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Abstract. In 1970 Friedman proved completeness of beta eta conversion
in the simply-typed lambda calculus for the set-theoretical model. Re-
cently Krishnaswami and Benton have captured the essence of Hudak’s
reactive programs in an extension of simply typed lambda calculus with
causal streams and a temporal modality and provided this typed lambda
calculus for reactive programs with a sound ultrametric semantics.
We show that beta eta conversion in the typed lambda calculus of reac-
tive programs is complete for the ultrametric model.

1 Introduction

Krishnaswami and Benton have recently introduced a typed lambda calculus for
reactive programs [1, 2]. Their basic idea was to have “a lambda calculus with
types not only for data, but also indexed with time.” This led them to extend
simply typed lambda calculus with causal streams and a temporal modality
and secondly, to define an ultrametric semantics for reactive programs. In the
ultrametric model, types are interpreted as ultrametric spaces and terms as non-
expansive maps [1, 3, 4]. They demonstrated the soundness of this extension for
the ultrametric semantics.

This raises the natural question of completeness. In this paper we show that
two terms typable in the calculus of reactive programs are βη-convertible if and
only if they have the same interpretation in the model of ultrametric spaces.

Completeness has been well studied for simply typed lambda calculus. It has
been proved for the set-theoretical model [5], the model of CPOs and the model
of modest sets [6, 7]. Towards completeness for the ultrametric semantics, we
introduce the notions of step-indexed applicative structure and Henkin model for
reactive programs. We show that the term model (consisting of reactive programs
modulo conversion) and the ultrametric model can be seen as step-indexed ap-
plicative structures and also as Henkin models for reactive programs. Since for
the ultrametric model, a stream is a function on natural numbers, we need a
strong notion of extensionality that requires that two streams are equal if all
their components are equal. Strong extensionality of the term model is not so
easy to prove. It does not follow immediately from the η-rule but from the fact
that our calculus is confluent and strongly normalising.

Actually, we show two completeness results. The first one, called completeness
(of βη-conversion) for Henkin models, says that there exists a Henkin model for



reactive programs satisfying exactly the theory of βη-conversion. The second one,
mentioned before, is about completeness (of βη-conversion) for the ultrametric
model. The latter is proved by constructing a partial surjective step-indexed
logical relation between the ultrametric model and the term model.

One interesting aspect of our paper is that we consider (ultra) metric spaces in
a proof of completeness. We show that on the term model of the typed lambda
calculus for reactive programs an ultrametric d can be defined for which the
equivalence classes of terms of type σ → τ are non-expansive, i.e. for M of type
σ → τ we have that d([MP ], [MQ]) ≤ d([P ], [Q]).

This paper is organised as follows. Section 2 defines the typed lambda cal-
culus for reactive programs. Section 3 introduces the notions of (step-indexed)
applicative structure, Henkin model and (step-indexed) logical relation for reac-
tive programs. Section 4 proves strong normalisation and confluence. Section 5
defines the term model and proves completeness for Henkin models. Section 6
shows that the model of ultrametric spaces is a Henkin model. Section 7 defines
an ultrametric on the term model and shows that this metric is well-behaved.
Section 8 shows completeness for the ultrametric model.

2 Typed Lambda Calculus for Reactive Programs

We recall the typed lambda calculus λRP for reactive programs as defined in [1].
It comes with a syntax, rewriting rules and typing rules.

Definition 1 (Syntax for reactive programs). We define the set P of reac-
tive programs (or terms) and the set T of types as follows.

P 3M ::= x | hd(M) | tl(M) | cons(M,M) | await(M) | ◦(M) | λx:σ.M |MM
T 3 σ ::= b | (σ → σ) | •σ | S(σ)

where the parameter x ranges over a set V of variables, b over a set B of basic
types. A type declaration is a statement of the form x :i τ . A context is a finite
set of type declarations with only distinct variables as subjects.

Definition 2 (Reduction for reactive programs). The β-rule is defined by:

(λx:σ.N)M → N [x := M ] (β) await(◦(M)) →M (β)
hd(cons(M,N))→M (β) tl(cons(M,N))→ N (β)

The η-rule is defined by:

λx:σ.Mx →M, if x 6∈ fv(M) (η) ◦(await(M))→M (η)
cons(hd(M), tl(M))→M (η)

Let ρ ∈ {β, η, βη}. The relation →ρ is defined as the smallest relation on P that
is closed under under contexts and the ρ-rule(s). The reflexive and transitive
closure of →ρ is denoted by →→ρ. The reflexive, symmetric and transitive closure
of →ρ is denoted by =ρ, called ρ-conversion. The ρ-normal form of a term M is
N , if M →→ρ N and N is in ρ-normal form. If the ρ-normal form of M exists,
we denote it by nfρ(M).



Definition 3 (Typing rules for reactive programs). A type declaration is
a statement of the form x :i τ . A context is a finite set of type declarations with
only distinct variables as subjects. A type declaration M :i τ is derivable from the
context Γ , if the typing judgement Γ `M :i σ can be derived from the following
typing rules:

x:iσ ∈ Γ j ≥ i
(

Γ ` x :j σ
var)

Γ `M :i S(σ)
(

Γ ` hd(M) :i σ
head)

Γ `M :i S(σ)
(

Γ ` tl(M) :i+1 S(σ)
tail)

Γ `M :i σ Γ ` N :i+1 S(σ)
(

Γ ` cons(M,N) :i S(σ)
cons)

Γ, x:iσ ` N :i τ
(→ I)

Γ ` λx:σ.N :i (σ → τ)

Γ `M :i+1 σ
(•I)

Γ ` ◦(M) :i • σ

Γ ` N :i (σ → τ) Γ `M :i σ
(→ E)

Γ ` NM :i τ

Γ `M :i • σ
(•E)

Γ ` await(M) :i+1 σ

If a judgement Γ `M :i σ is derivable from these rules, we call M a typable term.

The intuition is that M :i σ expresses that at time stamp i we know about the
existence of a term M with type σ. If time stamp 0 represents ‘now’, then time
stamp i represents ‘i steps from now into the future.’ To observe the tail N of
a stream cons(M,N) of which we can see the head M now, we must wait one
time step. We cannot force the future into the present.

Lemma 1 (Time adjustment [1]). If Γ,∆ `M :i σ then Γ,∆+n `M :i+n σ,
where ∆+n is obtained from ∆ by raising the indexing time by n in all type decla-
rations in ∆. Moreover, the derivations of Γ,∆ `M :i σ and Γ,∆+n `M :i+n σ
have the same size.

The following lemma is proved by induction on the derivation.

Lemma 2 (Subject reduction for reactive programs). If Γ `M :i σ and
M →→βη N then Γ ` N :i σ.

3 Applicative Structures, Henkin Models and Logical
Relations for Reactive Programs

In this section, we extend the notions of applicative structure, Henkin model
and logical relations as defined for the simply typed lambda calculus, e.g., [7],
to reactive programs. The time indices i ∈ N will play a similarly crucial role as
they did in the typing rules for reactive programs.

Definition 4 (Applicative structures for reactive programs). A (step-
indexed) applicative structure for reactive programs is a tuple

A = 〈{Aσi }, {δσij}, {hd σi , tl σi , awaitσi , appστi }〉



of families of sets and functions indexed by types from T such that for all σ, τ ∈ T
and all i, j ∈ N with i ≤ j we have:

1. Aσi is a set,
2. δσij ∈ Aσi → Aσj (expressing “delay”),
3. δσii = id : Aσi → Aσi and δσjk ◦ δσij = δσik,

4. hd σi ∈ A
S(σ)
i → Aσi , tl σi ∈ A

S(σ)
i → AS(σ)

i+1 ,
awaitσi ∈ A•σi → Aσi+1, appστi ∈ A

σ→τ
i → Aσi → Aτi .

5. δσij(hd σi (a)) = hd σj (δσij(a)) for all a ∈ AS(σ)
i ,

δσ(i+1)j(tl σi (a)) = tl σj (δσij(a)) for all a ∈ AS(σ)
i and i+ 1 ≤ j,

δσ(i+1)j(awaitσi (a)) = awaitσj (δσij(a)) for all a ∈ A•σi and i+ 1 ≤ j,
δτij(appστi (f, b)) = appστj ((δσ→τij f), (δσijb)) for all f ∈ Aσ→τi , b ∈ Aσi .

To define extensional applicative structures, we have to define when the element

of all three kind of types Aσ→τi , A•σi and AS(σ)
i are extensional. For the first

two this is straightforward. However for the latter we consider a strong version
of extensionality that views streams as functions from natural numbers: two
streams are equal if all their components are equal.

Definition 5 (Extensional applicative structure for reactive programs).
We say that an applicative structure for reactive programs is extensional if it sat-
isfies the following conditions:

1. Extensionality on σ → τ . For all j ≥ i and all a, b ∈ Aσ→τj ,
if appστj (δσ→τij (a), d) = appστj (δσ→τij (b), d) for all d ∈ Aσj , then a = b.

2. Extensionality on •σ. For all a, b ∈ A•σi , if awaitσi (a) = awaitσi (b) then
a = b.

3. Extensionality on S(σ). For all a, b ∈ AS(σ)
i , if for all n ∈ N we have that

hd σi+n(tl σi+n(. . . (tl σi (a)))) = hd σi+n(tl σi+n(. . . (tl σi (b)))) then a = b.

Extensionality for the arrow type requires that the applications are equal for all
j ≥ i. This is clearly stronger than having the same condition for just i. However,
for the other two cases, the formulations with j ≥ i and just i are equivalent.

It is easy to show that extensionality implies the next weaker notion.

Definition 6 (Weak extensional applicative structure for reactive pro-
grams). We say that an applicative structure for reactive programs is weakly
extensional if extensionality on S(σ) is replaced by the weaker condition:

3’. For all MN ∈ AS(σ)
i , if hd σi (M) = hd σi (N) and tl σi (M) = tl σi (N) then

M = N .

Let A be an applicative structure for reactive programs and Γ be a context. An
environment ρ is a function from the set of variables V to the union of all Aσi .
For a ∈ Aσi , the update environment ρ[x ← a] is the environment mapping x
to a and all other variables y 6= x to ρ(y). We write ρ |= Γ if ρ(x) ∈ Aσi holds
for all x :i σ ∈ Γ . A meaning function for an applicative structure A is a (total)
function that maps any derivation Γ ` M :i σ and any environment ρ, to an
element [[Γ `M :i σ]]Aρ in Aσi .



Definition 7 (Henkin models for reactive programs). Let ρ |= Γ . An
extensional applicative structure A for reactive programs is called a Henkin model
if there exists a meaning function satisfying the following conditions (all together
called the environment model condition):

– δσij([[Γ `M :i σ]]Aρ ) = [[Γ `M :j σ]]Aρ
– [[Γ ` x :j σ]]Aρ = δσij(ρ(x)) for all x :i σ ∈ Γ
– [[Γ `MN :i τ ]]Aρ = appστi ([[Γ `M :i σ → τ ]]Aρ , [[Γ ` N :i σ]]Aρ )

– [[Γ ` λx:σ.M :i σ → τ ]]Aρ =


the unique f ∈ Aσ→τi such that

for all j ≥ i, d ∈ Aσj
appστj (δσ→τij (f), d) = [[Γ, x :j σ `M :j τ ]]ρ[x:=d]

– [[Γ ` await(M) :i+1 σ]]Aρ = awaitσi ([[Γ `M :i σ]]Aρ )

– [[Γ ` ◦(M) :i • σ]]Aρ =

{
the unique a ∈ A•σi such that

awaitσi (a) = [[Γ `M :i+1 σ]]Aρ
– [[Γ ` hd(M) :i σ]]Aρ = hd σi ([[Γ `M :i S(σ)]]Aρ )

– [[Γ ` tl(M) :i+1 S(σ)]]Aρ = tl σi ([[Γ `M :i S(σ)]]Aρ )

– [[Γ ` cons(M,N) :i S(σ)]]Aρ =


the unique s ∈ AS(σ)

i such that

hd σi (s) = [[Γ `M :i σ]]Aρ and

tl σi (s) = [[Γ ` N :i+1 S(σ)]]Aρ

We will use the notation
A |= Γ `M=N :iσ

if Γ `M :iσ, Γ ` N :iσ and [[Γ `M : iσ]]Aρ = [[Γ ` N :iσ]]Aρ for all ρ with ρ |= Γ .

Lemma 3 (Soundness of Henkin models for reactive programs).

1. If Γ `M :i σ, then [[Γ `M :i σ]]Aρ ∈ Aσi for all ρ |= Γ .
2. If Γ `M :i σ and Γ ` N :i σ then M =βη N implies A |= Γ `M=N :iσ.

Both items of the lemma can be proved by induction on the size of the derivation.
By It is enough to consider one step →βη in the proof of the second item. .

Definition 8 (Logical relations for reactive programs). A (step-indexed)
logical relation for reactive programs R between two applicative structures for
reactive programs A and B is a family {Rσi } of indexed relations such that

– Rσi ⊆ Aσi × Bσi for each σ and i,
– if Rσi (a, b) then Rσj (δσij(a), δσij(b)) for all j ≥ i,
– R•σi (a, b) iff Rσi+1(awaitσi (a), awaitσi (b)),

– RS(σ)
i (a, b) iff Rσi+n(hd σi+n(tl σi+n . . . tl σi (a)), hd σi+n(tl σi+n . . . tl σi (b))) for all n,

– Rσ→τi (f, g) iff ∀j ≥ i.∀a ∈ Aσj.∀b ∈ Bσj.Rσj (a, b)⇒
Rτj (appστj (δσ→τij f) a, appστj (δσ→τij g) b).

A logical relation R between A and B is called a logical partial (surjective)
function from A to B if each Rσi is a partial (surjective) function.



The definition of binary logical relations generalises easily to any arity. In this
paper we will define a logical relation of arity one (a logical predicate) and one
of arity two.

Lemma 4 (Basic lemma on logical relations for reactive programs). Let
R be a logical relation for reactive programs between two Henkin models A and
B. Let ρA and ρB be environments for A and B respectively, such that ρA |= Γ ,
ρB |= Γ and Rτj (ρA(x), ρB(x)) for all x :j τ in Γ .

If Γ `M :i σ then Rσi ([[Γ `M :i σ]]AρA , [[Γ `M :i σ]]BρB).

The above lemma is proved by induction on the size of the derivation.
The theory induced by a Henkin model A, denoted by Th(A) is the set

{(M,N) | A |= Γ`M = N :iσ}.

Lemma 5 (Theory inclusion). Let A,B be Henkin models for reactive pro-
grams. If there is a logical partial function from A to B, then Th(A) ⊆ Th(B).

This lemma is proved similarly as [7, Lemma 8.2.17].

4 Confluence and Strong Normalisation

In this section, we prove confluence and strong normalisation of βη for the typed
lambda calculus of reactive programs.

Failure of confluence of βη on untypable terms has several causes. One cause is
the presence of explicit types in the abstractions. Nederpelt’s term λx:σ.(λy:τ.y)x
provides a counterexample [8]. Another cause is the non-left linear η-rule for
streams. This is shown through a variation of Klop’s counterexample on surjec-
tive pairs [9, 10]. Define

D = λx:σ.λy:τ.(cons(hd(λz.zx), tl(λz.zy))λz.u).

Then, we have that DMM →→βη u for any M . Note that the η-step creates a
β-redex that cannot be performed earlier (this shows that η cannot be postponed
over β on untypable terms). Next, we define E = Y (λf :σ′.λx:τ ′.D x (f x)) and
F = Y (λf :σ′′.E f). We have that E →→β λx:τ ′.D x (E x) and F →→β E F. So,
F→→βη u and F→→βη E u. But u and E u do not have a common reduct.

We will show that the typable terms are βη-strongly normalising using a
logical predicate similar to the ones used in strong normalisation proofs of the
simply typed lambda calculus (e.g., see Section 8.3.2 of [7]). For this proof, we
use an applicative structure T constructed from typable terms.

Notation 1 From now on, we assume the existence of a family {Vσi } of pair-
wise disjoint, infinite sets of pairwise distinct variables. We define Γ∞ to be the
infinite context consisting of all type declarations of the form x :i σ with x ∈ Vσi
for some type σ and index i.



Definition 9 (Term applicative structure). For each type σ and index i, let
T σi be the set {M | Γ `M :i σ, for some σ and finite Γ ⊂ Γ∞} of all terms that
can be typed with σ at “stage” i with some finite subcontext of Γ∞. We define
the term applicative structure as the applicative structure

T = 〈{T σi }, {δσij}, {hd σi , tl σi , awaitσi , appστi }〉

where appστi (M,N) = MN , hd σi (M) = hd(M), awaitσi (M) = await(M) and
tl σi (M) = tl(M). We take set inclusion for δσij when i ≤ j. This is well-defined by

the Time Adjustment Lemma. As meaning function, we take [[Γ ` M :i σ]]Tρ =
ρ(M) where ρ(M) is the result of performing the substitution ρ to M .

Note that [[Γ ` M :i σ]]Tρ ∈ T σi . This meaning function does not satisfy the
environment model condition.

Definition 10 (Logical predicate of strongly normalizing terms). Let
SN be the set of βη-strongly normalising terms. We define the family of predi-
cates Pσi ⊆ T σi by induction on σ:

Pb
i = {M ∈ T b

i |M ∈ SN}
Pσ→τi = {M ∈ T σ→τi | ∀j ≥ i,N ∈ Pσj ,MN ∈ Pτj }
P•σi = {M ∈ T •σi | await(M) ∈ Pσi+1}
PS(σ)
i = {M ∈ T S(σ)

i | ∀n ∈ N, hd(tln(M)) ∈ Pσi+n}

where tln(M) is the term tl(tl(. . . (tl(M))) consisting of n applications of tl.

It is easy to see that P is a step-indexed logical relation for reactive programs
of arity one. Note that Pσi ⊆ Pσj if i ≤ j. We define the elimination contexts E [ ]
with one hole with the grammar E [ ] := [ ] | E [ ]M | hd(tln(E [ ])) | await(E [ ]).
We write E [ ] ∈ SN if all terms used in the construction of E [ ] are βη-strongly
normalising.

Lemma 6. 1. Pσi ⊆ SN . 2. If E [ ] ∈ SN and E [x] ∈ T σi then E [x] ∈ Pσi .

The two statements are proved simultaneously by induction on the type σ. For
the base case σ = b, it is easy to see that E [x] ∈ SN because E [ ] ∈ SN . The
cases in the next lemma all follow by induction on σ.

Lemma 7 (Closure under β-expansion inside context E).

– If E [(λx.M)N ] ∈ T σi and E [M [x := N ]] ∈ Pσi then E [(λx.M)N ] ∈ Pσi .
– If E [await(M)] ∈ T •σi and E [M ] ∈ Pσi then E [await(M)] ∈ P•σi .
– If E [hd(cons(M,N))] ∈ T σi and E [M ] ∈ Pσi then E [hd(cons(M,N))] ∈ Pσi .
– If E [tl(cons(M,N))] ∈ T σi and E [N ] ∈ Pσi then E [tl(cons(M,N))] ∈ Pσi .

Lemma 8 (Soundness for logical predicate P). Let Γ `M :i σ and ρ(x) ∈
Pσi for all x :i σ ∈ Γ . Then, [[Γ `M :i σ]]Tρ ∈ Pσi .

Proof. By induction on the derivation using Lemma 7. ut



Remark 1 (Alternative proof of Lemma 8). It is possible to give a general ver-
sion of the basic lemma for logical relations instead of Lemma 8. For that we
would have to introduce more notational machinery like the notions of acceptable
meaning function and admissible relation, as on pages 540-541 in [7].

Theorem 1 (Strong βη-Normalisation on typable terms). If Γ `M :i σ
then M is βη-strongly normalising.

Proof. Suppose Γ ` M :i σ. As environment ρ, we take identity. Now ρ |= Γ ,
since ρ(x) = x ∈ Pτi for all x :i τ ∈ Γ by the second item of Lemma 6. From
Lemma 8 we obtain [[Γ `M :i σ]]Tρ = M ∈ Pσi . Using the first item of Lemma 6
we find Pσi ⊆ SN . Hence M is βη-strongly normalising. ut

Theorem 2 (Confluence of βη on typable terms). The βη-reduction is
confluent on typable terms.

Proof. We apply Newman’s Lemma [11, Theorem 1.2.1]. Since, by Theorem 1,
βη is strongly normalising, it is sufficient to verify that βη-reduction is locally
confluent. This is straightforward. ut

5 Term Model

In this section, we construct the term model T /=βη from the term applicative
structure T by quotienting over βη conversion. We prove that T /=βη is ex-
tensional. This gives us our first completeness result, i.e. there exists a Henkin
model for reactive programs satisfying exactly the theory of βη-conversion.

We write [M ] to denote the set of terms that are βη convertible to M .

Definition 11 (Term model). For each type σ and index i, let (T /=βη)σi =
{[M ] |M ∈ T σi }. We define the applicative structure T /=βη as

〈{(T /=βη)σi }, {δσij}, {hd σi , tl σi , awaitσi , appστi }〉

with appστi ([M ], [N ]) = [MN ], hd σi ([M ]) = [hd(M)], awaitσi ([M ]) = [await(M)]
and tl σi ([M ]) = [tl(M)]. We take set inclusion for δσij when i ≤ j, and define as
meaning function [[Γ `M :i σ]]ρ = [M [x1:=N1, . . . , xn:=Nn]] where ρ(xi) = [Ni]
for all 1 ≤ i ≤ n and all xi occur in Γ .

We write size(M), size(σ) and size(Γ ) for the number of symbols of M , σ and
all types in Γ , respectively.

Lemma 9 (Shape of β-normal forms). Let M be a typable β-normal form.
Then, M is of the form λx1:σ1 . . . xn:σn.N where N satisfies one of the clauses:

1. N is of the form cons(P,Q) where P and Q are in β-normal form.
2. N is of the form ◦P where P is in β-normal form.



3. N belongs to the grammar:

X 3 X := x | XP | hd(X) | tl(X) | await(X)

where P is in β-normal form and x ∈ V. Instead of a variable X ranging over
X we may occasionally write X[P1, . . . , Pn] to list explicitly all arguments P
used in the construction of X. For such X we have that if Γ ` X :j τ then
size(τ) ≤ size(Γ ) and size(Pi) < size(Γ ) for all 1 ≤ i ≤ n.

The previous lemma can be proved by induction on the derivation.

Note that weak extensionality of the term model is a direct consequence of the
η-rule. To prove extensionality we need more, namely that λRP is confluent and
strongly normalising. The assumption made for Γ∞ in Notation 1 is important
in the proof of extensionality on σ → τ , as it allows us to pick an x ∈ T σi .

Lemma 10 (Extensionality of term model). The applicative structure for
the term model is extensional.

Proof. We only prove extensionality on S(σ) and leave the other cases to the

reader. Let M,N ∈ T S(σ)
i be in βη-normal form. We now analyse the shape of

these βη-normal forms. Suppose that hd(tln(M)) =βη hd(tln(N)) for all n ∈ N.
We prove that M =η N by induction on the number of cons that appear in M
and N . We distinguish cases depending on the shape of M and N by Lemma 9.

1. Case M,N ∈ X. Then hd(M) and hd(N) are in βη-normal form. By Conflu-
ence of βη (Theorem 2) we find hd(M) = hd(N). Hence M = N .

2. Case M = cons(P,Q) and N = cons(P ′, Q′). We have P =βη hd(M) =βη

hd(N) =βη P
′. Since P and P ′ are in βη-normal form, we have P = P ′ by

confluence of βη. We also have hd(tln(Q)) =βη hd(tln(Q′)) for all n ∈ N.
Since Q and Q′ have fewer number of cons than M and N , Q =η Q

′ by
induction hypothesis.

3. Case M = cons(P,Q) and N ∈ X. Then P , hd(N) and tl(N) are all in
βη-normal form. We get P =βη hd(M) =βη hd(N). By confluence of βη
we conclude P = hd(N). We also have hd(tln(Q)) =βη hd(tln(tl(N))) for all
n ∈ N. Applying the induction hypothesis to Q and tl(N) we get Q =η tl(N).

ut

Theorem 3 (Completeness for Henkin models of reactive programs).
There exists a Henkin model for reactive programs satisfying exactly the theory
of βη-conversion.

Proof. It is routine to show that the meaning function of T /=βη satisfies the
environment condition. The term model trivially satisfies the theory of βη-
conversion, i.e., M =βη N iff T /=βη|= Γ ` M = N ;iσ whenever Γ ` M,N :iσ.

ut



6 Ultrametric Model for Reactive Programs

In this section, we present the ultrametric model of [1] as a Henkin Model for
reactive programs.

A complete 1-bounded ultrametric space is a tuple (U, dU ), where U is a set
and the distance function dU : U ×U → [0, 1] satisfies: 1. dU (u, v) = 0 iff u = v,
2. dU (u, v) = dU (v, u), 3. dU (u, z) ≤ max(dU (u, v), dU (v, z)), 4. every Cauchy
sequence in U has a limit in X. A function f : U → V between ultrametric
spaces is non-expansive if dV (f(u1), f(u2)) ≤ dU (u1, u2). It is well-known that
the complete 1-bounded ultrametric spaces and nonexpansive functions form a
cartesian-closed category. The shrink functor 1

2 maps (U, dU ) to (U, 12dU ) and a
non-expansive function f ∈ U → V to the non-expansive function 1

2 (f) ∈ 1
2U →

1
2V where 1

2 (f)(u) = f(u).

Definition 12 (Ultrametric applicative structure). An ultrametric ap-
plicative structure is an applicative structure

U = 〈{Uσi }, {δσij}, {hd σi , tl σi , awaitσi , appστi }〉

1. Uσi = 1
2

iUσ0 where Uσ0 is defined by induction on σ:
(a) Ub

0 is some ultrametric space (U, dU ).
(b) Uσ→τ0 is the set of nonexpansive maps from Uσ0 to Uτ0 , equipped with the

supremum metric: dUσ
0→Uτ

0
(f, g) = sup{dUτ

0
(f(x), g(x)) | x ∈ Uσ0 }.

(c) U•σ0 = 1
2U

σ
0 .

(d) US(σ)
0 is the set of total functions from N to Uσ0 , equipped with the stream

metric: dUS(σ)
0

(f, g) = sup{ 12
n
dUσ

0
(f(n), g(n)) | n ∈ N}.

2. δσij ∈ Uσi → 1
2

j−iUσj is defined by δσij(u) = u.
3. appστi (f, a) = f(a), awaitσi (a) = a, hd σi (f) = f(0) and tl σi (f)(n) = f(n + 1)

for all n ≥ 0.

It is easy to see that an ultrametric applicative structure is extensional. We
define consσi (a, f) = g where g(0) = a and g(n+ 1) = f(n) for n ≥ 0.

Lemma 11 (Ultrametric model). Let ρ |= Γ . The ultrametric applicative
structure together with the meaning function defined as

– [[Γ ` x :j σ]]ρ = δσij(ρ(x)) if x:iσ ∈ Γ ,
– [[Γ `MN :i τ ]]ρ = appστi ([[Γ `M :i σ → τ ]]ρ, [[Γ ` N :i τ ]]ρ),
– [[Γ ` λx:σ.M :i σ → τ ]]ρ = {(a, [[Γ, x :i σ `M :i τ ]]ρ[x:=a]) | a ∈ Uσi },
– [[Γ ` await(M) :i+1 σ]]ρ = [[Γ `M :i • σ]]ρ,
– [[Γ ` ◦(M) :i • σ]]ρ = [[Γ `M :i+1 σ]]ρ,
– [[Γ ` hd(M) :i S(σ)]]ρ = hd σi ([[Γ `M :i S(σ)]]ρ),
– [[Γ ` tl(M) :i+1 S(σ)]]ρ = tl σi ([[Γ `M :i S(σ)]]ρ),
– [[Γ ` cons(M,N) :i S(σ)]]ρ = consσi ([[Γ `M :i σ]]ρ, [[Γ ` N :i+1 σ]]ρ),

is a Henkin model for reactive programs called the ultrametric model.



7 Metric on the Term Model

In this section, we define an ultrametric d on the term model for which the
equivalence classes of terms of type σ → τ are non-expansive, i.e. for M of type
σ → τ we have that d([MP ], [MQ]) ≤ d([P ], [Q]).

We recall the notions of depth, truncation and metric on terms of [12]. The
depth of N in argument positions in cons(M,N) and ◦(N) is counted one deeper
than the depth of the terms cons(M,N) and ◦(N) themselves. To define trun-
cation, we extend the syntax with a constant ⊥.

Definition 13 (Truncation). The truncation of M at depth n, denoted by Mn,
is defined by induction as follows.

M0 = ⊥ xn+1 = x
(λx.M)n+1 = λx.Mn+1 (M N)n+1 = (Mn+1 Nn+1)
(◦(M))n+1 = ◦(Mn) (await(M))n+1 = await(Mn+1)

(hd(M))n+1 = hd(Mn+1) (tl(M))n+1 = tl(Mn+1)
(cons(M,N))n+1 = cons(Mn+1, Nn)

Definition 14 (Metric on terms). Define d : P×P→ [0, 1] as d(M,N) = 0,
if M = N and d(M,N) = 2−m otherwise, where m = max{n ∈ N |Mn = Nn}.

Note that d is not invariant under βη-conversion. The metric on equivalence
classes defined by d([M ], [N ]) = d(nfβη(M), nfβη(N)) is not the right one since
there may be elements in (T /=βη)σ→τi that are not non-expansive. For example,
d([MP ], [MQ]) = 1 and d([P ], [Q]) = 1/2 ifM = λx:S(σ).cons(hd(y), tl(x)), P =
y and Q = z. The distance between [MP ] = [y] and [MQ] = [cons(hd(y), tl(z))]
should be 1

2 and not 1 for [M ] to be non-expansive.
To define the right metric, we introduce the notions of infinite term and

extensional long normal form. The notion of extensional long normal form does
not coincide with the notion of eta long normal form. In order to define the
notion of extensional long normal, we express a function f on natural numbers
as an infinite term cons(M1, cons(M2, . . .)) where M1 corresponds to f(1), M2

to f(2), etc. For example, the extensional long normal form of a variable x of
type S(σ) is the infinite term cons(hd(x), cons(hd(tl(x)), . . .)).

Definition 15 (Infinitary terms). We define the set P∞ of infinitary terms
as the metric completion of (P, d).

Definition 16 (Extensional long normal form). Let Γ ` M :i σ. The (ex-
tensional) long normal form of M is a term in P∞ denoted by L(M) and defined
as follows. If M is not in β-normal form, we define L(M) = L(nfβ(M)). If
M is in β-normal form then we define it by induction on the pair (size(Γ ) +
size(σ), size(M)) with the lexicographic order as follows.

1. Case σ is a base type. Then M = X[M1, . . . ,Mn] ∈ X. We define L(M) =
X[L(M1), . . . , L(Mn)].



2. Case σ is σ1 → σ2. If M = λx.N then we define L(M) = λx.L(N).
Otherwise, M ∈ X and we define L(M) = λy.L(M y).

3. Case σ is •τ . If M = ◦(P ), we define L(M) = ◦(L(P )).
Otherwise, M ∈ X and we define L(M) = ◦(L(await(M))).

4. Case σ = S(τ). Either M = cons(P,Q) and we put L(M) = cons(L(P ), L(Q)),
or M ∈ X and we define L(M) = cons(L(hd(M)), cons(L(hd(tl(M))), . . .)).

Lemma 12. 1. Let M be in β-normal form such that Γ `M :i σ. If M →η N ,
then L(M) = L(N).

2. If Γ `M :i σ and M =βη N , then L(M) = L(N).

The first statement is proved by induction on (size(Γ ) + size(σ), size(M)). The
second is proved using confluence, strong normalisation and the first one.

Definition 17 (Metric on equivalence classes of typable terms). We de-
fine a metric d : (T /=βη)σi ×(T /=βη)σi → [0, 1] as d([M ], [N ]) = d(L(M), L(N)).

We define Γ `n M :i σ by adding to the typing rules of Definition 3 the rule
Γ `n ⊥ :i σ if n ≥ i for all i ∈ N and all types σ. It is easy to show that this
typing rules satisfy subject reduction, confluence and strong normalisation. The
notion of extensional long normal form is extended to terms with ⊥ and typable
in `n. The follow lemma is proved by induction on the derivation.

Lemma 13. If Γ `n+i M :i σ then the ⊥’s in M all occur at depth greater or
equal than n.

The following three lemmas are proved by induction on (size(Γ ) + size(σ), n).

Lemma 14. If Γ `M :i σ then Γ `n+i (L(M))n :i σ.

Lemma 15. Let M be in β-normal form such that Γ ` M :i σ. Then, there
exists N in β-normal form such that N →→η M and (L(M))n = Nn.

Lemma 16. Let M,N be in β-normal form such that Γ `M,N :i σ. If Mn =
Nn then (L(M))n = (L(N))n.

We write M≺N if M is the result of replacing some subterms of N by ⊥.

Lemma 17. If M≺N and M→βM
′ then M ′≺N ′ and N→βN

′ for some N ′.

Theorem 4 (Non-expansiveness). Let M ∈ T σ→τi and P,Q ∈ T σi . Then:

1. (L(MP ))n = (L(M(L(P ))n))n. 2. d([MP ], [MQ]) ≤ d([P ], [Q]).

Proof. (1) Assume M,P are in β-normal form. By Lemma 15, there exists P ′

in β-normal form such that P ′ →→η P and (L(P ))n = (P ′)n. Then, M(L(P ))n ≺
MP ′. By Lemma 14, Γ `n+i (L(P ))n :i σ and hence, Γ `n+i M(L(P ))n :i σ. By
Subject reduction, Γ `n+i N :i σ where N = nfβ(M(L(P ))n). By Lemma 17,
there exists N ′ such that N ≺ N ′ and MP ′ →→β N

′. By Lemma 13, the ⊥’s in
N occur at depth greater than n. Hence, Nn = (N ′)n = (nfβ(MP ′))n since N
is in β-normal form. By Lemma 16, (L(N))n = (L(nfβ(MP ′)))n. By Lemma 12,
(L(MP ))n = (L(M(L(P ))n))n.
(2) Suppose (L(P ))n = (L(Q))n. By the first part, (L(MP ))n = (L(M(L(P ))n))n =
(L(M(L(Q))n))n = (L(MQ))n. ut



Theorem 5 (Well-behaviour of metric).

1. d([M ], [N ]) = sup{d([MP ], [NP ]) | P ∈ T σi }.
2. d([M ], [N ]) = 1

2d([await(M)], [await(N)]).

3. d([M ], [N ]) = sup{ 12
n

d([hd(tln(M))], [hd(tln(N))]) | n ∈ N}.

The proof of this theorem is similar to the one for Theorem 4.

8 Completeness for the Ultrametric Model

In this section we show that βη-conversion captures semantic equality between
reactive programs, i.e. two terms typable in the calculus of reactive programs are
βη-convertible if and only if they have the same interpretation in the ultrametric
model. Our proof follows closely the proof of completeness of the simply typed
lambda calculus given in [7, Section 8].

An ultrametric frame is an ultrametric applicative structure where Uσ→τi is
a subset of the set of non-expansive maps from Uσi to Uτi .

Theorem 6. There exists an ultrametric frame isomorphic to the term model.

Proof. We define Uσi = {φσi ([M ]) | M ∈ T σi } where φσi is a function from
(T /=βη)σi to Uσi defined by induction on σ.

φbi ([M ]) = [M ] φσ→τi ([M ]) = {(a, φτi ([M(φσi )−1(a)]) | a ∈ Uσi }
φ•σi ([M ]) = φσi+1([await(M)]) φ

S(σ)
i ([M ]) = {(n, φσi ([hd(tln(a))]))) | n ∈ N}

Surjectivity of φσi is trivial. Injectivity follows by induction on σ using Lemma 10.
That φσi and its inverse are non-expansive follows by induction on σ using The-
orem 5. It remains to prove that φσ→τi ([M ]) is non-expansive. This follows from
Theorem 4 and the fact that φτi and the inverse of φσi are non-expansive. ut

Definition 18 (Embedding). Let (U, dU ), (V, dV ) be ultrametric spaces. An
embedding from V to U is a pair (φ, ψ) of non-expansive maps φ : V → U and
ψ : U → V such that ψ ◦ φ = idV .

Lemma 18 (Partial Surjections for ultrametric spaces). Let U be an ul-
trametric applicative structure and V be an ultrametric frame. If there exists
an embedding from Vb

i to Ub
i for each constant type b and i ∈ N, then there

exists a partial logical surjective function R from U to V and two families of
non-expansive maps φσi , ψσi such that

1. Rσi (φσi (v), v) for all v ∈ Vσi . 2. Rσi (u, ψσi (u)) for all u ∈ dom(Rσi ).

Proof. By induction on σ. We do only the case S(σ) for streams. Then we define:

φ
S(σ)
i (v) = {(n, φσi+n(v(n))) | n ∈ N} ∀v ∈ VS(σ)

i

ψ
S(σ)
i (u) = {(n, ψσi+n(u(n))) | n ∈ N} ∀u ∈ dom(RS(σ)

i )

RS(σ)
i = {(f, g) | (f(n), g(n)) ∈ Rσi+n}



Statements (1) and (2) follow from induction hypothesis. Surjectivity follows

from (1). That RS(σ)
i is a function follows by extensionality. Surjectivity plays a

role only in the arrow type case, for proving that Rσ→τi is a function. ut

Theorem 7 (Completeness for the ultrametric model). Suppose there
exists an embedding from (T /=βη)bi to Ub

i for each constant type b and i ∈ N.
Let Γ `M,N :i σ. Then, M =βη N if and only if U |= Γ `M = N :iσ.

Proof. (⇒) [1, Theorem 4]. Alternatively, it also follows from Soundness for
Henkin Models (Lemma 3) and the fact that the ultrametric model is a Henkin
one (Lemma 11). (⇐). Let V be the ultrametric frame isomorphic to T /=βη

of Theorem 6. By Lemma 18, there exists a logical partial function from U to
V ∼ T /=βη. By Lemma 11 and Theorem 3, the ultrametric model and the term
model are Henkin models. Hence, Th(U) ⊆ Th(T /=βη) by Lemma 5. ut

9 Conclusions and Future Work

As a natural sequel, we are currently studying the theory induced by the ultra-
metric model for the typed lambda calculus of reactive programs extended with
the fixpoint operator of [1].

Statman’s 1-Section Theorem [13, 14, 15] generalises Friedman’s result by
giving necessary and sufficient conditions for a model to satisfy completeness
of βη-conversion on terms typable in the simply typed lambda calculus. It will
be interesting to prove a similar result to Statman’s 1-Section Theorem for the
typed lambda calculus of reactive programs.

Our step-indexed applicative structures are in fact Kripke lambda models
over the partial order (N,≤) in the terminology of Mitchell and Moggi [16]. By
using natural numbers, the additional operators for streams such as tl σi can move
from time i to i+ 1. However, the notion of Henkin model for reactive programs
is not a particular case of Kripke model as defined in [16]. Our environment
and meaning function do not have the natural number i as argument since that
information is provided by the judgement Γ `M :i σ.

The notion of step indexed logical relation for recursive types in [17, 18, 19]
use the index in a different way from ours. In our definition of logical relation on
the type σ → τ we quantify over j ≥ i for some given i. While in the definition of
logical relation for recursive types, the quantification is over j ≤ i for some given
i. The choice to quantify over j ≥ i is essential for our proofs to go through. The
logical predicate of strongly normalising terms should satisfy Pσ→τi ⊆ Pσ→τj for
i ≤ j and similarly, the logical surjective function defined in Lemma 18 should
satisfy Rσ→τi ⊆ Rσ→τj for i ≤ j. This holds trivially when we quantify over j ≥ i
but it does not hold if the quantification is done reversing the order.

Our step-indexed notion of applicative structure can be described as families
of covariant functors from (N,≤) to the category Set of sets and functions. The
topos of trees [20] that Birkedal and coworkers use for step-indexing models
of various programming languages consists of the contravariant functors from
(N,≤) to Set. These are functors from (N,≤)op , that is (N,≥), to Set.
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