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FROM FINITE TO INFINITE LAMBDA CALCULI

Abstract

In a previous paper we have established the theory of transfinite reduction for

orthogonal term rewriting systems. In this paper we perform the same task for

the lambda calculus. This results in several new Böhm models of the lambda

calculus, and new unifying descriptions of existing models.

1. Introduction

In this note we outline our theory of infinite rewriting for lambda calcu-
lus. A more detailed version will appear in the forthcoming proceedings of
RTA’95 [6].

Infinitely long rewrite sequences of possibly infinite terms are of inter-
est for several reasons.

• First, it enriches finitary rewriting with the natural notion of com-
puting towards some limit. If such a (possibly infinite) limit still
contains redexes, then one can continue computing. The question of
the computational meaning of such transfinite sequences will be dealt
with below in the discussion of the Compressing Property.

• Secondly, in functional programming real computations with terms
implemented as graphs allow the possibility of using cyclic graphs,
which correspond in a natural way to infinite terms. Finite computa-
tions on cyclic graphs correspond to infinite computations on terms.

• Finally, the infinitary theory suggests new ways of dealing with some
of the concepts that arise in the finitary theory, such as notions of
undefinedness of terms. A very interesting example of such applica-
tion can be found in recent work by Berarducci and Intrigila, who
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independently define a notion of Böhm reduction based on so called
mute terms to solve some long standing open problems about the
easy-ness of particular lambda terms [4], [5].

Our papers [7], [1] deal with these issues for term rewriting. We assume
familiarity with the lambda calculus, or as we shall refer to it there, the
finitary lambda calculus. [3] is a standard reference.

2. Depth as a variable

We can think of lambda terms as trees. The various reasonable alternatives
to assign “depth” to nodes in the lambda tree representation of a lambda
term lead to different infinitary extensions of the finite lambda calculus.

Definition 1. Given a term M and a position u of M , the depth of the
subterm of M at u, denoted by Dabc(M, u), if it exists, is defined by

Dabc(M, u) = 0
Dabc(λx.M, 1 · u) = a + Dabc(M,u)
Dabc(MN, 1 · u) = b + Dabc(M,u)
Dabc(MN, 2 · u) = c + Dabc(N, u)

where a, b, c ∈ {0, 1}.
Depending on the chosen concept Dabc of depth, distance between

terms can now be defined: the distance dabc(s, t) of two terms t, s is 0 if t
and s are identical, otherwise 2−d where d is the largest depth such that
s, t are identically labeled at all nodes at depth at most d. We will denote
the completion of the set of finite lambda terms with the metric dabc(s, t)
by Λabc. We will write Λ∞ and d when we do not specify the depth we
base our notions. Clearly d000 is the discrete metric, hence Λ000 is the set
of finite lambda terms itself.

We will say that a term t ∈ Λ∞ is a zero-stable form, for short 0-stable,
if t cannot reduce to a term with a redex at depth 0. For d111, d101, d001

the concept zero-stable form recaptures for finite terms: root-stable form
(cf. [1] for our analogous concept in term rewriting, also called mute term
by Berarducci and Intrigila [5]), whnf, hnf and nf, respectively.
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Theorem 1. A term in Λ∞ has no reduction to zero-stable form if and
only if it has an infinite reduction which contains infinitely many reductions
at depth 0.

For finite terms the previous theorem has been proved by Wadsworth
in case of hnfs (cf. [3]) versus head reductions, by Abramsky and Ong in
case of whnfs versus lazy reduction in [2] and by Berarducci for rootstable
terms in [4]. If we allow infinite terms, the above theorem remains true,
provided we extend (finite) reduction to (possibly infinite) strongly con-
vergent reduction, a concept which we defined in [7] for orthogonal term
rewriting.

Definition 2. A pre-reduction sequence of length α is a function φ from
an ordinal α to reduction steps of Λ∞, and a function τ from α + 1 to
terms of Λ∞, such that if φ(β) is a →r b then a = τ(β) and b = τ(β + 1).
Note that in a pre-reduction sequence, there need be no relation between
the term φ(β) and any of its predeccors when β is a limit ordinal.

It is a strongly convergent reduction sequence if it is Cauchy convergent
and if, for every limit ordinal λ ≤ α, limβ→λdβ = ∞, where dβ is the depth
of the redex reduces by the step φ(β).

If α is a limit ordinal, then an open pre-reduction sequence is defined
as above, except that the domain of τ is α. If τ is continuous, the sequence
is Cauchy continuous, and if the condition of strong convergence is satisfied
at each limit ordinal less than α, it is strongly continuous.

When we speak of a reduction sequence, we will mean a strongly
convergent reduction sequence unless otherwise stated.

Lemma 1. Let t be a term in Λ∞. Any Cauchy converging reduction from
t to zero-stable form is a strongly converging reduction.

Another computional relevant reason to prefer strongly converging re-
ductions is that the Compression Property holds for strongly convergent
reductions. The Compression Property says that for every reduction se-
quence from a term s to a term t, there is a reduction sequence from s to
t of length at most ω. It is not difficult to find one counterexample for all
Λ∞ for Cauchy converging reductions.

A third reason is that in the limit of a sequence loses the descen-
dantship relation between subterms of different terms in the sequence.
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Consider infinite reduction sequence: Iω → Iω → Iω → . . . which at
each stage reduces the outermost redex. The limit is Iω. It is not possible
to say that any redex in the limit term arises from any of the redexes in
the previous terms in the sequence.

Lemma 2. Λabc is the subset of Λ111 consisting exactly of those terms
which do not contain an infinite sequence of nodes in which each node is
at the same abc-depth as its parent.

Λ111 contains the term ((((. . .)I)I)I)I. This term has a combination
of properties which is rather strange from the point of view of finitary
lambda calculus. By the usual definition of head normal form — being
of the form λx1 . . . λxn.yt1 . . . tm — it is not in head normal form. By an
alternative (trivially equivalent in the finitary case) formulation —it is in
head normal form — it is in head normal form — it has no head redex.
It is also a normal form, yet it is unsolvable (that is, there are no terms
N1, . . . , Nn such that MN1 . . . Nn reduces to λx.x). The problem is that
application is strict in its first argument, and so an infinitely left-branching
chain of applications has no obvious meaning. We can say much the same
for an infinite chain of abstractions λx1.λx2.λx3. . . . Therefore, Λ001 seems
to be the natural infinite extension of usual eager finite lambda calculus.
Λ101 is an infinite extension associated with the lazy lambda calculus [2]
in which abstraction is considered lazy — λx.M is meaningful even when
M is not. Both Λ111 and Λ101 contain unsolvable normal forms, such as
λx1.λx2.λx3 . . . In Λ001 every normal form is solvable. We will later find
that Λ010 and Λ011 — have unsatisfactory technical properties.

3. Results

In this section we will consider an arbitrary infinite lambda calculus Λ∞,
unless otherwise specified. For strongly convergent reductions we can gen-
eralize the concepts of descendants and contribution (which occurrences in
the initial term contribute to a redex in the final term of a reduction).

Theorem 2.

1. For any strongly convergent sequence t0 →α tα and any position u of
tα, the set of all positions of all terms in the sequence which contribute
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to u is finite, and the set of all reduction steps contributing to u is
finite.

2. If t →∞ s and s′ is a finite prefix of s, then t is reducible in finitely
many steps to a term having s′ as a prefix. In particular, if t is
reducible to a finite term, it is reducible to that term in finitely many
steps.

3. If a finite term is reducible to a finite normal form, it is reducible to
that normal form in the finitary lambda calculus.

Complete developments can also be naturally extended to the ex-
tended concept of reduction. However, in the Λ∞ other than Λ000 not
every set of redexes has a complete development. E.g. an example is pro-
vided by the term Iω = I(I(I(. . .))) in Λab1 Every attempt to reduce all the
redexes in this term must give a reduction sequence containing infinitely
many reduction steps at the root of the term, which, by every notion of
ab1-depth, is not strongly convergent. Yet, we can prove:

Theorem 3. Complete developments of the same set of redexes end at
the same term.

Theorem 4. (Compressing Property1) In Λ∞, for every strongly conver-
gent sequence there is a strongly convergent sequence with the same end-
points whose length is at most ω.

In the context of infinitary lambda calculus, the Böhm tree of a term
can be seen as being simply its normal form with respect to transfinite
reduction with respect to the β rule together with an additional rule for
erasing subterms having no head normal form. More generally, we find
that with each notion of depth there can naturally be associated a notion
of head normal form.

Definition 3. A term of Λ∞ is potentially 0-stable if it can be reduced
to a 0-stable term. It is 0-active if it is not potentially 0-stable.

We shall demonstrate that for each notion of depth, the class of 0-
active terms satisfies the axioms of [1] for a set of undefined terms. These
axioms are (1) both the set and its complement are closed under reduction,

1The Compressing Property is false for βη-reduction.
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and (2) the set includes all the terms which cannot be reduced to root-
stable form (i.e. to a term which cannot be reduced to a redex). This
immediately gives rise to models of lambda-calculus.

The second of the axioms is immediate from the definition. If a term
cannot be reduced to root-stable form, then it cannot be reduced to a 0-
stable form, since a redex at the root of a term is at depth 0 for every
notion of depth.

Half of the first axiom is immediate: the set of 0-active terms is cer-
tainly closed under reduction. It only remains to prove that the set of
potentially 0-stable terms is also closed. To do this we must develop some
theory of Böhm reduction. For this it is convenient to extend the various
calculi with a fresh symbol ⊥.

Definition 4.

1. A Λ⊥ term is a term of the version of lambda calculus obtained by
adding ⊥ as a new symbol. Λ∞⊥ is defined from Λ⊥ as Λ∞ is from Λ.

2. Böhm reduction is reduction in Λ∞⊥ by the β rule and the ⊥ rule,
viz. M →⊥ if M is 0-active and not ⊥. We write →B for Böhm
reduction and →⊥ for reduction by the ⊥-rule alone. A Böhm tree is
a normal form of Λ∞⊥ with respect to Böhm reduction.

We extend the notions of 0-stability etc. to terms containing ⊥ thus.
A term of Λ∞⊥ is 0-stable if it cannot be reduced to a term containing a
Böhm redex at depth 0 or ⊥. Potential 0-stability and 0-activeness are
similarly extended.

0-stability and 0-activeness were defined in terms of reduction, but
now we have defined a new notion of reduction in terms of these concepts,
which in turn gives us new notions of 0-stability and 0-activeness. It is
important to check that the new notions agree with the old on terms of
Λ∞. This turns out not to be the case for two of the eight possible notions
of depth, which we regard as sufficient grounds for excluding them. The
rest of this section deals only with depth measures to which Theorem 5
applies.

Theorem 5.

1. A term of Λ∞ is 0-stable with respect to beta reduction if and only if
it is 0-stable with respect to Böhm reduction.

2. Except in Λ010 and Λ011, a term of Λ∞ is potentially 0-stable with
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respect to beta reduction if and only if it is potentially 0-stable with
respect to Böhm reduction.

These theorems allow us to speak of (potential) 0-stability and 0-
activeness w.r.t. to beta reduction or Böhm reduction interchangeably.

Lemma 3.

1. In Λ∞⊥ , for any Böhm reduction sequence t →∞
B t′, there are sequences

t′ →∞
⊥ t′′ and t →∞

B t′′, such that the latter sequence consists of alter-
nating segments in which first a complete development is performed
of a set of beta redexes, none of which is contained in any 0-active
subterm.

2. For any Böhm reduction sequence in Λ∞⊥ , t →∞
B t′, there is a sequence

t →∞
β t′′ →∞

⊥ t′.

Theorem 6. In Λ∞⊥ , Böhm reduction is Church-Rosser.

Proof (outline). Given two coinitial Böhm reduction sequences, we
transform them as described by Lemma 3. For sequences of that form, the
Church-Rosser property can be proved by a tiling argument analogous to
that commonly used in proving the finitary Church-Rosser property. From
this the Church-Rosser property for arbitrary Böhm reductions follows.

Corollary. The set of potentially 0-stable terms in Λ∞,is closed under
reduction.

Theorem 7.

1. In Λ∞⊥ , every term has exactly one Böhm normal form.
2. In Λ∞⊥ , beta reduction is Church-Rosser up to identification of 0-

active terms.
3. Λ∞ has the unique normal form property

We thus have a model of lambda calculus, where the objects are the
Böhm normal forms. The usual Böhm model is the model associated with
applicative depth. The larger model described by Berarducci in [4] is the
one associated with d111. The model for d001 is the usual one based on
solvable terms, and the model for d101 is related to the Böhm model for
the lazy lambda calculus [2].
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