexts. It plays a 
ru
ialrole in this paper:Theorem 16 (de Vries, 1997) For all terms M and 
ontexts C[ ℄ in �1? itholds that BeT (C[M ℄) = BeT (C[BeT (M)℄):The proof is simple: just re
ognize that the left hand side and the right handside of the equation represent two ways of redu
ing to the unique �-?-normalform of C[M ℄. 13



2.4 A brief note on B�ohm Trees and L�evy-Longo TreesB�ohm Trees (Barendregt, 1984) and L�evy-Longo trees (L�evy, 1976), (Longo,1983), (de Vries, 1997) 
an be seen as normal forms in similar extensions as�1? . The extensions use the same syntax and �-rule but have both di�erent andmore ?-rules. In all 
ases the basi
 idea is that terms \without 
omputationalvalue" will be repla
ed by ?.In (Kennaway et al., 1997), (Kennaway et al., 1999) 
andidate sets of termswith no 
omputational value that lead to 
al
uli with in�nite 
on
uen
e prop-erties have been systemati
ally investigated for lambda 
al
ulus. Three su
hsets resulted: the set of terms without �-head normal form 9 (Barendregt,1984), (Wadsworth, 1976), the set of terms without weak �-head normal form 10 (Abramskyand Ong, 1993) and the set of �-roota
tive terms.The redu
tion relation !B�ohm on �1? is the smallest binary relation that is
losed under 
ontexts and 
ontains the four rules:(�xM)N !M [N=x℄ (�)M ! ?, provided M 6= ? and has no �-head normal form (?)�x:? ! ? (?�)?M ! ? (?app)The normal forms of �-terms with these rules are better know as B�ohm trees.De�nition 17 (Barendregt, 1984) The B�ohm tree B�oT (M) of a �-term M
an be 
onstru
ted via the following 
ore
ursive pro
edure:(i) if M !�� �x1 : : : xn:yM1 : : :Mk, thenB�oT (M) = �x1 : : : xn:yB�oT (M1) kkkkkk : : : B�oT (Mk)SSSSSS ;(ii) otherwise, when M has no �-head normal form B�oT (M) = ?.The redu
tion redu
tion relation !LeLo on �1? is the smallest binary relation9 A �-term has a �-head normal form when it �-redu
es to a term of the form�x1 : : : xn:yM1 : : :Mk.10 A �-term has a weak �-head normal form when it �-redu
es to a term of the form�x:M or yM1 : : :Mk. 14



that is 
losed under 
ontexts and 
ontains the three rules:(�xM)N !M [N=x℄ (�)M ! ?, provided M 6= ? and has no weak �-head normal form (?)?M ! ? (?app)The normal forms of �-terms with these rules are better known as L�evy-Longotrees.De�nition 18 (L�evy, 1976), (Longo, 1983) The L�evy-Longo tree LLT (M)of a �-term M 
an be 
onstru
ted via the following 
ore
ursive pro
edure:(i) if M !�� xM1 : : :Mk, then LLT (M) = xLLT (M1) pppppp : : : LLT (Mk)NNNNNN ;(ii) if M !�� �x:N , then LLT (M) = �xLLT (N) ;(iii) otherwise, when M has no weak �-head normal form LLT (M) = ?.Comparing the tree formats we �nd that the L�evy-Longo tree of a term revealsat least the same 
omputational 
ontent of a term as its B�ohm tree does. TheB�ohm tree of YK is just ?, as YK does not have a head normal form. In
ontrast, the L�evy-Longo tree ofYK is the in�nite term in the 
entre of Figure1. L�evy-Longo trees don't in
lude all in�nite normal forms of the �nite lambda
al
ulus: the L�evy-Longo tree of YY is ? and not the term depi
ted in Figure1. Berardu

i trees are very ni
e from a theoreti
al point of view in that theyprovide the maximal 11 \
omputational" value of a term. From a pra
ti
alpoint of view they seem to be less useful than B�ohm trees and L�evy-Longotrees, being it unde
idable whether a term is a �-zero term or not.3 The Extended Cal
ulus �1?OAThe notion of Berardu

i tree gives an equivalen
e relation: two terms in �1?are equivalent if and only if they have the same Berardu

i tree (modulo �-
onversion, as de�ned in (Kennaway et al., 1997)). A 
ompletely di�erent wayof 
omparing terms in �1? is observational equivalen
e (Morris Jr., 1968), in11 The set of �-roota
tive terms is the smallest set of terms in � whi
h 
an bemapped into ?, su
h that the 
orresponding �1? has the unique �-?-normal formproperty (Kennaway et al., 1997). 15



whi
h we say that M is equivalent to N if:8C[ ℄ 2 � (C[M ℄ is �-roota
tive , C[N ℄ is �-roota
tive):Here we put M and N in various 
ontexts and observe whether the behaviorof M and N in those 
ontexts is the same, that is whether C[M ℄ and C[N ℄are both �-roota
tive terms. Berardu

i tree equality implies observationalequivalen
e (de Vries, 1997):Theorem 19 For all M;N 2 �1? , BeT (M) = BeT (N) implies 8C[ ℄ 2 �C[M ℄ 2 R1? , C[N ℄ 2 R1? .PROOF. This 
an be easily seen with help of Theorem 16 whi
h for anyterm M and 
ontext C[ ℄ says:BeT (C[M ℄) = BeT (C[BeT (M)℄):If M;N are two terms with the same Berardu

i tree, then we �nd thatC[M ℄ 2 R1? , BeT (C[M ℄) = ? , BeT (C[BeT (M)℄) = ? ,, BeT (C[BeT (N)℄) = ? , BeT (C[N ℄) = ? , C[N ℄ 2 R1? :In a similar way we 
an prove that B�ohm and L�evy-Longo tree equality impliesobservational equivalen
e.The 
onverse of Theorem 19 is not true: observational equivalen
e does notimply Berardu

i tree equivalen
e. We show two examples of di�erent nature.The �rst one shows that �-
onvertible terms 
annot be dis
riminated. Con-sider the �-
onvertible terms � and �� whose Berardu

i trees are �x�x ���� x====

and �x�x ���� �yAAAA �x }}}} y<<<<

. Sin
e both terms have no free variables, it is enough
to show that for all M 2 �, M [x := �℄ 2 R1? , M [x := ��℄ 2 R1? .This is proved by 
ase analysis. We know that M !�� N where N is either16



a variable, an abstra
tion, an appli
ation whose operator is a �-zero termor a �-roota
tive term. The interesting 
ase is when N is an appli
ation ofthe form xP1 : : : Pn. If P1 is a �-zero term then �P1 : : : Pn !� P1P1 : : : Pn,��P1 : : : Pn !� P1(�y:P1y) : : : Pn, and both terms are �-rootstable. If P1 �-redu
es to an abstra
tion then �P1 : : : Pn and ��P1 : : : Pn are �-
onvertible.The se
ond example shows that even if we 
onsider Berardu

i trees modulo �-expansions, the 
onverse of Theorem 19 is not true. Consider the terms 

 and


 whose Berardu

i trees are �? ��� ?;;; and �� ��� ?<<<? ��� ?;;;

. It is enoughto prove that for all M 2 �, M [x := 

℄ 2 R1? , M [x := 


℄ 2 R1? . Theproof pro
eeds by 
ase analysis similarly to the previous example.In order to obtain the 
onverse of Theorem 19, we will extend the lambda
al
ulus with two new symbols and four new rules.3.1 SyntaxAsso
iated with the pure lambda 
al
ulus � and its extensions �?;�1? wede�ne the extensions �OA;�?OA and �1?OA with the 
onstants ?;O and A.First we introdu
e the syntax of these sets and then the redu
tion rules.De�nition 20 (i) The extension �OA of � with the 
onstants O;A is de�nedby the indu
tive grammar:V :=ind P j (OV ) j (AV ) j (�xV ) j (V P ); where P 2 � is 
losedX :=ind M j V; where M 2 �:(ii) The extension �?OA of �OA with partial terms is de�ned by the indu
tivegrammar:V :=ind P j (OV ) j (AV ) j (�xV ) j (V P ); where P 2 �? is 
losedX :=ind M j V; where M 2 �?:(iii) The in�nitary extension �1?OA of �OA is de�ned by the indu
tive gram-mar:V :=ind P j (OV ) j (AV ) j (�xV ) j (V P ); where P 2 �1? is 
losedX :=ind M j V; where M 2 �1? :17



These extensions with two new 
onstants O and A are rather minimal sin
ethe syntax de�nition implies the following 
onditions:{ a term 
an 
ontain only �nitely many o

urren
es of O and A,{ O and A themselves are not terms,{ O and A 
an only be applied to 
losed terms and{ O and A 
an o

ur in the argument of an appli
ation only if the operator isO or A.For example, �x:O(AI) 2 �?OA but I(AI) 62 �?OA.3.2 Rewrite RulesWe introdu
e now the redu
tion relations of the various 
al
uli in a 
on
iseform. We will use some standard notational 
onventions. Let �0 be some ex-tension of the set �.De�nition 21 Let !1 and !2 be redu
tion relations on �0.(i) The redu
tion relation !12 is de�ned as the union of the redu
tion !1with !2.(ii) The redu
tion relation !=1 is the re
exive 
losure of !1.(iii) The redu
tion relation !�1 is the re
exive and transitive 
losure of !1.In what follows, we need the notions of �-zero, �-rootstable and �-roota
tiveterm given in De�nition 9. We now introdu
e the notion of OA-uniform termthat will be used in De�nition 24 . The idea behind this notion is that the
onstants O and A applied to 
ertain terms 
alled OA-uniform will behave like\
onstant fun
tions".De�nition 22 Let �1? � �0 � �. We say that a term in �0 is OA-uniform ifit is either an abstra
tion or a �-roota
tive term.Proposition 23 Let �1? � �0 � � and M a 
losed term in �0. Then M !��N where N is either a OA-uniform term or a �-rootstable appli
ation.PROOF. A 
losed term either �-redu
es to an abstra
tion, to a �-roota
tiveterm, or to PQ where P is a 
losed �-zero term.Now we introdu
e the redu
tion rules for the 
onstants O and A that willallow us to dis
riminate terms using the B�ohm-out te
hnique. If a 
losed termis a �-rootstable appli
ation then the 
onstant O sele
ts the operator of the18



appli
ation and A sele
ts the argument. On the other hand, if the 
losed termis OA-uniform the 
onstants O and A behave as \
onstants fun
tions".De�nition 24 Let �0 � �OA and M;N be 
losed terms of �0 that do not
ontain O or A.(i) We de�ne the redu
tion relations !OA on �0 as the smallest binary rela-tion that is 
losed under 
ontexts and 
ontains the following rules:M is �-zero (O-sele
tion)O(MN)!M M is �-zero (A-sele
tion)A(MN) ! NM is OA-uniform (O-
onstant)OM ! I M is OA-uniform (A-
onstant)AM ! I(ii) An OA-redex is a term in �0 of the form OM or AM where M is any
losed term in �0 that does not 
ontain O or A.In (Dezani-Cian
aglini et al., 2000), the 
onstants O and A only performedrespe
tively the sele
tion of the operator and of the argument of an appli-
ation by rules O-sele
tion and A-sele
tion. By adding the rules O-
onstantand A-
onstant, terms having di�erent Berardu

i tree in (Dezani-Cian
agliniet al., 2000) are equated by redu
tion. For example, the terms O(A
) andO(O
) were di�erent normal forms in (Dezani-Cian
aglini et al., 2000) andnow they both OA-redu
e to I.Example 25 Let �0 � �?. The fa
t that ? is a 
losed �-zero term impliesthat:(i) O(?M1 : : :MnN)!OA ?M1 : : :Mn(ii) A(?M1 : : :MnN)!OA Nfor all M1; : : : ;Mn; N 
losed �-terms of �0 (n � 0).It is easy to show that the redu
tion !�OA eliminates all o

urren
es of the
onstants O and A.Lemma 26 Let X 2 �1?OA. Then there is M 2 �1? su
h that X !��OA M .PROOF. The proof by indu
tion on the de�nition of �1?OA using Proposi-tion 23 is easy.We generalize the notions of �-zero, �-rootstable and �-roota
tive term givenin De�nition 9. We say that a �OA-redex is either a �-redex or an OA-redex.19



De�nition 27 Let �0 � �OA and � be � or �OA.(i) We say that a term in �0 is �-zero if it 
annot �-redu
e to an abstra
tion.(ii) We say that a term X 2 �0 is �-rootstable if X[
=?℄ 
annot �-redu
e toa �-redex.(iii) We say that a term X 2 �0 is �-roota
tive if all the redu
ts of X[
=?℄
an �-redu
e to �-redexes.Noti
e that a term is �-roota
tive if and only if it 
an not �-redu
e to a�-rootstable term.A short notation for the set of terms in �OA;�1?OA whi
h are �OA-roota
tivewill be handy.De�nition 28 (i) ROA is the set of of terms in �OA whi
h are �OA-roota
tive.(ii) R1?OA is the set of of terms in �1?OA whi
h are �OA-roota
tive.We 
an 
hara
terize the set of rootstable terms for the extended set �1?OA andthe redu
tion !�OA.Proposition 29 A term X in �1?OA is �OA-rootstable if and only if it hasone of the following shapes:{ a variable,{ an abstra
tion,{ an appli
ation of the form MN with M a �-zero term.We 
an also say that �OA-roota
tivity and �-roota
tivity 
oin
ide in the fol-lowing sense:Lemma 30 (i) If X 2 �1?OA is �OA-roota
tive then there exists a termM 2 �1? su
h that X !��OA M and M is �-roota
tive.(ii) If X 2 �1?OA is �-roota
tive then X 2 �1? .PROOF.(i) It follows from Lemma 26.(ii) If X 62 �1? then X = (�x1 : : : xn:Y )M1 : : :Mk and either O or A o

ur inthe head position of Y . Hen
e either X �-redu
es to an abstra
tion or toan appli
ation whose head is O or A. In both 
ases, X is �-rootstable.The last rule we introdu
e allows us to equate all roota
tive terms.De�nition 31 Let �0 � �?. We de�ne the redu
tion relation !? as thesmallest binary relation on �0 that is 
losed under 
ontexts and 
ontains the20



rule: X 6= ? and X is �-roota
tive (?)X ! ?where X ranges over �0.We will now �rst 
onsider the 
ombinations (!�OA;�OA) and (!�?OA;�?OA),and later (!�?OA;�1?OA).3.3 Con
uen
e of Finite Redu
tions in �OA and �?OAWe use the Hindley-Rosen Lemma (Proposition 3.3.5 of (Barendregt, 1984))to prove that the redu
tion relations !��OA on �OA and !��?OA on �?OA are
on
uent. We need a few auxiliary lemmas.Proposition 32 There is at most one OA-redex in a term belonging to �?OA.Hen
e !OA is trivially 
on
uent.PROOF. By indu
tion on the de�nition of �?OA.Lemma 33 (i) The relation !�� is 
on
uent in �OA.(ii) The relation !��? is 
on
uent in �?OA.PROOF. Be
ause the O and A symbols are not redu
ed they 
an be thoughtof as fresh free variables. More pre
isely:X !� Y if and only ifX[O=x;A=y℄!�Y [O=x;A=y℄ for all X 2 �OA and X !�? Y if and only if X[O=x;A=y℄ !�?Y [O=x;A=y℄ for all X 2 �?OA. Hen
e part (i) follows from the 
on
uen
eproperty for !� in � (see (Barendregt, 1984), Theorem 3.28) and part (ii)follows from the 
on
uen
e property for !�? in �1? (see (Kennaway et al.,1997), (Kennaway et al., 1999)).Lemma 34 (i) The relation !�OA 
ommutes with the relation !�� in �OA:X �
//OA

��

Y1OA
��Y2 =� //Z(ii) The relation !�OA 
ommutes with the relation !��? in �?OA:21



X �?
//OA

��

Y1OA
��Y2 =�? //ZPROOF. We give the proof for !�?OA. The proof for !�OA is similar, justdrop all referen
es to !?. Suppose that C[AM ℄ !OA C[N ℄ and C[AM ℄ !�?X. We distinguish four 
ases depending on the shape of M and whether the!�? redu
tion redu
es a subterm in C[ ℄ or in M .{ A !�? redu
tion step in C[ ℄ 
an 
ause substitutions of variables insideC[ ℄. Sin
e M does not 
ontain free variables, it remains un
hanged. Hen
ethe resulting term will be of the form C 0[AM ℄.C[AM ℄ �?

//OA
��

C 0[AM ℄OA
��C[N ℄ �? //C 0[N ℄{ If M is OA-uniform, a !�? redu
tion step in M does not a�e
t the redexAM , be
ause OA-uniform terms are 
losed under !�?. This gives us thediagram: C[AM ℄ �?

//OA
��

C[AM 0℄OA
��C[I℄ C[I℄{ If M � PN where P is a �-zero term, a !�? redu
tion step in P does nota�e
t the redex A(PN), be
ause �-zero terms are 
losed under !�?. Thisgives us the diagram: C[A(PN)℄ �?

//OA
��

C[A(P 0N)℄OA
��C[N ℄ C[N ℄{ Finally if M � PN where P is a �-zero term, a !�?-redu
tion step in N
ommutes trivially: C[A(PN)℄ �?

//OA
��

C[A(PN 0)℄OA
��C[N ℄ �? //C[N 0℄22



The proof for the 
ases involving O is similar.Theorem 35 (i) The relation !��OA is 
on
uent in �OA.(ii) The relation !��?OA is 
on
uent in �?OA.PROOF. The Hindley-Rosen Lemma (Barendregt, 1984) states that if weknow that two redu
tion relations !�1 and !�2 both are 
on
uent, and that!�1 
ommutes with !�2, then !�12 is 
on
uent. Lemmas 32, 33 and 34 implythese 
onditions both for !�� and !�OA, and for !��? and !�OA.Remark 36 The extended 
al
ulus �OA and the new redu
tion rules were
hosen 
arefully in order to get 
on
uent redu
tion relations. If the O-sele
tionrule 
ould be applied to open �-zero terms, then (�x:O(xI))K would redu
eto bothK and I. If the O-
onstant rule 
ould be applied to open �-zero terms,then (�x:O(xI))
 would redu
e to both I and 
. In both 
ases, we would loose
on
uen
e.
4 Tree Equality implies Observational Equivalen
eThe goal of this se
tion is to prove along similar lines as for �1? (Theorem 19)that Berardu

i tree equality in �1?OA implies observational equivalen
e in�1?OA.Our �rst step is to de�ne !!�?OA-redu
tions for �1?OA and show that theseredu
tions are in�nitary 
on
uent. Be
ause terms in �1?OA 
ontain at mosta �nite number of symbols O and A we 
an base the proof on the in�nitary
on
uen
e of �1? via a few straightforward lemmas.De�nition 37 The relation !!�?OA is de�ned as (!!�? [ !OA)�.In order to avoid unne
essarily heavy notation we did not de�ne !!�?OA asa strongly 
onverging redu
tion of arbitrary ordinal length, as 
ustomary inin�nitary lambda 
al
ulus (Berardu

i, 1996), (Kennaway et al., 1997), (Ken-naway and de Vries, 2000). However, the reader may 
he
k that there is noloss of generality: any su
h arbitrary redu
tion would 
ontain at most �nitelymany A;O-redu
tion steps, and the �?-redu
tion sequen
es in between 
anbe 
ompressed to �?-redu
tions of length at most !.23



4.1 Con
uen
e of Strongly Convergent Redu
tions in �1?OAWe will prove 
on
uen
e of strongly 
onvergent redu
tions in �1?OA along thesame lines as we proved 
on
uen
e of �nite redu
tions in �?OA.Lemma 38 (i) There is at most one OA-redex in a term belonging to �1?OA.(ii) The relation !�OA 
ommutes with the relation !!�?.PROOF.(i) By indu
tion on �1?OA.(ii) Similar to the �nite 
ase 
onsidered in Lemma 34. After 
onstru
tion ofthe four base 
ases the proof pro
eeds now by indu
tion on the ordi-nal length of !!�?. The only interesting 
ase is the limit ordinal !: we
onstru
t C[AM ℄ �?
//OA

��

C1[AM1℄OA
��

�?
//C2[AM2℄OA

��

C![AM!℄OA
��C[N ℄ �? //C1[N1℄ �? //C2[N2℄ C![N!℄Observe that the depth of the o

urren
es of A in the terms on the toprow be
omes �xed after a while. If that were not the 
ase, then by thestrongly 
onvergen
e property there would be no A present in the limit.Now it is routine to verify that the redu
tion in the bottom row inheritsthe strongly 
onvergen
e property of the redu
tion in the top row.Theorem 39 The relation !!�?OA is 
on
uent in �1?OA:X �?OA

// //�?OA
��
��

Y1�?OA
��
��Y2 �?OA// //ZPROOF. Similar to the proof of Theorem 35 using the Hindley-Rosen Lemma,Theorem 11(iii) and Lemma 38. Noti
e that !!�?OA is by de�nition (!!�?[ !OA)�.We have now the tools to 
on
lude the unique normal form property for �1?OAfrom the unique normal form property for �1? .Corollary 40 For ea
h term in �1?OA there is a unique normal form N su
hthat M !!�?OA N . 24



PROOF. Normalization follows from Lemma 26 and normalization of !!�?in �1? (Theorem 11(iii)). Uni
ity follows from Theorem 39.4.2 From Tree Equivalen
e to Observational Equivalen
eWe have now all the ma
hinery to pull the rabbit out of the hat. First we willextend the de�nition of Berardu

i tree from terms in �1? to terms in �1?OA.We will show the 
orresponden
e with the unique normal forms. We will 
on-
lude with a proof that Berardu

i tree equality in �1?OA implies observationalequivalen
e in �1?OA.De�nition 41 The Berardu

i tree BeT : �1?OA ! �1? is de�ned by 
ore
ur-sion on �1?OA as follows:(i) if X !��OA x then BeT (X) = x;(ii) if X !��OA �x:M then BeT (X) = �xBeT (M);(iii) if X !��OA MN and M is a �OA-zero term thenBeT (X) = �BeT (M) sssss BeT (N)KKKKK ;(iv) otherwise (exa
tly when X is �OA-roota
tive), BeT (X) = ?.Note that this de�nition does not need to 
onsider 
lauses for O;A be
ause of
on
uen
e of !�OA and Lemma 26.Theorem 42 Let X 2 �1?OA.(i) BeT (X) is in normal form;(ii) X !!�?OA BeT (X);(iii) BeT (X) is the unique normal form of X.PROOF.(i) Suppose that BeT (X) is not in normal form. Then a subtree of BeT (X)
ontains a �-redex of the form BeT (M)BeT (N). But M is a �OA-zeroterm. A 
ontradi
tion.(ii) We 
onsider the strongly 
onvergent redu
tion sequen
e obtained by thedepth-�rst outermost strategy 12 . The limit of this sequen
e satis�es the12 The depth-�rst outermost strategy redu
es at ea
h step the leftmost redex withminimal depth. Noti
e that this strategy applied to XY , where X is a �OA-zeroterm and it has an in�nite normal form and Y 
an be redu
ed, does always redu
e25




onditions of the de�nition of BeT (X). By the 
oindu
tion prin
iple, thislimit is BeT (X).(iii) It follows from the previous parts and Corollary 40.Corollary 43 For all terms X 2 �1?OA and 
ontext C[ ℄ 2 �1?OA it holds thatBeT (C[BeT (X)℄) = BeT (C[X℄).PROOF. Theorem 42(iii) gives the following diagram:C[X℄ �?OA
// //�?OA

��
��

C[BeT (X)℄�?OA
��
��BeT (C[X℄) BeT (C[BeT (X)℄)Finally we 
an prove that Berardu

i tree equality in �OA and �1?OA impliesobservational equivalen
e respe
tively in �OA and �1?OA.Theorem 44 (i) For all X; Y 2 �OA, BeT (X) = BeT (Y ) implies8C[ ℄ 2 �OA: C[M ℄ 2 ROA , C[N ℄ 2 ROA:(ii) For all X; Y 2 �1?OA, BeT (X) = BeT (Y ) implies8C[ ℄ 2 �1?OA: C[X℄ 2 R1?OA , C[Y ℄ 2 R1?OA:PROOF. We prove (ii) sin
e (i) is a parti
ular 
ase of (ii). Let X; Y be termsin �1?OA. Suppose BeT (X) = BeT (Y ). Let C[ ℄ be a 
ontext in �1?OA. Usingthe previous 
orollary we get:BeT (C[X℄) = BeT (C[BeT (X)℄)= BeT (C[BeT (Y )℄)= BeT (C[Y ℄):Suppose C[X℄ 2 R1?OA. Then BeT (C[X℄) = ?. Hen
e also BeT (C[Y ℄) = ?.And so we �nd that C[Y ℄ 2 R1?OA. We 
on
lude that X and Y are observa-tionally equivalent.Y after a �nite number of steps. This is be
ause if n is the minimal depth of redexesin Y , there is always an integer m su
h that if the depth-�rst outermost strategyapplied to X after m redu
tion steps gives X 0, then the minimal depth of redexesin X 0 is greater than n. 26



Remark 45 Theorem 44 
annot be proved using approximants as for B�ohm(Dezani-Cian
aglini et al., 1998b) or L�evy-Longo trees (Boudol and Laneve,1996). This is be
ause appli
ation is not 
ontinuous with respe
t to the Be-rardu

i tree topology (see also (Berardu

i and Dezani-Cian
aglini, 1999)).For example, take the 
ontext C[ ℄ = [ ℄I and the dire
ted set X = f?; �x:?g.Clearly,? = C[FX℄ 6= FC[X℄ = ?I. Appli
ation is, a fortiori, not monotoni
.E.g. ? < �x:?, but C[?℄ = ?I = ? = C[�x:?℄.5 Observational Equivalen
e implies Tree EqualityIn this se
tion we will prove that observational equivalen
e of terms in �1?OAwith respe
t to the extended 
al
uli �OA implies equality of Berardu

i trees.The proof will be a variant of the B�ohm out te
hnique (Barendregt, 1984)de�ned for B�ohm trees.Some terminology �rst. The label at the root of a tree T is denoted by root(T )and de�ned by 
ases:root(x) = x, root��xT � = �x, root� �T1 ��� T2===

� = �, and root(?) = ?.Like in De�nition 10.4.6 of (Barendregt, 1984) we will say that an o

urren
eis useful to dis
riminate between two Berardu

i trees if the labeled nodes inall proper pre�xes of the o

urren
e are identi
al, while the labeled nodes atthe end of the o

urren
e are di�erent.De�nition 46 An o

urren
e u is useful for two trees T; T 0 if root(T jv) =root(T 0jv) for all v < u, but root(T ju) 6= root(T 0ju).We will use substitutions that map any variable in �1? to a term in f
;

g.More pre
isely we will 
onsider the substitution �
 de�ned by�
(x) = 
 for all variables xand the substitutions �x
, one for ea
h variable x, de�ned by�x
(y) = 8><>:

 if x = y
 otherwise.Lemma 47 Let M 2 �1? be a �-zero term and let � be the substitution �
or �x
 for some �xed x. Then the substitution instan
e M� is a 
losed �-zeroterm. 27



PROOF. By de�nition of �, M� is a 
losed term. Suppose towards a 
on-tradi
tion that M� �-redu
es to an abstra
tion. Then either M �-redu
es toan abstra
tion or to a term of the shape yN1 : : : Nn for some variable y. Byhypothesis M is a �-zero term and so it 
annot �-redu
e to an abstra
tion.Hen
e M �-redu
es to yN1 : : : Nn. This implies M� �-redu
es to 
N�1 : : : N�nor to 

N�1 : : : N�n , whi
h are both 
losed �-zero terms.Theorem 48 (i) For all X; Y 2 �OA it holds that8C[ ℄ 2 �OA C[X℄ 2 ROA , C[Y ℄ 2 ROA ) BeT (X) = BeT (Y ):(ii) For all X; Y 2 �1?OA it holds that8C[ ℄ 2 �1?OA C[X℄ 2 R1?OA , C[Y ℄ 2 R1?OA ) BeT (X) = BeT (Y ):PROOF. The proof of (i) and (ii) is essentially the same, sin
e we 
onsideronly the Berardu

i trees of X and Y whi
h in both 
ases belong to �1? . Sowe only show (i). The proof will be by 
ontraposition.Let X; Y be terms in �OA su
h that BeT (X) 6= BeT (Y ). Then there existsan o

urren
e u that is useful for BeT (X) and BeT (Y ). Depending on whatlabel we see at the root of BeT (X)ju and BeT (Y )ju, we de�ne a substitution� as follows:{ If BeT (X)ju = x and BeT (Y )ju = y, let � be �x
.{ If BeT (X)ju = x and BeT (Y )ju = ? or 
onversely, let � be �x
.{ In all other 
ases let � be �
.By indu
tion on the length of u we will de�ne a 
ontext C[ ℄ 2 �OA that 
andis
riminate X and Y with respe
t to � in the sense that either C[X�℄ 2 ROAand C[Y �℄ 62 ROA, or vi
e versa.Base 
ase: u = hi.{ If BeT (X) or BeT (Y ) is a leaf, then we 
hoose C[ ℄ = [ ℄ as 
ontext todis
riminate X and Y with respe
t to �.We have four sub-
ases:� if BeT (X) = x and BeT (Y ) = y then X� !��OA 

 and Y � !��OA 
;� if BeT (X) = x and BeT (Y ) = ? (or vi
e versa) thenX� !��OA 

 62 ROAand Y � 2 ROA (or vi
e versa);� if BeT (X) is not a leaf and BeT (Y ) = x (or vi
e versa) then X� 62 ROAand Y � !��OA 
 2 ROA (or vi
e versa);� if BeT (X) is not a leaf and BeT (Y ) = ? (or vi
e versa) then X� 62 ROAand Y � 2 ROA (or vi
e versa). 28



{ If BeT (X) = �BeT (M1) rrrrrr BeT (M2)LLLLLL 13 with X !��OA M1M2and BeT (Y ) = �xBeT (N1) with X !��OA �x:N1 (or vi
e versa),then we 
hoose C[ ℄ = O[ ℄
.By the shape of BeT (X) it follows that M1 is a �-zero term. Hen
e M�1 is a
losed �-zero term by Lemma 47. >From this fa
t and be
ause C[X�℄!��OAO(M�1M�2 )
 !OA M�1 
, we �nd that is C[X�℄ is �OA-rootstable. On theother hand we �nd that C[Y �℄ is �OA-roota
tive, be
ause C[Y �℄ !��OAO(�x:N1)�
!OA I
!� 
.Indu
tion step: u = i � v.{ Suppose BeT (X) = �BeT (M1) rrrrrr BeT (M2)LLLLLL with X !��OA M1M2and BeT (Y ) = �BeT (N1) sssss BeT (N2)KKKKK with Y !��OA N1N2.We have two sub-
ases:� If i = 1 then by the indu
tion hypothesis we have a 
ontext C 0[ ℄ that dis-
riminates M1, N1 with respe
t to �. Then we de�ne C[ ℄ = C 0[O[ ℄℄. Asin the base 
ase we get that M�1 is a 
losed �-zero term. Now 
learlyC[X�℄ !��OA C 0[O(M�1M�2 )℄ !OA C 0[M�1 ℄ and similarly C[Y �℄ !��OAC 0[O(N�1N�2 )℄ !OA C 0[N�1 ℄. Hen
e by indu
tion C[ ℄ dis
riminates X andY with respe
t to �.� If on the other hand i = 2, then by the indu
tion hypothesis there is a
ontext C 0[ ℄ that dis
riminates M2 and N2 with respe
t to �. We now
hoose C[ ℄ = C 0[A[ ℄℄ to dis
riminateX and Y with respe
t to �. The proofpro
eeds as before. Again M1 is a �-zero term, and M�1 is a 
losed �-zeroterm. So we 
an 
al
ulate that C[X�℄ !��OA C 0[A(M�1M�2 )℄ !OA C 0[M�2 ℄and similarly we see that C[Y �℄ !��OA C 0[A(N�1N�2 )℄ !OA C 0[N�2 ℄. Hen
eby indu
tion C[ ℄ dis
riminates X and Y with respe
t to �.{ Suppose BeT (X) = �xBeT (M1) with X !��OA �x:M1
13 Noti
e that BeT (X) = �BeT (M1) rrrrr BeT (M2)LLLLL does not imply X !��OAM1M2, sin
e, for example, BeT (I(

)) = �BeT (I
) sssss BeT (I
)KKKKK = �? ��� ?<<< .29



�? ��� x:::

�� ���� �xAAAA�x>>> xx
�� ���� �xAAAA�x>>> �y�y xx

�� yyyyy ?EEEEEx ��� �EEEEE� yyyyy �EEEEEx ��� ? ?EEEE
yyyy x:::Fig. 3. Berardu

i trees of 
x;
I, 
K, and x(x
(
x))
.and BeT (Y ) = �xBeT (N1) with Y !��OA �x:N1.Then i = 0. Let C 0[ ℄ be the 
ontext that by indu
tion hypothesis dis-
riminates M1 and N1. We now 
hoose C[ ℄ = C 0[[ ℄�(x)℄. We observethat C[X�℄ !��OA C 0[(�x:M1)��(x)℄ !� C 0[M�1 ℄ and similarly we see thatC[Y �℄ !��OA C 0[(�x:N1)��(x)℄ !� C 0[N�1 ℄. Hen
e, by indu
tion, C[ ℄ dis-
riminates X and Y with respe
t to �.Re
apitulating, given the two terms X; Y in �OA and an o

urren
e u that isuseful to dis
riminate their Berardu

i trees, we have 
onstru
ted a 
ontextC 0[ ℄ together with a substitution � able to dis
riminate X and Y . To �nisho� the proof we will now build a 
ontext from these two ingredients that 
andis
riminate X and Y :C[ ℄ = C 0[(�x1:::xn:[ ℄)�(x1) : : : �(xn)℄;where x1; : : : xn is the set of free variables in X and Y .Sin
e (�x1:::xn:X)�(x1) : : : �(xn) and (�x1:::xn:Y )�(x1) : : : �(xn) are 
losed,we note that C[X℄ and C[Y ℄ belong to �OA. Now, be
auseC[X℄ = C 0[(�x1:::xn:X)�(x1) : : : �(xn)℄!��OA C 0[X�℄and similarly C[Y ℄!��OA C 0[Y �℄ and by 
onstru
tion C 0[ ℄ dis
riminates X; Ywith respe
t to �, we get that C[X℄ is �OA-roota
tive and C[Y ℄ is not, or vi
eversa.Example 49 The Berardu

i trees of some terms 
onsidered in this exampleare shown in Figure 3.(i) When M = 
, N = 

 and u = hi the above pro
edure gives us theempty 
ontext as a dis
riminating 
ontext for M and N .(ii) If M = 
, N = 
x, and u = hi, then we �nd that C[ ℄ = (�x:[ ℄)
dis
riminates M and N . 30



(iii) For M = 
x, N = 
y and u = 2 we �nd that C[ ℄ = A((�xy:[ ℄)(

)
)is a dis
riminating 
ontext.(iv) Let M = 
I, N = 
K, and u = 2 � 0. The dis
riminating 
ontext weobtain is C[ ℄ = A[ ℄
.(v) In 
ase of M = x(x
(
x))
, N = y(y
(
y))
, and u = 1 � 2 � 2 � 2, adis
riminating 
ontext is C[ ℄ = A(A(A(O((�xy:[ ℄)(

)
)))).This last 
ase shows the power of the 
onstants O;A. One problem in 
on-stru
ting su
h dis
riminating 
ontexts is that di�erent o

urren
es of the samevariable may have to be used to sele
t di�erent arguments. This problem wassolved in the original algorithm of B�ohm by using suitable 
ombinators whi
hequate �-
onvertible terms (see Se
tion 10.4 of (Barendregt, 1984)) and in(Sangiorgi, 1994), (Dezani-Cian
aglini et al., 1999), (Dezani-Cian
aglini et al.,1998b) by allowing a non-deterministi
 
hoi
e operator. In all these 
ases thetri
k is to repla
e di�erent o

urren
es of the same variable by di�erent terms.Instead, in the above algorithm for Berardu

i trees the sele
tion is performedby the two 
onstants O and A while the variables always get substituted by 
or 

.By Theorems 48 and 44, Berardu

i tree equality of terms (possibly non-pureand/or in�nite) 
oin
ides with observational equivalen
e. So the Berardu

itrees build a fully abstra
t model of the (in�nitary) lambda 
al
ulus extendedwith the 
onstants O and A.6 Con
lusionsIn (Sangiorgi, 1994) Sangiorgi proves that by adding well-formed operatorsto pure lambda 
al
ulus we 
annot dis
riminate more than L�evy-Longo treesdo. As a matter of fa
t, our operators O;A are not well-formed a

ordingto the Groote-Vaandrager format allowed in (Sangiorgi, 1994). The reason isthat this format does not allow a premise asking for a term to be a 
losed�-zero term. In this respe
t our development 
ompletely agrees with that ofSangiorgi.Looking ba
k at the present work and the related papers (Dezani-Cian
agliniet al., 1998b) and (Dezani-Cian
aglini et al., 1999) that de�ne extensions ofpure lambda 
al
ulus that 
an internally dis
riminate as respe
tively B�ohmtrees and L�evy-Longo trees do, then one 
an wonder to what extent the 
hosendis
riminating extensions a
tually depend on the nature of the problems dealtwith. For instan
e it is not 
lear whether there are extensions of lambda 
al
u-lus 
ompletely di�erent from the present one and whi
h internally dis
riminateas Berardu

i trees do: we are tempted to 
onje
ture that the extension withO;A is minimal in the sense that any other extension with the same dis
rimi-31



natory power 
ontains translations of O;A and their rewrite rules.A
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