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i .  INTRODUCTION 

The theory of Orthogonal Term Rewrite Systems (OTRS) is now well established within 
theoretical computer science. Comprehensive surveys have appeared recently in [Der90a, 
Klo91]. In this paper we consider extensions of the established theory to cover infinite terms 
and infinite reductions. 

1.1. Mot iva t ion  

At first sight, the motivation for such extensions might appear of theoretical interest only, with 
Iittle practical relevance. However, it turns out that both infinite terms and infinite rewriting 
sequences do have practical relevance. 

A practical motivation for studying infinite terms and term rewriting arises in the context of 
lazy functional languages such as Miranda [Tur85] and Haskell [Hud88]. In such languages it is 
possible to work with infinite terms, such as the list of all Fibonacci numbers or the list of all 
primes. This style of programming has been advocated by Turner [Tur85], Peyton-Jones 
[Pey87] and others. Of course the outcome of a particular computation must be finite, but it is 
pleasant to define such results as finite portions of an infinite term. It would be even more 
pleasant to know that nice properties (for example Church-Rosserness) hold for infinite as well 



as finite rewriting, but the standard theory does not tell us this. As we show below, Church- 
Rosserness is one of several standard results which does not hold for infinite rewriting in 
general, although it does hold for terms which have an infinite normal form (Theorem 4.1.3), 

A second practical motivation for considering infinite reduction sequences arises from the 
common graph-rewrite based implementations of functional languages. The correspondence 
between graph rewriting and term rewriting was studied in [Bar87] for acyclic graphs. When 
cyclic graphs are considered, the correspondence with term rewriting immediately requires 
consideration of infinite terms and infinite reductions. The correspondence with graphs is the 
motivation for [Far89]. 

1.2. Overview 

With these motivations in mind, we set out to identify precise foundations for transfinite 
rewriting. A certain amount of care is needed to establish appropriate notions and we do this in 
Section 2. One can take a topological approach as in [Der89a,b&90] and consider infinite 
reduction sequences that are converging to a limit in the metric completion of the space of finite 
terms. However, converging reductions fail to satisfy some natural properties for orthogonal 
TRSs. Instead we concentrate on strongly converging reductions as introduced by [Far89], 
which turn out to be better behaved. 

Basic facts for infinita~ orthogonaLterm rewrite ,~stem~ 

Transf. Parallel Moves Lemma 

Inf. Church-Rosser Property 
Unique or-normal forms 
Unique normal forms 

Compressing Lemma 

converging reductions 

NO (3.1.3) 

NO (4.1.1) 
NO (4.1.1) 

YES (3.3.6) 

NO [Far89], (3.2.1) 

Fair reductions result in co-normal forms [Der90b], (3A.2.i) 

strongly converging reductions 

YES (3.1.2) 

NO (4.1.I) 
NO (4.1.1) 

YES (3.3.6) 

YES (3.2.5) 
partial result in [Far891 

normal forms (3.4.2.ii) 

(Table 1.J ) 

In Section 3 we prove the fundamental results for infinitary orthogonal rewrite systems, as 
summarized in Table 1.1. Then in Section 4 we show the failure of the infinite Church-Rosser 
Property for general OTRSs. The counterexample refutes not only the CR-property for strongly 
converging but also the CR-property for converging reductions studied by Dershowitz c.s. 
Introducing ideas from Lambda Calculus we eliminate subterms that have no head normal form 
by reducing them to ±. The new Bthm-reduction --->i has the infinite Church Rosser Property 
for strongly converging reductions. Normal forms for --LL-reduction are so called BOhm Trees: 
they are unique. Finally we show that orthogonal TRSs in which there are no rule in which a 
left-hand side of a rule can be unified with the right-hand side have the infinite Church-Rosser 
Property. This class of orthogonal TRSs includes the top-terminating orthogonal TRSs of 
Dershowitz c.s. 



The present paper is an extended abstract of a longer paper in preparation by the same authors 
[Ken90a]. There it will be proved that the infinite Church-Rosserproperty holds for strongly 
converging reductions in OTRSs that contain at most one collapsing rule, which then has to be 
of the form I(x) --+ x. The full paper will further contain extensions of the theory of needed 
redexes to infinitary orthogonat tern,, rewriting systems and will unravel the connections 
between graph rewriting and infinitary term rewriting. 

We acknowledge critical reading of an earlier draft by Aart Middeldorp. 

2. INFINITARY ORTHOGONAL TERM REWRITING SYSTEMS 

We briefly recall the definition of a finitary term rewriting system, before we define infinitary 
orthogonal term rewriting systems involving both finite and infinite terms. For more details the 
reader is referred to [Der90a] and [Klo91 ]. 

2.1. Finitary term rewriting systems 

Afinitary term rewriting system over a signature Z is a pair (Ter(Z),R) consisting of the set 
Ter(2) of finite terms over the signature £ and a set of rewrite rules R c_ Ter(Z)xTer(Z). 

The signature £ consists of a countably infinite set Varz of variables (x,y,z,...) and a non- 
empty set of  function symbols (A,B,C ..... F,G,...) of various finite arities >_ 0. Constants are 
function symbols with arity 0. The set Ter(Z) of finite terms (t,s,...) over £ can be defined as 
usual: the smallest set containing the variables and closed under function application. 

The set O(t) of occurrences in t is defined by induction on the structure of t as follows: O(t) 
= {< >} if t is a variable and O(t) = {< >} u {<i,u> I l___i_<n and <u>~ O(ti)} if t is of  the form 
F(tl ..... tn). I fu~  O(t) then the subterm t/u at occurrence u is defined by induction: t/< > = t and 
F(tl ..... tn)/<i,u> = ti/u. The depth of a subterm of t at u is the length of u. 

Contexts are terms in Ter(Zu{n}),  in which the special constant n, denoting an empty place, 
occurs exactly once. Contexts are denoted by C[ ] and the result of substituting a term t in place 
of o is C[t]¢ Ter(Z). Aproper context is a context not equal to n. 

Substitutions are maps o :Vary~Ter(Z)  satisfying o(F(tl  ..... tn)) = F(O(tl) ..... O(tn)). 
The set R of rewrite rules contains pairs (1,r) of terms in Ter(Z), written as i -+ r, such that 

the left-hand side 1 is not a variable and the variables of the right-hand side r are contained in I. 
The result I ~ of the application of the substitution of o to the term 1 is called an instance of 1. A 
redex (reducible expression) is an instance of a left-hand side of a rewrite rule. A reduction step 
t --) s is a pair of terms of the form C[le] -~ C[re], where 1 -+ r is a rewrite rule in R. 
Concatenating reduction steps we get afinite reduction sequence t O --~ tl --+ ... ~ tn, which we 
also denote by tO --+n tn, or an infinite reduction sequence tO --~ tl --~ .... 

2.2. Infinitary orthogonal t e rm rewri t ing  systems 

An infinitary term rewriting xystem over a signature £ is a pair (Ter~(Z),R) consisting of the 
set Ter~(£)  of  finite and infinite terms over the signature £ and a set of rewrite rules 
RCTer(Z)×Ter~'(Z). We don't  consider rewrite rules with infinite 1eft-hand sides, but right- 
hand sides may be infinite in order to interpret various liberal forms of graph rewriting in 
infinltary term rewriting. In [Der90b] only finite left- and right-sides are considered. 



It takes some elaboration to define the set Ter~(Z) offinite and infinite terms. Finite terms 
may be represented as finite trees, well-labelled with variables and function symbols. Well- 
labelled means that a node with n > 1 successors is labelled with a function symbol of arity n 
and that a node with no successors is labelled either with a constant or a variable. Now infinite 
terms are infinite well-labelled trees with nodes at finite distance to the root. Substitutions, 
contexts and reduction steps generalize trivially to the set of infinitary terms Ter~(Z). 

To introduce the prefix ordering <<. on temas we extend the signature Z with a fresh symbol 
f~. The prefix ordering < on Ter~(ZtJ{ f2}) is defined inductively: x < x for any variable x, £2 
t for any term t and i f t l  < Sl ..... tn < Sn then F(tl ..... tn) < F(sl ..... Sn). 

If all function symbols of Z occur in R we will write just R for (Ter~(Z),R). The usual 
properties for finitary TRSs extend verbatim to infinitary TRSs: 

2.2.1. DEFINITION. Let R be an infinitary TRS. 
(i) R is left-linear if no variable occurs more than once in a left-hand side of R's rewrite 

rules; 
(ii) (informally) R is non-overlapping (or non-ambiguous) if non-variable parts of different 

rewrite rules don't overlap and non-variable parts of the same rewrite rule overlap only entirely: 
(ii') (formally) R is non-overlapping if for any two left-hand sides s and t, any occurrence u 

in t, and any substitutions c and "r:VarE --->Ter(2) it holds that if (t/u) ~ = s "~ then either t/u is a 
variaNe or t and s are left-hand sides of the same rewrite rule and u is the empty occurrence < >, 
the occurrence of the root. 
(iii) R is orthogonaI if  R is both left-linear and non-overlapping. 

It is well-known (cf. [Ros73], [Klo91]) that finitary orthogonat TRSs satisfy the flnitary 
Chureh-Rosser property, i.e., % - ,  -->* c -~* o %--, where -~* is the transitive, reflexive 
closure of the relation -~. It is obvious that infinitary orthogonal TRSs inherit this finitary 
property. 

In the present infmitary context it is natural to define that a term is a normal form if it contains 
no redexes, just like in the finitary context. A term t has a normal form s if there is a reduction t 
--*a s. Dershowitz, Kaplan and Plaisted [Derg9a, Der89b and Der90b] consider a weaker, more 
liberal notion of normal form: the m-normal forms. An m-normal form is a term such that if this 
term can reduce, then it reduces in one step to itself. One sees easily that restricted to finite terms 
normal forms and co-normal forms are ,already different concepts: in the TRS with rule A ~ A 
the term A is an c0-normal form, but not a noIrnal form. 

2,3. Converg ing  and s t rongly  converging t ransf in i te  reduct ions  

Generalizing the finite situation we would like to express that there is a reduction of length c~+1 
that transforms tO into ta, where ct may be any ordinal. Compare the following three reductions 
of length co, the corresponding TRSs are easy to imagine: 

(i) A ~ B ~ A ~ B ~  .... 
(ii) C ~ S(C) ~ S(S(C)) - ~  . . . .  

Off) D(E) --> D(S(E)) --> D(S(S(E))) --~ .... 
Clearly in the first reduction A will not be transformed in the limit to anything fixed, in contrast 
to C and D(E) in the second and third reduction. It is tempting to say that the limit of C will be 
S ¢°, an infinite reduction of S (plus all the necessary brackets), and similar D(E) should have as 
limit D(S¢O). Cauchy convergence is the natural formalism in which to express all this. 



The set Ter(2) of finite terms for a signature 2 can be provided with an ultra-metric d: 
Ter(E)xTer(2;) ~ [0,1] (cf. e.g. [ArnS0]). The distance d(t,s) of two terms t and s is 0 i f t  and 
s are equal, and otherwise 2 -k, where k~ N is the largest number such that the labels of all nodes 
of s and t at depth less than or equal to k are equally labelled. The metric completion of Ter(2;) is 
isomorphic to the set of infinitary terms Ter~(Z) (cf. [Arn80]) 

In the complete metric space Te~(2)  all Cauchy sequences of ordinal length c~ have a limit. 
We will now recall the transfinite converging reductions by Dershowitz, Kaplan and Plaisted 
[Der90b]. 

2.3.1. DEFINITION. A sequence of length c~ is a set of elements indexed by some ordinal 0~ _> 
1: notation (t~)~<a. Instead of (t~)~<a+I we often write (t~)~_<a. 

2.3.2. DEFINITION. By induction on the ordinal c~ we define when a sequence (t~)~_<c~ is a 
C 

converging sequence towards its limit tc~ (notation: tO "~a to): 

(i) tO -~;  tO, 

(ii) c c to "->13+1 t13+l if t o --->[3 t~3, 

(iii) c c to -'~X t~. if tO "--~ t13 for all ~<)~ and Va>0 3~<)~ V 7 (~<y<)~ --~ d(t-c,t;0 < a). 

This definition of transfinite convergence is an instance of the so-called Moore-Smith 
convergence over nets (cf. for instance [Ke155]). Limits are unique: if the topological space is a 
Hausdorff space then each net in the space converges to at most one point; the spaces Ter(2) 
and Ter~(I;) are Hausdorff spaces. 

2.3.3. DEFINITION. A reduction of length c~ >_ t is a sequence (t~)13< a such that t~ --> tl3+ 1 for 
all [3 such that ~-1 < ~. The redex contracted by the step t13 --~ t13+1 will be denoted by RI3, its 
depth as subterm of t~ by d~. 

We will now define strong reductions as reductions in which the depth of the reduced 
redexes tends to infinity. We present the definition for reductions of arbitrary transfinite length. 

2.3.4. DEFINITION. By induction on the ordinal a >_ 1 we define when a reduction (t13)13< a is a 
strong reduction: 

(i) (t13)I3<1 is a strong reduction; 
(ii) (ty)y<~+i is a strong reduction if (t-¢)%~ is a strong reduction; 

(iii) (tT)~/<X is a strong reduction if for all ~<% the reduction (t,/)~/<13 is strong and 
Vd>O 313<)L 'Vy (13<?<Z --> d?>d). 

2.3.5. DEFINITION. A strongly converging reduction is a converging sequence that is a strong 
reduction. 

The strongly converging reductions are of importance for the theory of infinitary term 
rewriting. Therefore we denote a strongly converging reduction (tl~)B_< a by tO -->~ ta By 
t ~_<c~ s we denote the existence of a strong reduction of length less than or equal to c~ 

towards limit s. We use a similar notation t ~cc~_ s for converging reductions of converging 
length less than or equal to ~. 



The second example of this section is an example of a strongly converging reduction. Other 
examples of strongly converging reductions are found in (3.2.1.ii) and (4.1.1). 

2.4. Count ing steps in strongly converging reductions 

Convergent transfinite reductions exist of any length. Consider for example the TRS with the 
• . ~ . • 

single rule A ~ A Reduetmns of the form A -4 A are convergm~ for any ordinal ~ However 
• c ~  c ~ " 

these sequences are not strongly convergent. The example A "-~c~ A shows also that in a 
converging reduction any number of reduction steps may be performed below some depth. For 
strongly converging reductions this is different: 

2.4.1. THEOREM. I f  to --+>  ̀t>  ̀is strongly convergent, then the number of steps in to---)>, t>  ̀
reducing a redex at depth < n is finite. 

PROOF. Assume to --~>  ̀t>  ̀is strongly convergent. As this reduction is strong there is a last step 
t~ ~ ta+1 at which a redex is contracted at depth _< n. Consider the initial segment to -4a ta, and 
repeat the argument. By the well-ordering of the ordinals (no infinite descending chains of 
ordinals) this process stops in finitely many steps. [] 

2.4.2. COROLLARY. A strongly converging transfinite reduction has countable length. 

PROOF. By the previous Theorem 2,4.1 a strongly convergent transfinite reduction can only 
perform finitely many reductions at any given depth d ~ N. 

3. FUNDAMENTAL FACTS OF INFINITARY TERM REWRITING 

From now on we consider infinitary orthogonal term rewriting systems, except in 3.4. 

3.1, The Transf ini te  Parallel Moves Lemma 

In t ---) s let s be obtained by contraction of the redex S in t. Recall the notation ukS of the set 
descendants of a redex occurrence u of t in the contraction of S (cf. [Hue79]). Descendance can 
be extended to transfinite reductions: 

3.1.1. DEFINITION. Let tO ~ a  tc~ be a transfinite strongly converging reduction such that for all 
13<o: t[3 reduces to t~+l by contraction of the redex R[~. By induction on the ordinal o~ we define 
the set of descendants u\t~ in ta that descend from the redex occurrence u in to: 

(i) u\0  = [u}  
(ii) u\(~+l) = g{vkR~lvau'q3} 

f~ii) u ~  = {v 1313<~.V~,(~-<7<~. -4 v~u\'t)} 

3.1.2, TRANSFINITE PARALLEL MOVES LEMMA. 
Let tO "-->e~ t~ be a strongly converging reduction sequence of to with limit ta and let to -4 so be a 
reduction of a redex S of to. Then for each ~ <_ o~ a term sB can be constructed by outermost 
contraction of all descendants of S in t~ such that s~ -+* s~+ifor each ~ < ~ and all these 
reductions together form a strongly converging reduction from so to s~. (See Figure 3. I) 



R~ 
to -'--~ t t  - - ~  "'" t~ - ~  tN-1 - '~ "'" ta  

S0  - - ~  . . . . . .  

(Figure 3.1) 

PROOF. First note that outermost reduction of a finite or an infinite number of disjoint redexes 
in some term gives a strongly converging reduction, hence all vertical reductions in Figure 3.1 
are strongly converging. 

We prove the lemma by induction on the ordinal o~. The case with zero is easy. Next, let ~ be 
of the form [3+1. This goes like the traditional proof, taking care of the possiNe infinite right- 
hand sides. Finally, let o~ be a limit ordinal L. Assume as induction hypothesis that we have the 
Transfinite Parallel Moves Lemma for [3 < )~. There are two possibilities: there exists a [3 < 
such that the actual length of the reduction sequence t~ -->_<co s~ is zero, that is there are no 
descendants of S in t[~, or there is no such ~. The first possibility is easy: we find that t~, = sy for 
all y with [3 < y < )~. It follows that so strongly converges to s)~. 

So let us pursue the second possibility and suppose there is no such [3. 
Let (vl])~< p_ be the reduction of the bottom line of Figure 3.1 obtained by refining the sequence 
(sl~)B_<)~ with reductions sB ~_<m s13+l for each [3 < c~.That such a ~ exists follows by an 
exercise on well-orderings: refining a well-ordering with well-orderings gives again a well- 
ordering. In order to conclude so = v0 --~g vrt = s)~ we have to show: (i) the reduction (v~)B<g is 
strong, (ii) the reduction (v13)~___ ~ is converging. But this is straigthforward. D 

It seems natural to ask whether a transfinite parallel moves lemma exists for the larger class 
of converging reductions. The following example shows that the construction embodied in the 
Transfinite Parallel Moves Lemma for strongly converging reductions does not generalize. 

3.1.3. COUNTEREXAMPLE. 
Rules: A(x,y) ---* A(y,x), C --~ D 
Sequences: A(C,C) --> A(C,C) --~ A(C,C) ~ A(C,C) ---> . . . . _ c  A(C,C) 

co 

$ $ $ $ A 
A(C,D) --> A(D,C) --> A(C,D) --> A(D,C) --> ... NO LIMIT 

The bottom infinite reduction obtained by standard projection over the one step reduction 
C ~ D does not converge to any limit. [] 

Note that this example is a counterexample not to the Parallel Moves Lemma, but to a method 
of proving it. It might be possible that by altering the construction, perhaps by considering a 
more liberal notion of descendant, the parallel moves lemma holds for transfinite converging 
reductions. After all, every term occurring in the counterexample can reduce to A(D,D). 

3.2. The  Compress ing  L e m m a  

In this section we will prove the Compressing Lemma for infinitary left-linear TRSs: if t --->~ s 
is strongly converging, then t --~_<co s. That is: any strongly converging reduction from t into s of 



length oc+I can be compressed in a reduction of length lesser or equal than oyt-1. The conditions 
left-linearity and strongly converging are necessary: 

3.2.1. COUNTEREXAMPLES. 
(i) Example against a compressing temma for converging reductions in orthogonat TRSs. 
Rules: A(x) ~ A(B(x)), B(x) ~ E(x) 
Sequence: A(C) --,~A(B(B°')) ~ AfE(B~)). 

Note: A(C) cannot reduce to A(E(B0~)) in _< co steps. The reduction is converging but not strong. 
(ii) Example of [Der89a] against a compressing lemma for strongly converging reductions in 

non-left-linear, non-overlapping TRSs. 
Rules: A --, S(A), B --~ S(B), H(x,x) --~ C 
Sequence: H(A,B) --** H(S(A),S(B)) -~* H(S(S(A)),S(S(B))) -%0 H(S% S°~) --~ C 

Note: The term H(A,B) of Dershowitz and Kaplan (cf. [Der89a]) can reduce via the limit 
H(SC°,S°~) t 9 C. But not H(A,B)--r<~C. The sequence is strongly converging. [] 

The proof of the Compressing Lemma will go in two steps whose proofs we skip, 

3.2.2. COMPRESSING LEMMA for 0~+1. I f  t -'%~-1 S is strongly converging, then t --~<~ s. 

3.2.4. COMPRI~SSING LE/vlMA for limit ordinals. !ft0 --4~. tX is strongly convergent, then there 
exists a strongly convergent reduction to ~_<~ t~. 

3.2.5. GENERAL COMPRESSING LEMMA. For any ordinal oc if t - -~  ta is strongly convergent, 
then there exists a strongly convergent reduction t --4<_o~ ta. 

PROOF. Together 3.2.4 and 3.2.2 establish the Compressing Lemma. Every infinite ordinal (x 
has the form L+n, for a limit ordinal L and a finite n. For any strongly convergent sequence 
t -'~.+n to, we apply Theorem 3.3.4 to the first L steps, to obtain a sequence t --*< o~+n to, then 
apply Theorem 3.2.2 n times to obtain t ~_<co too [] 

3.3. The unique normal  form property 

We will show for infinitary orthogonaI TRSs that each term has at most one normal form. In 
contrast, Example 4.1.1 shows that the unique m-normal form property does not hold in 
general. To obtain the positive result we need the notion of a stable reduction. Informally, an 
infinite reduction is stable if the sequence of stable prefixes of its terms converges to its limit: a 
stable prefix of a term t is a prefix of t such that no occurrence of that prefix can become an 
occurrence of a redex in any strongly converging reduction starting from t. Stable reductions 
will be strongly converging. 

3.3.1. DEFINITION. (i) A prefix s _< t is stable with respect to a reduction if no occurrence of s 
becomes an occurrence of a redex during that reduction. 

(ii) A prefix s ~ t is stable if s is stable for all possible strongly converging reduction 
sequences from t. 

The restriction in part (ii) to strong reductions is technically convenient. For terms having a 
normal form, it is in fact unnecesssary; the following proposition may be proved by use of the 
Transfinite Parallel Moves Lemma, We omit the proof. 



3.3.2. PROPOSITION. In an orthogonal TRS: I f  a prefix t of to is stable with respect to a strong 
reduction from to which converges to normal form, then it is stable. 

3.3.3. DEFINITION. Let Z(t) denote the maximal stable prefix of  t. A converging reduction 
to ~_.<o~ to~ is called stable if Vd._qNVk_>_N [ 2(tk) t > d, where [ t[ denotes the minimal distance 
of  an occurrence of  ~ in t to the root, if there is any, otherwise [ tl = ~. 

Stability is a very strong condition. The limit of an infinite stable reduction sequence is a 
normal form, from which it easily follows that stable reduction is Church-Rosser. The proof of  
the following lemma is routine and therefore omitted. 

3.3.4. 
(ii) 

(~i) 

LEMMA. (i) I f t  --~ S then 2(t) < 2(s). 
For reductions: stable ~ strongly convergent ~ convergent, But not conversely. 

The limit of  a stable reduction sequence is a normal form. [] 

3.3.5. 
(i) 

THEOREM. The following are equivalent: 
t ---)<_~ s is a converging reduction to normal form; 
t --+<_o~ s is a strong converging reduction to normal form; 
t -'-)<_o~ s is a stable reduction 

Some comments on the proof: It is trivial to see that (iii) ~ (ii) ~ (i).The proof of (i) ~ (ii) is a 
reductio ad absurdum. The proof of (ii) ~ (iii) has become easy by Proposition 3.3.2. 

3.3.6. UNIQUE NORMAL FORM PROPERTY. Normal forms are unique in orthogonat TRSs. 

e s and t PROOF. Suppose a term t admits two converging reductions t --* Sl ---) s2 --~ ... -'-~o~ 
e 

r l  ~ r2 ~ ... --~<_~ r to normal form. By Theorem 3.3.5 these reductions are stable. By the 
finite Church-Rosser property, for each n there exists Un such that Sn --+* un and rn "--)* Un. We 
obtain t ---~* ul ---)* u2 ---~* .... Using Lemma 3.3.4 (i) the newly constructed reduction (Un)nE N 
inherits its stableness from the stable reductions (Sn)n~ N and (rrbnE N. Thus we see by Theorem 
3.3.5 that the limit u of (Un) is a normal form. By Lemma 3.3.4 (i) we see that 2(st0 < Z(un) 
and ~;(rn) -<, •(Un). Hence s = lim E(Sn) < tim 2(un) - u >- lira X(rn) - r. Since normal forms 

. r t----)e~.,  rl  ---)e~ 

are maximal in the prenx oraenng (m contrast to ¢0-normat f~aa~s) s and r are equal. [] 

It is not difficult to show that any normal form that can be reached via a converging 
reduction, might also be reached via a strongly converging reduction. 

3.4, Fa i r  reduc t ions  

Theorem 3.3,5 implies that stable converging reductions result in normal forms. If we add a 
fairness condition to strongly converging reductions, then their limits will also be normal forms. 
The same fairness condition added to converging reductions results in converging reductions to 
co-normal form [Der89b]. Fairness of a reduction will express that, whenever a redex occurs in 
a term during this reduction, the redex itself or a term containing the redex will be reduced 
within a finite number of steps. 

3.4.1. DEFINITION. (i) Let r be a redex of t at occurrence u. A reduction t ~---o~ t' preserves r if 
no step of this reduction performs a contraction at an occurrence < u. 
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(ii) A reduction t -~-<m t' is fair if for every term t" in the reduction, and every redex r o f t "  
some finite part of this reduction starting at t" does not preserve r. 

Note that a finite sequence is fair if and only if it ends in a normal form, and fair reductions 
don't need to be converging. Note also that orthogonality guarantees that if the reduction t ~ m  
t' preserves a redex in t of a certain rule, then t' contains a redex of the same rule. 

We skip the proof of the following theorem. The proof is straightforward. 

3.4.2. THEOREM. (i) [Der89b] The limit of  a fair, converging reduction is an ~normal form. 
(ii) The limit of  a fair, strongly converging reduction is a norrnal form. 

3.4.3. COROLLARY. A reduction sequence is fair, strongly convergent if and only if it is 
stable. 

4. THE INFINITE CHURCH-ROSSER PROPERTY 

4.1. Fa i lu re  of the infinite Church .Rosse r  P r o p e r t y  for  or thogonaI  TRSs  

In the standard theory of orthogonal TRSs one proves the finite Church-Rosser Property after 
establishing the Finite Parallel Moves Lemma. The following counterexample shows that, 
despite the Transfinite Parallel Moves Lemma, the infinite Church Rosser property 

<---01 * m----> C_ <01-+  ° 4--<_01 

does not hold for strongly converging reductions. 

4.1.1. COUNTEREXAMPLE. 
Rules: A(x) -+ x, B(x) ---) x, C --+ A(B(C)) 
Sequences: C ---) A(B(C)) ~ A(C) ~ A(A(B(C))) --, A(A(C)) ---)m A m 

C -+ A(B(C)) -+ B(C) --> B(A~(C))) -+ B(B(C)) -+m Bm 
Hence C --+_<o~ A c° as well as C --~<_m B co. But there is no term t such that A °~ --~<-0~ t +--_<m B°~be 
it converging or strongly converging. [] 

4.2. B6hm trees  

The counterexample and Theorem 4.1 suggest that terms having m-normal forms that are not 
normal forms are blocking a proof of the Infinitary Chureh-Rosser Property for converging 
reductions. From Lambda Calculus (cf. [Bar84]) we will borrow the notion head normal form 
(hnf), for terms that cannot be reduced to a redex and the idea for a reduction relation --'~.k 
extending ---) with an extra rule: t---).k if t has no hnf..1, is a fresh symbol that we add to the 
signature of the TRS. 

4.2.1. DEFINITION. A term is a head normal form (hnf) if the term cannot be reduced to a redex, 
and a term has a hnfif  it can be reduced to a hnf. 

4.2.2. DEFINITION. (i) Let us denote by ±---~ the rewrite relation {<C[t],C[_L]> 1 t has no head 
normal form for --), C[ ] is a one-place context}. 

(ii) Let the rewrite relation underlying Bghm reduction (notation "-%0 be ~ u ±-+. 
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(iii) A term t has a Brhm tree if there exists a strongly converging Btihm reduction from t to 
-)-*z-normal form. 
(iv) Let strict B6hm reduction (notation -)[±]) be the subreduction of - )±  in which ±-)-  

reduction has priority over -)-reduction. 

We skip the proof of the following lemma and theorem. 

4.2.3. 
(ii) 

(iii) 
(iv) 
(v) 

(vb 
(vii) 

LEMMA. (i) .1.__.) is finitely CR. 
- )  ± is finitely CR. 

Each finite part of a Bahm tree can be found infinitely many steps. 
A term has at most one Brhm tree. 
Bdhm reduction - )± and strict Brhm reduction - )± have the same normal forms. 
-)[±]-reductions are strongly convergent and of lenght not more than co 
Every term has a normat form with respect to -)[±]. 

4.2.4. THEOREM. For both strongly convergent --)m-reduction and convergent -)±-reduction 
the infinite Church-Rosser Property holds. 

4.3. Non-unifiable or thogonal  TRSs have the infinite Church-Rosser  Proper ty  

From the work of Dershowitz, Plaisted and Kaplan on convergent reductions it follows that any 
left-linear, top-terminating and semi-m-confluent TRS satisfies the infinite Church-Rosser 
property: 

c(__ c c c 

° "~0) C "-~.Gr~ * <co  1"-" 60 

(cf. [Der90b]: combine Theorem 1, Proposition 2 with Theorem 9.). A TRS is top-terminating 
if there are no top-terminating reductions of length co, that is reductions with infinitely many 
rewrites at the root of the initial term of the reduction. Semi-co-confluency, that is 

c c c 

*<-" ° ---)o) C- "-')<o3 *<co+- 

holds if the Transfinite Parallel Moves Lemma holds for converging reductions. On the 
assumption that we are in a orthogonal TRS in which all convergent reductions are strong the 
infinite Church-Rosser Property holds for this TRS. Top-termination implies this assumption. 
Hence in top-terminating orthogonal TRSs the infinite Church-Rosser Property holds. 

Using our techniques we can explain and improve this result. 

4.3.1. DEFINITION. A TRS is called unifiable if the TRS contains a unifiable rule, that is a rule 
1 - )  r such that for some substitution cy with finite and infinite terms for variables 1 ~ = ~ .  

Note that unifiability in the space of finite and infinite terms means unifiability "without the 
occurs check": the terms I(x) and x are unifiable in this setting, and their most general unifier is 
the infinite term I c0. Collapsing rules, i.e. rules which right-hand side is a variable are unifiable. 

4.3.2. LEMMA. The following are equivalent for an orthogonal TRS: 
(i) the TRS is non-unifiable, 

(ii) all convergent reductions of the TRS are strong, 
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(fii) all convergent reductions are top-terminating. 

4.3.3. THEOREM. Any non-unifiable orthogonat TRS has the infinite Church-Rosser Property 
for  converging reductions. 

The theorem follows from the quoted results of  Dershowitz, Kaplan and Plaisted. Space 
prevents us to explain another proof: Non-unifiable TRSs are a special instance of non- 
collapsing TRSs, i.e, TRSs in which there are no rules whose right-hand side is a single 
variable. In non-collapsing orthogonal TRSs the infinite Chureh-Rosser Property holds for 
strongly converging reductions (cf. [Ken90a,b]). In fact we may admit one single collapsing 
rule of the form I(x) ---> x and still retain the infinite Church-Rosser property (cf. [Ken90a,b]). 
Note, for instance, that the collapsing rule for K in Combinatory Logic disturbs the infinite 
Church-Rosser property. A counterexample is not difficult to construct. 
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