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1. INTRODUCTION

Graph rewriting is a well-known technique for implementing term rewrite

systems. The advantage it has over “naive” term rewriting is that where a

term rewrite rule such as

Times(Succ( x), y) ~ Add( y, Times( x, y))

would require making two copies of the second argument to Times, the graph

rewrite implementation can instead make two references to a single copy.

This saves time and space, especially when the argument is not itself

in normal form, as can be the case when the language has call-by-need

semantics.

Graph rewriting is frequently used to implement functional languages

[Peyton Jones 1987]. Besides the advantages illustrated above, graph rewrit-

ing allows a subtle optimization in the computation of fixed points. Consider

the following rule for constructing an infinite list of copies of its argument:

Repeat(n) + Cons(n, Repeat(n)).

Each time the rule is used, two copies of a pointer to the argument n are

made. But additionally, the reference on the right-hand side of the rule to the

subterm Repeat(n) can be replaced by a reference to the root of the right-hand

side, giving a graph rewrite rule with a cyclic right-hand side which we can

write as Repeat(n) + x :Cons(n, x). The syntax x :Cons( n, x) here denotes a

graph with two nodes, one of which is labeled with the symbol Cons and has

two out-arcs, the second of which points to itself. A single application of this

rule constructs the entire infinite list at once, as a finite cyclic structure.

Figure 1 shows the effects of these two different representations of the rule.

The correctness of the graph-rewriting implementation of term rewriting is

a piece of well-known folklore. For acyclic graphs the formal relationship has

been studied in Staples [1980], Barendregt et al. [1987], Farmer and Watro

[1989], and Farmer et al. [1990]. Only the last two of these consider cyclic

graphs at all.
In an obvious and intuitive sense, acyclic graphs can be “unraveled” to

trees—the syntax trees of terms. Cyclic graphs can be similarly unraveled,

but give rise to infinite trees, which we can regard as infinite terms. A single

reduction in a cyclic graph can correspond to the reduction of infinitely many

redexes in the corresponding infinite term. A finite sequence of graph reduc-

tions may correspond to a term reduction sequence of length greater than co.

A precise account of the relationship between graph rewriting, including

cyclic graphs, and term rewriting must therefore consider infinitary term

rewriting. In a related paper [Kennaway et al. 1993b] the authors have set

ACM Transactions on Programming Languages and Systems, Vol. 16, No 3, May 1994.



Graph Rewriting for Simulating Term Rewriting . 495

Repeat Cons Repeat

I v \ I ‘3Cons

Repeat /
3

/

3 3“

3

Figure 1.

out the foundations of infinitary term rewriting for orthogonal term rewrite

systems.

In this article we define finitary and infinitary term and term graph

rewriting, and a notion of one rewrite system implementing another. We

show that for orthogonal systems of rewrite rules, finitary ~aph rewriting

implements in this sense a restricted version of infinitary term rewriting.

This subsumes and makes more precise the result of Barendregt et al. [1987]

that for orthogonal systems, finitary acyclic graph rewriting implements

finitary term rewriting. We show by means of a counterexample that, sur-

prisingly, infinitary graph rewriting does not implement infinitary term
rewriting.

Our present definition of an implementation by one system of another

(called here an adequate mapping from one to the other) adds to
the abundance of concepts of simulation, in term rewriting (for example,

Barendregt [1987] and O’Donnell [1985]), complexity theory (for an overview

see Van Erode Boas [1990]) or programming languages [Mitchell 1991].

2. FINITARY AND INFINITARY TERM REWRITING

2.1 Basic Definitions

General introductions to finitary term rewriting may be found in Dershowitz

and Jouannaud [1990] and Klop [1992]. Here we shall define the basic

concepts of infinitary term rewriting, which can be seen as including finitary

rewriting as a special case.

For the formalization of infinitary rewriting, we will require certain mathe-

matical concepts: metric spaces, continuity, and ordinal numbers. No ad-

vanced knowledge is required, only a familiarity with the basic definitions.

Smyth [1992] and Phillips [1992] give clear expositions of the material.

A signature 2 consists of a countably infinite set Var~ of variables (x, y,

z ,... ) and a nonempty set of function symbols of various finite arities >0.

Constants are function symbols with arity O. Variables are also deemed to

have arity O.
An (infinitary) term over X is a finite or infinite ordered tree. Each node of

the tree is labeled by a member of Z and has a tuple of descendants. The size

of the tuple is equal to the arity of the label of the node. Term(Z) is the set of

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.
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infinitary terms over Z. Ter( Z) is the subset of Ter”( Z’) consisting of the finite

trees.

An occurrence is a finite sequence of positive integers. We write an

occurrence as, e.g., 1 “ 3 “ 2 “ 2. The set 0(t) of occurrences of t is defined by

induction as follows: the empty occurrence ● is a member of O(t) for all t. If t

is a variable or a function symbol of arity O, this is the only member of 0(t).

An occurrence i . u, where i is an integer and z~ is an occurrence, belongs to

O(t) if t has the form F(tl,... , tn),1 s i s n, and u = O(tL). Note that O(t)

is in 1– 1 correspondence with the nodes of t.For example, O(Cons(3, Cons(2,

Nil))) = {e, 1, 2, 2.1, 2. 2}. If u is a prefix of U, we write u < U. The

concatenation of u and u is written u . u.

If u ● O(t) then the subterm t Iu at occurrence u is defined as follows:

t I e = t and F(tl,....tn)I i “ u = t, I u. The depth of a subterm of t at occur-

rence u is the length of u. For example, let t ==Cons(4, Cons(12,

AddList(Plus(8, 3), Nil))). Then t I2.2 ~ 1 = P1us(8, 3).

There is a useful metric on the set Terti(2). Define d(t, t‘) to be O if t = t‘,

otherwise 2 n, where n is the length of the shortest occurrence u common to

t and t‘such that the nodes of t and t‘corresponding to that occurrence bear

different symbols.

A substitution is a map o- :Varz + Term(S). CTis extended to a function on

the whole of Ter(X) by defining a(F(tl,....tn))= F(a(tl),....a(tn)),and to

Terr”(S) by requiring that it be continuous with respect to the metric. Intu-

itively, this just means that a(t) is obtained from t by replacing every

occurrence of every variable x in t by a(x). There may be infinitely many

such occurrences, v(t) is called an instance of t.We may write a substitution

defined on a finite set of variables xl, ..., Xn as [xl = tl, ..., x. = tn].

A rewrite rule is a pair ( tl,t,)of terms in Ter”( 2), written as tl+ t,,such

that tl is finite and not a variable, and every variable occurring in t,occurs

also in tl.tland t,are called the left- and right-hand sides of the rule. It is

finitary if t, is also finite. A redex (reducible expression) of a term t consists

of an occurrence u of t, a rule tl+ t,,and a substitution CT, such that

t Iu = a (tl).The result of reducing this redex is the term resulting from

replacing the subterm of t at ZL by a(t,).If t reduces to t‘by reduction of

some redex, we write t + t‘.Concatenating reduction steps we get either a

finite reduction sequence to + tl ~ “”” t,, which we also denote by to-n tn,

or an infinite reduction to - tl+ t2+ ....A normal form is a term contain-

ing no redexes.

We require the left-hand side of a rule to be finite on both philosophical

grounds (the question of whether a term is a redex by a given rule should be

decidable in a finite time) and technical grounds (infinite left-hand sides

cause some of the properties of infinitary rewriting to fail—see Kennaway et

al. [ 1993b]). Infinite right-hand sides do not cause problems. We will in fact

require infinite right-hand sides in order to model graph rewrite rules with

cyclic right-hand sides. Unbounded left-hand sides are also

unproblematic—that is, while we require each left-hand side to be finite, we

do not require that in a system having infinitely many rules, there should be

an upper bound on the size of the left-hand sides.
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A ( finitary)term rewrite system (or TRS) over a signature Z is a pair

(T, R), where R is a set of rewrite rules in T x T, and T is a set of terms over

2 which is closed under reduction by R and the subterm relation.

We do not require a TRS to contain every term which can be constructed

from the signature. This allows us to uniformly treat such things as typed or

sorted systems, where there are constraints on which terms are “legal.” The

closure conditions on T are for convenience. Note that T need not be closed

under substitutions, since, for example, in a typed system where addition

cannot be applied to boolean values, the legality of terms Add( x, y) and True

must not imply that Add(True, y) is also legal.

A transfinite reduction sequence of a TRS (T, R) consists of a function f

whose domain is an ordinal a, such that f maps each /3 < a to a reduction

step fp - fP + ~. f is Cauchy continuous if the sequence of terms { fp I D < a} is
a continuous function from a (with the usual topology on ordinals) to T (with

the metric topology defined above). For each ~ < a, let d~ be the depth of the

redex reduced in the step from fp to fP + ~. The sequence is strongly continu-

ous if for every limit ordinal A < a, the sequence {dP I ~ < A} tends to

infinity. It is Cauchy convergent if it is Cauchy continuous and converges

topologically to a limit, denoted by fm. It is strongly convergent if in addition

the sequence {dD \ ~ < a} tends to infinity.

We consider strongly convergent reduction to be the appropriate notion of

transfinite reduction sequence. Cauchy convergence alone is insufficient to

allow the definition of the fundamental notions of residuals and projection, as

shown in the next section.

We write a +“ b (resp., a +<” b) to denote a strongly converging reduc-

tion of length a (resp., at most a) starting from a and converging to b, and

a +“ b for a strongly converging reduction of any finite or infinite length.

a ~ *b denotes a reduction of finite length (including zero).

Consider the following rule systems and reduction sequences.

(1) Rule A(x, y) ~ A(y, x), sequence A(B, C) ~ A(C, 1?) ~ A(B, C) - A(C,
B)+ . . .

(2) Rule A(x, y) -+ A(y, x), sequence A(D, D) ~ A(D, D) ~ A(D, D) ~
A(D, D)~ . . .

(3) Rule C - S(C), sequence C + S(C) + S(S(C)) + . . . S(S(S(.. . ))).

Example (1) is a diverging reduction sequence. Example (2) is Cauchy conver-

gent with limit A(D, D). Example (3) is strongly convergent with limit S”

(i.e., S(S(S( . . . )))).
An infinitary term rewriting system over a signature Z consists of a triple

(T, R, S), where T is a subset of Term(Z); R is a set of infinitary rewrite

rules; and S is a set of strongly convergent term rewrite sequences, subject to

the following conditions:

(1) T is closed under finite reduction sequences and the subterm relation.

(2) Every term appearing in S is in T, and every reduction step in any
member of S is a reduction by a rule in R.
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(3) S contains every finite reduction sequence of members of T.

(4) S is closed under finite sequential composition.

(5) Every subsequence of a member of S is in S.

As for the finitary case, we do not require that T contain every possible term.

In addition, we do not require that S contain every possible infinite reduction

sequence over T, since we will later want to consider infinitary TRSS where S

is restricted to the so-called rational sequences.

When we speak simply of a TRS, we shall mean an infinitary TRS. This

includes the finitary TRSS, which are the special case where T and R contain

only finite terms, and S is empty.

2.2 Basic Properties of Finitary and Inflnltary Orthogonal Systems

Dershowitz and Jouannaud [1990] and Klop [ 1992] give tutorial accounts of

the theory of orthogonal term rewriting for finitary orthogonal term rewrite

systems. In Kennaway et al. [ 1993b] we have generalized this theory to the

infinitary setting. We state here the main results: the Compressing Lemma,

the Strip Lemma, Complete Developments, and the Church-Rosser property.

The last of these is also treated in Kennaway et al. [1993a]. It is important to

note that, in contrast to the finitary setting, the existence of complete

developments and the Church-Rosser property do not hold in general, but are

subject to various restrictions.

Definition 2.2.1. Let R be a term rewriting system.

(1) R is left-linear if no variable occurs more than once in the left-hand side

of a rewrite rule of R.

(2) R is nonoverlapping if for any two (not necessarily distinct) rules of R,

with left-hand sides s and t,any occurrence u in t,and any substitutions

m and ~ it holds that if a(t I z~) = ~(s) then either t I u is a variable or t

and s are left-hand sides of the same rewrite rule and z~ is the empty

occurrence ~, the position of the root. If for some pair of rules this

condition fails to hold, the rules are said to conflict.

(3) R is orthogonal if R is both left-linear and nonoverlapping.

Example 2.2.2. The rules F(G( x)) + H and G( K( x)) - K conflict with

each other. The rule F’(1’( x )) ~ G conflicts with itself (take z~ = 1).

Throughout the article, all TRSS will be assumed to be orthogonal.

Proposition 2.2.3 (Compressing Lemma [Kennaway et al. 1993b]). In an

orthogonal TRS, if t +“ t‘then t +5 ‘“t‘.

This result is important because it allows us to be unconcerned about the

fact that from sequences of length CO,we can obtain sequences of greater

lengths through composition and projection. Such sequences may be given

computational meaning by this result, independently of the motivation of

cyclic graph rewriting.
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The Compressing Lemma is one reason for preferring strong convergence to

Cauchy convergence, as it is false for the latter form of reduction. A coun-

terexample is given by the rules A(x) - A(C( x)), C(x) - D(x), and the

sequence of length w + 1: A(B) - A(C(B)) ~ A(C(C(B))) - . . . A(C”) ~
A(D(C”)). There is no reduction of length < ti from A(B) to A( D(C”’)).

Definition 2.2.4. Let t - t‘by reduction of a redex r at occurrence u in t.

Let u‘ = O(t). Then there is a set of occurrences in t‘,denoted by u ‘/r,

which is an intuitive sense “descends from” u‘ in t, and which may be

formally defined thus. Partition O(t) into three parts: those elements u‘ of

which u is not a prefix; those elements of the form u . u, where u is an

occurrence of a function symbol in the left-hand side of the rule of r, and

those elements of the form u . u . w, where u is an occurrence of a variable x

on the left-hand side of r. In the first case, zz’/r = {u ‘}. In the second,

(u. v)\r=!3. In the third, (u. u.w)/r={u. u’ “ w I r‘ is an occurrence of x

cm the right-hand side of r).
The members of u ‘/r are called the residuals of u by r. For U c O(t), U/r

is the union of u‘ /r over all u‘ = V.

Definition 2.2.5. Let s:to -“ t. be a strongly convergent reduction se-

quence and U G O(t). Then U/s is defined by induction on the steps of s. Let

UO = U. If UP is defined for some ~ < a, then UP+ ~ = UP\(tP - tP+ ~) as given

by Definition 2.2.4. If A < a is a limit ordinal, then U1 contains every

occurrence which is a member of UP for all large enough B < k Equivalently,

U*=U y<Afly<(3<A~B.
For u = O(t), u/s is defined to be {u}/s.

The strong convergence of s implies that U1 could equivalently be defined

as containing those occurrences which are in UP for arbitrarily large @ < A,

rather than only those which are in UP for all ~ < A In other words, UA is

also equal to (l ~.* U ~. ~. *UP. This iS because strong convergence impIies
that whenever the length of an occurrence u is, from some point onward in

the sequence s up to stage A, every reduction is performed at a place in the

term which is deeper than u. If this state of affairs is reached at stage y, then

u is either a member of every UP when y < /3 < A, or is a member of no such

up.

Proposition 2.2.6. In an orthogonal TRS, let t - t‘by reduction of a redex

r at occurrence u in t.Let s: t +“ t“ be a strongly convergent reduction

sequence. Then t” has a redex by the same rule as r at every occurrence in

u/s.

PROOF. This is trivial when s is the empty sequence. If it is true for a

sequence s, then it is true for a sequence consisting of s followed by a single

step, from the theory of orthogonal finitary reduction [Dershowitz and

Jouannaud 1990, Klop 1992]. Suppose the length of s is a limit ordinal A, and

the theorem holds for all shorter sequences. Let u‘ G u/s. The left-hand side

of the redex r has a finite maximum depth n. Suppose u‘ has length n‘.

From some point a < A in the sequence onward, every reduction is performed
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at depth n + n‘ or greater. At that point, there is by the inductive hypothesis

a residual of r at occurrence u’. Since every later step is at depth at least

n + n’, that residual must be present in each later term in the sequence

before the limit, and hence is present in the limit also. ❑

Definition 2.2.7. The redexes given by Proposition 2.2.6 are called the

residuals of r by s, and the set of residuals is denoted by r/s.

Proposition 2.2.6 provides another reason for using strongly convergent

sequences. Consider Example (2) from Section 2.1. If there is in addition a

rule whose left-hand side is D, then the term A( D, D) contains two redexes.

Each of these redexes in the initial term has exactly one residual in the terms

at each finite stage of the sequence; however, the two redexes change places

with each step. The limit term also contains two such redexes; which of the

two initial redexes should either of these be deemed to be a residual of?

Definition 2.2.8. A development of a pairwise nonconflicting set of redexes

R of a term t is a reduction sequence in which after each initial segment s,

the next step, if any, is the reduction of a residual of a member of R by s. The

development is complete if it strongly converges to a limit which does not

contain any residual of any member of R.

We now come to a point on which finitary and infinitary term rewriting

differ.

Definition 2.2.9. A collapsing rule is a left-linear rule whose right-hand

side is a variable. Its collapsing occurrence is the (unique) occurrence in its

left-hand side of the variable which is its right-hand side. A collapsing redex

is a redex of a collapsing rule. In a term t,a collapsing tower is an infinite

set of redexes at occurrences of the form Ul, UI “ Uz, Z~l . Uz . uS, . . . . such that

the redex at UI . . . . . u, is a collapsing redex with collapsing occurrence U,+ ~.

Given a collapsing rule such as 1(x) ~ x, an example of a collapsing tower

is the infinite term 1(1(1( . . . ))). Given an additional collapsing rule J(K,

x) ~ x, there are more complicated collapsing towers such as 1( J(K, 1( J( K,

1( J(K , . ..)))))).
In finitary orthogonal rewriting, every set of redexes has a complete

development. For infinitary rewriting this is not so. Consider, for example,

the collapsing tower introduced above, 1(1(1( . ..))). The set of all redexes of

this term has no complete development, since any attempt to reduce every

redex results in a sequence which is only Cauchy convergent but not strongly

convergent. For a more complicated collapsing tower such as the 1( J( K,

1( J(K, 1( J(K , . ..)))))) introduced above, some attempts to reduce every redex

result in a sequence which is not even Cauchy convergent.

Proposition 2.2.10 (Complete developments [Kennaway et al. 1993b]). In

an orthogonal system, let R be a set of redexes in a term t.If R contains no

collapsing tower, then R has a complete development. (In particular, every

finite set of redexes has a complete development.) Every complete develop-

ment of R, if any, ends at the same term.
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Note that collapsing towers do not arise in finitary term rewriting. In that

setting, complete developments always exist and are finite.

COROUAPW 2.2.11. In an orthogonal TRS, if R and R‘ are sets of redexes of

t, R is a subset of R’, and R‘ contains no collapsing tower, then every

complete development s of R can be extended to a complete development of R‘,

by appending to it a complete development of the set R ‘/s. This set depends

only on R and not on the choice ofs.

Definition 2.2.12. We write R ‘/R for the set of redexes constructed in the

previous corollary. Note that R ‘/R always exists when R‘ is a finite set.

Proposition 2.2.13 (Parallel Moves Lemma). In an orthogonal TRS, let R

and R‘ be sets of redexes at the same term t,whose union does not include a

collapsing tower. Then R/R’ and R‘ /R, considered as complete develop-

ments, have the same final term.

PROOF. By definition, R . (R ‘/R) and R‘ . (R/R’) are both complete devel-

opments of R U R‘, and hence by Proposition 2.2.10 have the same final

term. ❑

Proposition 2.2.14 (Strip Lemma [Kennaway et al. 1993b]). In an orthogo-

nal TRS, let r be a redex of the initial term of a reduction sequence s: t +x t‘.

Then t/s has a complete development, and there is a reduction sequence,

denoted by s\r, such that r( s/r) and a complete development of r/s have

the same final term.

The proof of the Strip Lemma not only proves the existence of r/s and s/r,

but constructs particular sequences. More generally, we can consider a set of

redexes R instead of a single redex R, and obtain a set of redexes R/s and a

sequence s/R, although in that case the construction cannot always be

performed—R/s may not have a strongly convergent complete development,

and s/R may not exist. The construction is pictured in Figure 2. Each of the

squares in this diagram has sides of the form R, R‘, R/R’, and R ‘/R. Such

a diagram is called a projection diagram. Note that we use the notation R/s

to denote not only a set of redexes but also a strongly convergent complete

development of that set. In general it will not matter which complete develop-

ment is chosen.

In the finitary case, the Parallel Moves Lemma and the Strip Lemma

immediately yield two different proofs of the Church-Rosser property of

orthogonal term rewrite systems. (The former is the method of proof in, for

example, Huet and L6vy [1991 ].) This is the property that given any two

sequences so:t+ *t.and sl:t ~ *tl, there exist a term t2 and two sequences

.sZ:to ~ tz and s~:tl ~ tz. Both proofs give more information than this, by

constructing a particular pair of sequences SZ and S3, denoted by S1/sO and

so\sl and called the projection of SI over so and of so over SI respectively.

Neither proof extends immediately to the infinitary case. The Strip Lemma
implies the transfllnite Church-Rosser propert y (where so, s~, .sZ, and S3 may

be of any transfinite length) only in the case where at least one of the two

sequences is finitely long, and the Parallel Moves Lemma implies the
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Figure 2.

Church-Rosser property only when both sequences are concatenations of

finitely many complete developments, and not even for all such sequences. If

we apply the Compressing Lemma to SO and s ~ to transform them into

sequences s~ and sj of length at most O, we can then apply the Strip Lemma

to s~ and finite initial segments of sj, and vice versa. This results in a

construction of sequences s~\s~ and sj\s~, but in general they might not be

strongly convergent or converge to the same limit. For later reference, we

shall call this construction of sj[s~ and s~)s~ the Standard Construction.

The fact that the Standard Construction does not immediately give a proof

of the transfinite Church-Rosser property for orthogonal systems is not

surprising, since in general the property does not hold. A counterexample is

given by the rules C ~ A(B(C)), A(x) ~ x, B(x) - x. C can be strongly

convergently reduced in o steps to either A“ or B‘. These have no common

reduct (whether by strongly or Cauchy convergent reduction). However,

certain restricted forms of the transfinite Church-Rosser property do hold for

orthogonal systems.

One way of forcing the Church-Rosser property to hold is to restrict the

form of rewrite rules. The above counterexample suggests that there is a

problem with collapsing rules. It is possible to obtain the transfinite Church-

Rosser property by suitably restricting the possible forms of such rules.

Definition 2.2.15. An orthogonal set of term rewrite rules is almost non-

collapsing if it contains at most one collapsing rule, and that collapsing rule
contains at most one variable on its left-hand side.

Examples of the single collapsing rule that may be contained in an almost

noncollapsing system are 1(x) + x or A( B(C, x), D(E)) ~ x. The rule

K( x, y) ~ x is not allowed. In any orthogonal system containing this rule,

violations of the Church-Rosser property result which are similar to that

given before Definition 2.2.17. For example, the graph x: K( K( x, A), B)

reduces both to x:K(x, A) and x:K(x, B).

THEOREM 2.2.16. An orthogonal set of rewrite rules is transfinitely

Church -Rosser if it is almost noncollapsing.

PROOF. This is proved in Kennaway et al. [ 1993b].

For the sake of self-containedness, we shall briefly and very informally

indicate the method of proof. As remarked above, we can apply the Standard

Construction to the two sequences so and SI of length co, obtaining SOlsl and
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sl/sO, after which it only remains to show that these sequences (or, as we

shall see, sequences obtained from them by omitting certain steps) strongly

converge to the same term.

We begin with depth-preserving systems, that is, systems where the depth

of every occurrence of a variable in the right-hand side of each rule is at least

as great as its depth in the left-hand side. For these, it is easy to see that the

set of rows and columns of the projection diagram are uniformly strongly

convergent, and hence that sO\s ~ and s ~/sO are strongly convergent, and

converge to the same term.

To extend this to the noncollapsing systems, we transform the given system

into a depth-preserving one by padding out the right-hand sides with a unary

function symbol ~. New rules must also be added in which both left- and

right-hand sides are padded out in this way. From the Church-Rosser prop-

erty for depth-preserving systems the property for noncollapsing systems

follows by simply erasing all occurrences of ~ in the sequences that were

constructed in the transformed system. This is possible since the absence of

collapsing rules prevents any subterm of the form e” (which has no counter-

part in the original system) from arising.

When there are collapsing rules, the transformation to a depth-preserving

system can still be applied, but the Church-Rosser property for the trans-

formed system in general no longer carries back to the original system. This

is because the sequences sO\sl and sl\sO which are constructed in the

depth-preserving system may now contain subterms of the form ~”. These

arise from collapsing towers in the original system. It is possible for occur-

rences of e a in the transformed system in the common final terms of sO\s ~

and s ~\sO to correspond to distinct collapsing towers of the original system

which have no common reduct, resulting in a counterexample to the Church-

Rosser property. However, for almost noncollapsing systems, all collapsing

towers are identical and reduce only to themselves. By omitting reductions of

redexes in such towers we obtain sequences of the required form in the

original system.

The converse holds provided the system contains enough terms. If a system

is almost noncollapsing, then one can find two distinct collapsing redexes t

and t‘such that both t and t‘reduce in a single step to x. This can be done if

the system is not almost noncollapsing. Then construct the infinite term

t[x := t’[x:= t[x := t’[...]]]].This reduces both to t[x := t[x := t[...]]]and

to t‘[x := t‘[x := t‘[...]]],which have no common reduct.

Another form of the transfinite Church-Rosser property is obtained by

instead weakening the requirement that the constructed sequences end with

the same term. ❑

Definition 2.2.17. A congruence on a TRS is an equivalence relation -

such that

(1) If t - t’, then for any term t“ and variable x, [x ‘= tit” - [x ‘= t’lt”.

(2) For any substitution m, if t - t‘then u t - u t‘.

(3) If t -m t’then t - t’.
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b— tl- t’1

Figure 3. J J

t’2-t’2 +t3-t4

Given a congruence - , a TRS is CR/ - if whenever tO +“ tl and to +x tz,

there exist sequences t~+“ t3 and tj+“ t4 such that tl - t!, t2 - tj, and

t3 - t~. See Figure 3.

Definition 2.2.18. A hypercollapsing reduction is a reduction sequence

containing infinitely many collapsing reductions performed at the root. A

hypercollapsing term is a term from which there is a hypercollapsing reduc-

tion. -kC is the smallest congruence which identifies all hypercollapsing

terms with each other.

THEOREM 2.2.19 [KENNAWAY ET AL. 1993b]. Every orthogonal infinitary

TRS is CR/ -~C . Given coinitial reduction sequences s and t, sequences of the

form required by the CR\ -~C property may be constructed by applying the

Standard Construction, and then omitting from the constructed reduction

sequences all reductions which take place in hypercollapsing subterms.

3. GRAPH REWRITING

Graph rewriting is a common method of implementing term rewrite lan-

guages [Peyton Jones 1987]. It relies on the basic insight, that when a

variable occurs many times on the right-hand side of a rule, one needs only to

copy pointers to the corresponding parts of the term being evaluated, instead

of making copies of the whole subterm. The reader familiar with graph

rewriting may skip this section. Note however that we allow cyclic graphs; as

we will see, these correspond to certain infinite terms.

Definition 3.1. A graph g over a signature Z = (Y: 7’) is a quadruple

(nodes(g), lab(g), succ(g), roots(g)), where nodes(g) is a finite or countable
set of nodes; lab(g) is a function from a subset of nodes(g) to .S; succ(g ) is a

function from the same subset to tuples of nodes of g; and roots(g) is a tuple

of (not necessarily distinct) nodes of g. Furthermore, every node of g must be

accessible (defined below) from at least one root. Nodes of g outside the

common domain of lab(g) and succ(g) are called empty.

Definition 3.2. A path is a graph g is a finite sequence a, i, b, j,. . of
alternating nodes and integers, beginning and ending with a node of g, such

that for each m, i, n in the sequence, where m and n are nodes, n is the ith

successor of m. An occurrence of g is a sequence of integers obtained by

omitting all the nodes from some path which starts from a root of g. For an

occurrence u, g I ZL is the node of g which the corresponding path of g ends

at. The length of the path is the number of integers in it. If the path starts

from a node m and ends at a node n, it is said to be a path from m to n. If

there is a path from m to n, then n is said to be accessible from m. When this

is so, the distance of n from m is the length of a shortest path from m to n. If
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n is a node of g, then g I n is the one-rooted graph consisting of all nodes of g

accessible from n, rooted at n.

In order to textually represent a particular graph, we use the notations

of Barendregt et al. [1987]. We write rz:~( nl, . . . . n~ ) to indicate that

lab(g)(n) = F and succ(g)(n) ==(nl, . . . . n~). A finite graph can then be

presented as a list of such node definitions. For example, x:F( y, z), z :G( y,

w, w), w :H( w ) represents the graph shown in Figure 4.

In such pictures, we can omit the names x, y, z, etc., as their only function

in the textual representation is to identify the nodes. In particular, x, y, z,

etc. do not represent variables: variables are represented by empty nodes.

Different empty nodes need only be distinguished by the fact that they are

different nodes; we do not need any separate alphabet of variable names.

Multiple references to the same variable in a term are represented in a graph

by multiple references to the same empty node.

The tabular description demonstrated above may conveniently be con-

densed, by nesting the definitions and omitting unnecessary identifiers; for

example, another way of writing the same graph is F( y, z :G( y, w, w :H( w ))).

In general a graph may have more than one root. We will only use graphs

with one root (which represent terms) and graphs with two roots (which

represent term rewrite rules).

Definition 3.3. A graph homomorphism from a graph g to a graph h is a

function f from the nodes of g to the nodes of h, such that for all nodes n in

the domain of lab(g), lab(h)[f(n)) = lab(g)(n), and succ(h)( f(n)) =

f(succ(g)(n)), where ~ is extended in the obvious way to tuples. ~ is strict if
for every empty node n of g, f(n) is also empty.

Note that a graph homomorphism is not required to map the roots of its

domain to the roots of its codomain.

On graphs one can define many general graph rewrite mechanisms. We are

concerned with one particular form: term graph rewriting.

Definition 3.4. A term graph is a graph with one root.

Definition 3.5. A term graph rewrite rule is a graph with two, not neces-

sarily distinct, roots (called the left and right roots), in which every empty

node is accessible from the left root. The left- (resp., right) hand side of a
term graph rewrite rule r is the subgraph consisting of all nodes and edges

accessible from the left (resp., right) root: notation left(r) (resp., right(r)).
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Definition 3.6. A redex of a term graph rewrite rule r in a term graph g

is a homomorphism from the left-hand side of r to g. The redex is rooted at

the node to which the homomorphism maps the left root of the rule. The

depth of a redex is the distance from the root of g to the node to which the

redex maps the left root of r. A node of g is pattern matched by the redex if

it is the image of a nonempty node of r.

The result of reducing a redex of the rule r in a graph g is the graph

obtained by the following construction.

Construction 3.7. (i) (Build.) Construct a graph h by adding to g a copy of

all nodes and edges of r not in left(r). Where such an edge has one endpoint
in left(r), the COPy of that edge in h is connected to the image of that

endpoint by the homomorphism.

(ii) (Redirect.) Let nl be the node of h corresponding to the left root of r,

and n, the node corresponding to the right root of r. (These are not necessar-

ily distinct.) In h, replace every edge whose target is nl by an edge with the

same source and target n,, obtaining a graph k. The root of k is the root of h,

unless the root of h is n ~; otherwise the root of k is n,.

(iii) (Collect garbage.) Remove all nodes which are not accessible from the
root of k. The resulting graph is the result of the rewrite.

Step (i) adds to g all the nodes which the rewrite must create.

Step (ii), which replaces all references to n ~ by references to n,, is custom-

arily implemented in a different manner. When n, would be a new node, it is

not created; instead, nl is instead overwritten with the function symbol and

out-arcs which n, would have. When n, is an existing node, nz is replaced by

an “indirection” node, which contains a single out-arc, pointing to n,. This

indirection node is thereafter imagined to be transparent to pattern match-

ing: whenever the machine reads the contents of n ~, it gets the contents of n,

instead (or if that too is an indirection node, the contents of the node it points

to, and so on). We will comment on this in more detail in the concluding
remarks.

Step (iii) is known as “garbage collection.” In implementations of functional

languages it is normally not performed as a part of each reduction step.

Instead, the inaccessible nodes are allowed to accumulate until memory runs

out and are then all destroyed together to recover space. It is not difficult to

see that this gives the same result as performing a garbage collection as part

of each rewrite.
Figure 5 illustrates the stage. of a rewrite, using the rule AddList( czcc,

Cons(h, t))+ Cons(newacc, AddList(newczcc, t)),nez.oacc:Plus( ace, h), and

the initial graph Cons( x:8, AddList( x, Cons(3, Nil))).

Definition 3.8. A (finitary) Term Graph Rewrite System (GRS for short)

over a signature X is a pair (G, R) where G is a set of finite term graphs over

Z; R is a set of term graph rewrite rules over Z whose left- and right-

hand sides are in G; and G is closed under reduction and inverse strict

homomorphism.
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The inverse strict homomorphism condition corresponds to the subterm

condition for TRSS. It also implies that G is “closed under unsparing.” That

is, where there are two or more references in a graph g to a node n, the

graph resulting from g by replacing n by a number of copies must also be in

G. We do not require that G be “closed under sharing.” This is because

closure under sharing would always allow empty nodes of a graph in G to be

merged to give another graph in G, but if the set of valid graphs G derives

from some type discipline, this might be an invalid transformation, since

distinct empty nodes might have incompatible types.

Having defined term graph rewriting and the notion of depth on term

graphs, the concepts of normal form, orthogonality, collapsing rule, and

residual carry over to term graphs. There are sufficient differences that we

make explicit definitions.

Notice that the left-linearity part of the definition of orthogonality means

in the case of graphs that the subgraph of a rule accessible from its left root is

a tree. Additionally, besides residuals of occurrences and redexes, we have

the notion of a residual of a node.

Definition 3.9. A normal form of a GRS is a graph containing on redexes.

A GRS is orthogonal if (i) for each rule, the subgraph accessible from the

left root is a tree, and (ii) for any graph g, and any two distinct redexes r and
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r‘ of g, then the root of r is not pattern matched by r‘. Rules satisfying

condition (i) are referred to as left linear. Pairs of redexes violating condition

(ii) are said to confZict with each other.

The concrete definition of graph rewriting implies that when g - g‘, many

of the nodes of g‘ are nodes of g. Each such node of g‘ is said to be the

residual of the corresponding node of g. Let r be the redex of g which is

reduced in g + g‘, and let n be a node of g. The set of residuals of n by r (a

set with either O or 1 members) is denoted by n/r. When this set is

nonempty, we may also write n/r to denote its unique element. An occur-

rence u‘ of g‘ is a residual of an occurrence u of g if that relation holds

between the nodes they respectively specify. We write u/r for the set of such

residuals. (It may have many elements, but all will represent the same node

of g‘.) A redex r‘ of g‘ is a residual of a redex r of g if that relation holds

between their respective roots, and the redex reduced by g + g‘ does not

conflict with r.

Given a set of IV of nodes of g, the set of residuals of all members of IV by

r is denoted N/r. Similarly, for a reduction sequence s from g to g‘, we may

define n/s, N/s, and u/s.

Developments are defined as in the term case: a development of a set of

redexes in a graph g is a reduction sequence starting from g in which each

step reduces a residual of a member of the original set. The development is

complete if its final term graph contains no such residuals.

As we deal only with finitary graph rewriting, the issue of convergence does

not arise in the definition of development. Furthermore, since (unlike the

term case) reduction of one redex can never cause multiple copies to be made

of another, every redex has at most one residual by any other redex. This

implies that the length of a development is always finite, bounded by the

number of redexes in the given set. In particular, every set of pairwise

disjoint redexes has a complete development.

Non-left-linearity has a rather different meaning for graphs than for terms.

When the rule lf( x, y, y) + y is understood as a term rewrite rule, a term of

the form If(t, t‘, t”) is a redex if and only if t‘ and t” are syntactically

identical. Understood as a graph rewrite rule, a node of the form w: If( x, y,

z ) is the root of a redex of this rule if and only if y and z are the same node.

If they are different nodes, then w is not a redex-root, even if the subgraphs

rooted at y and z are isomorphic. Non-left-linearity causes technical prob-

lems in the theory of term rewriting—for example, it is responsible for the

failure of the Church-Rosser property for systems such as the union of

combinatory logic with rules similar to the above example. To a great extent,

non-left-linear rules, as defined in graph rewriting, cause no such problems.

Accordingly, when studying graph rewriting for its own sake one might omit

the left-linearity conditions form the definition of orthogonality. We retain it

here in order that the definition match more closely the definition of orthogo-

nality for term rewriting.
Throughout the article, all GRSS will be assumed to be orthogonal.
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Cyclic graphs can arise through optimizations of term rewriting. An exam-

ple is the rule for the Y combinator. The term rewrite rule for Y is Apply(Y,
~) + Apply( f, Apply(Y, f)). This can also be read as a graph rule. However,

the presence of the subexpression Apply(Y, f) on the right-hand side of the

rule, isomorphic to the left-hand side, suggests the optimized version Apply(Y,

f) + ~:APPIY( ~, ~). These two versions of the rule are illustrated in Figure 6.
Cyclic graphs are practically useful, but they introduce a technical compli-

cation in certain cases, analogous to the collapsing towers we studied in the

previous section. Consider the rule 1(x) -+ x and the graph y: 1( y), shown in

Figure 7.

It is clear that the graph is a redex of the rule. It reduces to itself. Circular

1, as we call it, is one instance of a class of redexes having the same behavior,

the circular redexes.

Definition 3.10. A redex of a rule r in a graph g is circular if the roots of

r are distinct and the homomorphism from le~t( r ) to g maps both roots of r

to the same node. (This can only happen if the right root of r is accessible

from the left root.)

Proposition 3.11. Every circular redex reduces to itself.

PROOF. This can be verified by following through Construction 3.7. ❑

Definition 3.12. A term graph rule is a collapsing rule if its right root is

an empty node.

k example of a collapsing rule is x :Head(Cons( y, z)) + Y. An example of

a noncollapsing rule which admits circular redexes is x: F( y: F( z )) + y. Note

that this rule conflicts with itselfl it has two overlapping redexes in the graph

I’(F(E’(G))). A circular redex of this rule is x :F( x).

Proposition 3.13. In an orthogonal term graph rewrite system, every

circular redex is a redex of a collapsing rule. If the set of graphs of the system

is closed under sharing, then every collapsing rule has a circular redex.

PROOF. A circular redex maps the left root and the right root to the same

node, the right root being accessible from the left root. This implies that the

graph constructed by replacing the subgraph accessible from the right root by

a copy of the left-hand side contains two redexes of the rule, one at its root

and one at the root of the new copy of the left-hand side. If the right root was

not an empty node, these redexes would conflict.
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Conversely, suppose the GRS contains a collapsing rule R. Consider the

graph obtained from the left-hand side of R by identifying its left and right

roots. This is obtained from R by sharing and is therefore a graph of the

GRS. ❑

Collapsing rules and circular redexes introduce problems for cyclic graph

rewriting similar to those which arise in infinitary term rewriting. The

Church-Rosser property fails, as demonstrated by an example similar to the

one near the end of Section 2.2. Consider the rules A(x) + x and B(x) ~ x,

and the graph y: A( B( y)). The graph contains two redexes, one by each rule.

Reducing the outer redex yields z :B(z); reducing the inner redex yields

z: A( z ). These two graphs have no common reduct, as is the case for the

infinitary terms A” and B ‘i.

It is possible to formulate theorems for graph rewriting similar to those of

Section 2.2. However, we will not actually need such results for the purposes

of the present article. The acyclic case (in which circular redexes cannot arise)

has been treated by Staples [1980] and Barendregt et al. [1987]. We will only

note here a point concerning complete developments in graph rewriting. For

reasons corresponding to the phenomenon of collapsing towers in infinitary

term graph rewriting, not all complete developments of the same set of

redexes need to end with the same graph, when cyclic graphs are present.

The example of the previous para~aph illustrates this (a complete develop-

ment of both redexes may yield either z: A( z) or z: B( z )). However, the

present article does not require an analysis of which sets of redexes may

behave in this way.

4. UNRAVELING

Unraveling transforms acyclic term graphs to finite terms and cyclic graphs

to infinite terms. Both graphs and computations can be unraveled. In this

section we will prove that for any term graph rewrite system, if g reduces to

g‘, then the same relation holds between their respective unravelings in the

corresponding infinitary term rewrite system. This is so even for nonorthogo-

nal systems.

Definition 4.1. The unraveling U(g) of a graph g is a tuple of terms in

1– 1 correspondence with the tuple of roots of g. The nodes of the term

corresponding to the root node n are the paths of g which start from n.

Given a node a, i, b, j, ..., y of one of the terms of U(g), if y is a nonempty

node of g, then this node of the term is labeled with the function symbol

lab(g)(y), and its successors are all paths of the form a, i, b, j,... , y, n, z,

where z is the nth successor of y in g. If y is empty, then the node of the

term is labeled with a variable symbol. A different variable symbol is used for
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each different empty node of g. Where g contains multiple references to the

same empty node, there will be multiple occurrences in U(g) of the corre-

sponding variable. When g is a term graph or a term graph rewrite rule,

U(g) will be respectively a term or a term rewrite rule.

Given a node n of a term graph g, U(g, n) is the set of occurrences of U(g)

corresponding to all the paths from the root of g to n.

Given a redex r rooted at a node n of a term graph g, U(r) is the set of

redexes, by the same rule as r-, at each of the occurrences in U(g, n) (it is

easy to see that every such occurrence is such a redex).

A cyclic graph has an infinite unraveling. For example, the unraveling of

the graph shown in Figure 4 is the term F( y, G( y, H@, Ha)), where by H“

we denote the infinite term H(H( H(... ))).

Definition 4.2. An unraveling of a GRS (G, R) is a TRS of the form (U(G),

U(R), S) whose terms and rules are the unravelings of the term graphs and

rules of (G, R), and whose transfinite reduction sequences include all those

which are unravelings of finite reduction sequences of (G, R).

Later results will imply that the closure conditions for U(G) to be the set of

terms of a TRS are satisfied, and that the notion of the unraveling of a

sequence is well defined (Theorem 4.7).

The following proposition is immediate.

Proposition 4.3. A graph g in a GRS (G, R) is a normal form iff its

unraveling U(g) is a normal form in (U(G), CT(R), S).

THEOREM 4.4. In a left-linear GRS, let g + g‘ by reduction of a redex r.

Then U(g) -“ U(g’) in the corresponding TRS. If the redex reduced in g is

circular, then the sequence is empty. Otherwise it is a complete development of

U(r). Moreover, the depth of every redex reduced in the term sequence is at

least equal to the depth of the redex reduced in g. If the GRS is acyclic, then

the sequence U(g) -= U(g’) is finite.

PROOF. Let 1- r be the rule that was applied to reduce g to g‘, and n

the node at which it was applied. Let t = U(g) and t‘= U(g ‘). We distin-

guish two cases.

First, if the redex in g is a circular redex, then g‘ = g, and therefore the

empty sequence from U(g) to itself satisfies the requirements of the theorem.

Otherwise, there is a redex of U(l e r) at every occurrence in U(g, n). This

set of redexes contains no collapsing tower. Proposition 2.2.10 implies that

there is a complete development of these redexes. Let t‘be the limit of such a

complete development. We demonstrate that U( g‘) = t‘ by giving an explicit

description of both g‘ and t‘.

An occurrence of g can be schematically depicted as a concatenation of

segments thus:

UI VI U2 V2 Uk
●

The thin sections are parts which end at but do not pass through the node n.
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Each thick section v, begins at n, and U, is an occurrence of an empty node .r,

in the left-hand side of the rule. Thus, each thick section lies within the part

of the graph matched by the redex. The final segment may be thin or thick,

and needs not end, respectively, at n or at the image of an empty node.

The occurrences of g‘ have the same description, except that thick seg-

ments are drawn from the right-hand side of the rule instead of the left.

Each occurrence Ulu ~Uz u ~ . . . of g which does not end with a “short” thick

segment gives rise to occurrences of the form u ~u~ Uzuj . . . of g‘, where u, and

u; are occurrences of xl in the left- and right-hand sides of the rule respec-

tively. Such corresponding occurrences of g and g‘ have the same function

symbol. For an occurrence u IZ,I~Uzuz . . . u. of g where u~ is an occurrence of a

nonempty node in the left-hand side of the rule, g‘ will have occurrences

ulu; u~u; . . . v;, where v; . . . v;_ ~ are as before, and v; is an occurrence of any

nonempty node in the right-hand side of the rule. g‘ has the same function

symbol at this occurrence as that node of the rule does.

An occurrence of t can be schematically depicted as a concatenation of

segments thus:

An initial segment of this occurrence is a member of u(g, n) if and only if it

ends with the whole of a thin segment u, (except possibly if i = k). A thick

segment v, is as before an occurrence of a variable in the left-hand side of the

term rewrite rule. As with occurrences of g, the last segment of an occurrence

of t represented in the above form may be short, i.e., if thin, not reach to a

member of U(g, n), and if thick, not reach to a variable in the left-hand side

of the rule.

The occurrences of t‘are of a similar form, where the thick segments are

replaced by occurrences of variables in the right-hand side of the rule.

In the same way as for g and g‘, an occurrence ulvluzv~ . . . of t gives rise

to occurrences Ulvj Uz v; . . . of t‘ by replacing each occurrence v, of a variable

x, of the left-hand side of the rule by an occurrence u: of x, of the right-hand

side, with the same exception in the case of a short final segment.

It is immediate that t‘ = U(g’ ).

Since the depth of n is the length of the shortest path from the root of g to

n, this is a lower bound on the lengths of the occurrences in U(g, n).

If the GRS is acyclic, then g and g‘ are acyclic; t is finite; and the finite set

of redexes chosen in t is pairwise disjoint. That is, none of their occurrences

is a prefix of any other. Therefore, the set has a finitely long complete
development with exactly as many steps as there are members of the set. ❑

Our description of t‘ corresponds to the notion of reducing all the redexes
in U(r) simultaneously. If the system is not orthogonal, there may be ways of

reducing them in a particular order so as not to yield the same result.

However, if they are reduced in outermost-first order, this will not happen.

An example is the rule F’(F’( x)) + G(x) and the graph y :F( y ). This reduces

to y :G( y ) by a single graph rewrite. The unraveled term F ‘“ contains

infinitely many redexes. If the second-outermost redex is reduced first, one
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can eventually obtain the normal form F(G “); but if one instead first reduces

the outermost redex one obtains G”, as described by the theorem. The reader

may find it instructive to work out which of the redexes in F” are actually

reduced in the simultaneous reduction described in the proof of the theorem,

and which vanish without being reduced, and to confirm that this coincides

with the effect of outermost-first reduction.

The construction of Theorem 4.4 yields the following immediate corollaries.

CO~OMARY 4.5. Let r be a redex and n a node of g, and let reduction of r

give the graph g‘. Then U(n/r) = U(n)/ U(r). If n is the root of a redex r‘,

then U(r’\r) = U(r’)/U(r).

COROLLARY 4.6. Let g - *g’ in a left-linear GRS. Then U(g) ~“ U(g’) in

any unraveling of the GRS.

TEI~OmM 4.7. In a left-linear GRS, let g ~ “g’ by a complete development

of a set of nonconflicting redexes R. Then U(g) +“ U(g ’ ) by a complete

development of some subset of U(R).

PROOF. In the complete development of R, suppose there is some step

which reduces a circular redex. Since such a redex reduces to itself, we can

omit that step without changing the final result. We thus obtain a reduction

of g to g‘ which is a complete development of some subset R‘ of R, and

which does not at any point reduce a circular redex. Note that R‘ is in

general not simply the set of noncircular members of R, since a noncircular

redex can become a circular redex through reduction of other redexes.

We can apply Theorem 4.4 to each step of the complete development of R‘,

obtaining a reduction of U(g) to U( g ‘). Corollary 4.5 implies that it is a

complete development of U(R ‘). ❑

5. ADEQUATE MAPPINGS BETWEEN REWRITE SYSTEMS

A formulation of the relationship between graph rewriting and term rewrit-

ing must take account of the fact that while, as we have seen in Theorem 4.4,

every graph rewrite sequence corresponds to a term rewrite sequence, the

converse does not hold even for the most well-behaved of rewrite systems. For

example, consider any graph containing two references to a redex r, such as

F(x:G, x), and the rule G + H. The graph unravels to the term F(G, G),

which can be reduced in one step to F( G, H). This is not the unraveling of

any graph to which F( x, x :G) can reduce. However, the term can be further

reduced to F(H, H). F(x:G, x) can be reduced in one step to F(x:H, x),

which unravels to F( H, H). In general, we find that for systems satisfying

certain conditions such as orthogonality, every term reduction sequence can

be extended to a sequence which does correspond to some graph reduction
sequence.

In the abstract, we define the following notion of an adequate mapping

between rewrite systems.
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Definition 5.1. Let (A, Rl, Sl) and (B, Rz, S’z) be finitary or in finitary

term or term graph reduction systems. A mapping U from A to B is

adequate if

(1) U is subjective.

(2) a ● A is a normal form iff U(a) is a normal form.

(3) If a ~“ a’ in A, then U(a) ~“ U(a’) in B.

(4) For a ● A and b ● B, if U(a) +“’ b then there is a a’ ● A such that
a +“ ~’ and b +“ U(a’). See Figure 8.

We refer to the four conditions of Definition 5.1 respectively as subjectivity,

preservation of normal forms, preservation of reduction, and cofinality. Sub-

jectivity of U ensures that every object of B has a representation in A. The

normal form condition ensures that an object of A is a possible final result of

a computation if the object of B which it represents also is, and vice versa.

Preservation of reduction ensures that every computation possible in A

represents some computation in B. Cofinality is the notion we described

informally at the beginning of the section, ensuring that for every computa-

tion in B, there is a computation in A which can be mapped, not necessarily

to that computation of B, but to some extension of it.

Condition (3) and one direction of condition (2) can be read as express-

ing a soundness condition; the remaining conditions express a notion of

completeness.

6. ADEQUACY OF FINITE GRAPH REWRITING FOR RATIONAL TERM

WRITING

Real machines can only handle finite, though possibly cyclic, graphs. It is

clear that not all infinite terms are the unravelings of finite graphs, and so

the subjectivity condition cannot hold for a finitary graph rewrite system and

an infinitary term rewrite system allowing arbitrary infinite terms. There-

fore, we seek to formulate a restricted version of infinitary term rewriting for

which the unraveling of finite cyclic graph rewrite systems will yield an

adequate mapping. Such a restricted version we shall call rational term

rewriting.

Definition 6.1. A rational term is a term containing only finitely many

nonisomorphic subterms.

The following equivalent characterization is well known.

THEOREM 6.2. A term is rational iff it is the unraveling of a finite graph.

PROOF. Let t be a rational term. Define a graph whose notes correspond

with isomorphism classes of subterms of t.Given a node n, let t‘ be a

member of the isomorphism class corresponding to n. Attach to n the

function symbol at the root of t. The successors of n are the nodes corre-

sponding to the isomorphism classes of the successors of the root of t‘.The

root of the graph is the node corresponding to the isomorphism class of t

itself. It is obvious that the resulting graph unravels to t. ❑
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U(a) — b .-. + U(a’)

Figure 8

a–––––––––––- a’

Definition 6.3. (i) A rational set of nodes of a rational term is a set of

nodes such that, if each of the nodes in the set is marked (e.g., with a tick

mark), the resulting term is still rational, taking the marks into account

when testing isomorphism.

(ii) A rational set of redexes of a rational term is a set of redexes whose

roots are a rational set of nodes.

THEOREM 6.4. A set of nodes of a rational term t is rational iff there is a

graph g unraveling to t, and a set of nodes of g which map by the unraveling

to the given set of nodes oft.

PROOF. Similar to Theorem 6.2 ❑

Definition 6.5. The rational term reduction sequences are defined by the

following axioms:

(1) A complete development, of length not more than co, of a rational set of
redexes, is rational. (In particular, finite reduction sequences are rational.)

(2) A concatenation of finitely many rational reduction sequences is rational.

(3) There are no other rational reduction sequences.

A rational TRS is an infinitary TRS whose infinitely long sequences are all

rational.

An immediate consequence of the definition is that any segment of a

rational reduction sequence is rational. (For a final segment of a complete

development of length co, this follows from the fact that the set of residuals of

a rational set of redexes over a finite reduction sequence is a rational set; for

other types of segment it follows by induction on the definition of a rational

reduction sequence.)

We shall demonstrate that finitary graph rewriting is adequate for rational

term rewriting, in a sense to be made precise. First, we note that adequacy in

general fails for non-Church-Rosser systems. Let to be reducible to both tl

and t~, and suppose that there is no term to which both t1 and tz are

reducible. Now consider a graph g = F( x, x :to),where 1’ is some function

symbol of arity 2. The unraveling of g is the term F( t~, t~),which can be

reduced to F( t~, tz).If there is no rule for reducing a term of the form

II –, –), the graph g maybe reduced to 3’(x, x:tl) or f(x, x:t2), but cannot

be reduced to any graph g‘ such that F(tl,t2) reduces to U(g ‘). Thus the

cofinality condition is not satisfied.

We have already seen that when cycle graphs are present, the Church-
Rosser property may fail, even for orthogonal systems. If we have the rules

A(x) ~ x and B(x) + x, then the graph i?(x, x: A(B(~))) behaves exactly as

in the above description. It can be reduced only to l’( x, x: A( x )) or to 3’( x,
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x: I?( x )). Its unraveling can be reduced in infinitely many steps to IV A“, B ‘“ ),

which cannot be reduced to F( A“, A“) or to F(B “’, B ‘).

Adequacy can therefore be expected to hold only for orthogonal systems of

rewrite rules which are Church-l? osser for transfinite term reduction, that is,

the almost noncollapsing systems.

We briefly remark that the almost noncollapsing condition is not quite

strong enough to imply the finite Church-Rosser property for finitary orthogo-

nal graph rewriting. An example is given by the rule IV A, A, x ) ~ x. This

has two nonisomorphic circular redexes a:F( A, A, a) and a:F( b: A, b, a).

The graph a:F( A, A, F’( b: A, b, a)) can be reduced to either of these, and

they have no common reduct. Notice that the two circular redexes unravel to

the same rational term, and so this failure of the Church-Rosser property

does not constitute an obstacle to the adequacy relation between this system

and its unraveling. The sufficient condition for a finitary orthogonal graph

rewrite system to be CR is that it be almost noncollapsing, and that if it has a

collapsing rule, its left-hand side must not contain two distinct subgraphs

(not necessarily nonisomorphic) with the same unraveling. The underlying
reason is the same as for the case of term rewriting: the existence of two

nonisomorphic collapsing redexes allows the construction of a graph contain-

ing one of each, each of which collapses to the root of the other, as in the

above example.

Definition 6.6. Let (G, R) be a graph rewrite system. Its rational unravel-

ing is the unraveling whose transfinite reduction sequences are the transfi-

nite rational term reduction sequences over U(G). Its infinitary unravelirLg is

the unraveling whose set of terms is the closure of U(G) under arbitrary

transfinite reductions (denoted U(G), and whose set of sequences is the set of

all transfinite reduction sequences over those terms. If (G, R) is acyclic, its

finitary unraveling is the finitary TRS (U(G), U(R)).

To justify this definition, we must show that the sets of terms and transfi-

nite reduction sequences have the closure properties required by the defini-

tion of a TRS.

THEOREM 6.7. Let (G, R) be a graph rewrite system. Both U(G) and D(G)

are closed under finite reduction by U(R) and the subterm relation.

PROOF. We consider first U(G). Let t G U(G), and let t + t‘by reduction

of a redex r by a rule in U(R). By hypothesis, t = U(g) for some g = G.

Therefore there is a strict homomorphism from t to g. Since U(G) is closed
under inverse strict homomorphisms, t itself must be in G. Graph reduction

of r will yield some graph g‘, and by Theorem 4.4, U(g’) is the result of a

complete development of U(r) by term reduction. But U(r) is just r; therefore

U(g’ ) = t‘. Therefore T is closed under finite reduction.

If t is a subterm of t‘E T, then there is a strict graph homomorphism

from t to t’.Therefore t ● G, and U(t) = t = T.

For U(G), we first note that the Compressing Lemma implies that U(G) is

the set of terms which are limits of sequences of length co, all of whose finite

stages are in U(G). Hence U(G) is closed under finite reduction. For the
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subterm condition, consider any t = U(G) given as the limit of a sequence of

length o whose finite stages are in U(G). Then a sequence converging to the

subterm of t at any given position u can be obtained by considering a final

segment of the given sequence in which the depth of each reduction is at least

the length of u, taking the subterm at u of each term from that point on, and

omitting all reduction steps outside that subterm. Hence the subterm of t at

u is in D(G). ❑

Definition 6.8. Given a flnitary acyclic GRS (G, R), its finitary unraveling

is the finitary TRS (U(G), U(R)). Given a finitary GRS (G, R), its rational

unraveling is the infinitary TRS (U(G), U(R), S), where S is the set of

rational reduction sequences over U(G). Its infinitary unraveling is the TRS

(D(G), U(R), S), and S is the set of all transfinite reduction sequences over

D(G).

Proposition 6.9. The set of rational reduction sequences over U(G) is

closed under the constructions required by the Parallel Moves Lemma, the

Strip Lemma, and the finite and transfinite Church-Rosser theorems.

PROOF. We first prove that for rational sets of redexes R and R‘ of the

same term t, if R contains no collapsing tower, then R‘ /R is rational.

Without loss of generality we may assume that R and R‘ have no members

in common, since R‘ /R = ( R‘ – R)/R. Since R and R‘ are rational, there

are graphs g and g‘ which both unravel to t,and set of redexes R~ of g and

R~, of g’ such that U(R~) = R and U(R~,) = R’. Label each node n of t by

the pair (n~, n~,) of nodes of g and g‘ for which n G iXn~ ) and n G U(n~/).

It is clear that if two nodes of t receive the same label, then the labeled

subtrees rooted at those nodes must be isomorphic. Since there are only

finitely many nonisomorphic unlabeled subtrees of t,and only finitely many

different possible labels, there can be only finitely many nonisomorphic

labeled subtrees of t.(The number is bounded by the number of nonisomor-

phic unlabeled subtrees, the number of nodes of g, and the number of nodes

of g‘.) It follows that there is a graph g” and two sets of redexes R ~~(and R~/,

of g“, such that U(g” ) = t,U(R~~/) = R, and U(R&) = R’. It is immediate

that U(R~/R~tr) = R‘ /R, proving that R‘ /R is rational.
This immediately proves the claim concerning the Parallel Moves Lemma.

For the Strip Lemma, if the given sequence s is rational, then it is a

concatenation of finitely many complete developments, and therefore the

sequence s/r is constructed by finitely many applications of the Parallel

Moves Lemma. Similarly, when given rational sequences So and s1, the

Standard Construction underlying the Church-Rosser theorems for so and SI

is constructed by finitely many applications of the Parallel Moves Lemma.

For the version relating to almost noncollapsing systems, the elision of all

reductions performed in collapsing towers preserves rationality, and for the

version modulo WfiC, the same is the case for the elision of steps performed

within hypercollapsing subterms. ❑
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THEOREM 6.10. Under any of the following conditions, the unraveling

mapping from an orthogonal GRS to a TRS is adequate.

(1) The GRS is finitary and acyclic, and the TRS is its finitary unraveling.

(2) The GRS is finitary; the TRS is its rational unraveling; and the rule

system is almost noncollapsing.

(3) The GRS is finitary; the TRS is its rational unraveling; and hypercollaps-
ing graphs and terms are identified.

PROOF. Subjectivity and preservation of normal forms are immediate in all

three cases. Preservation of reduction is Corollary 4.6. For cofinality, we

consider a diagram of the form of Figure 9, in which each arrow is a reduction

of length < w.

The given term rewrite sequence starts from to and forms the top side of

the diagram. It is divided into segments, each of which is a complete

development of a nonempty set of redexes R,. (This is always possible, by

definition in the rational cases, and in the finitary case because each single

step is the complete development of a single redex.) gO is taken to be to,

considered as a graph.
The rest of the diagram is constructed by induction. t~ is defined to be to.

When the diagram has been constructed up to and including t,, t;, g,, and the

sequences joining them, it is extended to the right as follows:

—In case (l), U(g, ) ~ t;+ ~, and t,+~ + t{+l are the projections of R, and

t, ~ t;+ U( g, ) over each other, which by the finitary Church-Rosser

theorem for orthogonal TRSS (Dershowitz and Jouannaud 1990; Klop 1992]

(see also the remark following Proposition 2.2. 14) must end at the same

term t;+~.

In case (2), they result from these projections by omitting all steps which

belong to collapsing towers. The construction which proves Proposition

2.2.16 implies that they end at the same term t:+ ~.

In case (3), they result from these projections by omitting all steps which

are contained in hypercollapsing subterms. In these cases, U(gi ) - t;+ ~ is

the complete development of a subset R; of R ,/(t, ~ t: ~ U( g, )). Theorem

2.2.19 implies that they end at the same term t;+~.

—R; is the set of redexes r of g, such that U(r) contains at least one element

of l?’;. Briefly, R: = U-1( R’;). g, ~ g,+ ~ is a complete development of R:.

—Since every redex of U(g,) is in the unraveling of some redex of g,, U(R; )

contains R;. In cases (2) and (3), the construction of R: implies that

complete development of R; does not require the reduction of any circular
redexes. Therefore, by Corollary 2.2.11 and Theorem 4.7 there is an exten-

sion of U(g, ) - t~+l to a complete development of U( R: ), ending with
u(gL+ ~). t:+ ~ + U(gz + ~) is taken to be such an extension.

7. A COUNTEREXAMPLE TO ADEQUACY FOR INFINITE REWRITING

The adequacy theorem for finitary and rational rewriting fails for general

inflnitary graph and term rewriting, even for orthogonal systems. This is a

further reason for restricting the theorem to rational term rewriting.
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Infinitary graph rewriting may be formalized by analogy with infinitary

term rewriting. The notion should be sufficiently intuitive that the counterex-

ample can be understood without further formalization. Consider the follow-

ing symbols, graph rewrite rule, and initial (infinite’) graph:

Symbols: The natural numbers

Rules: For each natural number n: n(x, y) + n + 1(x, y)

Graph: go = ~o:o(~o) %), %:1(% ~2)> . . .

For simplicity, we allow ourselves the use of infinitely many function symbols

and rules. We later show how the counterexample can be expressed with only
finitely many function symbols and rules.

go is an infinite chain of nodes, each labeled with a different integer,
pointing to itself with its first argument, and pointing to the next node with

its second argument. to = i7(go is an infinite binary tree, with root labeled O,

and where each node labeled n has left and right descendants labeled n and

n + 1 respectively. go and to are illustrated in Figure 10.

Every node of the term is a redex. In each row of the tree, the rightmost
node has the largest label. Each node to its left in the same row can, by being

reduced a finite number of times, come to have the same node label as it does.
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Applying such reductions to each row in the tree yields a strongly conver-

gent reduction of the term, of length w, converging to the term ta shown in

Figure 11.

In this term, there are for every n only finitely many nodes of the form

n(—, –). However, every graph which go can be reduced to, by finite or
infinite reduction, contains cycles which unravel to give an infinite number of

such nodes, for some n. Therefore, there is no graph g to which gO can be

reduced such that U(g) = to. We thus see that infinitary orthogonal graph

rewriting is not adequate for infinitary orthogonal term rewriting, as the

cofinality condition fails.
The example used an infinite set of function symbols and rules, but it is

easy to encode them into a finite set. Consider the single rule F( x, y) +

G(F’( x, y)). Define t, = G’(F( x, y)). Then there is a reduction sequence to

to+tl-t2 +... In the previous counterexample, replace each term of the
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form n(t, t‘)by [ x = t, y := t ‘]t,,. Each of the rules of the example is then an

instance of the one rule. A similar counterexample results. Such a construc-

tion can be performed for any system containing an infinite term reduction

sequence to+ tl+ t2-+ ... (convergence or otherwise) such that each term

t, contains at least one occurrence of both the variables x and y, and t,

cannot reduce to tjwhen i > j.

8. CONCLUDING REMARKS

8.1 Technical Notes

Theorem 4.4 underlies the intuitive notion of graph rewriting as an imple-

mentation technique. It guarantees that every computation which is possible

with graph rewriting can be performed by (possibly transfinite) term rewrit-

ing. However, one requires more than that to justify the technique. One must

also show that graph rewriting can always compute the normal forms which

term rewriting can compute. This holds only under much more stringent

conditions. The precise formulation is surprisingly complex. The main condi-

tion we impose is that the rewrite rules are orthogonal. Further conditions

are also required, concerning the presence of cyclic graphs or infinite terms,

the permitted forms of collapsing rules, or an axiom equating all hypercol-

lapsing terms.

The counterexamples demonstrated that non-left-linearity and failure of

the Church-Rosser property usually cause failure of adequacy. These do not

exhaust the “easy” counterexamples. A system which is nonorthogonal, but

left linear and Church-Rosser can also fail to be adequately implemented by

graph rewriting, for reasons very similar to the failure in the other counterex-

amples. An example of this is the set of rules A - B, B ~ A, F(B, A) - C

and the graph F( x: A, x). The term rewrite system is nonorthgonal but left

linear and Church-Rosser. The term F(A, A) reduces to the normal form C,

but the graph F( x: A, x) reduces only to F( x :B, x), violating cofinality. The

overlap of the rules allows the term system to compare the redex A with a

reduct of A, something which is not possible in an orthogonal system. While

there are nonorthogonal systems for which graph rewriting happens to be

adequate, we do not foresee any significant extension of the adequacy theo-

rem to a useful wider class of system.

In our definition of graph rewriting, we remarked that the redirection step

differs from what real implementations usually do, but is equivalent. For

noncollapsing rules, real implementations usually overwrite the root node of

a redex with the root node of the right-hand side, instead of making a new

copy of the latter node and redirecting to it the in-arcs of the redex root. For a

collapsing rule, the redex root is overwritten with a special “indirection”

symbol and an arc pointing to the node to which the redex is collapsed.

During pattern matching of subsequent redexes, the indirection symbol is
considered to be transparent; when an indirection node is required to be

pattern matched, its target is pattern matched instead. This is more efficient

than the redirection method, but more complicated to reason about. One may
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easily persuade oneself that the method is equivalent to redirection, with the

exception of circular redexes. The redirection method reduces a circular redex

to itself, while the indirection method reduces it to an indirection node whose

target is itself. An attempt to pattern match such a node will very likely be

signaled as a program error. One may alternatively analyze the indirection

method as equivalent to replacing the right-hand side x of every collapsing

rule by 1(x), where 1 is a new symbol, and adding a rule 1(x) ~ x, a

transformation which makes the whole system almost noncollapsing.

8.2 Historical Notes

Graph rewriting as a computational mechanism for functional programming

began with Wadsworth [1971], who proposed the idea of sharing in the

setting of the lambda calculus and used it to implement lazy evaluation.

Term graph rewriting was first studied by Staples [ 1980], who demonstrated

a correspondence with term rewriting, for finitary orthogonal rewrite systems

and acyclic graphs. Barendregt et al. [1987] extended this by establishing

results about normalizing strategies. Raoult [1984], refined by Kennaway

[1987], studied the relationship between graph rewriting and term rewriting

using a category-theoretic description of term graph rewriting. Ho ffmann and

Plump [1988] gave an equivalent description in a different category of graphs.

All of the above treatments of the subject considered only acyclic graphs

and finitary rewriting. Farmer and Watro [ 1989] were the first to consider

cyclic graphs and the resulting transfinite reduction sequences. They proved

the soundness of term graph rewriting in this setting, but did not consider

any notion of completeness. In so doing, they developed a part of the theory of

transfinite term rewriting. Farmer et al. [1990] proves a notion of correctness

of finitary cyclic graph rewriting relative to finitary term rewriting. Ariola

and Arvind [1992] present a distinctive approach to graph rewriting which

focuses on proving the correctness of practical optimizations.
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