
Intersection Types for
�

-Trees

Steffen van Bakel ��� � Franco Barbanera ��� ��� ���
Mariangiola Dezani-Ciancaglini 	
� ��� ��� Fer-Jan de Vries

�
Department of Computing, Imperial College,
180 Queen’s Gate, London SW7 2BZ, U.K.

E-mail: svb@doc.ic.ac.uk�
Dipartimento di Matematica e Informatica, Università degli Studi di Catania,

Viale A. Doria 6, 95125 Catania, Italia.
E-mail: barba@dmi.unict.it.

�
Dipartimento di Informatica, Università degli Studi di Torino

Corso Svizzera 185, 10149 Torino, Italia,
Email: dezani@di.unito.it�

Computer Science Division, Electrotechnical Laboratory,
1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan,

E-mail: ferjan@etl.go.jp

Abstract

We introduce a type assignment system which is parametric with respect to five families of
trees obtained by evaluating � -terms (Böhm trees, Lévy-Longo trees, ...). Then we prove, in
an (almost) uniform way, that each type assignment system fully describes the observational
equivalences induced by the corresponding tree representation of � -terms. More precisely,
for each family of trees, two � -terms have the same tree if and only if they get assigned the
same types in the corresponding type assignment system.

Key words: Böhm trees, approximants, intersection types.

1 Introduction

A theory of functions like the � -calculus, which provides a foundation for the func-
tional programming paradigm in computer science, can be seen, essentially, as a
theory of ‘programs’. This point of view leads naturally to the intuitive idea that
�

Partly supported by NATO Grant CR.G.970285.���
Partly supported by MURST COFIN’99 TOSCA Project.

Preprint submitted to Elsevier Preprint 8 May 2000

the meaning of a � -term (program) is represented by the amount of ‘meaningful
information’ we can extract from that � -term by ‘running it’. The formalization
of ‘the information’ obtained from a � -term requires, first, the definition of what
is, in a � -term, a ‘stable relevant minimal information’ that is directly observable
in the � -term. This is the token of information which cannot be altered by further
reductions but can only be added upon. (As an example, the reader may think of
the calculation of � � . The calculation process merely adds decimals to the already
calculated decimal expansion).

If one organizes the stable relevant minimal information produced during a com-
putation according to the order in which it is obtained, it is quite natural to get a
tree representation of the information implicitly contained in the original � -term.
This tree then embodies the total information hidden in the original � -term. There
are many such tree representations in literature, depending on the possible notions
of stable relevant minimal information; the most commonly used being top trees
(or Berarducci trees [6]), weak trees (or Lévy-Longo trees [25]), head trees (or
Böhm trees [4]), eta trees and infinite eta trees (infinite eta trees are in one-one
correspondence with Nakajima trees [23]). Hence, the various notions of tree rep-
resent different notions of meaning of a � -term (in particular, they specify different
notions of undefined value [20]).

This apparently vague intuition is substantiated by results starting with [29], which
show that there exist precise correspondences between the tree representations of � -
terms and the local structures (or, equivalently, the � -theories) of certain � -models
([4], Chapter 19). In particular, such correspondences amount to the fact that two � -
terms have the same tree representation if and only if they are equal in the � -model.
For example,

� the infinite eta trees represent the local structure of Scott’s ��� model as defined
in [26] (this result was proved in [29]);� the eta trees represent the local structure of the inverse limit model defined in
[12];� the head trees represent the local structure of Scott’s ��� model as defined in [27]
(a discussion on this topic can be found in [4], Chapter 19);� the weak trees were introduced by Longo in [22] (following [21]), who proved
that they represent the local structure of Engeler’s models as defined in [17].

Orthogonally, the results about observational equivalences confirm this operational
intuition of dynamically evolving meanings of � -terms incorporated in the tree rep-
resentations. For instance, in [29] Wadsworth showed that two � -terms 	�
� have
the same infinite eta tree if and only if, for all contexts ���� , the following holds:

����	�� has a head normal form if and only if ������� has a head normal form.

The same property holds even considering eta trees and normal forms [18]. By
adding a non-deterministic choice operator and an adequate numeral system to the

2

pure calculus, we obtain a language which internally discriminates two � -terms if
and only if they have different head trees [14]. Weak trees correspond to the obser-
vational equivalence with respect to weak head normal forms in suitably enriched
versions of the � -calculus [25,9,16]. We can discriminate � -terms in the same way
that top trees do, using two powerful � -rules [15].

It is clear that most of the relevant properties of � -terms pertain, more or less
strongly, to the field of dynamics, i.e., to their computational behavior. This, how-
ever, does not mean that we have to, staying into a ‘physics metaphor’, disregard
the statics: the objects of a theory of programs (before we ‘run’ them), are static
entities and, as such, differently from the more or less ineffable computations, they
can be ‘handled’.

It would be very useful if these dynamic aspects could be analyzed with tools deal-
ing with static entities like, for instance, � -terms and types.

All the results recalled above show that our dynamic world can be partially re-
duced to a world of trees. Trees are objects a bit more concrete than computations,
but still not very manageable. Type assignment disciplines are typical static tools,
much used in the programming practice to check decidable properties of programs.
There are several results showing how very powerful typing disciplines can be de-
vised that, at the (of course expected) price of being undecidable, can be used to
analyze the dynamic world. For instance, the observational equivalences induced
by a number of tree representations of � -terms can be mimicked by suitable type
theories:

� Each inverse limit � -model is isomorphic to a filter model, i.e., to a model in
which the meaning of � -terms is a set of derivable intersection types [10].� Two � -terms have the same head tree if and only if they have the same set of
types in the standard intersection type discipline [5], as proved in [24].� Two � -terms have the same weak tree if and only if they have the same set of
types in the type discipline with union and intersection of [13], as proved in [16].� Two � -terms have the same top tree if and only if they have the same set of types
in a type assignment system with applicative types [7].

In the present paper we will design one type assignment system for each of the
five families of trees mentioned above (more precisely, a type assignment system
(almost) parametric with respect to these five families). For each family of trees we
will show that two � -terms have the same tree, if and only if they get assigned the
same types in the corresponding type assignment system.

This is a new result for the eta trees and the infinite eta trees. Moreover, our proof
method unifies the earlier proofs mentioned above, while making the following
improvements:

� we simplify the types of [24], since we do not consider type variables;

3

� we do not allow the union type constructor (which is considered in [16]);� the applicative types are built starting from just one constant instead of two (this
was the choice of [7]).

All the type systems we will introduce (apart from those that represent top trees)
induce filter � -models in the sense of [5]. Clearly, the theories of these filter models
coincide with the equalities of the corresponding trees. So as by-product we obtain
alternative proofs of the characterizations of the theories of Scott’s � � model [29]
and of the filter � -model [24]. Notice that these new proofs (unlike the original
ones) are constructive, in the sense that, whenever two � -terms have different in-
terpretations, we will build a compact element � of the model such that � approx-
imates only the interpretation of one of the two � -terms. Indeed, � is the principal
filter induced by a type which can be deduced only for one of the two � -terms.

The long-term goal of this research is to find answers to the question ‘what can
be added to the pure � -calculus in order to internally discriminate � -terms having
different trees?’, which can be formulated for each family of trees.

Intersection type assignment systems played a crucial role in showing that obser-
vational equivalences in suitable extensions of � -calculus are equivalent to head
and weak tree equality [9,14,16]. We hope that similar results can be obtained for
the other families of trees; this would justify the present choices. A very limited
number of type constants and type constructors allows to search for a proof along
the following lines. Suppose we were able to define, for each type � , a test term ���
such that ��� 	 converges if and only if 	 has type � . Then we would obtain an
observational equivalence which coincides with the tree equality (see [8]).

This paper is organized as follows. In Section 2 we shall recall the various defini-
tions of tree. We will introduce the notion of approximant in Section 3. In Section 4
we will describe the type assignment systems which will be used for our main re-
sult and we will give a theorem of approximation stating that a � -term has a type
if and only if there exists an approximant of the � -term which has the same type.
Section 5, instead, contains our main result: our type assignment systems can be
used to analyze the observational behavior represented by trees.

A preliminary version of this paper has appeared in [3], where almost all proofs
were omitted.

4

Abbreviations

Below, we will use the following abbreviations for � -terms.

Y � � ��������� �	� ����� �
����� � �	� ���� ��������� R � �	����� � � � �������
I � �	� � � ����� �	� � �� ��� �� ����� �
� ��� �� ��� ���� ����� � � �"!# � �	��� � ����� �

2 Trees

In this section we recall the various notions of trees which can be obtained by eval-
uating � -terms. As briefly discussed in the introduction, in order to describe trees, it
is natural to formalize first the intuitive possible notions of stable relevant minimal
information coming out of a computation (naturally inducing different notions of
meaningless term [20]).

If during a computation the following terms appear, their underlined parts will re-
main stable during the rest (if any) of the computation: � 	%$ �&��� 	(' , ��� � 	 , �*) +
(where) is the explicit representation of the operation of application that is nor-
mally omitted, and � is a � -term which will never reduce to an abstraction). Having
a stable part in a computation, however, does not necessarily mean that we consider
it relevant. For instance, we could consider an abstraction

� �	� � 	,� relevant only in
case 	 is of the form �	�-$ �&��� � �

� � �.$ ���&� �/' (0�
21 354). This means that we can
end up with different notions of stable relevant minimal information.

In order to formalize such notions it is possible to define for each notion a reduction
relation such that:

(1) if a � -term can produce stable relevant minimal information, we can get it by
means of the given reduction relation;

(2) the computation process represented by the reduction relation stops once sta-
ble relevant minimal information is obtained.

In the following we will give a number of reduction relations for � -terms present in
the literature. All are proper restrictions of the usual 687 -reduction relation. Syntax,
basic notation of the � -calculus and the usual conventions on variables to avoid
explicit � -conversion are as in [4].

A � -term is a strong zero term if it is unsolvable and it cannot be reduced to a
lambda abstraction by means of the reduction relation induced by the 6 -rule [6].
Such terms are called unsolvables of order 0 in [22] and strongly unsolvables in [1].

5

Definition 1 Given the following axioms and rules:

� 6 � � ��� � 	,� � � 	 ��� � � �� 7�� ��� � 	 � � 	 if ������	� � 	,���
 � 	 � �� 	�� � �����
 � t 	 � �� 	�� � ��� (provided 	 is not a strong zero term)��� � 	 � �� �	� � 	 � �	� � �
we can define the following reduction relations (RR) on � -terms.

(top reduction) �
t is the RR induced by

� 6 ��� 0 � ��
 � t
(weak head reduction) �

w is the RR induced by
� 6 ��� 0 � ��
 �

(head reduction) �
h is the RR induced by

� 6 �
 ��
 ��� 0 � ��� �
(eta head reduction) �

e is the RR induced by
� 6 �
 ��
 �
 ��� ��� 0 � � 7 � �

The weak head reduction is better known as lazy reduction [1].

The sets of � -terms in normal form with respect to the above defined reduction rela-
tions can be described syntactically. Such description makes the different intended
notions of stable minimal relevant information explicit.

Definition 2 (1) A top normal form $ is a term of one of the following three kinds:
(a) an application term of the form � 	 $ ����� 	(' � 1 3 4 � ;
(b) an abstraction term ��� � 	 ;
(c) an application term of the form 	 � , where 	 is a strong zero term.

(2) A weak head normal form is a term of one of the following two kinds:
(a) an application term of the form � 	 $ ����� 	(' � 1 3 4 � ;
(b) an abstraction term ��� � 	 .

(3) A head normal form is a term of the following kind:
(a) �	��$ ����� � �

� � 	*$ ����� 	(' � 1
20(3 4 � .
(4) An eta head normal form is a term of the following kind:

(a) �	��$ ����� � �
� � 	*$ ����� 	(' � 1
20 3 4�� , where � � ���	�

� � 	*$ ����� 	 '���$2� or
� � �� 	(' .

Notice that the sets of normal forms in the above definition are presented in a proper
inclusion order, i.e., the set of top normal forms includes that of weak head normal
forms, etc.

Example 3 (1) For each 0(3 � , the term
� � is an example of a strong zero term.

$ Called root stable form in [19].

6

(2)
� # is not a top normal form, while all

� � (for 0%3��) are top normal forms
that cannot reduce to weak head normal forms.

(3) �	� ��� # is a weak head normal form that cannot reduce to head normal form.
(4) � ! # is a head normal form but not an eta head normal form.
(5) Y and ����� � � � RR ��� are eta head normal forms.

With this definition we can represent in tree notation all the various related kinds
of information we can distract from a � -term. Given a � -term 	 , for each of the
four reduction relations we can try to reduce 	 to normal form. If such a normal
form does not exist, then no information is obtainable out of 	 and its tree is�

. Otherwise, we will put the information thus obtained in a node and build the
children of this node by repeating this process on the various subterms of the normal
form. In case of head normal forms, this amounts to the usual construction of Böhm
trees.

Definition 4 (1) The top tree � t
� 	 � of a term 	 is defined by cases as follows:� if 	 �

t � � $ �&��� � ' � 1 3 4�� , then

� t
� 	,��� �

� t
� �.$2�

ssssss ����� � t
� � ' �

KKKKKK

� if 	 �
t �	� � � , then

� t
� 	,��� �	�

� t
� � �

� if 	 �
t � � , where � is a strong zero term, then

� t
� 	,���)

� t
� � �

vvvvv
� t
� � �

GGGGG

� otherwise: � t
� 	,��� � .

(2) The weak tree � w
� 	,� of a term 	 is defined by cases as follows:� if 	 �

w � � $ �&��� � ' � 1 3 4�� , then

� w
� 	,��� �

� w
� �.$2�

ssssss ����� � w
� � ' �

KKKKKK

� if 	 �
w �	� � � , then

� w
� 	,��� �	�

� w
� � �

� otherwise: � w
� 	,��� � .

7

(3) The head tree � h
� 	,� of a term 	 is defined by cases as follows:� if 	 �

h �	��$ ����� � �
� � �.$ ����� � ' � 0
21 3 4 � , then

� h
� 	,��� �	��$ �&��� � �

� �
� h
� � $��

lllll ����� � h
� �/' �

RRRRR

� otherwise: � h
� 	,��� � .

(4) Let � be a head tree, i.e., � � � h � 	,� , for some 	 . The 7 -normal form of � ,
7 � � � , is defined as follows:

� 7
���
� ����$ ����� � �

� �
� $

����� ����� ��'
;;;;;

����
� �

�										
 										�

7
���
� �	��$ ����� � � ��$� �
� $

}}}}} ����� �
' ��$
AAAAA

����
�

proviso � ' is finite,
7 � �
' � � � � �� � and
� � ����	�

� ��� � for������� 1�� � .
�	��$ �&��� � �

� �
7 � � $��

}}}}} ����� 7 � �
' �
AAAAA otherwise

� 7 � � � � � .
The eta tree � e

� 	,� of a term 	 is defined as 7 � � h � 	,��� .
The condition ‘ � ' is finite’ in the above definition is obviously necessary in order
to make the latter sound, but it can be easily checked that, in its intended meaning,
an 7 -normal form of a head tree can be a variable only when the tree is finite.

One might wonder why the eta tree of 	 is defined through the 7 -normal form of
the head tree of 	 instead of using the eta head normal form of 	 . As a matter
of fact, considering trees instead of terms allows to do more 7 -reductions, essen-
tially since the set of variables which occur free in � h

� 	,� is a subset of the set
of variables which occur free in 	 . This was already observed in [4], Remark
10.1.22. Borrowing the example given there, let � be such that � ��� �	� � � � � � � ,
then �	�
� � � � � � � � has the reduction behavior and head tree as shown in Figure 1.
Now, since, as mentioned in [4], there “ � is pushed into infinity”, this tree contains
only one � , and is therefore an 7 -redex. This is reflected by the fact that the eta tree
of the term �	��� � � � � � � � is as in Figure 1.

Finally, the fifth family of trees we shall consider in this paper is the family of the
infinite 7 -normal forms of head trees (and hence of eta trees as well), as defined in
[4]. In order to give the definition of infinite 7 -normal form, we need first to recall
briefly the definition of infinite 7 -expansion of a variable. Given a variable � , one
can consider a (possibly infinite) tree resulting by the limit of a series of expansions
like the following:

� !�� � h
� �	��� � �����2� !�� � h

� �	��� � � � �	� $ � ���2� $2��� !�� �����

We denote that � is a (possibly infinite) 7 -expansion of � by � 3 ! � .

8

����� � � � � � � � � � ����� � � ��� �	� � � � �/� ��� � � �
� � ����� � � � � � � � ��� �
� � ����� � � � � ��� �	� � � � � � ��� � ��� �
� � ����� � � � � � � � � � ����� �
� �
�&���
� � ����� � � � � � � � � � ����� ������� �

�	��� � �
�

yyyyy �
EEEEE

�
�
...

�	� � �
�
�
�
...

Fig. 1. Reduction path, head tree and eta tree for � �����	��
������� , where ��� � � ������
����� .

The definition of 3 ! requires a formalization of the notion of labeled tree and it is
given in the Appendix (Definition 58).

Definition 5 Let � be a head tree, i.e., � � � h
� 	 � , for some 	 . The infinite

7 -normal form of � , 7 � � �/� , is defined as follows:

� 7 �
���
� �	��$ ����� � �

� �
� $

����� ����� � '
;;;;;

����
� �

�										
 										�

7 �
���
� �	� $ ���&� � � ��$� �
� $

yyyyyy �&��� ��'���$
EEEEEE

����
�

proviso �
' 3 ! � � ,� � �� � and
� � ���� �

� � � �
 for� ����� 1�� �
����$ ����� � �

� �
7 � � � $ �

yyyyyy ���&� 7 � � � ' �
EEEEEE otherwise

� 7 � � � ��� � .

The infinite eta tree � i
� 	,� of a term 	 is defined as 7 � � � h � 	,��� .

As mentioned in the introduction, the interest of the tree representations above is
that they mimic the local structure (or, equivalently, the � -theory) of different � -
models.

Example 6 In Figure 2 we give a few examples of the trees defined above (using
the terms of Example 3). They show how trees become less discriminating as we
use reduction relations with more rules.

We will use ��� , with � ���
t
 w
 h
 e
 i � , to denote the set of trees � ��� � 	,���

	 �! � . Moreover, ‘ � -tree’ will be short for any tree belonging to �"� . Unless
mentioned otherwise, we will assume � to range over � t
 w
 h
 e
 i � .

9

� t
� ��� ���)���

���
��� ���

� �

� � �
) � � �

)
���

�	�
��� ���

� �

...

� w
� ��� � � �

� w
� ��� ��� # ��� �	�

� � h
� �	� �� # � � �

� h
� � ! # � � �	�
� � �

�
yyyyy �

EEEEE � e
� � ! # � � �	� � �

�

� e
�
RR � �

�	�
� � �
�	��$ � �
�	�	� � � $

...

� i
�
RR ��� �	� � �

Fig. 2. Trees for Example 6

3 Approximants

Let �
 be the set of terms obtained by adding the symbol
�

to the syntax of the pure
� -calculus. Clearly the tree representations generalize to terms in �
 by assuming
� � � � � � � . This leaves the set of trees unchanged, i.e., for all 	 �
 , there is
an 	�� � such that � � � 	 � � � � � 	�� � . In fact, 	�� can be obtained from 	 by
substituting

� # for
�

.

It is possible to associate, for any possible notion of stable minimal relevant infor-
mation, a set of approximants to a � -term. As usual when dealing with (possibly)
infinite structures, one can consider their finite approximations. There are two pos-
sible approaches to the definition of approximations of a term 	 :

� Consider all possible finite trees obtained by pruning the � -tree of 	 (the con-
stant

�
is used to represent the (possibly infinite) parts of the trees that have been

pruned). Call all these pruned trees � -approximants of 	 .� Consider all possible terms that occur in � -reduction sequences starting from 	
(for � � �

w
 h � , we should extend the notion of � � -reduction to �
 by adding

10

the clause
� 	 � �

, and also �	� � � � �
for � � �

h ��� , and calculate their
direct approximants (a direct approximant for � is obtained from � by (recur-
sively) replacing (potential) � -redexes, like

� 	 and �	� � � , by
�

; to clarify this,
one could see this as a generalization of 6 � -reduction [4]). The � -approximants
of 	 are now all terms in normal form – with respect to suitable notions of
normal form – including

�
that are smaller than those direct approximants.

In the context of 6 -reduction, these approaches coincide, i.e., for any term 	 yield
the same set.

In the presence of rule
� 7�� , both definitions give rise to problems. First of all, in a

system with 7 -reduction, no longer every pruned subtree of the normal form is in
normal form itself, a property that holds in a system with just 6 -reduction. This is
caused by the fact that the number of free occurrences of a variable will normally
decrease by pruning, which affects whether or not a term is an 7 -redex.

Example 7 Take the term ����� � ���-� . The tree below on the left is the eta tree of this
term, the one on the right is obtained by pruning the first � .

�	�
� � �
�

yyyyy �
EEEEE

�	��� � �
�

xxxx �
EEEEE

The term in the right-hand tree, �	��� � � � � , is 7 -reducible.

Also, in the context of 7 -reduction, the two approaches no longer coincide. For
example, take � as defined above. Collecting ‘all pruned subtrees’ of the eta tree
of �	��� � � � � � � � yields the set

� �
 �	� � � �

��� � � � � � �

��� � � � � � � � ���
 ��� � �
whereas ‘calculate the direct approximants of terms that occur in reduction se-
quences that start from �	��� � � � � � � � ’ would yield � � � . To understand this, notice
that

� none of the reducts of ����� � � � � � � � is an 7 -redex, since in all those terms, �
appears twice, and� replacing the redex � � by

�
in each reduct creates a term that is an 7 -redex;

therefore, for all terms in the sequence, its direct 687 -approximant would be
�

.

The first set is obviously a better collection of approximants of the infinite tree.
Therefore we choose the first approach to define the set of approximants.

Definition 8 We inductively define the set � ��� �
 of approximate normal forms
as follows

(1) � t is the smallest subset of
 such that

11

(a) if � $
 �����
�� � � � t, then ��� $ �&��� � � � � t and
� � $ �&��� � � � � t� 0(3 4 � ,

(b) if � � � t, then ��� � � � � t.
(2) � w is the smallest subset of
 such that

(a)
� � � w,

(b) if � $
 �&���
�� � � � w, then ��� $ ����� � � � � w
� 0(3 4�� ,

(c) if � � � w, then ��� � � � � w.
(3) � h is the smallest subset of
 such that

(a)
� � � h,

(b) if � $
 �&���
�� � � � h, then �	� $ ����� � ' � ��� $ ����� � � � � h
� 1
20(3 4 � .

(4) � e = � i = � h.

We denote the set of approximate normal forms with at most 0 symbols by �
� � �� .

Let
� 	,� ������ , where 	 � �
 , denote the approximate normal form whose � -tree is

the tree obtained out of ��� � 	,� by pruning it at height � and inserting the constant
�

as leaves at the end of the cut edges. The formal definition of
� 	,� ������ is given in

the Appendix (Definition 59).

It is straightforward to verify that
� 	 � ������ � � � , for all 	 . For instance, by looking

at � t
� � � � � � described above, it is easy to see that

� � � � � � �����t , for � �54
 �
 �
 � ,
are respectively

�
,
� �

,
� � � ��� � � � and

� � � ��� � � � � �	� � � � � � .
There is a natural partial order between approximants which can be easily formal-
ized by induction.

Definition 9 The relation 	 � is the least partial order on � � , such that:

(a)
� 	 � � ;

(b) if �
	 � � � , then �	� � ��	 � �	� � � � ;
(c) if �
	 � � � and �	 � � � , then ���	 � � � � � .

It is easy to verify that
� 	,� ������ 	 � � 	,� ����� $ �� , for all � . Moreover, pruning trees

preserves this order, i.e., if ��	 � � , then
� � � ������ 	 � � � � ������ , for all � .

It is possible to associate to a � -term, for any possible notion of stable minimal
relevant information, the set of its approximants, that is the set of all the finite
approximations of its corresponding tree.

Definition 10 The set � � � 	,� of approximants of 	 � with respect to the re-
duction relation � is defined by:

� � � 	,��� � � � � ������� � ��	 � � 	,� ������ � �

12

Example 11 � � t � � � ��� I � � II ��� contains, for example, approximants like

�
2� � �
 � � � I � I
2� � � � � I � I
2� � � � � � � I � I �
� � w � I ��� � �

��� � �
 I � while � h

�
I ��� � e � I ��� � �
 I � .� � h � ����� � ����� � � �
 �	��� � � �
 �	��� � �
� � while � e

� �	�
� � ����� � � �
 I � .� For any term � such that � � � ��� � � � � � � ,
� e
� �	��� � � � �/� � � � � � �
 �	� � � �

��� � � � � � �
 ����� �

� � i
�
RR � � � �
 I � , while both sets � h

�
RR � and � e

�
RR � are infinite and con-

tain, for instance,
�
 �	��� � � � , and �	�
� � � � ���-$ � � � � .

Lemma 12 The set � � � 	,� is an ideal, i.e., it is downward closed and directed
with respect to 	 � .

PROOF. � � � 	,� is downward closed by definition. The fact that � � � 	,� is di-

rected, for all 	 , follows from the observation that
� 	,� ������ 	 � � 	,� ��� �� whenever

� ���
.

Lemma 13 If
� 	,� ������ 	 � � where � � � � � 	 � then

� 	 � ������ � � � � ������ .

PROOF. By Definition 10, � � � � � 	,� implies � 	 � � 	,� ��� �� , for some
� 3
� .

By construction,
� 	,� ������ � ��� 	,� ��� �� � ������ . From

� 	,� ������ 	 �
� 	 � � 	,� ��� �� we get� 	,� ������ 	 � � � � ������ 	 � ��� 	,� ��� �� � ������ , so we conclude
� 	,� ������ � � � � ������ .

It is natural to expect that our different notions of trees and approximants represent
the very same concepts, that is, they formalize the same observational behaviors of
� -terms.

Theorem 14 For any 	�
� :

� � � 	,� � � � � � � if and only if � � � 	,��� � � � � � �

PROOF.

��� � Reasoning towards a contradiction, we assume that � � � 	,� � � � � � � and� 	,� ������ �� � � � ������ , for some � . We get
� 	,� ������ � � � � � � , i.e., by definition� 	,� ������ 	 � � � ��� �� , for some

�
. We can assume, without loss of generality, that

� ���
. Since

� � � �	� �� � � � � 	,� , by Lemma 13, we obtain
� 	,� ������ � ��� � � �	� �� � ������ .

Now � ���
implies

� � � ������ � ��� � � ��� �� � ������ and we are done.

13

� � � Easy, by definition of � � � � (Definition 10).

It is possible to show that � � � 	,� is the least upper-bound of � � � 	,� with respect
to 	 � . We omit the proof of this property here, since it plays no role in this paper.

We extend each partial order 	 � to a partial order � � , which naturally induces an
equivalence relation on sets of approximants. This can be proved to coincide with
the identity relation on sets of approximants and hence, by Theorem 14, to coincide
with the identity on trees.

Definition 15 (1) The relation � t is the least partial order on � t that satisfies
clauses (a), (b), and (c) of 	 t and, moreover:
(d)

� � $ �&��� � � � t � .
(2) For � � � w
 h � the relation � � is the least partial order on � � which satisfies

clauses (a), (b), and (c) of 	 � and, moreover:
(e) �	� � ��� $ ����� � � ��� � ��� $

���&� � � , for all variables ������	� � ���.$ ����� � � � .
(3) For � � �

e
 i � the relation � � is the least partial order on � � that satisfies
clauses (a), (b), (c), and (e) of � w and, moreover:
(f) ��� $ ����� � � � � �	� � ��� $ ����� � �

�
, where ���� � .

Note that � � ! � implies � � � � , for � � �
w
 h
 e
 i � and � � � � , for

� � � e
 i � . Moreover, we can show that

��� $ ���&� � � � � ����$ ����� � ' � ��� $ ����� � �
� ����� �� ��� �'

whenever � �� � � $
 �����
2� ' � , for � � �
e
 i � . In fact, by clause (f) above, for any� 3 4 , we have

��� $ ����� � �
� ���&� �� ��� �� ��$ � � �	� � � ��� $ �&��� � �

� ����� �� ��� ��
�

By Definition 9(b) we get

�	� $ ����� � � �	$ � ��� $ ���&� � �
� ����� �� ��� �� �	$ � � ����$ ����� � � � � � $ ���&� � �

� ����� �� ��� ��
�

Then, by all such inequalities with
� � 1 , we are done by transitivity.

It is useful to remark that pruning trees does not preserve these new orders. For
instance, ��� � ����� �(� , but

� �	� � �
��� � $ �� � �	� � � � �� � � ��� � $ �� � �
where � ���

w
 h
 e
 i � . We have a weaker property, namely that if � is the height
of the � -tree of � and ��� � � , then

� � � ��� �� � � � � � ��� �� , for all
� 3 � .

14

Definition 16 For any two terms 	 and � , we define: � � � 	,��� � � � � � � if and
only if, for all � � � � � 	,� , there is � � � � � � � such that � � � � and vice
versa.

Lemma 17 If �
 � � � � � 	,� and ��� � � , then ��	 � � .

PROOF. If �
 � � � � � 	,� then � 	 � � 	,� ������ and � 	 � � 	 � ��� �� , for some

�
 � 3 4 . Let � � max � �
 � � . Then � 	 � � 	,� ������ and � 	 � � 	,� ��� �� . This means

that � and � can be obtained from
� 	,� ��� �� by replacing subterms by

�
. Therefore,

� cannot be obtained from � either by replacing an occurrence of
� � $ ����� � � with

0 3 �
by � , or by 7 -reduction, or by replacing an occurrence of � � $ �&��� � � by

�	� � � � $ ����� � �
�

. So we can conclude that ��	 � � .

Lemma 18 If � � � 	,��� � � � � � � , then � � � 	,� � � � � � � and � � � 	,� �
� � � � � .

PROOF. Reasoning towards a contradiction, assume that for all � � � � � 	,� there
is a � � � � � � � such that � � ��� (and vice versa). Let � � � � � 	,� be such

that � �� � � � � � . Without loss of generality we can assume � � � 	,� ������ , for some
� . By hypothesis we find � � � � � � � such that � � � � and � � � � � � 	,� such
that � � � � � . We get � � � � � which, by Lemma 17, implies �
	 � � � . Thus, by

Lemma 13, � � � � � � ������ . From � � � � � � � � we get � � � � � � ������ � � � � � � ������ .

Hence � � � � � ������ and we can conclude � � � � � � � .

The main motivation for the introduction of ‘ � � ’ is that it is compatible with the
typing that we shall present in the next section.

4 Types and type assignment systems

As stated in the introduction, our static tools to analyze trees (or, equivalently, their
corresponding sets of approximants) will be type assignment systems, in particular
type assignment systems based on intersection type-like disciplines.

In type assignment systems one derives statements of the form 	 � � , where a
term 	 gets assigned a type � that represents a certain finite information about
	 . Roughly speaking, a type will be used as a description of a particular notion of
normal form. Hence, it is not possible to use a unique set of types to deal with all
the trees defined in the previous section. We shall need, instead, three sets of types:

15

Tt to characterize � t, Twh to characterize � w and � h, and Tei to characterize � e
and � i.

After defining these sets of types, in this section we shall define an order ‘
� � ’ on

types that is parameterized by the notion of tree. Then – parametrized by this order
– our type assignment systems will be defined (almost) uniformly for all notions
of tree. All these type assignment systems deal correctly with terms that carry no
information: ��� � 	,� � � if and only if the universal type � is the only type that
the system related to ��� can assign to 	 .

In the following, we shall use the following notation: if � � � t
 w
 h
 e
 i � , then

�� �

�					
 					�
t if � � t

wh if � � w or � � h

ei if � � e or � � i
�

4.1 Types

We start with Tt. To describe a top normal form which is the application of two
terms, following [7] we will introduce a particular type constructor: the application
� 6 of two types � and 6 . In the intended interpretation a term has type � 6 if its top
normal form is the application of two terms, the first one of type � and the second
one of type 6 . We differ from [7] in that we will build types starting only from the
unique constant � , i.e., we won’t introduce a new type constant to be interpreted as
the set of all strong zero terms.

Some care has to be taken when introducing applicative types, since we have to
prevent the presence of inconsistent types. For example, ��� expresses that a top
normal form is the application of two terms, the first one being a strong zero term,
whereas � � � expresses that a top normal form is an abstraction. So we need to
prevent their intersection ��� � � � � � � . Also the type

� � � � ��� is meaningless: no
top normal form is the application of an abstraction to a term.

We are thus lead to consider a set of ‘pretypes’ and a smaller set of ‘applicative-
intersection types’, where some obviously inconsistent types, like the ones above,
are forbidden. The definition of the set of types is not immediate since, after exclud-
ing ��� � � � � � � and

� � � � ��� , we must still decide whether a finite intersection
like

� � $ � 6 $ � � ���&� � � � � � 6 � � is empty. The decisive idea comes from Scott’s the-
ory of information systems [28]: consistent inputs should give consistent outputs.
So, if we interpret the above intersection as the step function which gives an output
in � ���	� 6 � whenever the input is in � �
�	� � � (where � is a subset of � �
 �����
20 �), then
we must require that if � ���	� 6 � is empty, so is � ���	� � � . The definition of types is

16

then obtained by restricting the set of pretypes according to Scott’s prescription.
This excludes for instance

� � � � � � � ��� � � � � ��� � , because given an input in �
we would get an output in

� � � � � � � � , which is impossible since the latter is not
a type.

Definition 19 (Pretypes) The set PT of pretypes is the set of syntactic expressions
inductively defined by:

(1) � � PT (atomic type),
(2) If �
�6 � PT, then

�
� � 6 � , � � 6 � and

�
� � 6 � are in PT.

As usual, in writing types, we assume the following precedence between operators:
application, intersection, arrow; we will omit parentheses accordingly. Moreover,
we will use � � 6 � � � as short-hand notation for � � 6 � �&��� � 6� ��� �

�
� � , and 6 � � �

for 6 � �&��� � 6� ��� �
�

� � .

Definition 20 (Tt) Given � � PT, we define two predicates ‘ � � Tt’ and ‘ ���� Tt’
by simultaneous induction on � , by stipulating that � � Tt if and only if one of the
following conditions holds (and � �� Tt if and only if all the conditions do not
hold):

(Universal kind) � is � .

(Arrow kind) � is a finite intersection of the form � ���	� � � � � 6 � � , where
� �
�6 � � Tt and, for all � � � , either ��� ��� 6 � � Tt or
� � ��� � � �� Tt.

(Applicative kind) � is � 6 , where 6 � Tt, or � is a finite intersection of the
form � ��� � � � 6 � , where � ��� � 6 � � Tt, and � �
�	� � � � Tt is
of applicative or universal kind.

If � � Tt, then � � � � Tt: the kind of � � � is defined to be the kind of � .

In what follows, we will consider only types. Also, �
�6
 � will range over types
of any kind, �
	�
�
 will range over types of arrow kind (arrow types), �
�

 will
range over types of applicative kind (applicative types). Applicative types are only
used in the definition of top types.

Without applicative types all the intersections are meaningful. So the definition of
Twh and Tei can be given in a direct way. However, for weak head normal forms
and head normal forms, we need to have a new constant, � , representing � -free
terms: the constant � is not enough, as shown by Sangiorgi in [25]. In fact, [25]
proves that � � and �	� � � � ��� � ����� have the same types when types are built starting
from � using arrow and intersection type constructors. Clearly, these terms have
different weak and head trees. Roughly speaking, � can be seen as the collapse of

17

all applicative types.

Definition 21 (Twh) The set of types Twh is inductively defined by

(1) �
 � � Twh (atomic types),
(2) �
�6 � Twh imply

�
� � 6 �
 � � � 6 � � Twh.

In order to define Tei, since terms are considered modulo 7 , we are forced to equate
all atomic types �
 � to intersections of arrow types (see [12]). This means that
another type constant,

�
, is needed. In fact, the equations � � � � � and � � � � �

give rise, respectively, to Scott’s and Park’s � � -models as proved in [10]. And the
� -theories of these models are both different from the equality of eta trees.

Definition 22 (Tei) The set of types Tei is inductively defined by

(1) �
 �
 � � Tei (atomic types),
(2) �
�6 � Tei imply

�
� � 6 �
 � � � 6 � � Tei.

4.2 Type preorders

On the sets of types of the previous subsection we will define five preorder rela-
tions which all take the meaning of � as universal type, of � as function space
constructor, and of

�
as intersection into account. The particular properties of these

five preorders make them suitable to describe the different trees.

The preorder
�
t, defined on Tt, reflects the interpretation of applicative types.

The preorder
�
h, defined on Twh, equates � to � � � , since we want to take the

fact that a term like �	� � � can never be obtained from a head-tree into account. The
preorders

�
e and

�
i equate all atomic types to arrow types. They differ since, in�

i, the left-hand subtype of such an arrow type is always � , while this is not true
for

�
e. This difference is essential in order to be able to mimic either infinite or

finite 7 -reductions, as we shall see later.

Definition 23 (1) We define
�
t as the smallest binary relation over Tt such that:

(a) it is a preorder in which
�

is the meet and � is the top; �
the arrow satisfies:
(b) � � � � � � � ;
(c)

� � � 6 � � � � � � � � � � 6 � � ;
(d) � 3 � � and 6 � 6 � imply � � 6 � � � � 6 ���
the applicative types satisfy:
(e) � ;

� The explicit axioms and rules are ����� , ���
	 and 	���� imply ����� , �������� ,
���	���� , ���	���	 , ����� � and 	���	 � imply ���	���� � �	 � , and ����� .

18

(f) � � � � and � � � � imply � � � � � � � �
(2) We define

�
w as the smallest binary relation over Twh that satisfies the clauses

(a) to (d) above.
(3) We define

�
h as the smallest binary relation over Twh that satisfies the clauses

(a), (c) and (d) above and, moreover:
(g) � � � � � �

(4) We define
�
e as the smallest binary relation over Tei that satisfies the clauses

(a), (c), (d) and (g) above and, moreover:
(h) � � � � � � � ;
(i)
� � � � � � ���

(5) Let
�
i be the smallest binary relation over Tei which satisfies the clauses

(a), (c), (d) and (g) above and, moreover:
(j) � � � � � � � ;
(k)
� � � � � � ���

‘ � � � 6 ’ is short for ‘ � � � 6 and 6 � � � ’.

Notice that clause (b) is derivable from clause (g), so it is safe to eliminate clause
(b) from the definitions of

�
h
 � e, and

�
i.

Example 24 � � � � � � � , for every type � � T �� .� � � � � � � � � t � , for every arrow type � � Tt.� � � � � � � � � � � , for every type � � T �� (but for the case � � w � when � � w)
where � � � w
 h
 e
 i � .� ��� � � � t � , for every applicative type � � Tt.

We need to consider some properties of
�
t already proved in [7] for the sets of

types and the preorder relations there introduced.

Lemma 25 (1) If � �
�	� � � � � 6 � � � t � �
t � , or � �

t � ��� � � � � � 6�� � , then � is an
arrow type.

(2) If � �
t � �

t � , or � � t � , then � is an applicative type.
(3) � � � t � � � � implies � �

t � � and � � t � � .
(4) � � � � � � � � t

� � � � � � � � � � � � .
(5) For any applicative type � , � � t � �8$ ���&� � � , for some 0
 � $
 �����
 � � .
(6) Assume 6 � t �8$ and 6 � t � � . If 6 � Tt, then � $ � � � � Tt.

PROOF.

(1) – (3) By induction on the definition of
�
t.

(4) In fact, � � � � � � � � t � � � � � � � � � � � � follows from clause (e) of Definition 23.
The converse follows from clause (f) of the same definition and the fact that
6 � t � and 6 � t � imply 6 � t � � � .

(5) First observe that � � � � t � for all types � . Then, by (4), we are done.
(6) By cases, using (1) – (3).

19

All the pre-orders we introduced enjoy the following two properties which can be
shown by induction on

� � . The first property says that an arrow type terminating
with an atom is

�
-prime

�
. The second essentially says that the sets of types that

are filters represent the space of continuous functions (see [10]).

Lemma 26 (1) If � � 6 � � � $ � ����� � � � � � , where � is atomic and 0 3,4 , then
either � � � � $ � ���&� � � � � � or 6 � � � $ � ����� � � � � � .

(2) If � ��� � � � � � 6 � � � � � � 6 , where 6 �� � � , then for some � � � we get
� � � � � � � � � and � � ��� 6 � � �(6 .

As an immediate consequence of Lemma 26(2) we get that � � 6 � � � � � implies
� � � � and 6 � � � .

4.3 Type assignment systems

For each preorder introduced in the previous subsection, we will define a type as-
signment system associating � -terms to types belonging to the domain of the pre-
order. As said at the beginning of this section, these systems can be defined al-
most uniformly. In fact, there are six rules which are common to all systems and
which are standard in intersection type disciplines. The type assignment systems� � � � � �

w
 h
 e
 i ��� are defined by six such rules, and instantiating rule
� � � �

with the corresponding preorder. However, to define
�
t we have to deal with ap-

plicative types, and hence we need two extra rules:
� � app � and

�
app � .

These rules for applicative types allow to deduce the type � 6 for the application
	 � when 	 has type � , � has type 6 and 	 is a strong zero term. Moreover, a
rule

� 6 � exp � is needed as well, since applicative types are not invariant under 6 -
expansion of subjects. For example, without

� 6 � exp � we derive
�
t
� � I � � � � � � � ,

but we cannot derive
�
t
� ����� � �-� ����� I � � � � � � � � � .

A basis � is a (finite or infinite) set of statements of the shape � � � , with distinct
variables as subjects. In writing ��
2� � � we assume that � does not occur in � . We
denote by � t, � wh, � ei the sets of bases whose predicates belong to Tt, Twh, and
Tei, respectively.

Definition 27 (Type assignment systems) Consider the rules of Figure 3:

(1) The type assignment system
�
t is defined by the rules

�
Ax � , � � � , � � I � , � � E � ,� �

I � , � � app � , � app � , � 6 � exp � , and
� �

t � , where � � � t, � � Tt is an ap-
plicative type, and �
�6 � Tt.

(2) The type assignment system
� � , for � � �

w
 h
 e
 i � is defined by the rules�
Ax � , � � � , � � I � , � � E � , � � I � , and

� � �8� , where � � ���� and �
�6 � T �� .
�

A type � is called -prime, if and only if � 	���� implies ��� � or 	���� .

20

�
Ax � ��
 � � � � � � �

� � � � � 	 � �
� � I � ��
2� � � � 	 � 6

� � �	� � 	 � � � 6
� � E � �

� 	 � � � 6 � � � � �
� � 	 � � 6

� �
I � �

� 	 � � � � 	 ��6
� � 	 � � � 6

� � � � � � 	 � � � � � 6
� � 	 � 6

� 6 � exp � �
� � � � 	 � � �

� � 	 � �
�
app � �

� 	 � � � � � � �
� � 	 � � � �

� � app � 	 is a strong zero term � � � � �
� � 	 � � � �

Note: 	
� are terms of
 , and, in
� 6 � exp � , the relation � � is the full 6 -

reduction, i.e., the symmetric, transitive and compatible closure of rule
� 6 � .

Fig. 3. Derivation rules

Example 28 � �
t
���

� � � � � � � , whereas, in all other systems, any type de-
ducible for

� �
is equivalent to � .� � � ��� ��� # � � � � , for � � �

t
 w � , whereas, in all other systems, any type
deducible for �	� �� # is equivalent to � .� � � � # � � � � � � ��� � � for � � �

w
 h
 e
 i � , and also
� � � # ! � � � � � � ��� � � ,

for � � � e
 i � , whereas the latter statement is not deducible for � � � t
 w
 h � .� � � I � � � � , for � � �
w
 h
 e
 i � , and also

�
i RR � � � � , whereas the latter

statement is not deducible in all other systems.

Remark 29 At a first glance one could wonder whether, in the definition of
�
t, it

is possible to eliminate rule
� 6 � exp � by replacing rule

� � app � by a rule like

� � app � � 	 � ��� � � is a strong zero term � � � � �
� � 	 � � �

This is not the case. In fact, it is easy to check that
� �	� � � � �-� # I ��� � # � � � � � # I �

and � � � � � � � t � � � # I � � � . However, without rule
� 6 � exp � , we cannot derive

� � � � � � � t � ��� � � � � � # I ��� � # � � .

Since terms are considered modulo � -conversion, the weakening rule is admissible.
Moreover, as usual, we have ��� � � � 	 � � whenever � � � 	 ��� , where
��� � � � � � 6 � � � � � �	� � 	,� ��� .

We define Dom
� � ��� � � � � � � � � and ���� ��� and we assume � � � � � whenever

� For rule
 	�� exp � note that 	 � ��
 implies ��

 ��� ��
 	 � �

21

���� Dom
� � � . This is sound in view of rule

� � � .
We want to consider unions of bases taking the intersections of the types with the
same subjects. Since not all intersections of types in Tt are types, we need to allow
in this case only unions of compatible bases, according to the following definition.
For the other sets of types, any two arbitrary bases are compatible.

Definition 30 We say that two bases ��
 � � � ���� are compatible if and only if
� � � � � and � � 6 � � � imply � � 6 � T �� . If � and � � are compatible, we define their
union � as

��� � � � � � � � � 6�� � � � � � and � � 6 � � � � �

Notice that � � � � � � ��� � � whenever � � � � � and ��� Dom
� � � � , since by

convention we get � � � � � � . Similarly, when � � 6 � � � and ���� Dom
� � � .

As expected, we have generation lemmas for all the given type assignment sys-
tems. To avoid the use of rule

� 6 � exp � , the generation lemma for
�
t considers

approximate normal forms instead of arbitrary terms.

Lemma 31 (Generation Lemma for
�
t) Let � � � t.

(1) � � t
�

� � implies � � t � ;
(2) If � � t � � � , ���� t � , and

(a) �,� � , then � � 6 � � for some 6 � t � ;
(b) �,� �	� � � � , then � � t � ��� � � � � � 6 � � and, for

� � � , ��
 � � � � � t � � � 6�� ;
(c) � � ��� $ ����� � � � � , then there exists 6 such that � � t � � �-6 , and either

� � t ��� $ ����� � � � 6 � � , or � 3 t ��6 and � � t ��� $ ����� � � � � , for some
� ;

(d) � � � � $ �&��� � � � � , then there is 6 such that � � t � � � 6 , � 3 t ��6 and
� � t

� � $ ���&� � � � � , for some � ;
(3) If � � t � � � and � � t � � 6 , then � � 6 � Tt.

PROOF. The proof for (1) is immediate. We prove (2) and (3) by simultaneous
induction on � , showing each time first (2) by a secondary induction on derivations.

� � � � .
(2a) Follows easily by induction on derivations, using the transitivity of

�
t.

(3) Follows from (2a) and Lemma 25(6).� � � ��� � � � .
(2b) Proved by induction on derivations. If the last applied rule is

� �
t � , � � t

� ��� � � � � � 6 � � follows from Lemma 25(1) and ��
2� � � � � t � � � 6 � follows from
Lemma 26(2).

(3) Let, by (2b), � � t � ��� � � � � � 6 � � , 6 � t � � � � � � � � 6 � � . Consider � �
��� � : if � � ��� � � �� Tt there is no problem. If � � ��� � � � Tt, we have by

22

(2b) that ��
2� � � � � t ��� � 6 � , for all
� � � , therefore using rule

�
t we

have ��
2� � � � ��� � � � t � � � 6 � , for all
� � � . This implies, by induction,

� � ��� 6 � � Tt, so we conclude � � 6 � Tt.� � � � � $ ����� � � � � .
(2c) By induction on derivations. The only interesting case is when the last ap-

plied rule is
� �

I �
� �

I � �
�
t � � � $ � � t � � � �
� � t � � �8$ � � �

�

By the second induction, there are 6 � (
� � �
 �), such that � � t ������6�� , and

either � � t ��� $ �&��� � � ��6 � � � � , or � ��3 t � � 6 � and � � t ��� $ ����� � � � � � , for
some � � . By induction on (3), we cannot have � � t ��� $ �&��� � � � 6 $ � � $ and
� � t ��� $ ����� � � � � � , or � � t ��� $ ����� � � ��6 � � � � and � � t ��� $ ����� � � �
��$. Moreover, we get 6�$ � 6 � � Tt and either

� 6 $ � �8$�� � � 6 � � � �2� � Tt or
��$ � � � � Tt. Therefore, using rules

� �
t � and

� �
I � , � � t � � � 6 $ � 6 � and

either � � t � � $ �&��� � � ��6 $
� 6 � � � $ � � � or � � t ��� $ �&��� � � � � $

� � � .
(3) Let � � t � � �8$ and � � t � � � � . By induction on (2c) there are 6 � ,

for
� � �
 � such that � � t � � �86 � , and either � � t ��� $ ����� � � �86 � � � � ,

or � � t ��� $ ����� � � � � � and � �(3 t � � 6 � ,, for some � � . So we can con-
clude as above that 6�$ � 6 � � Tt and either

� 6 $ � � $�� � � 6 � � � � � � Tt or
� $ � � � � Tt. This implies either � $ � � � � Tt or

� � $ � � � � � 6 $ � 6 � � � Tt. In
the second case we get

� � $ � � � � � 6 $ � 6 � � � t � $ 6 $ � � � 6 � by Lemma 25(4).
This implies

� � $ � � � � � 6 $ � 6 � � � t � $ � � � , so we can conclude � $ � � � � Tt
by Lemma 25(6).� � � � � $ �&��� � � � � . The proof of this case is similar to and simpler than that of

the previous case.

The set of types deducible in
� � for approximate normal forms is not decreasing

with respect to the order relation 	 � between approximate normal forms. From
this we easily obtain a consistency property between the types deducible for the
approximants of the same term in

�
t.

Lemma 32 (1) If � � � � � � and ��	 � ��� , then � � � � � � � .
(2) If �
�� � � � t � 	,� , then a basis � � � t cannot assign an arrow type to �

and an applicative type to � � .

PROOF.

(1) By induction on the definition of 	 � .
(2) Since ‘ 	 t’ is directed (Lemma 12), reasoning towards a contradiction we

would get a single approximate normal form which has both an arrow and an
applicative type. This is impossible by Lemma 31(3) because the intersection
of an applicative type and an arrow type is not a type.

23

Lemma 33 (Generation Lemma for
� �) Let � � � w
 h
 e
 i � .

(1) � � � � � � implies � � � � ;
(2) � � � � � � if and only if � � 6 � � , for some 6 � � � ;
(3) � � � �	� � 	 � � (and � �� w � when � � w) if and only if � � � � ��� � � � � � 6 � �

and, for
� � � , ��
2� � � � � � 	 � 6�� ;

(4) � � � 	 � � � if and only if there is 6 such that � � � 	 � 6 � � , and
� � � � ��6 .

PROOF. All points can be shown by standard induction on the structure of deriva-
tions, using Lemma 26(2) for (3).

With a standard proof we can show that rule
� 6 � exp � is admissible in the systems� � , for � � �

w
 h
 e
 i � . Moreover, types are preserved by 7 expansion in
�
e and�

i.

Theorem 34

(1) Let � � � w
 h
 e
 i � . Then � � � 	 ��� � � � � � implies � � � � �	� � 	,� � � � .
(2) Let � � � e
 i � . Then � � � 	 � � and ���� �	� � 	,� imply � � � ��� � 	 � � � .
(3) Let � � � w
 h
 e
 i � . Then � � � � � � and 	 � � � imply � � � 	 � � .
(4) Let � � � e
 i � . Then � � � � � � and 	 � ! � imply � � � 	 � � .

PROOF.

(1) Let ��� � � � �86 � , for
� � � � 0 and 0,3 4 , be all the statements whose

subject is � in a derivation of � � � 	 ��� � � � � � . Notice that � � ��� but
��� � � � � � � , for all

��� � � 0 . So we can derive � � � � � � $�� ��� � 6 � ,with the convention that � $�� ��� � 6 � � � whenever 0 � 4 . One can easily
see, by induction on 	 , that ��
2� � � $�� ��� � 6 � � ��	 � � . Then, by rule

� � I � ,
we get � � � �	� � 	 � � $�� ��� � 6 � � � . Hence, by rule

� � I � , we can conclude
� � � � �	� � 	,� � � � .

(2) By easy induction on � , taking into account that each atomic type is equal to
an arrow type in the preorders

�
e and

�
i.

(3) – (4) By straightforward induction, using, respectively, (1) and (2).

For the type assignment system
�
i we need a further property dealing with the

types we can deduce for the terms whose infinite eta tree is just one variable. The
notion of strict types comes in handy [2].

Definition 35 The set of strict types ��� � Tei is the minimal set such that:

24

(1) �
 �
 � � ��� ,
(2) �
�6 $
 �����
�6 � � � �
 0 3 � � 6 $ � ����� � 6 � � � � � � .

Proposition 36 For all types � � Tei, there is a set of strict types 6�$
 �&���
�6 � � � �
such that � � i 6 $ � ����� � 6 � .

PROOF. By induction on � . Observe that � � � $ � � � � i
� � � � $�� � � � � � � � .

We will now introduce a measure on types which gives us, for each equivalence
class, the number of symbols occurring in the ‘minimal’ intersection of strict types.

Definition 37 (1) Define � � � Tei
� IN by:

(a) � � � � � � � � � � � � �
,

(b) � � � 6 � � � � � 6 � � � ��� � � 6 � � �
.

(2) Define � ��� � � Tei
� IN by � � � � � � min � � 6 $ � �&��� � 6 � � � 6 � � � � for

� ��� � 0
and 6 $ � ���&� � 6 � � i � � .

Theorem 38 Let � i
� 	 � 3 ! � .

(1) � � � � i 	 � � .
(2) If � � i � � � then � � i 	 � � .

PROOF.

(1) By induction on � � � � � . Notice that � i
� 	 � 3 ! � implies

	 � � �	��$ ����� � � � � 	 $ �&��� 	 �
where � i

� 	�� � 3 ! ��� , for
� ��� � 0 and 0(3 4 .� If � � ��� � � �

then � � i � , � � i � or � � i
�

. The case � � i � is
trivial. Otherwise, we derive

�
i 	���� � , for

� � � � 0 , by rule
� � � and we

conclude � � � � i 	 �
�
, for

� � � �
 � � , using rules
� �

i � , � � E � , and
� � I � ,

since � � i � � � � and
� � i � � � � .� For the induction step, by Proposition 36, we can assume, without loss of

generality, that � is a strict type. We distinguish two subcases.� � � i 6 $ � �&��� � 6 � � � with � � � � � � � � 6 $�� � � �&��� � � � 6 � � �
� � � � � � � 0

By induction ��� � 6 � � i 	�� � 6�� , for
��� � � 0 , and so we obtain

� � � � i 	 � � , using rules
� �
i � , � � E � , and

� � I � .� � � i 6 $ � ����� � 6�' � � with 1 � 0 ,
� ��� �
 � � and � � ��� � � � � 6 $�� � ������ � � � 6 ' � � � 1 � �

. Also, by induction, � � � 6 � � i 	 � � 6 � , for
� �����

1 . Moreover, by rule
� � � , we get

�
i 	 � � � , for 1 � � � � � 0 . We

conclude as in previous case, since � � i 6 $ � ����� � 6 ' � � � � ' � � .
(2) Follows easily from (1) and Lemma 33(2).

25

4.4 Approximation theorems

Our type assignment systems enjoy the approximation property, i.e., we can deduce
a type for a term 	 if and only if we can deduce this type for an approximant of 	 ,
with respect to the relative notion of approximant (Theorem 43). Such a theorem,
interesting in its own right, will be used in the next section to show that our type
assignment systems are tools to analyze the observational behavior represented by
trees.

We prove the Approximation Theorem by means of a variant of Tait’s ‘computabili-
ty’ technique. We define sets of ‘approximable’ and ‘computable’ terms. The com-
putable terms are defined by induction on types (Definition 39), and every com-
putable term is shown to be approximable (Lemma 41(2)). Using induction on
type derivations, we show that every term is computable for the appropriate type
(Lemma 42).

It is useful to have a short-hand notation for the property we want to show. We
define ‘App � � ��
 �
	 � ’ as an abbreviation for ‘ ��� � � � � 	,� � � � � � � � ’.

Definition 39 We define the predicate Comp � � ��
 �
	,� by induction on � � T ��
as follows:

(1) Comp � � ��
 �
	,� is always true;
(2) Compt

� ��
	�
	,� , if and only if Appt
� ��
	�
	,� , for every type � of applica-

tive kind;
(3) Comp � � ��
 �
	,� , if and only if App � � ��
 �
 	,� , for � � � w
 h � ;
(4) Compe

� ��
 �
	,� , if and only if Appe
� ��
 �
 	,� and, moreover, for all � � and

� , Appe
� � �
 �
� � implies Appe

� ��� � �
 �
	 � � ;
(5) Compi

� ��
 �
	,� , if and only if Appi
� ��
 �
	,� and, moreover, for all � ,

Appi
� ��
 �
	 � � ;

(6) Compe
� ��
 �
	,� , if and only if Appe

� ��
 �
	,� and, moreover, for all � � and
� , Appe

� � �
 �
� � implies Appe
� � � � �
 �
	 � � ;

(7) Compi
� ��
 �
	,� , if and only if Appi

� ��
 �
 	,� and, moreover, for all � ,
Appi

� ��
 �
	 � � ;
(8) Comp � � ��
 � � 6
	,� , if and only if App � � ��
 � � �
 	,� , and, moreover, for

all � and � � such that � and � � are compatible bases, Comp � � � �
 �
� � im-
plies Comp � � � � � �
�6
 	 � � , when � � � t
 w � ;

(9) Comp � � ��
 � � 6
	,� , if and only if, for all � � and � , Comp � � � �
 �
� � im-
plies Comp � � � � � �
�6
 	 � � , when � � � h
 e
 i � ;

(10) Comp � � ��
 � � 6
 	,� if and only if Comp � � ��
 �
	,� and Comp � � ��
�6
	,� .
The predicates App � and Comp � agree with the typing rule

� � � � and depend only
on the equivalence classes of terms modulo 6 -conversion.

26

Lemma 40 (1) If � � � 6 and Comp � � ��
 �
	 � , then Comp � � ��
�6
	 ��� .
(2) If 	 � � 	 � , then App � � ��
 �
	,� if and only if App � � ��
 �
	 � � , and

Comp � � ��
 �
 	,� if and only if Comp � � ��
 �
	 � � .
(3) Let ���� � � � 	 � and � � � ��
2� � � . Then App � � ��
 � � 6
	 � , provided both

App � � � �
�6
	 � � and App � � ��
 � � �
 	,� .

PROOF.

(1) By easy induction on the definition of
� � .

(2) For App � , it suffices to observe that two 6 -convertible terms have the same
approximants. For Comp � , we reason by induction on types.

(3) We consider only the case � � t. The proof of the other cases is similar and
simpler. Note that App � � ��
 � � �
	,� is always true for � � � h
 e
 i � , since
in this case � � � � � � .

Assume that � � � t � 	 � � , � � � t � ��6 , and � � t ��� � � � � , for some
� � � � t � 	,� . We must prove that there exists an

�
� � � t � 	,� such that

� � t
�
� � � � 6 .

If 6 � t � , one has � � t � � � � � � , since � �
t � ; hence

�
� � � � . If

	 is 6 -convertible to an abstraction, then �	� � 	 � � � 	 and we can choose�
� � �	� � � .

If � � ��� $ ���&� � � � , we take
�
� � � � $ �&��� � � . Indeed, since � � � t � � 6 ,

it follows from Lemma 31(2c) that either 6 3 t � � and � � � t
�
� � � , or

� � � t
�
� � � � 6 , for some � with � � � t � � � . Notice that � �� �	� � 	,�

implies � �� �
� , so we get either � � t

�
� � � , or � � t

�
� � � � 6 . The condition

� � t � � � � � � forbids � � t
�
� � � by Lemma 32(2). As an approximant of

� , the term � is either � or
�

, and in both cases we must have � �
t
� . Thus

we get � � t
�
� � � � 6 , as desired.

The case � � � � $ ����� � � � is excluded by Lemmas 31(2d) and 32(2).

We can now show that computability implies approximability.

Lemma 41 For all � � � �� , � � T �� , � $
 ���&�
 � �
� 4 � 0 � , and 	 :

(1) App � � ��
 �
 ��� $ ����� � � � � Comp � � ��
 �
2� � $ �&��� � � � ;
(2) Comp � � ��
 �
 	,� � App � � ��
 �
 	,� .

PROOF. We prove (1) and (2) by simultaneous induction on � .

� � is an atomic or an applicative type. Both (1) and (2) are true by definition of
Comp � and the equalities

� � e � � � , � � e
� � � ,

� � i � � � , and � � i
� � � .

� The same property trivially holds for App �
�� .

27

� � � � $ � � � .
(1) Assume App � � ��
 �
2� � $ ���&� � � � . Then there is an � � � � � � � $ ���&� � � � with

� � � � � �8$ � � � . This implies � � � � � � � � by rule
� � �8� , so, in particular,

App � � ��
 � � �
2� � $ �&��� � � � ; this will be useful when � � �
t
 w � . Clearly, �

can be taken of the form ���.$ ����� � � , where � � is an approximant of � � (
��� 0).

We need to show that Comp � � ��
 � $ � � �
 ��� $ ����� � � � . Let � � be compatible
with � , and assume Comp � � � �
 � $
� � , then App � � � �
 � $
 � � follows by in-
duction on (2). Hence, there is an approximant � � � � � � � of type � $ in the
context � � . Then � � � ��� $ ����� � � � is an approximant of � � $ ����� � � � , and
� � � � � � � � � � . Thus Comp � � � � � �
 � �
2� � $ ����� � � � � follows by induction
on (1).

(2) Suppose Comp � � ��
 � $ � � �
	 � . Now App � � ��
 � � �
 	,� follows by defini-
tion (this is necessary only for � � �

t
 w � and will be used in the last of the
following implications). Let � � � ��
2� � � $, where � is fresh. Since � � � � $ � � �
� � � $, and � � � � � � � , we have Comp � � � � � � $ �
 � $
2� � by induction on (1).
Then we have

Comp � � � � � � $ �
 �8$
2� � � (by definition of Comp �)

Comp � � � �
 � �
	 � � � (by induction on (2))

App � � � �
 � �
	 � � � (by Lemma 40(3))

App � � ��
 �8$ � � �
	,� �
� � � � $ � � � .
(1) We need that if � � � � � �8$ � � � , then � � � � � �8$ and � � � � � � � , which

follows by rule
� � � � .

(2) We need that any two approximations have a common join (refinement) (see
Lemma 12), and that if � � refines � , then � � has all the types of � in any basis
(Lemma 32(1)).

Lemma 42 Let � � � � $ � 6 $
 �&���
2� � � 6 � � � � �� and � � � 	 � � . Assume, for� � 0 , Comp � � � �
�6��
� � � . Define � � � � ����
$ � � . Then Comp � � � �
 �
	 � � � � � �

where � � � � � is shorthand for ��� $ � ��$
 �&���
� �

� � � � .

PROOF. By induction on the derivation for � � � 	 � � . Cases
�
Ax � and

� � �
are immediate. Cases

� � E � and
� �

I � follow by induction. Case
� � � � follows by

induction and Lemma 40(1). For � � t, case
� 6 � exp � follows by induction and

Lemma 40(2).

For
� � I � , let 	 � ��� � � and � � � $ � � � , then ��
 � � � $ � � � � � � . Since �	� � � is

an approximant of
� �	� � � � � � � � � of type � � � , we have App � � ��
 � � �
 	 � � � � � �

(this is useful only for � � � t
 w �).

28

Suppose Comp � � � � �
 � $
 +.� . Then, by induction

Comp � � � � � � � �
 � �
� � + � �
 � � � � � �
We can assume, without loss of generality, that ������	� � �"$ �&��� � � � and, therefore,

� � + � �
 � � � � � � � � � � � �+ � � � and
� �	� � � � � � � � ��+ � ��� �	� � � � � � � � � ��+ �

By the invariance of computability under 6 -conversion (Lemma 40(2)), we have
Comp � � � � � � � �
 � �
 ��� �	� � � � � � � � � ��+.� , and hence

Comp � � � �
 � $ � � �
 � �	� � � � � � � � � � �
For

�
t we need to consider also rules

� � app � and
�
app � . We will give the proof for�

app � , the proof for
� � app � is similar and simpler. For rule

�
app � , assume 	 � � +

and � � � � . We get Compt
� � �
 �
� � � � � � � and Compt

� � �
 �
 + � � � � � � by in-
duction. Then, by Lemma 41(2), Appt

� � �
 �
� � � � � � � and Appt
� � �
 �
 +�� � � � � � .

This means � � � t � � � for some � � � t � � � � � � � � and � � � t � � � � for some
� � � � t � + � � � � � � . Notice that, by Lemma 31(2b), � cannot be an abstraction,
so � � � � � t � 	 � � � � � � . Moreover, we derive � � � t � � � � � � , so we conclude
Compt

� � �
 � �
	 � � � � � � .

We can now prove the approximation theorem.

Theorem 43 (Approximation Theorem) � � � 	 � � if and only if there is � �
� � � 	 � such that � � � � � � .

PROOF.

� � � Since App � � � � � 6 �
�6
2��� holds for any � and 6 , then, by Lemma 41(1), we
have Comp � � � � � 6 �
�6
2��� . We can apply Lemma 42 for the identity substitution
to obtain Comp � � ��
 �
 	,� . We conclude using Lemma 41(2).��� � Without loss of generality we can assume that �,� � 	,� ������ , for some � .� For � � �

t
 w
 h � , this implies, by Definition 4, that there is 	 � such that
	 � � 	 � and � is obtained from 	 � by replacing some subterm by

�
. So

we get � � � 	 � � � , and � � � 	 � � follows from rule
� 6 � exp � , which is

admissible in
� � for � � � w
 h � by Theorem 34(3).� For � � e, by Definition 4, there is 	 � such that 	 � � 	 � and � is obtained

from 	 � by replacing some subterm by
�

and by 7 -reduction. Then, since
types are preserved by 7 -expansion in

�
e as proved in Theorem 34(4), � � e

	 � � � . We conclude as in previous case.� For � � i, by Definition 5, there is 	 � such that 	 � � 	�� and � is obtained
from 	 � by:� replacing some subterm by

�
;

29

� 7 -reduction;� replacing some subterm � such that � i
� � � 3 ! � by � .

So we get � � i 	 � � � , by Theorem 34(4) and by Theorem 38(2).

5 Correspondence between trees and typings

In this section we will present the main result of the paper, namely that our type
assignment systems can be used to analyze the observational behavior represented
by trees. As recalled in the introduction, similar results are present in the literature
for particular notions of tree.

Ronchi della Rocca [24] proved that two terms have the same Böhm tree if and only
if they have the same set of types in the standard intersection type discipline [5].
The proof of [24] is based on the notion of principal type of an approximate normal
form, which is a type completely describing the approximate normal form. Princi-
pal types (as defined in [11] and used in [24]) need an infinity of type variables and
this agrees with the type syntax of [5]. Another related paper is [16]: it proves that
two terms have the same Lévy-Longo tree [22] if and only if they have the same set
of types in the type discipline with union and intersection of [13]. Also [16] uses
the notion of principal types, but it gets rid of type variables by replacing them by
suitable constant types which depend on the terms involved. Lastly, [7] proves this
correspondence in the case of Berarducci trees for a type assignment system quite
similar to

�
t by taking advantage from the presence of applicative types.

In the following we shall provide an (almost) uniform proof for a theorem which
considers other trees besides those of the results recalled above. More precisely, we
shall prove that

� � derives the same types for two terms 	�
 � if and only if 	�
 �
have the same � -trees.

In order to prove this property, we follow an approach similar to [16] and to [7] in
that we do not allow an infinite set of type variables. The expressive power needed
for our purposes and that could be provided by an infinity of type variables can
be obtained instead by defining, as we shall do, an infinite set of constant types.
These constants will also allow to define the characteristic pairs � basis; type � for
approximate normal forms.

The key idea is that characteristic pairs give sufficient information to discriminate
between approximate normal forms obtained by pruning (in a suitable way) differ-
ent trees.

We introduce three different sets of type constants, one for each set of types (Tt,
Twh and Tei). It is easy to verify that each of these constants belong to the corre-
sponding set of types.

30

Definition 44 (1) Let � � � ��� � � � � � � ��� � � � � � ��� � . We define � � as the
type ��� and, for

� 3 4 , � � � $ � � � ����� � .
(2) Define �

� � �� � � � � � � � � � � � � � � ��� � � , for all
� � 0 .

(3) Define �
� � �� � � � � � � � � � � � ��� � � � � � , for all

��� 0 .

The following lemma states that for some properties we shall need in our proofs,
the type constants defined above behave as type variables.

Lemma 45 (1) If ��� �8$ �&��� � ' �
t � � 6 $ ����� 6 � and ��� �� t � , ��� �� t � � � , where���
	 � 1 and

� 3 4 , then
� ��� , 1 � 0 and �� � t 6�� , for

� �
	 � 1 .
(2) Let � � � w
 h � , then

�
��� �
�
�
� � �$ � �&��� � � � � ���� � �

� � �� � � � 6 $ � �&��� � 6�' � � � � ��

and 0 � � 0 , for all
� � � , imply � � �
 0 � � 1 and 6 � � � � � � �� , for

� ��	 � 1 .
(3) Let � � � e
 i � , then

�
���	�
� � � � �$ � ���&� � � � � ���� � � � � � � � �� � � � 6 $ � ���&� � 6�' � � � � � � � � � ��

implies � � � , 0 � � 1 � �
, 6 � � � � � � �� , for

� � � � 0 � , and 6 � � � � , for
0 � � � � � � 1 .

PROOF.

(1) We first show that 1 � 0 . Assuming 1 � 0 , by Lemma 25(3), we get
��� �8$ ����� � ' � � �

t � � , which implies ��' � �
�
t � , whenever ��� 4 , and

� ' � �
�
t � � ��$�� , whenever ��� 4 . Both inequalities are false by assump-

tion. Assuming 1 � 0 , we get � � � t � � 6 $ ����� 6 � � ' , which implies � �
t

� � 6 $ �&��� 6 � ��' ��$, which is false.
If 1 � 0 , we have � � � t 6 � , for

� ��	 � 1 , and � � � t � � . If
� � 4

and �
� 4 , we get � �
t � � ��$ � . If

� � 4 and � � 4 , we get � � ��$ � �
t � .

Both inequalities are false since arrow types are incomparable with applicative
types. If

� � 4 and ��� 4 , we get � � �	$ � � t � � ��$ � , i.e., � � ��$ � t � � ��$. We
conclude that

� ��� .
(2) Note that

�
��� �
� � � � �$ � ����� � � � � ���� � �

� � �� � � � 6 $ � ����� � 6
' � � � � ��

implies

�
��� �
� � � � �$ � �&��� � � � � ���� � �

� � �� � � � 6 $ � �&��� � 6�' � � � � � � � � � � � � � � �

31

By Lemma 26(1) and clause (c) of Definition 23, for some
�

either

�
� � �$ � ����� � � � � ���� � � � �(6 $ � ����� � 6
' � � � � � � � � � � � � � � (1)

or

�
� � �$ � ����� � � � � ���� � � � � � � � � � � � � � � � �

6 $ � �&��� � 6�' � � � � � � � � � � � � � � � (2)

The type inclusion (1) is impossible, since, by Lemma 26(2), it requires
0�� � 1 � 0 � � . To satisfy (2), we get 0 � � 0 � 1 � 0 , i.e., 0�� � 1 . Moreover,� ��� : in fact, assuming

� �� � we obtain, by Lemma 26(2), � � � � , which is
false. The conclusion follows from Lemma 26(2).

(3) Notice that

�
���	�
�
�
� � �$ � ���&� � � � � ���� � � � � � � � �� � � � 6 $ � ���&� � 6 ' � � � � � � � � � ��

implies, by Lemma 26(1), for some
�
,

�
� � �$ � ����� � � � � ���� � � � � � � � �� � � 6 $ � ����� � 6�' � � � � � � � � � �� �

By Definition 44(3), we get

�
� � �$ � ����� � � � � ���� �

6 $ � �&��� � 6�' � (3)

To satisfy (3), we get 0 � � 1 � �
, and

� � � . In fact, assuming 0 � �� 1 � �

or
� �� � we obtain, by Lemma 26(2),

� � � � , or � � � � , which are both
false. The conclusion follows from Lemma 26(2).

We need to consider special kinds of bases which allow to distinguish occurrences
of different variables or even different occurrences of the same variable. More pre-
cisely, in the presence of applicative types it suffices to give different types to oc-
currences of different variables, but in all other cases we need to give also different
types to different occurrences of the same variable.

Definition 46 (1) We define � t
� � t as the basis � � � � � � � 0 � IN � .

(2) A basis � � � wh is a special basis (of degree 0) if each type declaration in
� has the form � � � ���	� � � � � �$ � ����� � � � � ���� � �

� � �� � , where 0�� � 0 , for all
� � � ,

and, moreover, each �
� � �� occurs only once as last type.

(3) � � � ei is a generalized special basis (of degree 0) if each type declaration
in � has the form � � � or � � � �
�	� � � � � �$ � ����� � � � � ���� � � � � � � � �� � , where 0�� � 0 ,

for all
� � � , and, moreover, each �

� � �� occurs only once as last type.

32

Notice that � t contains only applicative types, while special bases and generalized
special bases contain only arrow types and atomic types. The feature of all these
bases is that when we deduce from them a type which behaves like a variable for
an approximate normal form, we can argue that the approximate normal form has
a fixed shape, and that its components have fixed types.

Lemma 47 (1) If � t
�
t � � � $ ����� � � � � and � �� t � , then � is an applicative

type.
(2) For any approximate normal form � neither � t

�
t � � � , nor � t

�
t � � � � � ,

for
� 3 4 .

(3) If � t
�
t � � � � , then � �,� � .

PROOF.

(1) By induction on 0 . If 0 � 4 , the thesis follows from Lemmas 31(2a) and 25(2),
since all types in � t are applicative. Otherwise, by induction, � � � $ ����� � � ��$
has only applicative types, and we obtain the thesis by Lemma (31)(2c).

(2) Assume � t
�
t � ��� . Then (1) forces � to be of the form �	� � � � . Recalling

the definition of � , we get, by Lemma 31(2b), � t
2� � � � �
t � � � � � � and

� t
2� � � � � � t � � � ��� . Then, since we can assign both an arrow type and an
applicative type to � � , Lemma 31(1) and (2) imply � � � � �/$ ���&� � � , for some
�
20�
 � $
 �����
 � � . Hence, we get � t
2� � � � � t � � � $ � ����� � � � � � � � , for
some � $
 �����
 � � . This is impossible by Lemma 31(2a) and Lemma 25(2),
since all types in � t
2� � ��� are applicative.

Assume � t
�
t � � � � � , for some

�
. By Lemma 31(2), we have either

� � � � $ ����� � � or � � � � � $ �&��� � � , for some � �
�� $
 �����
 � � . If 0�� 4
then, by Lemma 31(2a), we get either � �

t � � � or � � �
t ����� , which are

both false, the second one by Lemma 45(1). For 0�� 4 , we have necessarily
� t
�
t � � � � , which is impossible by the above.

(3) If � t
�
t � � � � Lemma 31(2) implies either (a) � � � �.$ ����� � � � � or (b)

� �,��� $ ����� � � , for some � $
 �����
�� �
 � �
 � .
(a) Then � t

�
t � � � � , if

� � 4 , and � t
�
t � � � ��� �	$ � , if

� � 4 , by
Lemma 31(2d). Both cases are impossible by (2).

(b) If 0 � 4 , then, by Lemma 31(2c), either we must deduce an arrow type
for � from � t – which is impossible by (1) – or � � must have type � or
��� ��$ � . We conclude that 0 � 4 and � � ��� , because if � � � � we have
��� � t � � by Lemma 31(2a), which implies

� ��� by Lemma 45(1).

Lemma 48 (1) Let � ���
w
 h � . If � � � � , � � � � � � � � �8$ � ����� � � ' � � � � �� �

is a special basis of degree 0 , and � � � � � �
� � �� , then � � ��� $ ����� � ' and,

for
� � � � 1 , � � � � � � � � .

(2) Let � � �
e
 i � . If � � �

� � �� , and � � � � � � $ � ����� � � ' � � � � � � � �� � is a

generalized special basis of degree 0 , and � � � � � � � � � � � �� , then, for some

33

� 3 4 , there are �/$
 �����
 � � , such that � � �	�-$ ����� � � � ��� $ ����� � ' �/$ ����� � � ,
with ���� � � $
 �����
2� � � , � � � � $ � �
 �&���
2� � � ��� � � � � � � � , for

� � � � 1 , and
� � � ��$ � �
 �����
2� � � ��� � � � � � � , for

���
	 � �
.

PROOF.

(1) From � � � � ���
� � �� we get � � � � � � , so, by Lemma 33(3), � cannot

be an abstraction. Assume � � � � $ ����� � � . Then, by Lemma 33(4), we have
that � � � � � $ �&��� � � � �

� � �� requires both � � � � �/6 $ � ����� � 6 � � � � � ��
as well as � � � � � � 6 � , for some 6 $
 �����
�6 � , � ��� � �

��� . By defini-
tion of special bases, the statement with subject � must have a predicate like
� � � �

�
�
� � �$ � ����� � � � � �� �

� �
� � �� � . By Lemma 33(2),

�
� � �

�
�
� � �$ � ����� � � � � �� �

� �
� � �� � � � 6 $ � ���&� � 6 � � � � � �� �

By Lemma 45(2), this implies
� � � , 0 � � � and 6 � � � � � � �� , for

� � � � � .

By definition of special basis, �
� � �� can occur only once as last type, hence we

conclude � � � , � � 1 and 6 � � � � , for
� � � � � .

(2) Let � � ��� $ ���&� � � � ��� $ ����� � � , where
� � 0 , since � � �

� � �� . Then, by

Lemma 33(3), � � � � $ � �
 �����
2� � � ��� � � ��� $ ����� � � � � � � � � � � � �� . Now, to

obtain � � � � $ � �
 �����
2� � � ��� � � ��� $ ���&� � � � � � � � � � � � �� , by Lemma 33(4) we
need both

��� � ��$ � �
 �����
2� � � ��� � � � ��6 $ � ���&� � 6 � � � � � � � � � � ��
and

� � � � $ � �
 �&���
2� � � ��� � � � � � 6 �

for some 6 $
 �&���
�6 � � � � � � �
� . With a proof similar to that of the previous
point, using Lemma 45(3) instead of Lemma 45(2), we conclude � � � , � �
1 � �

, 6 � � � � � , for
� � � � 1 , and 6 � � � � , for 1 � ��� � � � .

We now associate to each approximate normal form � � � � a basis � � � �� and a
type � � T �� . We call the pair � � � � � the � -characteristic pair of � .

Definition 49 Let � � � t.

(1) The t-characteristic type of � , ctt
� � � , is defined as follows.

(a) ctt
� �	� � � � � �
� � � ctt

� � � ,
(b) ctt

� � � $ ���&� � � ��� � ctt
� � $2� ���&� ctt

� � � � ,
(c) ctt

� � � � $ ����� � � � � ��� ctt
� � $2� ����� ctt

� � � � .
(2) The t-characteristic pair of � , cpt

� � � , is � � t � ctt
� � � � .

34

It is easy to verify that � t
� � � � ctt

� � � .
Definition 50 Let � � �

� � �� , for � � �
w
 h
 e
 i � . The � -characteristic pair of

degree 0 of � , pp
� � �� � � � , is defined as follows.

(1) pp
� � �� � � ��� � �

� � �
(2) If pp

� � �� � � � � � ��
 � � 6 � � � , then pp
� � �� � �	� � � � � � � � 6 � � � .

(3) If pp
� � �� � � � � � � � � � and � does not occur in � , then pp

� � �� � �	� � � � is equal to
� � � � � � � .

(4) For � � � w
 h � : assume pp
� � �� � � � � � � � � � � � � , for

��� �
, and let

� �
�

�

���
$ � � � � � � �8$ � ����� � � � � �
� � �� �

be a special basis of degree 0 . Then

pp
� � �� � ��� $ �&��� � � ��� � � � �

� � �� � �

In particular, when
� � 4 , we obtain pp

� � �� � ��� � � � � � � � � �� � � �
� � �� � .

(5) For � � � e
 i � : assume pp
� � �� � � � � � � � � � � � � , for

��� �
, and let

� �
�

�

���
$ � � � � � � �8$ � ����� � � � � � � � � � � �� �

be a generalized special basis of degree 0 , then

pp
� � �� � ��� $ ���&� � � ��� � � � � � � � � � �� � �

In particular, when
� � 4 , we get pp

� � �� � ��� � � � � � � � � � � � �� � � � � � � � � �� � .

Notice that the � -characteristic pair of an approximant, as defined above, is not
uniquely determined. In fact, to simplify, we assumed that the definition comes
implicitly equipped with a procedure for choosing names of type variables (the ‘� ’-
subscripts), whenever needed. This choice can always be made in such a way the
definition is uniquely determined and sound.

It is easy to verify that, if � � �
� � �� and pp

� � �� � � � � � � � � � , then � � t � � � , for
� � � w
 h
 e
 i � .
We can now prove that, in all cases, if the � -characteristic pair of � is � � � � � and
� � � � � � (and some conditions on the number of symbols of � or of

� � � ������ ,
where � is the height of the tree of � , hold), then � � � � , with � � as defined in
Definition 15.

Lemma 51 (1) If � t
�
t � � � then ���� t � , ���� t � � � , for all

� 3 4 .
35

(2) If � t
�
t � � � � and ��� �� t � � , for all

�
, then �,�
� $ � � with � t

�
t � $ � �

and � t
�
t � � � � .

(3) If � t
�
t � � � � � � , then �,� �	� � � � � and � t

�
t � � � � .

(4) If � t
�
t � � ctt

� � � then � � t � .

PROOF.

(1) Assume, reasoning towards a contradiction, that � � t 6 , where either 6 � � ,
or 6 �
��� � . Then we get � t

�
t � ��6 , which is impossible by Lemma 47(2).

(2) The approximate normal form � cannot be a variable by Lemma 31(2a), since
��� �� t � � , for all

�
. It cannot be an abstraction by Lemma 31(2b). Therefore �

must be an application, i.e., � �
� $ � � . Notice that � $ cannot have an arrow
type by Lemmas 31(2) and 47(1). So we get the thesis using Lemma 31(2c),
and (2d).

(3) By Lemma 47(1) and Lemma 31(2d), � can neither be a variable nor an ap-
plication. So �,� �	� � � � � and we get the thesis by Lemma 31(2b).

(4) Suppose � t
�
t � � ctt

� � � . We prove that � � t � by induction on the
structure of � .� The crucial case is when � � � � $ �&��� � � (0,3 4). Then ctt

� � � has the
form � � $ ���&� � � . If � has type ctt

� � � in the basis � t, then, by (2) and
Lemma 31(2), � must be of the form � � $ �&��� � ' or � �/$ ����� � � � �$ ����� � ��or
� �/$ ����� � � � �$ ����� � �� where 4 � 1 � 0 and 4 � � . In the first case,

by (2), for
� � �
 ���&�
21 , � � has type � � ��' � � in � t. By induction, for� � �
 �����
21 , � � ��' � ��� t � � . Since

� � $ ����� � � ��' � t � we infer that
� � t � . In the remaining cases, for

� � �
 �����
20 , � �� has type � � in � t.
By induction, for

� � �
 �&���
 0 , � � � t � �� . Since
� � t � �/$ ����� � � and� � t

� �/$ ����� � � , we conclude again that ��� t � .� If � � � � � $ ���&� � � (0 3 4), then ctt
� � � has the form ��� �8$ ����� � � . If � has

type ctt
� � � in the basis � t, then by (2) and Lemma 31(2), � must be either

of the form (a) � � �/$ ����� � ' or (b)
� �/$ ���&� � ' .

(a) Then � t
�
t � � ��� � $ ����� � � implies � � 6 $ ����� 6
' �

t � � �8$ �&��� � � , by
Lemma 31(2c), for some 6 � such that � t

�
t � � ��6 � (���
	�� 1). No-

tice that 6 � �� t � and 6����� t � � � by (1). ¿From this, by Lemma 45(1),
we infer

� � � , 1 � 0 and 6 � � t ��� for
��� 	 � 0 . Hence, by

induction, � � � t � � , for
� � 	�� 0 , and this implies ��� t � .

(b) Then � 6 $ ����� 6�' �
t ��� �8$ ���&� � � , for some 6 � (

� � 	 � 1) such that
� t

�
t � � � 6�� . This case is impossible. In fact, if 1 � 0 we get

6�'�� �
�
t � , whenever

� � 4 and 6
'�� �
�
t ��� �	$ � , whenever

� � 4 . If
1 � 0 , we get � �

t ��� � $ ����� � � ��' .� If �,� �	� � � � � , then ctt
� � � has the form ��� � � . If � has type ctt

� � � in � t
then � must be an abstraction �	� � � � by Lemma 51(3) and by a renaming of
bound variables we can assume � � � � . Then � t

�
t � � � � and induction

applies.� If �,� � there is nothing to prove.

36

Lemma 52 Let � � �
w
 h � , � � � � � �� and pp

� � �� � � ��� � � � � � . Then � � � � and
� � � � � � imply ��� � � .

PROOF. We prove by induction on � a stronger claim:

Let � � �
� � �� , pp

� � �� � � � � � � � � � and � be a special basis of degree 0 which
contains � . Then � � � � and � � � � � � imply � � � � .

The desired property is then obtained by taking � � � .

� � � �	� � ��� . Then pp
� � �� � � ��� � � � 6 � � � and � �
2� � 6 � � � � pp

� ��� � , if 6 �� � � ,
or � � � � � � pp

� � � � , otherwise. If � � ��� � � � , then � � � � �86 � � implies
��
2� � 6 � � � � � � and we apply the induction hypothesis. If � � � � $ �&��� � ' ,
then � � � � �
6 � � implies � � � �	� � � � �
6 � � , where ������	� � � � . There-
fore, from a previous case, � � � �	� � � � and, by definition, �	� � � � � � � .

� � � � � $ ����� � ' . Then pp
� � �� � � � � � � � � � � � �8$ � �&��� � � ' � � � � �� � � �

� � �� � , where

pp
� � �� � � � � � � � � � � � � , for

� � � � 1 and � � � � '� �
$ � � . So, by Lemma 48(1),
� � � � $ �&��� � ' and � � � � � � � � , for

� � � � 1 . This implies, by induction,
� � � � � � , for

� � � � 1 , so we conclude � � � � .

Lemma 53 Assume � � �
e
 i � , �
 � � � � . Let � be the height of ��� � � � , and

0 be such that �
 � � � ������ � �
� � �� . Then pp

� � �� � � � � � � � � � and � � � � � � imply
� � � � .

PROOF. We prove by induction on � a stronger claim:

Assume �
 � � � � . Let � be such that
� � � ������ � � , and 0 be such that �
 � � � ������ �

�
� � �� . Moreover, let pp

� � �� � � � � � � � � � and � be a generalized special basis of
degree 0 that contains � . Then � � � � � � implies � � � � .

The desired property is then obtained by taking � � � .

� � � ��� � � � . Then pp
� � �� � � � � � � � 6 � � � , and, if 6 �� � � , then � �
2� � 6 � � � �

pp
� � � � , and � � � � � � pp

� � � � otherwise. If � � ��� � � � , then � � � � � 6 � �
implies ��
2� � 6 � � � � � � and we are done by induction. If � � � � $ �&��� � ' ,
then � � � � �
6 � � implies � � � �	� � � � �
6 � � , where ������	� � � � . Notice
that, by Definitions 4 and 5, ��� � �	� � � � � � � � � � � , and, therefore,

� �	� � � � � ������ �� � � ������ � � � � �� . From the previous case we get � � � �	� � � � and, by definition,
�	� � � � � � � .� � � � � $ ����� � ' . Then

pp
� � �� � � � � � � � � � � � � $ � ���&� � � ' � � � � � � � �� � � � � � � � � �� �

37

where pp
� � �� � � � ��� � � � � � � � (

��� � � 1), and � � � � '� �
$ � � . Then, by Lemma
48(2), � � �	� $ ����� � � � � � $ ����� � ' � $ ���&� � � , � � � ��$ � �
 �����
2� � � ��� � � � � � � � ,
for

� � � � 1 , and � � � �-$ � �
 �&���
2� � � ��� � � � � � � , for
� � � � �

. This
implies, by induction, � � � � � � , for

� � � � 1 , so we conclude, by definition,
� � � � .

Theorem 54 (Main Theorem) The following conditions are equivalent:

(1) � � � 	 � � � � � � � ;
(2) � � � 	 � � if and only if � � � � � � , for all ��
 � .

PROOF.

(1) � (2) If 	 and � have the same trees, then they have the same sets of ap-
proximate normal forms, and, therefore, the same types by the Approximation
Theorem (Theorem 43).

(2) � (1) If � � � 	,� �� � � � � � , then by Lemma 18 we can find an � � � � � 	,�
such that there is no � � � � � � � such that ��� � � (or vice versa).� For � � t, � t

�
t 	 � ctt

� � � and � t �� t � � ctt
� � � , by the Approximation

Theorem (Theorem 43) and Lemma 51(4).� For � � � w
 h � , let 0 be so big that � � �
� � �� and � � � � � � pp

� � �� � � � . We have
by the Approximation Theorem (Theorem 43) and Lemma 52 that � � � 	 � �
and � �� � � � � .

� For � � �
e
 i � , let � be the height of ��� � � � and 0 be so big that �
 � � � ������ �

�
� � �� . This implies

� � � ������ � �
� � �� , for all � � � � � � . Moreover, let � � � � � �

pp
� � �� � � � . Then we have, by the Approximation Theorem (Theorem 43) and

Lemma 53, � � � 	 � � and � �� � � � � .

In all cases, we get a discrimination algorithm, i.e., for two arbitrary terms 	
�
with different � -trees, we can always find � and � such that � � � 	 � � and
���� � � � � , or vice versa. The least easy case is that of � ���

e
 i � . In this case
we take an approximate normal form � such that � � � � � 	 � and there is no
� � � � � � � such that � � � � (or vice versa). Let � be the height of ��� � � � and

0 be so big that �
 � � � ������ � �
� � �� . This implies

� � � ������ � �
� � �� , for all � � � � � � .

Now we can choose � � � � � � pp
� � �� � � � .

Example 55 � � � � � t � ��� � and � t
� �	� �� # � � � �
 �	� � � � . Then ctt

� � � � �
��� , and � t

�
t
���

� ��� , while � t �� t �	� �� # � ��� .� �	� � � � � t � �	� �� # � and, for all � � � t � ��� � , �	� � � �� � � . We observe that
ctt
� �	� � � � � � � � and � t

�
t �	� �� # � � � � , while � t �� t ��� � � � � .� �	� � � � � w � ��� ��� # � and � w
� ��� � � � � � . We get pp

� � �
w
� ��� � � ��� � �

� � � � � and�
w ��� ��� # � � � � , while �� w ��� � � � � .

38

� � � � � h � � � � and, for all � � � h � � ! � � , � � �� h � . We get

pp
�
�
�

w
� � � � � � �

� �
�
�
�$ � � � � � �$ � � � � �� � � � � � �� �

�
h � ��� �

�
�
�$ � � � � � �$ � � � � �� � � � � � ��
 and

�� h � ! � � �
�
�
�$ � � � � � �$ � � � � �� � � � � � �� �

� I � � e � I � and, for all � � � e � RR � , I �� e � . We get

pp
� � �
e
�
I � � � �

� � � �
� � � �

� � �$ � � �
� � � � �

� � �$ �

�
e I �

� � �
� � � �

� � �$ � � �
� � � � �

� � �$
 and

�� e RR �
� � �
� � � �

� � �$ � � �
� � � � �

� � �$ �
� I � � i � RR � and, for all � � � i � Y � , I �� i � . We get

pp
� � �
i
�
I � � � �

� � � �
� � � �

� � �$ � � �
� � � � �

� � �$ �

�
i RR �

� � �
� � � �

� � �$ � � �
� � � � �

� � �$
 and

�� i Y �
� � �
� � � �

� � �$ � � �
� � � � �

� � �$ �

Acknowledgments

The authors are grateful to the anonymous referees for their helpful comments. The
second author wishes to thank also Antonio Tinelli and Federica Lotti.

References

[1] Samson Abramsky and C.-H. Luke Ong. Full abstraction in the lazy lambda calculus.
Information and Computation, 105(2):159–267, 1993.

[2] Steffen van Bakel. Principal type schemes for the strict type assignment system.
Journal of Logic and Computation, 3(6):643–670, 1993.

[3] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Fer-Jan de Vries. Types for
trees. In PROCOMET’98, pages 6–29. Chapman & Hall, London, 1998.

[4] Henk Barendregt. The lambda calculus. Its syntax and semantics. North-Holland,
Amsterdam, revised edition, 1984.

[5] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter
lambda model and the completeness of type assignment. Journal of Symbolic Logic,
48(4):931–940, 1983.

39

[6] Alessandro Berarducci. Infinite � -calculus and non-sensible models. In Logic and
algebra, pages 339–377. Dekker, New York, 1996.

[7] Alessandro Berarducci and Mariangiola Dezani-Ciancaglini. Infinite � -calculus and
types. Theoretical Computer Science, 212(1-2):29–75, 1999.

[8] Gérard Boudol. Lambda-calculi for (strict) parallel functions. Information and
Computation, 108(1):51–127, 1994.

[9] Gérard Boudol and Cosimo Laneve. The discriminating power of multiplicities in the
� -calculus. Information and Computation, 126(1):83–102, 1996.

[10] Mario Coppo, Mariangiola Dezani-Ciancaglini, Furio Honsell, and Giuseppe Longo.
Extended type structures and filter lambda models. In Logic Colloquium ’82, pages
241–262. North-Holland, Amsterdam, 1984.

[11] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Principal type
schemes and � -calculus semantics. In To H. B. Curry: essays on combinatory logic,
lambda calculus and formalism, pages 535–560. Academic Press, London, 1980.

[12] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Maddalena Zacchi. Type theories,
normal forms, and � � -lambda-models. Information and Computation, 72(2):85–116,
1987.

[13] Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Adolfo Piperno. A filter model
for concurrent � -calculus. SIAM Journal of Computing, 27(5):1376–1419, 1998.

[14] Mariangiola Dezani-Ciancaglini, Benedetto Intrigila, and Marisa Venturini-Zilli.
Böhm’s theorem for Böhm trees. In ICTCS’98, pages 1–23. World Scientific, Oxford,
1998.

[15] Mariangiola Dezani-Ciancaglini, Paula Severi, and Fer-Jan de Vries. Böhm’s theorem
for Berarducci trees. In CATS’00, Electronic Notes in Theoretical Computer Science,
Vol. 31(1), pages 143–166. Elsevier, Amsterdam, 2000.

[16] Mariangiola Dezani-Ciancaglini, Jerzy Tiuryn, and Paweł Urzyczyn. Discrimination
by parallel observers: the algorithm. Information and Computation, 150(2):153–186,
1999.

[17] Erwin Engeler. Algebras and combinators. Algebra Universalis, 13(3):389–392, 1981.

[18] Martin Hyland. A syntactic characterization of the equality in some models for the
lambda calculus. Journal of the London Mathematical Society (2), 12(3):361–370,
1975/76.

[19] Richard Kennaway, Jan Willem Klop, Ronan Sleep, and Fer-Jan de Vries. Infinitary
lambda calculus. Theoretical Computer Science, 175(1):93–125, 1997.

[20] Richard Kennaway, Vincent van Oostrom, and Fer-Jan de Vries. Meaningless terms
in rewriting. Journal of Functional and Logic Programming, Article 1, 35 pp.
(electronic), 1999.

[21] Jean-Jacques Lévy. An algebraic interpretation of the � 	�� -calculus, and an
application of a labeled � -calculus. Theoretical Computer Science, 2(1):97–114, 1976.

40

[22] Giuseppe Longo. Set-theoretical models of � -calculus: theories, expansions,
isomorphisms. Annals of Pure and Applied Logic, 24(2):153–188, 1983.

[23] Reiji Nakajima. Infinite normal forms for the � -calculus. In � -calculus and computer
science theory, Lecture Notes in Computer Science, Vol. 37, pages 62–82. Springer
Verlag, Berlin, 1975.

[24] Simonetta Ronchi della Rocca. Characterization theorems for a filter lambda model.
Information and Control, 54(3):201–216, 1982.

[25] Davide Sangiorgi. The lazy lambda calculus in a concurrency scenario. Information
and Computation, 111(1):120–153, 1994.

[26] Dana Scott. Continuous lattices. In Toposes, algebraic geometry and logic, pages
97–136. Lecture Notes in Mathematics., Vol. 274. Springer Verlag, Berlin, 1972.

[27] Dana Scott. Data types as lattices. SIAM Journal of Computing, 5(3):522–587, 1976.

[28] Dana Scott. Domains for denotational semantics. In Automata, languages and
programming, Lecture Notes in Computer Science, Vol. 140, pages 577–613. Springer
Verlag, Berlin, 1982.

[29] Christopher P. Wadsworth. The relation between computational and denotational
properties for Scott’s � � -models of the lambda-calculus. SIAM Journal of
Computing, 5(3):488–521, 1976.

Appendix

Definition 56 (Trees) (1) A tree is a prefix-closed set of sequences of non-zero
natural numbers such that, if � � � 0 � � � belongs to a tree, then so does � � 0 .

(2) A labeled tree is a tree � equipped with a label function
���

� � � � , where
� is the set of labels.

The set formed only by the empty sequence will denote the one-node tree, whereas
the empty tree is denoted by the empty set. In the above definition, a node is iden-
tified with the path connecting it to the root.

We denote by ��� � the length of the sequence � . If ��� � � �
and � ���

, we can define
� � � as the prefix of � of length � .

Definition 57 (Tree pruning) (1) Given a tree � , we define � � � , the pruning of �
at level 0 , as the set of sequences in � of length

� 0 , i.e.:

��� � � � � � � � ��� � � 0 � �
Let � be a labeled tree. The label function

����� �
of � � � is the obvious restriction

of the label function of � .

41

(2) Given a labeled tree � and a function
�
� � � � , where � is the set of labels

of � , we define � � ��� � as follows:� the set of nodes of ��� ��� � coincides with that of ��� � .� the label function
� � � �

� � is defined by
� � � �

� �
� � � � � � � � � � � if ��� � � 0 � �

,� � � �
� �
� � � � ��� � � otherwise.

Let � t � � �
)
2�
 �	� �	� is a variable � , � w � � �
2�
 �	���-� is a variable � , and
� h � � e � � i � � �
 �	��$ ����� � �

� � � � $
 �����
 � �
2� are variables and 0(3 4�� . Then
the � -trees are labeled trees with sets of labels � � .

Definition 58 (Infinite 7 -expansion) Let � and � � be two head-trees and define��� ����$ ���&� � �
� ��� � � � 0(3 4 � , ��� � ��� � . Then

�

�,3 ! � ���	� 0 � 7 � ��� ��� � ����� �� ��� � �

Given a finite � -tree � , it is easy to find the approximate normal form � � � �
such that ��� � � � is � . For example, in the case of top trees we have the following
mapping
 t � � t � � t:

 t

��
� �
� $

}}}} ���&� � '
CCCC

���
� � ��
 t � � $�� �����
 t � �
' �
 t

��
� �	��

���
� � �	� �
 t � �/�

 t

��
�)
� ��� � �

===

���
� ��
 t

� �/�
 t � � � �
 t
� � � � � �

The definitions of
 � � � � � � � for � �� t are similar.

Definition 59 (Cut with
�

) If � is the constant function always returning
�

, then� 	,� ������ , i.e., the approximate normal form whose tree is � � � 	,� � � � � , is defined by

� 	,� ������ ��
 � � � � � 	,� � � � � �
�

�
The present definition of � ! differs from the original ([4], Definition 10.2.10), but they

coincide when � � is a single node whose label is a variable, and this is the only case used
in the definition of infinite eta trees (Definition 5).

42

