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Abstract. We show the existence of an infinitary confluent and nor-
malising extension of the finite extensional lambda calculus with beta
and eta. Besides infinite beta reductions also infinite eta reductions are
possible in this extension, and terms without head normal form can be
reduced to bottom. As corollaries we obtain a simple, syntax based con-
struction of an extensional Böhm model of the finite lambda calculus;
and a simple, syntax based proof that two lambda terms have the same
semantics in this model if and only if they have the same eta-Böhm tree if
and only if they are observationally equivalent wrt to beta normal forms.

The confluence proof reduces confluence of beta, bottom and eta via
infinitary commutation and postponement arguments to confluence of
beta and bottom and confluence of eta.

We give counterexamples against confluence of similar extensions based
on the identification of the terms without weak head normal form and
the terms without top normal form (rootactive terms) respectively.

1 Introduction

In this paper we present a confluent infinitary extension λh∞
β⊥η of the exten-

sional lambda calculus λβη. In earlier work confluent infinitary extensions of the
lambda calculus λβ without the eta rule have been studied. Typically, conflu-
ence of such infinitary extensions cannot be obtained unless we add a form of
bottom rule that identifies computationally insignificant terms with some added
symbol ⊥. Different choices of computationally insignificant terms may lead to
different confluent and normalising extensions. The main three choices, the set
of terms without head normal form, the set of terms without weak head normal
form and the set of terms without top normal form (rootactive terms) result in
three different confluent and normalising calculi in which the normal forms are
respectively known as Böhm trees, Lévy-Longo trees and Berarducci trees.
In contrast, here for extensional lambda calculus we have no choice: only identi-
fication of all terms without head normal form with ⊥ results in the confluent,
normalising calculus λh∞

β⊥η. The normal forms of this calculus are known as eta-
Böhm trees [2]. As corollaries of confluence and normalisation we obtain a simple,
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syntax based, construction of an extensional Böhm modelBη of the finite lambda
calculus; plus a new and simple syntax based proof that two lambda terms have
the same semantics in this model if and only if they have the same eta-Böhm
tree if and only if they are observationally equivalent wrt to beta normal forms.
Hence this extensional Böhm model Bη equates more terms than Barendregt’s
Böhm model B in [3]). It induces the same equality relation as Park’s model
D∗∞ of [16, 6, 17].
The eta rule has not been considered before in infinitary lambda calculus mainly
because of a counterexample [12, 11] showing that arbitrary transfinite βη-
reductions can not be compressed into reductions of at most ω length, as in the
case without eta, since infinite β-reduction can create an eta redex.1 The conflu-
ence proof in [12] heavily depended on compression. The recent approach of [11]
uses transfinite induction and postponement of ⊥-reduction over β-reduction.
In this paper we will follow the postponement proof technique. Roughly speak-
ing we will show that any transfinite mixed β⊥η-reduction factors into a β⊥-
reduction followed by an η-reduction. Confluence of β⊥η-reduction then follows
from confluence of β⊥-reduction, commutation of β-reduction and ⊥-reduction
with η-reduction, and confluence of η-reduction. The commutation of η-reduction
and ⊥-reduction requires care: in general only outermost (or maximal [3]) ⊥-
reduction commutes with η-reduction, which can be easily overlooked, already
in finite lambda calculus.
The calculus λh∞

β⊥η is normalising: given a term one first reduces it via a leftmost
outermost β⊥-reduction to its Böhm tree, and then via a leftmost outermost η-
reduction to its eta-Böhm tree. This two step process cannot really be improved
upon. We will show that at most ω+ω steps are needed to compute the eta-Böhm
tree of a lambda term. Using the notation of the counterexample in the footnote
against ω-compression, the term z(λx.Ex)(λx.Ex)(λx.Ex) . . . is an example of
a term that needs at least ω+ω steps to reduce to its eta-Böhm tree zyωyωyω . . . .
This contrasts with the three infinitary extensions of λβ , where the reduction to
normal form needs at most ω steps.

2 Infinite Lambda Calculus

Infinite lambda calculus houses besides the usual finite terms and reductions
also infinite terms and infinite, converging reduction. It incorporates in a natural
way the open-ended view on computation that, as the computation of a program
proceeds, more and more information is read from the input, and more and more
of the output is produced.
We will now recall some notions and facts of infinite lambda calculus presented
in [12, 11]. We assume familiarity with basic notions and notations from [3].

1 Consider a term E with the property that Ex →∗β y(Ex) (e.g. the term E =
Ωλzw.y(zw) in the notation of Definition 1) and the term yω = y(y(y(. . . ))). Then
λx.Ex →∗β λx.(y(Ex))x →∗β λx.y(y(Ex))x →→ω

β λx.yωx →η yω. This example is
related to the example of 10.1.22 in [3].



Let Λ⊥ be the set of finite λ-terms given by the inductive grammar:

M ::= ⊥ | x |MM | λx.M

Let u be any finite sequence of 0, 1 and 2’s. The subterm M |u of a term M ∈ Λ⊥
at occurrence u (if there is one) is defined by induction as usual:

M |〈〉 = M (λx.M)|0u = M |u (MN)|1u = M |u (MN)|2u = N |u

We will define three length related measures for occurrences: lengthh(u) is the
number of 2’s in u, lengthw(u) is the number of 0’s and 2’s in u and finally
lengtht(u) is the number of 0’s, 1’s and 2’s in u. The depth at which a subterm
N in M occurs can now be measured by the length of the occurrence u of N
in M . This leads to three different metrics dx on Λ⊥ for x ∈ {h,w, t}: x-metric
dx(M,N) = 0, if M = N and dx(M,N) = 2−lengthx(u), where u is a common
occurrence of minimal length such that M |u 6= N |u. Now in the spirit of Arnold
and Nivat [1] we define the sets Λh∞

⊥ , Λw∞
⊥ and Λt∞

⊥ as the metric completions
of the set of finite lambda terms Λ⊥ over the respective metrics dh, dw and dt.
The indices h, w and t stand for head normal form, weak head normal form and
top normal form respectively.
It may be illustrative to draw pictures and to think of terms as trees: draw the
edges corresponding to the counted occurrences vertically and all other edges
horizontally. Then trees in the three metric completions don’t have infinite hor-
izontal branches. In case of Λh∞

⊥ this implies, when paths of branches are coded
by sequences of 0, 1 and 2’s, that its trees are characterised by the fact that their
branches don’t have infinite “tails” consisting of 0 and 1’s only.

Definition 1. Some abbreviations for useful finite and infinite λ-terms:

I = λx.x K∞ = λx.λx. . . . Ω = (λx.xx)λx.xx
1 = λxy.xy Mω = M(M(M . . . )) ΩM = (λx.M(xx))λx.M(xx)
K = λxy.x ωM = ((. . .M)M)M Ωη = λx0.(λx1.(. . . )x1)x0

The inclusions Λh∞
⊥ ⊂ Λw∞

⊥ ⊂ Λt∞
⊥ are strict. For instance, xω ∈ Λh∞

⊥ , K∞ ∈
Λw∞
⊥ − Λh∞

⊥ and ωx ∈ Λt∞
⊥ − Λw∞

⊥ . As shown in [12, 11] the sets Λh∞
⊥ , Λw∞

⊥ and
Λt∞
⊥ are the three minimal infinitary extensions of the finite lambda calculus λβ

containing respectively the Böhm trees, Lévy-Longo trees and the Berarducci
trees and each closed under its respective notion of convergent reduction to be
defined next. The set Λh∞

⊥ will function as the underlying set of finite and infinite
lambda terms for our extensional infinitary extension λh∞

β⊥η.
Many notions of finite lambda calculus apply and/or extend more or less straight-
forwardly to the infinitary setting. The main idea which goes back to Dershowitz
e.a. in [8] is that reduction sequences can be of any transfinite ordinal length α:

M0 →M1 →M2 → . . .Mω →Mω+1 → . . .Mω+ω →Mω+ω+1 → . . .Mα

This makes sense if the limit terms Mω,Mω+ω, . . . in such sequence are all
equal to the corresponding Cauchy limits limβ→λMβ in the underlying metric



space for any limit ordinal λ ≤ α. If this is the case, the reduction M0 →α Mα is
called Cauchy converging. We need the stronger concept of a strongly converging
reduction that in addition satisfies that the depth of the reduced redexes goes
to infinity at each limit term: limβ→λ dβ = ∞ for each limit ordinal λ ≤ α,
where dβ is the depth in Mβ of the reduced redex in Mβ → Mβ+1. We will
denote strongly converging reduction by →→. Any finite reduction M0 →∗ Mn is
strongly converging.
Finally we have to introduce the basic reduction relations of λh∞

β⊥η. Besides the
familiar beta and eta rules it contains one of the bottom rules ⊥h (or ⊥ for
short). We define three bottom rules ⊥x where x ∈ {h,w, t} as follows:

M → ⊥, provided M [⊥ := Ω] ∈ Ux (⊥x)

We usually omit the subscript x and we write ⊥ instead of ⊥x. Outermost bottom
reduction, denoted as→⊥out , is the restriction of bottom reduction to outermost
redexes. The sets Ux are sets of ⊥-free finite and infinite lambda terms and
defined as follows:

1. The (for this paper most important) set Uh is the set of ⊥-free terms in Λh∞
⊥

that don’t have (a finite β-reduction to) a head normal form, where a term
is a head normal form if it is of the form λx1 . . . λxn.yM1 . . .Mm.

2. The set Uw is the set of ⊥-free terms in Λw∞
⊥ that don’t have (a finite β-

reduction to) a weak head normal form, where a term is a weak head normal
form if it is either a term of the form yM1 . . .Mn or an abstraction λx.M .

3. The set Ut is the set of ⊥-free terms in Λt∞
⊥ that don’t have (a finite β-

reduction to) a top normal form (rootstable form), where a term is a top
normal form, if it is either an abstraction λx.M , or, an application MN
where M cannot β-reduces (in a finite number of steps) to an abstraction.

Some examples: The term Ω does not have a top normal form and therefore
belongs to all three sets. The term Ωx is a top normal form but has no (weak)
head normal form. The term λx.Ω is a weak head normal form, but has no head
normal form. Hence all inclusions in Uh ⊃ Uw ⊃ Ut are strict.
The extensional infinite lambda calculus that is the main object of study in
this paper is the calculus λh∞

β⊥η = (Λh∞
⊥ ,→β⊥η). We will also briefly mention

λx∞
β⊥η = (Λ∞x ,→β⊥η) for x ∈ {w, t}. For any of these infinite lambda calculi λx∞

ρ

we say that

– a term M in λx∞
ρ is in ρ-normal form if there is no N in λx∞

ρ such that
M →ρ N .

– λx∞
ρ is infinitary confluent (or just confluent for short) if (Λ∞x ,→→ρ) satisfies

the diamond property, i.e. ρ←← ◦ →→ρ ⊆ →→ρ ◦ ρ←←.
– λx∞

ρ is (weakly) normalising if for all M ∈ Λ∞x there exists an N in ρ-normal
form such that M →→ρ N .

– Let α be an ordinal. We say that λx∞
ρ is α-compressible if for all M,N such

that M →→ρ N there exists a reduction from M to N of length at most α.



Without the bottom rule there is no chance of proving confluence. Berarducci’s
counterexample [5] is very short: Ω ∗β← ΩI →→β I

ω.
Crucial properties of those three infinite lambda calculi λh∞

β⊥ , λw∞
β⊥ and λt∞

β⊥ are:

Theorem 1. Confluence, normalisation and compression of β⊥ [12, 11].
The infinite lambda calculi λh∞

β⊥ , λw∞
β⊥ and λt∞

β⊥ are confluent, normalising and
ω-compressible.

Theorem 2. Postponement of β over ⊥ [11]. If M →→β⊥ N then there exists
Q such that M →→β Q→→⊥ N .

3 Two non-confluent extensional infinite lambda calculi

Before we give the proof of confluence of λh∞
β⊥η we will show that the two related

extensional infinite lambda calculi λw∞
β⊥η and λt∞

β⊥η are not confluent. In fact what
we note is that already the finite calculi λw

β⊥η and λt
β⊥η are not confluent for

finite reductions.
For this we use the term Ωη ∈ Λw∞

⊥ ⊂ Λt∞
⊥ . Similar to Ω which β-reduces to

itself in only one step, this term η-reduces to itself in only one step. The body
of the outermost abstraction in Ωη has no weak (top) normal form. The span
⊥ ⊥← ΩI η← Ω1 →→β Ωη →⊥ λx.⊥ can only be joined if λx.⊥ →⊥ ⊥, which
does not hold for the ⊥w-rule and the ⊥t-rule. Hence this is a counterexample
of confluence of both λw∞

β⊥η and λt∞
β⊥η.

Remark also that there is a critical pair between the eta rule and each bottom
rule: λx.⊥ ⊥← λx.⊥x→η ⊥. The reverse step follows from the fact that the term
⊥x[⊥ := Ω] := Ωx has no weak head normal form. This pair can be completed
only if λx.⊥ →⊥ ⊥ which is true for the ⊥h-rule, but not for the ⊥w-rule. This
gives an alternative counterexample against confluence of λw∞

β⊥η.

4 The confluent extensional infinite lambda calculus λh∞
β⊥η

In this section we will prove the confluence and normalisation of λh∞
β⊥η. Thereto

we will first prove some useful properties of the infinitary eta calculus λh∞
η ,

secondly the commutation of eta and beta and the commutation of eta and
outermost bottom, and thirdly postponement of eta over beta and bottom.

4.1 The infinitary eta calculus λh∞
η

The set Λh∞
⊥ has the very pleasant property that any Cauchy-converging η-

reduction sequence in Λh∞
⊥ is h-strongly convergent. This property is not shared

by the other two infinitary extensions Λw∞
⊥ and Λt∞

⊥ . For instance there exists
a Cauchy-converging and non-h-strongly converging η-reduction sequence from
the term Ωη ∈ Λw∞

⊥ ⊂ Λt∞
⊥ .

Definition 2. For M ∈ Λh∞
⊥ define |M |n as the number of nodes at h-depth n.



The number |M |n of nodes of term M at h-depth n decreases if and only if we
contract an η-redex in M at h-depth n. Hence:

Lemma 1. Any Cauchy-converging η-reduction starting from a term in Λh∞
⊥ is

h-strongly convergent.

Proof. Suppose by contradiction that we have some transfinite Cauchy-
converging η-reduction sequence M0 →η M1 →η . . . , that reduces infinitely
often at h-depth n. Then infinitely many of the inequalities in the next sequence
are strict: |M0|n ≥ |M1|n ≥ |M2|n ≥ . . . But infinite strictly decreasing se-
quences of natural numbers don’t exist. Hence the limit of the h-depth of the
contracted redexes in this sequence goes to infinity at each limit ordinal ≤ α.
Therefore any η-reduction sequence starting from a term in Λh∞

⊥ is h-strongly
converging. ut

Lemma 2. The infinitary lambda calculus λh∞
η is ω-compressible.

Proof. Let M →→η N a reduction sequence of length γ. We will prove that there
exists a sequence from M to N of length at most ω. The proof proceeds by
transfinite induction on γ. The argument of the limit case is standard, see [11].
If γ is a successor ordinal, it is sufficient to prove that a sequence of length
ω+1 can be compressed into one of length ω. Without loss of generality, we may
suppose that we have a strongly η-reduction sequence of length ω + 1 from M0

to Mω as in:

M0
∗
η

// λx.Mkx η
//

η

��

λx.Mk+1x η
//

η

��

λx.Mk+2x

η

��

λx.Mωx

η

��

Mk η
// Mk+1 η

// Mk+2 Mω

Then working to the right onwards from λx.Mkx the dotted squares can be all
constructed. This results in a reduction of length ω starting at M0 and after
k + 1 steps continuing as Mk →η Mk+1 →η . . . . The limit of this converging
reduction is clearly Mω. ut

In the following lemma, as well as later for other reduction relations, we indicate
with a superscript that the redex contracted in M

m→η N is at depth m.

Lemma 3. Let M0 be a term in Λh∞
⊥ . If M0

m→η M1 and M0
n→η M2 then one

of the following two cases holds:

M0 η

m //

ηn
��

M1

ηn
��

M2 η

m // M3

M0 η

n //

ηn
��

M1

M2 M3

Proof. Note that the h-depth of an η-redex in a term does not change when we
contract an η-redex elsewhere in the term. ut



Theorem 3. The infinitary lambda calculus λh∞
η is confluent.

Proof. Let two coinitial η-reductions be given. By compression (Lemma 2) we
may assume that their length is at most ω. By simultaneous induction on their
length we show that for any two coinitial η-reductions can be joined with a
so called tiling diagram construction [11] in which all horizontal and vertical
reductions are strongly converging.
Suppose we have two η-reductions of length ω: M0,0 →→η M0,ω and M0,0 →→η

Mω,0. We will not present the whole induction, but comment on the main cases.

The successor-successor case of the induction is in fact the previous lemma.

The successor-limit case: this follows if we can construct the following tiling
diagram in which the notation M

=→η N expresses that in the reduction from
M to N in which at most one reduction step has been performed: at h-depth m.

M0,0 η

n0 //

ηm0

��

M0,1 η

n1 //

ηm0/=

��

M0,2

ηm0/=

��

M0,ω

ηm0/=

��

M1,0 η

n0/=
// M1,1 η

n1/0
// M1,2 M1,ω

By induction hypothesis this diagram can be constructed but for the right most
edge. The bottom reduction inherits the (strong) convergence property from the
top reduction. As we are dealing with η-reduction it is easy to see that there is at
most one residual of the redex contracted in M0,0 →η M1,0 in M0,ω. Contraction
of this set of residuals gives the reduction of the rightmost edge: it will be at
most one step.

The limit-limit case: Using the in-
duction hypothesis we can con-
struct diagrams for pair of coini-
tial sequences of respective lengths
(n,m) where either n < ω and
m ≤ ω, or m < ω and n ≤ ω.
By the general tiling diagram the-
orem in [11] or in this particular
instance simply the uniform nature
of the strong convergence of all ver-
tical and horizontal reductions it
follows that their limits have to be

M0,0 η

n0 //

ηm0

��

M0,1 η

n1 //

ηm0/=

��

M0,2

ηm0/=

��

M0,ω

ηm0/=

��

M1,0 η

n0/=
//

ηm1

��

M1,1 η

n1/0
//

ηm1/=

��

M1,2

ηm1/=

��

M1,ω

ηm1/=

��

M2,0 η

n0/=
// M2,1 η

n1/=
// M2,2 M2,ω

Mω,0 η

n0/=
// Mω,1 η

n1/=
// Mω,2 Mω,ω

the same: Mω,ω. ut

Theorem 4. The infinitary lambda calculus λh∞
η is normalising.

Proof. Let M0 be given. We construct a reduction M0 →η M1 →η M2 . . . recur-
sively: suppose we have Mn then we construct Mn+1 by contracting the leftmost
η-redex of smallest h-depth. This gives us a possibly infinite reduction which by
Lemma 1 can only be strongly converging. Its last term is an η-normal form.



This is trivial in case of a finite reduction; in case of an infinite reduction, there
is a standard reductio ad absurdum argument: Suppose there is a η-redex in the
limit term, then this η-redex was already present at some finite stage in the
reduction and apparently not reduced in the remaining reduction. But the re-
duction strategy is such that no redex can get overlooked. Contradiction. ut

4.2 Commutation

In this section we prove that the reductions →→η commutes with both →→β and
→→⊥. As each of these reduction relations on its own is ω-compressible we can
assume that the length of the reductions is at most ω.

Theorem 5. [Commutation of →→β and →→η]
If M0,0 →→β M0,γ and M0,0 →→η Mδ,0 then there exists Mδ,γ such that M0,γ →→η

Mδ,γ and Mδ,0 →→β Mδ,γ .

Proof. A double induction on the length of the two sequences, respectively γ
and δ. The critical cases in this proof are: (1, 1), (1, ω), (ω, 1) and (ω, ω).

(γ, δ) = (1, 1): This case is a careful analysis of cases based on the relative
positions of the β-redex and the η-redex. Suppose M0 can do both a β-reduction
and an η-reduction at respectively h-depth n and m. The possible situations are:

1. The redexes do not interfere with each other:
(a) The redexes are not nested, i.e. M0,0 = C[(λx.M)N, (λy.Py)].
(b) The β-redex is inside the η-redex, that is M0,0 is of the form

C1[λx.C2[(λy.M)N ]x].
(c) The η-redex is inside the body of the abstraction, that is M0,0 is of the

form C1[(λx.C2[λy.My])N ].
2. The η-redex is inside the argument of the application, that is M0,0 is of the

form C1[(λx.M)C2[λy.Ny]].
3. The β-redex and η-redex overlap, that is M0,0 is either C[(λx.Mx)N ] or
C[λx.(λy.M)x].

These possibilities result in three different diagrams (the labels on the arrows
refer to the h-depth of the contracted redex):

M0,0 η

m //

βn
��

M0,1

βn
��

M1,0 η

n // M1,1

M0,0 η

m //

βn
��

M0,1

βn
��

M1,0 η

≥m−1
// // M1,1

M0,0 η

n //

βn
��

M0,1

M1,0 M1,1

It is important to note that the depth of the eventual residual of β-redex remains
the same after contraction of the η-redex.

(γ, δ) = (1, ω): This case is simple. The construction of the commutation diagram
comes down to an infinite horizontal chain of base case diagrams. Either the β



gets cancelled against one of the η-steps or not. This implies that from a certain
point onwards the vertical edges are equalities or not.

(γ, δ) = (ω, 1): This case is somewhat involved. Using the previous case we con-
struct for any natural number n the horizontal reduction
Mn,0 →→η Mn,1. This way we get the vertical reduction on
the right M1,0 →β M1,1 →β M1,2 →β . . . which is strongly
converging because its reduction steps take place at the
same depth as the corresponding steps on the left. Hence
it has a limit, say Mω,1. In fact each horizontal η-reduction
is the complete development of a set Vn of (occurrences of)
η-redexes in Mn,0. The missing η-reduction at the bottom
can now be filled in: complete development of the set of

M0,0 η
//

β

��

M0,1

β=

��

M1,0 η
// //

β=

��

M1,1

β=

����

Mω,0
η

// // Mω,1

(occurrences of) η-redexes
⋃
k≥0

⋂
m≥k Vm gives us precisely a strongly conver-

gent reduction Mω,0 →→η Mω,1.

(γ, δ) = (ω, ω): Repeated application of the previous two cases allows us to
construct the tiling diagram.
The vertical β-reductions are all
strongly converging in a uniform
way: at most some β-steps can get
cancelled, but the h-depth of the
remaining β-residuals remains un-
altered. The horizontal η-reduction
sequences cannot be else than strongly
converging by Lemma 1. Using the
tiling diagram theorem of [12] or
the uniform (nature of the) strong

M0,0 η
//

β
��

M0,1 η
//

β=
��

M0,2

β=
��

M0,ω

β=
��

M1,0 η
// //

β
��

M1,1 η
// //

β=
��

M1,2

β=
��

M1,ω

β=
��

M2,0 η
// // M2,1 η

// // M2,2 M2,ω

Mω,0 η
// // Mω,1 η

// // Mω,2 Mω,ω

convergence of all vertical reductions we get that the bottom reduction and the
rightmost reduction both end in the same limit term. ut

Commutation of →→η with →→⊥ does not hold as it is shown by the counterex-
ample Ω η← λx.Ωx →⊥ λx.⊥. However, if we restrict ourselves to leftmost
outermost ⊥ reduction we can prove commutation of →→η with →→⊥. First a
lemma saying that ⊥-redexes are preserved under η-reduction.

Lemma 4. Let M ∈ Λh∞
⊥ be a ⊥-free term and M →→η N .

1. If M is a β-head normal form then so is N .
2. If N is a β-head normal form then M has a β-head normal form.
3. M ∈ Uh if and only if N ∈ Uh.

Proof. 1. Standard inductive argument on the length of the η-reduction.
2. Without loss of generality we may assume that an η-reduction ending in a
β-head normal form is finite. By induction on the length n of this reduction
we will show that there is a reduction of linear β-redexes from the initial
term to a β-hnf, where a β-redex (λx.P )Q is linear if the bound variable x
occurs free in P at most once.



The base case, when n = 0, is trivial. Induction step: suppose M →η P →n
η

N andN is a β-hnf. By induction hypothesis there exists P ′ in β-head normal
form such that P →∗β P ′ by contraction of linear β-redexes. By Lemma 5 (its
proof does not depend on this result nor the next theorem) we can postpone
the η-step from M to P over the linear β-reduction to P ′, so that we get
M →∗β M ′ →=

η P ′, where the β-reduction contracts linear β-redexes. An
easy case analysis shows that either M ′ is in β-head normal form or reduces
to one by contracting a linear β-redex.

3. Suppose that N β-reduces to a head normal form. Then M β-reduces
to a head normal form by postponement of η-reduction over β-reduction
(Lemma 5) and the previous part. The converse is proved similarly using
commutation instead of postponement. ut

Theorem 6. Commutation of →→η with →→⊥out. If M0,0→→⊥outM0,γ and
M0,0 →→η Mδ,0 then there exists Mδ,γ such that M0,γ →→η Mδ,γ and
Mδ,0→→⊥outMδ,γ .

Proof. The induction proof proceeds as the previous proof of Theorem 5. We
skip all cases but:

(γ, δ) = (1, 1): A careful analysis of cases based on the relative positions of the
⊥out-redex (denoted by U below) and the η-redex leads to two basic situations:

– The ⊥-redex is inside the η-redex: M0,0 ≡ C1[λx.C2[U ]x].
– The η-redex is inside the ⊥-redex: M0,0 ≡ C1[C2[λx.Mx]] ≡ C1[U ].

These two cases result in the following two diagrams:

M0 η

m //

⊥outn
��

M1

⊥outn
��

M2 η

m // M3

M0 η

m //

⊥outn
��

M1

⊥outn
��

M2 M2

Note that the h-depth of the ⊥out-redex and its eventual residual after contrac-
tion of the η-redex is the same. The last case follows from Lemma 4. ut

4.3 Postponement

We will prove that η-reduction can be postponed in mixed β⊥η-reductions and
hence as as well in mixed βη-reductions. We first need two preparatory lemmas.

Lemma 5. Let γ, δ ≤ ω. If M0,0 →→η M0,γ →→β Mδ,γ , then there exists an Mδ,0

such that M0,0 →→β Mδ,0 →→η Mδ,γ . If M0,γ →→β Mδ,γ is finite, then M0,0 →→β

Mδ,0 will be finite as well.

Note: in (λx.(λy.M)x)N →η (λy.M)N →β M [x := N ] the resulting reduction
after postponement of η-reduction requires two β-reduction steps.



Proof. The proof is again a double induction on the length of the two reductions.
In the proof we try to reconstruct a tiling diagram for:

M0,0 η
// //

β
����

M0,γ

β
����

Mδ,0 η
// // Mδ,γ

The proof by induction is an interesting variation on the proof of commutation
of β and η. We skip all cases but one:

(γ, δ) = (1, ω): Suppose the contracted redex in the final β-reduction M0,ω →β

M1,ω has h-depth n. Then because M0,0 →→η M0,ω is strongly converging, there
is a k such that for i ≥ k the depth of all remaining η-redexes in M0,k →→η M0,ω

is at least n.

M0,0

∗
n β

��

η

∗ //

(ind hyp)

M0,k η

>n
// //

βn
��

M0,ω

βn
��

M1,0 η
// // M1,k η

// // M1,ω

Hence all M0,i for i ≥ k contain a β-redex at the same position as the one redex
contracted in M0,ω. Let M1,i be the result of contracting that β-redex in M0,i.
Since the η-reduction at M0,i takes place at depth lower than n, we get case
1 (a and c) and case 2 of the proof of Theorem 5 and hence M1,i →→η M1,i+1.
By Lemma 1 this reduction sequence is strong converging and its limit coincides
with M1,ω. An appeal to Theorem 5 completes the proof of this case. ut

The next lemma is proved in a similar way.

Lemma 6. If M0,0 →→η M0,γ →→⊥ Mδ,γ , then there exists an Mδ,0 such that
M0,0 →→⊥ Mδ,0 →→η Mδ,γ . If M0,γ →→⊥ Mδ,γ is finite, then M0,0 →→⊥ Mδ,0 will
be finite as well.

Proof. The proof is a double induction. We only do the case (δ, γ) = (1, 1), and
skip the rest. By case analysis and using Lemma 4 we obtain the following two
diagrams:

M0,0 η

m //

⊥n
��

M0,1

⊥n
��

M1,0 η

m // M1,1

M0,0 η

m //

⊥n
��

M0,1

⊥n
��

M1,0 M1,1

ut

Combining the previous two lemmas with Theorem 2 we get:

Corollary 1. If M0,0 →→η M0,γ →→β⊥ Mδ,γ , then there exists an Mδ,0 such that
M0,0 →→β⊥ Mδ,0 →→η Mδ,γ . If M0,γ →→β⊥ Mδ,γ is finite, then M0,0 →→β⊥ Mδ,0

will be finite as well.



Theorem 7. Postponement of →→η over →→β⊥. If M →→β⊥η N , then there
exists an L such that M →→β⊥ L→→η N .

Proof. The proof is by (a genuine!) transfinite induction on the number of sub-
sequences of the form M1 →→η M2 →→β M3 in M →→β⊥η N . The base case is
trivial, the successor case follows directly from Corollary 1. We only show the
limit case for the limit ω. The proof for arbitrary limits is similar. Consider:

M ≡M1,0 →→η M1,1 →→β⊥ M2,1 →→η M2,2 →→β⊥ M3,2 . . . . . .Mω,ω ≡ N

Using the induction hypothesis we construct the next diagram row by row.

M1,0 η
// //

β⊥
����

M1,1

β⊥
����

M2,0 η
// // M2,1 η

// // M2,2

Mω,0 η
// // Mω,1 η

// // Mω,2 η
// // Mω,ω

Because the diagonal is strongly converging and the horizontal η-reductions
don’t change the depth of the vertical β⊥-reductions, all vertical reductions
are strongly convergent as well and have limits. By induction hypothesis they
are connected by η-reduction steps. By Lemma 1 the combined reduction at the
bottom row is strongly converging. By the uniform nature of the strong conver-
gence of all vertical reductions the limit of reductions at the bottom row and
the diagonal are the same. ut

Corollary 2. Let M,N ∈ Λh∞
⊥ .

1. If M →→η N , then nfβ⊥(M)→→η nfβ⊥(N).
2. If M →→β⊥η N , then nfβ⊥(M)→→η nfβ⊥(N).

Proof.

To prove the first item we postpone ⊥ over
β (Theorem 2). Next because the ⊥-reduction
ends in a β⊥-normal form we can remove all
non-outermost ⊥-steps. Then we can construct
the diagram on the left using the two commu-
tation theorems. The term N2 is in β⊥-normal
form, and hence by the unique β⊥-normal form

M
η

// //

β
����

(Thm. 5)

β⊥

�� ��

N

β
����

M1
η

// //

⊥out����
(Thm. 6)

N1

⊥out����

nfβ⊥(M)
η

// // N2

property (Theorem 1) we get N2 = nfβ⊥(N).

For the proof of second item we build the diagram below using postponement of
η-reduction over β⊥-reduction (Theorem 7) and the previous part.



M

β⊥η

%% %%

β⊥
����

β⊥
// //

(Thm. 1)

P
η

// //

β⊥
����

(Part 1)

N

β⊥
����

nfβ⊥(M)

η
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nfβ⊥(P )

η
// // nfβ⊥(N)

ut

4.4 Confluence and normalisation

Finally we prove that λh∞
β⊥η is confluent, normalising and ω + ω-compressible.

Theorem 8. Confluence of β⊥η. The extensional infinite lambda calculus
λh∞
β⊥η is confluent.

Proof. M0

β⊥η

&& &&MMMMMMMMMMMMM
β⊥η

xxxxqqqqqqqqqqqqq

β⊥
����

M1

β⊥
����

(Cor 2) nfβ⊥(M0)

η
&& &&

η
xxxx

(Thm 3)

M2

β⊥
����

(Cor 2)

nfβ⊥(M1)

η

&& &&

nfβ⊥(M2)

η

xxxx
M3

ut

Our proof technique using postponement has the flavour of the confluence proof
for finite λβη of Curry and Feys [7], and may therefore seem to be related to the
confluence proof of the finite λβ⊥η of 15.2.15(ii) in [3]. The latter proof makes
use of η-normal forms, whereas we use the auxiliary notion of β⊥-normal forms.
Note, however, that η-normal forms don’t work, as can be seen by applying the
proof technique of [3] to the coinitial reductions Ω η← λx.Ωx →⊥ λx.⊥. In its
compact form our proof does not restrict to a confluence proof for λβ⊥η. But it
is not hard to distill from the previous proofs a proof for the finite setting that
make use of ⊥-normal forms instead of β⊥-normal forms. It may be of interest to
see whether other proofs of finitary confluence for finite λβ⊥η can be generalised
to the infinitary setting. For instance: the older proof of Barendregt, Bergstra,
Klop and Volken [4] and the more recent proof by van Oostrom [15].

Theorem 9. Normalisation and compression of β⊥η. The extensional in-
finite lambda calculus λh∞

β⊥η is normalising and is ω + ω-compressible.



Proof. By theorems 1, 3 and 2, the calculi λh∞
β⊥ and λh∞

η are confluent, normalis-
ing and ω-compressible. The β⊥η-normal form of a term can be obtained by first
computing the β⊥-normal form and then the η-normal form. To prove thatλh∞

β⊥η
is ω+ω-compressible we use postponement of eta over beta and bottom. Finally
recall the last nine lines of the introduction. ut

5 Eta-Böhm trees and the extensional Böhm model

As a corollary of the confluence and normalisation results we see that each
term in λh∞

β⊥η has a unique β⊥η-normal form, its eta-Böhm tree. Hence we can
construct an extensional Böhm model Bη for both λβη and λh∞

β⊥η almost for free.
In the notation of [3] we define the triple Bη= (Bη, ·, [[ ]]) as follows:

1. Bη is the set of β⊥η-normal forms of terms in Λh∞
⊥ .

2. M ·N = nfβ⊥η(MN) for all M,N in Bη.
3. [[M ]]ρ = nfβ⊥η(Mρ) where M in Bηand Mρ is the simultaneous substitution

of all free variables of M for ρ(x).

The unique normal form property of λh∞
β⊥η implies well-definedness of this defi-

nition. The ease of this construction contrasts with the usual construction based
on elaborate continuity arguments in [3] of the standard Böhm model for λβ . An
informal definition of eta-Böhm trees can be found in [2]. It is also possible to
give a corecursive definition. In early approaches to eta-Böhm trees sets of finite
β⊥η-approximants have been used, see for example [10, 6].

Theorem 10. The following statements are equivalent for terms in λh∞
β⊥η:

1. M,N have the same eta-Böhm tree.
2. M and N are observationally equivalent wrt finite βη-normal forms [13], i.e.

C[M ] has a finite βη-normal form if and only if C[N ] has a finite βη-normal
form for all C.

3. M,N have the same interpretation in Park’s model D∗∞ [16, 6, 17] for the
extensional lambda calculus.

(1⇔ 2) has been proved by Hyland in [10] and (2⇔ 3) has been proved in [6].
Note that the direction (1 ⇒ 2) is in fact a corollary of the unique normal
form property of λh∞

β⊥η, see [9] for an argument in a similar situation where
approximants can not be used.

6 Future research

We are currently working on another infinitary extension of λβη that has the
infinite-eta-Böhm trees as its normal forms. How to build an extension that
captures the Nakajima trees [14, 18, 3] is still a challenge.
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