
NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO

LAMBDA CALCULUS

Alexander Kurz, Daniela Petrişan, Paula Severi and Fer-Jan de Vries

Abstract. We investigate final coalgebras in nominal sets. This allows us to define
types of infinite data with binding for which all constructions automatically respect alpha
equivalence. We give applications to the infinitary lambda calculus.

Contents

1. Introduction 1
2. Preliminaries on Algebra and Coalgebra 6
3. Preliminaries on Infinitary Lambda Calculus 7
3.1. Infinitary Terms as a Final Coalgebra 7
3.2. Computing the Infinite Normal Forms using Corecursion 8
4. Preliminaries on Nominal Sets 10
5. Alpha Corecursion Principle for Nominal Coalgebraic Data Types 15
5.1. Final Coalgebras of Nom Functors 15
5.2. Nominal Algebraic Data Types for Binding Signatures 18
5.3. Problems with Alpha Equivalence in the Infinitary Case 22
5.4. Nominal Coalgebraic Data Types for Binding Signatures 24
5.5. Presenting Limits in Nominal Sets 28
6. Applications 40
6.1. Substitution on an Arbitrary Coalgebraic Data Type 40
6.2. Substitution on α-Equivalence Classes of Infinitary λ-Terms 42
6.3. Computing the Infinite Normal Form of α-Equivalence Classes of λ-Terms 44
6.4. Nominal Sets of Infinite Normal Forms and Bisimulations 45
6.5. Infinitely Many Free Variables 48
7. Related and Future Work 49
Acknowledgements 50
References 50

1. Introduction

We investigate types of infinite data with binding. A leading example is the infinitary λ-
calculus. To construct explicitly a domain of infinitary λ-terms, one usually starts from finite
λ-terms and then applies two constructions: Metric completion to obtain infinite terms and

1

2 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

quotienting up to α-equivalence. Although each of these constructions appear to be routine,
we show that their combination is more subtle than one might think at first. For example,
one either needs to assume uncountably many variables or find a solution to the problem
that, in the case of countably many variables, metric completion does not commute with
quotienting by α-equivalence. On the other hand, general principles suggest to construct
infinitary λ-terms more abstractly as final coalgebras in the category of nominal sets. It
allows us to treat infinitary data types with binding in general and provides a principle of
definition and proof by coinduction. We also show that the syntactic approach of completing
and quotienting agrees with the semantic approach of final coalgebras in nominal sets.

To summarise, the paper contributes to coalgebra, to nominal sets, and to the infinitary
λ-calculus. To coalgebra, by showing that as for coalgebras over sets also over nominal sets
we obtain from finality a definition and proof principle of coinduction. To nominal sets,
by investigating limits and introducing notions of safe maps and bound variables. To the
infinitary λ-calculus, by clarifying the fundamental constructions in the case of countably
many variables and by showing that the informal reasoning with α-equivalence classes of
infinitary λ-terms is indeed mathematically precise.

In the remainder of the introduction we outline the contents of the paper.

Nominal sets were introduced in [GP99], but see also [Hof99, FPT99] for related proposals.
Roughly speaking, a nominal set is a set X equipped with an action of a set of permutations
on some countably infinite set

V
of ‘names’ or ‘variables’. One can then define the support of some x ∈ X as the smallest
set of variables on which x depends (we review the precise definitions in Section 4), thus
giving an abstract account of the ‘free variables’ in x. It is characteristic of nominal sets
that all elements have finite support. In other words, modelling syntax in nominal sets
requires us to only consider terms with finitely many free variables. But, and this is one of
the themes of this paper, it is possible to have terms with infinitely many bound variables.
(The question what may constitute an abstract account of bound variables in nominal sets
will be discussed in Section 5.5.)

Variable binding in nominal sets can be described by a type constructor X 7→ [V]X which
can be understood as a quotient

V ×X → [V]X

identifying elements (v, x) up to α-equivalence, that is, up to renaming of the ‘bound’
variable v. For example, whereas λ-terms are given by the initial algebra of the functor

L X = V + V ×X +X ×X (1.1)

it was shown in [GP99] that λ-terms up to α-equivalence are given by the initial algebra of
the functor

Lα X = V + [V]X +X ×X (1.2)

Alpha-structural recursion [Pit05, Pit06, Pit11] is the induction principle that ensues
from syntax as an initial algebra in the category Nom of nominal sets. For example, the

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 3

classic definition of substitution in the λ-calculus [Bar84]

y[x := N] =

 N if y = x,

y otherwise,

(PQ)[x := N] = (P [x := N]Q[x := N]),

(λy.P)[x := N] = λy.(P [x := N]) if y 6∈ fv(N) ∪ {x}.

(1.3)

is not an inductive definition in the usual sense. Because of the side condition, substitution
is only a partial function on raw terms. But, as explained in detail in [Pit05], (1.3) is an
inductive definition according to (1.2). Moreover, [Pit05] establishes a general induction
principle for inductively defined data types with variable binding, explaining when partially
defined functions in Set give rise to totally defined functions in Nom.

Alpha-structural corecursion introduced in this paper is the analogue of α-structural
recursion for coinductive datatypes. For example, in the study of the infinitary λ-calculus
[KKSdV95, KKSdV97, KdV03], which we review in Section 3, one is interested in the
final coalgebra of Lα. We describe the corecursion principle ensuing from final coalgebras
in nominal sets and show that (1.3) is indeed a coinductive definition of substitution for
infinitary λ-terms.

Infinitely many free variables in a term (Section 5.3), which do appear if we take
the final coalgebra of L in sets, pose a problem. To see this, note that (1.3) becomes an
inductive definition by choosing a suitable representative λy.P such that y 6∈ fv(N) ∪ {x}.
This approach is not immediately viable for the infinitary λ-calculus, because we may have
terms that exhaust all the available variables, so that we cannot find a fresh y. For example,
consider the infinite λ-term allfv = x0(x1(x2(. . .))) which contains all variables from V. In
the following β-step

(λx0x1.x0x1)allfv→β (λx1.x0x1)[x0 := allfv] (1.4)

we have that x1 ∈ fv(allfv) and, therefore, the x1 in λx1.x0x1 should be replaced by some
fresh variable, which is impossible because allfv contains all of them [Sal01].

Restricting to finitely many free variables, as opposed to allowing V to be uncountable,
is the solution adopted in this paper (but we will come back to infinitely many free variable
in Section 6.5). That is, in our example, we will consider the set

Λ∞ffv = {M ∈ Λ∞ | fv(M) is finite } (1.5)

of λ-terms with finitely many free variables, avoiding terms such as allfv. On the one hand,
finitely many free variables are sufficient in order to capture the infinite normal forms of
terms representing programs, since the limit of an infinite β-reduction sequence starting from
a finite term has always a finite number of free variables. On the other hand, restricting to
finitely many free variables has the advantage of allowing us to work with nominal sets.

Infinitely many bound variables must be allowed, since additional fresh variables may
be needed at each β-reduction step to avoid capture. For example, consider the finite term

4 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

Pinfbv ≡ fix(λfxy.xy(f(xy))) which has the following reduction sequence:

Pinfbv →→β λxy.xy(Pinfbv(xy))

=α λx0x1.x0x1(Pinfbv(x0x1))

→→β λx0x1.x0x1(λy.x0x1y(Pinfbv(x0x1y)))

=α λx0x1.x0x1(λx2.x0x1x2(Pinfbv(x0x1x2)))

→→β λx0x1.x0x1(λx2.x0x1x2(λy.x0x1x2y(Pinfbv(x0x1x2y))))

=α λx0x1.x0x1(λx2.x0x1x2(λx3.x0x1x2x3(Pinfbv(x0x1x2x3))))
...

The limit of the above sequence is the infinite term:

infbv ≡ λx0.λx1.x0x1(λx2.x0x1x2(λx3.x0x1x2x3(. . .))).

The term infbv has an infinite number of bound variables. All the terms in its α-equivalence
class have an infinite number of bound variables.

The different classes of λ-terms arising from the discussion above are summarised
in the following picture, which is one of the contributions of our work. Previous work on
infinitary λ-calculus either assumed uncountably many variables or did not make the careful
distinctions discussed below.

Λ // //

����

Λ∞

����

Λ∞ffv

����

? _oo

Λ∞/=α
��

��

Λ∞ffv/=α

∼=
��

(∗)

Λ/=α
// // (Λ/=α)∞ (Λ/=α)∞fs

? _oo

(1.6)

In the diagram, Λ denotes the set of finite λ-terms. Vertical arrows // // denote quoti-

enting by α-equivalence. Infinitary λ-terms are constructed by metric completions // // .

The rightmost column arises from maps ? _oo that restrict to terms with finitely many

free variables. Going first right and then down in the diagram means to first complete to
infinitary terms and then to quotient by α-equivalence, whereas going first down and then
right, means to first quotient and then to complete. If both ways of constructing infini-
tary terms up-to α-equivalence coincide, then we say that metric completion commutes with
quotienting by α-equivalence. The two main results here are the following.

• The vertical map in the middle column Λ∞ → (Λ/=α)∞ is not onto (Example 5.20),
hence metric completion and quotienting by α-equivalence do not commute for terms
with countably many free variables (as opposed to the case of uncountably many
variables, see Theorem 5.19).
• The vertical map Λ∞ffv → (Λ/=α)∞fs in the right-hand column is onto [KPSdV12,

Theorem 22], in other words, restricted to terms with finitely many free variables, the
two operations of metric completion and quotienting by α-equivalence do commute.

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 5

Nominal coalgebraic datatypes for a binding signature (Section 5.4) generalise (1.6)
to the diagram below (where we omitted the middle row obtained from epi-mono factorisa-
tions).

TΣ
// //

����

T∞Σ

��

(T∞Σ)ffv

����

? _oo

(∗)

TΣ/=α
// // (TΣ/=α)∞ (TΣ/=α)∞fs

? _oo

(1.7)

Σ is a so-called binding signature [FPT99] and TΣ and TΣ/=α are initial algebras. The

middle column of metric completions arises via unique arrows // // from an ω-colimit

into an ωop-limit as in [Bar99, Proposition 3.1]. In the right-hand column, (TΣ/=α)∞fs is
the final coalgebra in Nom and (T∞Σ)ffv can be defined as making the right-hand square
into a pullback. The theorem that metric completion commutes with quotienting by
α-equivalence then follows from one of our main technical contributions, namely that
pulling back the (not necessarily surjective) middle vertical arrow T∞Σ → (TΣ/=α)∞ along

(TΣ/=α)∞ (TΣ/=α)∞fs
? _oo yields a surjection (T∞Σ)ffv → (TΣ/=α)∞fs .

Representing limits in nominal sets (Section 5.5) provides the setting which enables
us to give a semantic proof of the result discussed in the previous paragraph. To see the
connection, denote by U : Nom→ Set the forgetful functor and use the (well-known) result
that the middle column of (1.7) arises as limits of ωop-chains as depicted in

UX0
oo

����

UX1
oo

����

UX2
oo

����

· · · oo limUXn

��

oo ? _P

(∗)
����

UY0
oo UY1

oo UY1
oo · · · oo limUYn oo ? _U limYn

(1.8)

Similarly, the bottom right-hand corner of (1.7) is given by the limit in Nom of the lower
sequence. The question whether metric completion commutes with α-equivalence now be-
comes an instance of a more general question. Given an ωop-sequence of surjectionsXn → Yn
in Nom, can the limit limYn in Nom be represented by a surjection P → U limYn, where
P is defined to be the pullback (∗)? A careful analysis of this situation is carried out in
Section 5.5. In particular, the notions of safe squares, safe maps and of the bound variables
relative to a map are introduced and it is shown that P → U limYn is onto if all vertical
maps and squares in the chain are safe. We also explore the relationship between safe maps
and maps with orbit-finite fibres.

As applications, we give a general definition of substitution on the final coalgebra coming
from a binding signature. We also give corecursive definitions of various notions of infinite
normal form (Böhm, Lévy-Longo and Berarducci trees) on α-equivalence classes of terms.
We also show a solution, suggested to us by Pitts, of how to treat infinitely many free
variables in nominal sets.

Related Work. This paper generalises [KPSdV12, Theorem 22] from the particular func-
tor describing λ-calculus to arbitrary binding signatures. Along with this generalisation
we replaced the syntactic proof (depending on a concrete presentation of the functor) of
[KPSdV12, Theorem 22] with a semantic argument for the generalised Theorem 5.34 of this
paper. In particular, the new material in Section 5.5 allows us to show that all elements of

6 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

the final coalgebra are presented by infinite terms with finitely many free variables, using
only semantic (that is, category theoretic) properties of the Nom-endofunctors of (5.4).

2. Preliminaries on Algebra and Coalgebra

Finite data types, or algebraic data types, can be studied as initial algebras for functors
on different categories. Consider an endofunctor F on a category C and an object X of C.
An F -algebra (X,α) with carrier X is a C-morphism α : FX → X. Given two F -algebras
(X,α) and (Y, β) an F -algebra morphism is an arrow f : X → Y such that f ◦ α = β ◦ Ff .
The F -algebras thus form a category. One can prove the existence of an initial object in
this category under certain assumptions on the cocompleteness of C and on the “size” of
the functor F . Assume that C has colimits. Then we can consider the following sequence,
starting from the initial C-object 0.

0
! // F0

F ! // F 20
F 2! // . . . // Fω0 // · · · (2.1)

Above ! : 0→ F0 is the unique map from the initial object 0 to F0. When we reach a limit
ordinal α we define Fα0 as colimβ<αF

β0. The colimit of this sequence, when it exists, is
the carrier of the initial F -coalgebra. Notice that for each ordinal ι we have a canonical
map from F ι0 into the initial algebra. For example, if F preserves colimits of ω-chains,
then the initial F -algebra is Fω0.

Colimits of ω-chains are an example of a well studied class of colimits, namely filtered
colimits [AR94]. Recall that a filtered colimit is a colimit of a diagram J : D→ C where D
is a category such that any finite diagram in D has a cocone. Functors that preserve filtered
colimits are called finitary. Finitary functors have an initial algebra and the computation
of the colimit of the initial chain stops after ω steps.

Infinitary data types, or coalgebraic data types, are understood as final coalgebras for
suitable functors. An F -coalgebra (X, ξ) is defined as an arrow ξ : X → FX. A coalgebra
morphism between (X, ξ) and (Y, ζ) is a C-morphism f : X → Y such that Ff ◦ ξ = ζ ◦ f .
Similarly to the initial algebra situation, we can consider the final sequence

1 F1
!oo F 21

F !oo . . .oo Fω1oo · · ·oo (2.2)

where 1 is the final C-object and ! is the unique arrow from F1 to 1. Assume that C has
limits. For limit ordinals we compute the limit of the diagram constructed previously. The
limit of the final sequence, if it exists, is the carrier of the final coalgebra. Therefore, functors
that preserve limits of ωop-chains, sometimes called continuous, have a final coalgebra whose
carrier is Fω1. We also have canonical maps from the final coalgebra to each F ι1 for all
ordinals ι.

The metric completion of Fω0 is given by Fω1, see Barr [Bar99, Proposition 3.1]. In
more detail, if F is an endofunctor on Set and F0 is nonempty, then one can equip the
set Fω1 with a metric and prove that it is the metric completion of Fω0. The metric on
Fω1 is obtained using the projections pn : Fω1 → Fn1. Explicitly, for t, t′ ∈ Fω1 we put
d(t, t′) = 2−max{n | pnt=pnt′}.

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 7

3. Preliminaries on Infinitary Lambda Calculus

3.1. Infinitary Terms as a Final Coalgebra. We assume familiarity with basic notions
and notations of the finite λ-calculus [Bar84]. The set Λ of finite λ-terms is defined by
induction from the grammar:

M ::= x | (λx.M) | (MM) (3.1)

where x ranges over a given set V of variables.
First we explain how the set Λ∞ of finite and infinite λ-terms can be constructed as the

metric completion of the set Λ of finite λ-terms. Then we will briefly recall some notions
and facts of infinitary λ-calculus [KKSdV97, KdV03]. The notion of α-equivalence will be
given in Definitions 5.11 and 5.17.

The idea of putting a metric on a set of terms goes at least back to Arnold and Ni-
vat [AN80]. To do so we define truncations.

Definition 3.1 (Truncation). The truncation of a term M ∈ Λ at depth n ∈ N is defined
by induction on n:

M0 = ∗,

Mn+1 =

x if M = x ∈ V,

λx.Nn if M = λx.N,

NnPn if M = NP.

(3.2)

where ∗ is any constant not appearing in the syntax of the λ-calculus, for example ∅.

Definition 3.2 (Metric). We define a metric d : Λ× Λ→ [0, 1] by

d(M,N) = 2−m, (3.3)

where m = sup{n ∈ N |Mn = Nn} and we use the convention 2−∞ = 0.

In fact, (Λ, d) is an ultrametric space, since for all M,N,P ∈ Λ we have d(M,N) ≤
max{d(M,P), d(P,N)}, as one can easily check.

The set Λ∞ of finite and infinite λ-terms is now defined as the metric completion of
the set Λ of finite terms with respect to the metric d. Alternatively, Λ∞ can be defined by
interpreting (3.1) as a coinductive definition. The fact that both definitions coincide is a
consequence of Barr’s theorem on final coalgebras for bicontinuous Set endofunctors.

Indeed, interpreting (3.1) coinductively amounts to taking as λ-terms the elements of
the final coalgebra for the Set-endofunctor

L X = V + V ×X +X ×X. (3.4)

Notice that the set Λ of finite λ-terms constitutes the initial algebra for L. A closer look
at the proof of Barr [Bar99, Theorem 3.2 and Proposition 3.1] shows now that the metric
d on Λ of Definition 3.2 coincides with the metric induced by the final coalgebra. Hence,
by [Bar99, Proposition 3.1], the completion of the initial L-algebra Λ in the metric d is the
final L-coalgebra.

To summarise, the final L-coalgebra (Λ∞, unfold : Λ∞ → L(Λ∞)) is the Cauchy com-
pletion of Λ and we have a dense inclusion map ι : Λ → Λ∞. It is well-known that the
structure map of the final coalgebra unfold : Λ∞ → L(Λ∞) is an isomorphism, hence the

8 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

set L(Λ∞) can be equipped with a complete metric. The map unfold : Λ∞ → L(Λ∞) is the
unique uniformly continuous map from Λ∞ to L(Λ∞) making diagram (3.5) commutative:

Λ
ι ��

' // L(Λ)

L(ι)��

Λ∞
unfold

// L(Λ∞)
(3.5)

Having defined the set Λ∞ of finite and infinite λ-terms we now extend the usual
syntactic conventions for finite λ-calculus to infinitary λ-calculus. Terms and variables will
respectively be written with (super- and subscripted) letters M,N and x, y, z. Terms of the
form (M1M2) and (λx.M) will respectively be called applications and abstractions.

The truncation of an infinite term M ∈ Λ∞ at depth n is defined just as in Definition 3.1
by induction on n. Observe that (Mn)n∈N is a Cauchy sequence in (Λ∞, d) that converges
to M .

The set of free and bound variables of a finite term M is defined as usual and denoted
by fv(M) and bv(M) respectively. We extend fv(M), bv(M) to infinitary terms M ∈ Λ∞

using truncations by

fv(M) =
⋃
n∈N fv(Mn) bv(M) =

⋃
n∈N bv(Mn).

Also, var(M) = fv(M) ∪ bv(M).
We define β-reduction on Λ∞ and denote it as →β in the usual way: the smallest

relation that contains (λx.P)Q →β P [x := Q] and is closed under contexts. The reflexive
and transitive closure of →β is denoted by →→β. For the definition of →→→β that assumes a
sequence of reduction steps of any ordinal length, see for instance [KKSdV95]. Terms of
the form (λx.P)Q are called redexes. Normal forms are terms without redexes and hence
cannot be changed by further computation.

The definition of infinitary λ-calculus is completed by enriching the syntax (3.1) with
a fresh constant ⊥ and then adding ⊥-reduction, denoted by →⊥, defined as the smallest
relation closed under contexts and containing M →⊥ ⊥ for M belonging to some fixed set
U of meaningless terms. If and only if the set U satisfies certain properties, the resulting
infinitary calculus is confluent and normalising, in which case each term has a unique normal
form [KKSdV97, KdV03, SdV11].

3.2. Computing the Infinite Normal Forms using Corecursion. The normal form
of a λ-term can be thought to represent its meaning, the maximal amount of information
embodied in the term, stable in the sense that it cannot be changed by further computation.
Note that this concept of meaning depends on the chosen set U of meaningless terms for
which there is ample, uncountable choice [SdV11].

For concrete sets of meaningless terms an alternative, “informal” corecursive definition
of the normal form of a term in the corresponding infinitary λ-calculus can sometimes be
given. Three of them are well known and they are recalled in (3.6), (3.7) and (3.8).

In his book [Bar84], Barendregt argued that the terms without head normal forms
should be considered as meaningless terms. Any finite λ-term is either a head normal
form (hnf), that is, a term of the form λx1 . . . λxn.xN1 . . . Nm, or it is a term of the form
λx1 . . . λxn.((λy.P)Q)N1 . . . Nm where the redex (λy.P)Q is called the head redex. Starting
with a term M that is not in hnf one can repeatedly contract the head redex. Either this will
go on forever or terminate with a hnf, which represents part of the information embodied

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 9

in a term. In the latter case one can repeat this process on the subterms Ni to try to
compute more information. This idea led Barendregt to his elegant “informal” definition of
the Böhm tree BT (M) of a term M , that we now recognise as a corecursive definition.

BT (M) =

λx1 . . . λxn.yBT (M1) . . . BT (Mm),

if M →→β λx1 . . . λxn.yM1 . . .Mm,

⊥ otherwise.

(3.6)

The image of BT is denoted as BT and can be explicitly defined as follows.

Definition 3.3 (Set of Böhm trees). The set BT of Böhm trees is defined as the maximal
set such that for all M ∈ BT , either M = ⊥ or M = λx1 . . . λxn.yM1 . . .Mm where
M1, . . . ,Mm ∈ BT for some m,n ≥ 0.

Clearly, any Böhm tree in BT is an infinitary lambda term over the syntax (3.1) enriched
with ⊥.

Taking for U the set of terms without hnf, one can show using the confluence prop-
erty that the normal forms of the corresponding infinitary λ-calculus satisfy the equations
in (3.6). That is, the Böhm tree of a term M is the normal form of M in the infinitary
λ-calculus that equates all terms without head normal form with ⊥ [Bar84, KKSdV97].

Alternatively, as Abramsky has forcefully argued in [Abr90], one can take the set of
terms without weak head normal form (whnf) as set of meaningless terms. Any finite λ-term
is either a weak head normal form, that is, a term of either of the two forms xM1 . . .Mm,
or λx.N , or it is a term of the form ((λy.P)Q)M1 . . .Mm where the redex (λy.P)Q is called
the weak head redex. In perfect analogy with before, starting with a term M that is not
in whnf one can repeatedly contract the weak head redex. Either this will go on forever or
terminate with a whnf. In the latter case one can repeat this process on the subterms Mi of
the tail of the whnf or on the subterm N of its body to try to compute more information.
This describes a lazy computation strategy, that postpones reduction under abstractions as
much as possible.

The normal forms of the corresponding infinitary λ-calculus that equates all terms
without weak head normal form with ⊥ satisfy the equations (3.7) that define the Lévy-
Longo tree LLT (M) of a term M corecursively [Lon83, Lév76, AO93, KKSdV97].

LLT (M) =

yLLT (M1) . . . LLT (Mm) if M →→β yM1 . . .Mm,

λx.LLT (N) if M →→β λx.N,

⊥ otherwise.

(3.7)

The image of LLT is denoted as LLT and can be explicitly defined as follows.

Definition 3.4 (Set of Lévy-Longo trees). The set LLT of Lévy-Longo trees can be defined
as the maximal set that satisfies that whenever M ∈ LLT then M has one of the following
shapes:

(1) either M = ⊥, or
(2) M = λx.N for some N ∈ LLT , or
(3) M = yM1 . . .Mn for some M1, . . . ,Mn ∈ LLT .

The least set of meaningless terms that gives rise to a confluent and normalising infini-
tary λ-calculus is the set of terms without a top normal form. Here a term M is a top normal

10 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

Term Böhm tree Lévy-Longo tree Berarducci tree

M BT (M) LLT (M) BeT (M)

fix x x(x(x(. . .))) x(x(x(. . .))) x(x(x(. . .)))

fix(λyx.xy) λx1.x1(λx2.x2(. . .)) λx1.x1(λx2.x2(. . .)) λx1.x1(λx2.x2(. . .))

λx.Ω ⊥ λx.⊥ λx.⊥

fix (λxy.x) ⊥ λx1λx2λx3 . . . λx1λx2λx3 . . .

ΩΩ ⊥ ⊥ ⊥⊥

fix(λy.yx) ⊥ ⊥ (((. . .)x)x)x)

Figure 1: Examples of Böhm, Lévy-Longo and Berarducci trees

form (tnf) if it is either a variable, an abstraction or an application of the form M1M2 in
which M1 is a zero term, i.e. a term that cannot reduce to an abstraction. The well-known
term Ω = (λx.xx)(λx.xx) has no tnf. The normal forms of this calculus can alternatively
be characterised by the corecursive definition of the Berarducci tree [Ber96, KKSdV97]
BeT (M) of a term M :

BeT (M) =

x if M →→β x,

λx.BeT (N) if M →→β λx.N,

BeT (N)BeT (P) if M →→β NP and N is a zero term,

⊥ otherwise,

(3.8)

The image of BeT is denoted as BeT and can be explicitly defined as follows.

Definition 3.5 (Set of Berarducci trees). The set BeT of Berarducci trees can be defined
as the maximal set that satisfies that whenever M ∈ BeT then M has one of the following
shapes:

(1) M = λx.N for some N ∈ BeT , or
(2) M = yM1 . . .Mn for some M1, . . . ,Mn ∈ BeT , or
(3) M = ⊥M1 . . .Mn for some M1, . . . ,Mn ∈ BeT , or
(4) M = ((. . .)M2)M1 for some (Mi)i≥1 such that Mi ∈ BeT for all i ≥ 1.

Some examples of trees are shown in Figure 1.
It is possible to formalise (3.6)-(3.8) using corecursion via the final L-coalgebra, pro-

vided we give concrete reduction strategies to compute the various forms used in the defini-
tions. However, in order to take into account α-equivalence, we will prove an α-corecursion
principle based on nominal sets.

4. Preliminaries on Nominal Sets

We recall basic facts on nominal sets [GP01, Pit13].

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 11

Consider a countably infinite set V of ‘variables’ (or ‘atoms’ or ‘names’) and the group
S(V) of permutations on V generated by transpositions, which are permutations of the form
(x y) that swap x and y. Consider a set X equipped with an action of the group S(V),
denoted by · : S(V)×X → X. We say that u ∈ X is supported by a set S ⊆ V when for all
π ∈ S(V) such that π(x) = x for all x ∈ S we have π · u = u. We say that u ∈ X is finitely
supported if there exists a finite S ⊆ V which supports u.

Definition 4.1 (Nominal set). A nominal set (X, ·) is set X equipped with a S(V)-action
such that all elements of X are finitely supported. Given nominal sets (X, ·) and (Y, ·), a
map f : X → Y is called equivariant when f(π · u) = π · f(u) for all π ∈ S(V) and u ∈ X.
The category of nominal sets and equivariant maps is denoted by Nom.

A crucial property of nominal sets is that each element of a nominal set has a least finite
support, see [GP01]. Indeed, if two finite sets S1 and S2 support u, then their intersection
also supports u.

Notation 4.2 (Support and freshness). The smallest finite support of u is denoted by
supp(u). If x ∈ V\supp(u) we say that x is fresh for u, and write x#u. More generally, given
two nominal sets (X, ·) and (Y, ·), u ∈ X and v ∈ Y , we write u#v for supp(u)∩supp(v) = ∅.
Given S, T ⊆ V, we write S#u for supp(u) ∩ S = ∅. We also write S#T for S ∩ T = ∅.

Remark 4.3. An important property of supp is that for every equivariant f : X → Y and
u ∈ X, we have supp(f(u)) ⊆ supp(u).

Example 4.4. The set of names V equipped with the evaluation action given by π ·x = π(x)
is a nominal set.

Example 4.5. The finite subsets of atoms Pfin(V) form a nominal set with the pointwise
action π ·X = {π(u) | u ∈ X} for all X ∈ Pfin(V).

Remark 4.6. Notice that taking the support of elements of a nominal set X gives an
equivariant map supp : X → Pfin(V). Indeed, one can show that for any u ∈ X and
π ∈ S(V) we have supp(π ·u) = π · supp(u). As a consequence, supp(π ·u) and supp(u) have
the same cardinality for any permutation π.

Example 4.7. The set Λ of finite λ-terms with the action · : S(V) × Λ → Λ inductively
defined by

π · x = π(x)

π · (λx.M) = λπ(x).(π ·M)

π · (MN) = ((π ·M)(π ·N))

(4.1)

is a nominal set. In this example we do not take into account α-equivalence, so the support
of a λ-term M is the set of all variables occurring either bound or free in M .

Given a S(V)-action · on a set X, let Xfs denote the set

Xfs = {u ∈ X | u is finitely supported}. (4.2)

Then · restricts to a S(V)-action on Xfs and (Xfs, ·) is a nominal set.

Example 4.8. The set Λ∞ of finite and infinite λ-terms can be equipped with the action
· : S(V) × Λ∞ → Λ∞ defined coinductively by (4.1). Alternatively, π · (−) can be defined
using the universal property of the metric completion, as the unique map that extends

12 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

Λ
π·(−)−→ Λ

ι−→ Λ∞. Observe that (π ·M)n = π ·Mn for all M ∈ Λ∞ and n ∈ N. Notice that
(Λ∞, ·) is not a nominal set since the set of variables in a term, and hence its support, can
be infinite. But ((Λ∞)fs, ·) is a nominal set and supp(M) = var(M) for all M ∈ (Λ∞)fs.

Definition 4.9 (Abstraction). Let (X, ·) be a nominal set. One defines ∼α on V ×X by

(x1, u1) ∼α (x2, u2)⇔ (∃ z#{x1, u1, x2, u2})(x1 z) · u1 = (x2 z) · u2 (4.3)

The ∼α-equivalence class of (x, u) is denoted by 〈x〉u. The abstraction [V]X of the nominal
set X is the quotient (V ×X)/∼α. The S(V)-action on [V]X is defined by

π · 〈x〉u = 〈π · x〉π · u. (4.4)

Given equivariant f : (X, ·)→ (Y, ·), we define [V]f : [V]X → [V]Y by

〈x〉u 7→ 〈x〉f(u). (4.5)

Definition 4.10. [Concretion] Let (X, ·) be a nominal set. Concretion is the partial function
@ : [V]X ×V → X with 〈y〉u@z, the ‘concretion of 〈y〉u at z’, defined as 〈y〉u@z = (z y) · u
if z ∈ V \ supp(〈y〉u).

Notice that y#〈y〉u and (〈y〉u)@y = u. Moreover, observe that [V]X × V is a nominal
set with the coordinatewise action of S(V). One can show that concretion is equivariant.
Indeed, if z#〈y〉u then π · z#〈π · y〉π · u and π · (〈y〉u@z) = (〈π · y〉π · u)@π · z.

Definition 4.11. [Internal hom] Given two nominal sets (X, ·) and (Y, ·), we define the
internal hom [X,Y] as the nominal set of all functions f : X → Y that are finitely supported
with respect to the action

(π · f)(u) = π · f(π−1 · u).

Remark 4.12. A function f : X → Y is finitely supported if and only if there exists a
finite set S of names, such that for all permutations π ∈ S(V) that fix the names in S and
for all x ∈ X we have π · f(x) = f(π · x).

Limits and colimits in Nom. Further, we recall some general results form [Pit03] that will
be necessary in the rest of the paper. The category Nom is complete and cocomplete. The
forgetful functor to Set creates finite products and all colimits. For example, the product
of two nominal sets (X, ·) and (Y, ·) is (X × Y, ·) where

π · (u, v) = (π · u, π · v).

Arbitrary products in Nom are computed differently than in Set. Given a family of nominal
sets (Xi, ·i)i∈I , we can equip the set of all tuples {(ui)i∈I | ui ∈ Xi} with the pointwise
action given by

π · (ui)i∈I = (π ·i ui)i∈I . (4.6)

This is a S(V)-action, but some tuples may not be finitely supported. The product of
(Xi, ·i)i∈I in Nom is the nominal set (

∏
i∈I

(Xi, ·i))fs of tuples of the form (ui)i∈I that are

finitely supported with respect to the action of (4.6).
The limit in Nom of an ωop-chain

X1 X2
f1

oo . . .
f2

oo

is the nominal set of finitely supported tuples (u1, u2, . . .) such that for all i ∈ ω we have
ui ∈ Xi and fi+1(ui+1) = ui.

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 13

The initial object of Nom is the empty nominal set with the trivial action. In Nom, all
monomorphisms are strong and are precisely the injective equivariant maps.

Categorical properties of Nom. The category Nom is locally finitely presentable, see
[AR94]. An object X in a category C is called finitely presentable when the hom functor
C(X,−) preserves filtered colimits. For example the finitely presentable sets are the finite
ones. A locally small category C is called locally finitely presentable when it is cocomplete
and it has a small set A of finitely presentable objects, such that any object in C is a filtered
colimit of objects in A.

We describe next the finitely presentable objects in Nom. First we need to define the
notion of orbit.

Definition 4.13 (Orbit). Consider a nominal set (X, ·) and x, y ∈ X. We say that x and
y are orbit equivalent when there exists π ∈ S(V) such that π · x = y. An orbit O ⊆ X is
an equivalence class with respect to this equivalence relation.

Remark 4.14. Let O denote an orbit in a nominal set and consider x ∈ O. Then O =
{π · x | π ∈ S(V)}.

A proof of the following proposition is in [Pet12, Proposition 2.3.7].

Proposition 4.15. A nominal set (X, ·) is finitely presentable in Nom if and only if it has
finitely many orbits.

Observe that a nominal set is the disjoint union of its orbits, and hence the directed
union of all its nominal subsets with finitely many orbits.

Properties of the abstraction functor. The abstraction functor [V](−) : Nom → Nom
preserves all limits and colimits, see [Pit13]. The remainder of this section is only needed
in the proof of Lemma 5.56.

By [Pit13, Theorem 4.13] we know that [V](−) has a right adjoint R : Nom → Nom
defined by

RX = {g ∈ [V, X] | (∀x ∈ V)x#g(x)}.
Above, [V, X] is the nominal set of finitely supported maps from V to X, as in Defini-
tion 4.11. The argument below [Pit13, (4.27)] also implies that R does not preserve colimits,
the counterexample being the coproduct of two nominal sets. However we can show that
R preserves filtered colimits. But first let us give a simpler description of the nominal set
RX.

Lemma 4.16. Consider a nominal set X and a Set-function g : V → X. We have that
g ∈ RX if and only if the following conditions are satisfied:

(1) For all x ∈ V we have x#g(x).
(2) There exists a finite set of names S such that for all x ∈ V we have supp(g(x)) ⊆ S

and g is constant on V \ S.

Proof. For the direct implication, notice that (1) is clearly satisfied. For (2), let S denote
the support of g. Observe that, by Remark 4.12 we have that supp(g(x)) ⊆ S ∪ {x}. Since
x#g(x) we have that supp(g(x)) ⊆ S for all x ∈ V. Now consider x, x′ 6∈ S. Then, by
Remark 4.12, we have (x x′) · g(x) = g(x′). On the other hand, (x x′) · g(x) = g(x) holds
since x, x′#g(x). Hence g(x) = g(x′), thus g is constant outside S.

Conversely, we only have to show that g is finitely supported. Let π ∈ S(V) be a
permutation that fixes the set S. By Remark 4.12, it is enough to show that π·g(x) = g(π·x)

14 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

for all x ∈ V. Since supp(g(x)) ⊆ S we have that π · g(x) = g(x). We can also prove
that g(π · x) = g(x). This is clear for x ∈ S. For the case when x 6∈ S, observe that
π · x = π(x) 6∈ S, thus we can use the fact that g is constant outside S.

Proposition 4.17. The functor [V](−) : Nom→ Nom has a finitary right adjoint.

Proof. Consider a filtered diagram D and a functor J : D → Nom. In order to prove
that Rcolimd∈DJd ' colimd∈DRJ(d) it is enough to show that each finitely supported map
g : V → colimd∈DJd such that for all x ∈ V we have x#g(x) factors through a Jd for some
d ∈ D

V

gd
��
�
�
� g

%%JJJJJJJJJJJ

Jd
ι // colimd∈DJd

(4.7)

and the map gd is finitely supported and for all x ∈ V we have x#gd(x). Let S denote the
finite support of g and let x0 6∈ S. There exists d0 ∈ D such that g(x0) = [y0] for some
y0 ∈ Jd0. We used square brackets here to denote the equivalence classes needed in the
computation of filtered colimits. By Lemma 4.16 we have that supp([y0]) ⊆ S and for all
x 6∈ S we have that g(x) = [y0]. Notice that S = {x1, . . . , xn} is a finite set and for each xi
there exists di ∈ D such that g(xi) = [yi] for some yi ∈ Jdi. We can assume without loss of
generality that for all 0 ≤ i ≤ n we have supp(yi) = supp([yi]), see [Pet12, Proposition 2.3.7].

By Lemma 4.16 for all 0 ≤ i ≤ n we have xi#g(xi) = [yi] and supp(g(xi)) = supp([yi]) ⊆
S. Hence, for all 0 ≤ i ≤ n we have xi#yi and supp(yi) ⊆ S. Since D is filtered, there exists
d ∈ D and arrows ui : di → d in D for all 0 ≤ i ≤ n. We define gd : V → Jd by

gd(x) =

 Ju0(y0) if x 6∈ S,

Jui(yi) if x = xi for some 1 ≤ i ≤ n.
(4.8)

Notice that gd satisfies the properties (1) and (2) of Lemma 4.16. Indeed, we have that
x#gd(x) and supp(gd(x)) ⊆ S for all x ∈ V (because the maps Jui are equivariant and
thus can only shrink the support of the elements, recall Remark 4.3). Thus gd is in R(Jd)
by Lemma 4.16 and it makes diagram (4.7) commutative. Therefore R preserves filtered
colimits.

Lemma 4.18. The functor [V](−) : Nom→ Nom preserves finitely presentable objects.

Proof. This is immediate by the previous lemma. Let X be a finitely presentable nominal
set and let colim Yi be a filtered colimit. Then

Nom([V]X, colim Yi) ' Nom(X,R(colim Yi))

' Nom(X, colim R(Yi))

' colim Nom(X,R(Yi))

' colim Nom([V]X,Yi).

(4.9)

This shows that [V]X is finitely presentable.

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 15

5. Alpha Corecursion Principle for Nominal Coalgebraic Data Types

In this section we introduce nominal coalgebraic data types as a means of studying infinitary
data up to α-equivalence. In Section 5.1 we describe final coalgebras of certain Nom-
endofunctors. We apply this result for functors arising from signatures with binding. We
prove that the set of equivalence classes of infinitary terms with finitely many free variables
is the final coalgebra of a Nom-functor. Our running example is the infinitary λ-calculus,
and indeed the results of [KPSdV12] are particular instances of the main theorems in this
section.

5.1. Final Coalgebras of Nom Functors. In this section we describe the final coalgebras
for certain endofunctors on Nom. It is well known that an endofunctor that preserves
limits of ωop-chains has a final coalgebra which is computed as the limit of the final chain.
Similarly, endofunctors that preserve colimits of ω-chains have an initial algebra obtained
as the colimit of the initial sequence. We will generalise Barr’s theorem [Bar99] relating
final coalgebras and initial algebras to functors on nominal sets. To this end we need to
introduce nominal (complete) metric spaces.

Definition 5.1 (Nominal metric space). A nominal metric space is a tuple (X, ·, d) such
that (X, ·) is a nominal set and d : X×X → [0, 1] is an equivariant metric when the interval
[0, 1] is equipped with the trivial action. That is, d(x, y) = d(π ·x, π · y) for all x, y ∈ X and
π ∈ S(V).

Definition 5.2 (Finitely supported Cauchy sequence). A finitely supported Cauchy se-
quence in a nominal metric space is a Cauchy sequence (xn)n≥1 such that there exists a
finite set of variables S ⊆ V that supports all elements xn. A nominal metric space is
complete when every finitely supported Cauchy sequence converges.

Remark 5.3 (Nominal Completion). Given a nominal metric space (X, ·, d) one can con-
struct its nominal completion (X, ·, d) by adding the limits of all the finitely supported
Cauchy sequences. This construction has the following universal property. For any com-
plete metric space (Y, ·, e) and any equivariant uniformly continuous function f : X → Y
there exists a unique equivariant uniformly continuous map f : X → Y extending f . The
proofs are straightforward.

In what follows, Theorem 5.4 and Theorem 5.5 show that the final coalgebra of certain
Nom-functors can be regarded as a nominal metric space and is the nominal completion
of the initial algebra. Theorem 5.4 is an instance of Adámek’s generalisation of Barr’s
theorem from [Adá03]. The fact that T is the nominal Cauchy completion of I is equivalent
to hom(B,T) being the Cauchy completion of hom(B, I) for any finitely presentable objects
B ∈ Nom. Nevertheless, we opted to sketch a direct proof below, not only for the sake of
completeness, but also because we can work directly with metrics on the initial algebra and
final coalgebra, paying attention to some extra conditions regarding equivariance and finite
support. Moreover, a careful inspection of the proof allows us to prove a small variation
of this result, see Theorem 5.5. One crucial hypothesis in [Adá03] is that the functor at
issue, say F, has the property that F0 has an element, where 0 is the initial element in the
category. By this, it is meant that a morphism s : 1→ F0 exists. However, by insights that
go back to work by Fraenkel and Mostowski [Jec73, Pit13], the axiom of choice doesn’t hold
in the topos of nominal sets. So the fact that F0 6= 0 is not equivalent to the existence of a

16 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

Nom-morphism s : 1 → F0. As an example consider the functor Lα of 5.15, where we can
apply Theorem 5.5, but not Theorem 5.4.

We first formulate Theorem 5.4 following [Adá03] in assuming that a morphism s : 1→
F0 exists and F preserves limits of ωop-chains and monomorphisms. Note that we do not
assume that F preserves colimits of ω-chains. The existence of the final coalgebra gives a
size constraint on the functor F that ensures also the existence of the initial algebra.

However, in Theorem 5.5 we will see that a variation of Theorem 5.4 in which we only
assume that F0 6= 0 holds provided that F can be extended to finitely-supported maps.

Theorem 5.4. Let F : Nom → Nom be a functor that preserves limits of ωop-chains and
monomorphisms and such that a morphism s : 1→ F0 exists. Then F has a final coalgebra
T and an initial algebra I, both of which be equipped with equivariant metrics. Moreover the
final coalgebra is the nominal completion of the initial algebra.

Proof. We split the proof in four parts.

(1) Existence of final F-coalgebra and initial F-algebra. Since it preserves limits of ωop-
chains, the functor F has a final coalgebra which can be computed as the limit of
the ωop-chain

1 oo !
F1 oo F!

F21 oo F2! · · · oo T (5.1)

Since Nom is locally finitely presentable and F preserves monomorphisms we
have that the initial F -algebra exists and is a subobject of T. For full details and
the general proof see [Adá03, Proposition 3.4]. The idea is to prove by transfinite
induction that for every ordinal ι we have a monomorphism uι : Fι0 → Fι1. For
example for finite ordinals we put ui = Fi(u) where u : 0→ 1 is the unique morphism
into the final nominal set. For all ι ≥ ω we have that Fι0 is a subobject of Fι1 ∼= Fω1.
Using the fact that Nom is well powered, we know that Fω1 only has a set of
subobjects. Hence the initial sequence converges to the initial F-algebra, denoted by
I. Moreover since for all ι ≥ ω we have Fι1 ∼= Fω1 ∼= T there exists a monomorphism
v : I→ T.

0 //

u
��

F0 //
� _

u1
��

F20 //
� _

u2
��

· · · // Fω0� _

uω
��

// · · · // Fι0� _

uι
��

∼= I � _

v
��
�
�
�

1 oo F1 oo F21 oo · · · oo Fω1 oo
∼= · · · Fι1oo ∼= T

(5.2)

(2) Equivariant metrics on T and I. First we define a metric on T. Let pn : T → Fn1
denote the projections of the limit in (5.1). Put

d(x, y) = 2−max{n | pnx=pny} (5.3)

with the convention that 2−ω = 0. Considering the interval [0, 1] as a nominal set
with the trivial action the map d : T×T→ [0, 1] becomes equivariant. This follows
easily since each pn is equivariant.

(3) T is a nominal complete metric space. Next we show that (T, d) is a nominal
complete metric space. Consider a finitely supported Cauchy sequence (xn)n ⊆ T.
This implies that there exists a finite set S ⊆ V that supports all xn. Without loss
of generality we may assume that for every n we have d(xn, xn+1) ≤ 2−n. Therefore,
we have that pnxn = pnxn+1 for all n, or equivalently, pnxn = Fn!(pn+1xn+1). Since

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 17

for all n we have supp(xn) ⊆ S and pn is equivariant, it follows that supp(pnxn) ⊆ S
for all n. The existence of such a common support is essential, recall how limits
of ωop-chains are computed in Nom. It follows that there exists an element x ∈ T
corresponding to the tuple (pnxn)n. We thus have that pnx = pnxn for all n and
this proves that x is a limit of (xn)n with respect to the metric d.

(4) T is the nominal completion of I. Since I contains Fω0, see (5.2), it is enough to
prove that any element x ∈ T can be written as the limit of a Cauchy sequence of
elements in Fω0.

Next we use the existence of a morphism s : 1 → F0. Notice that there exists
a unique (finitely supported) map into 1, therefore we have that !u1s = id1. We
define xn ∈ Fω0 as the image under the inclusion Fn+10→ Fω0 of Fns(pnx). Notice
that the support of xn is included in the support of x for all natural numbers n. It
is easy to check that pnuωxn = pnx, thus d(uωxn, x) ≤ 2−n. Therefore the sequence
(xn)n is a finitely supported Cauchy sequence whose limit is x.

In order to relax the assumption that the map s : 1 → F0 is equivariant we need to
require the functor F to be Nom-enriched. This means that for any two nominal sets X and
Y we have an equivariant map FX,Y : [X,Y]→ [FX,FY] which behaves well with respect to
composition [Kel82], where [X,Y] denotes the internal hom in the cartesian closed category
Nom, and consists of the finitely supported maps from X to Y , see Definition 4.11.

Theorem 5.5. Let F : Nom → Nom be a functor that preserves limits of ωop-chains and
monomorphisms and such that F0 6= 0. Assume further that the functor F is Nom-enriched.
Then F has a final coalgebra T and an initial algebra I, both of which can be equipped with
equivariant metrics. Moreover the final coalgebra is the nominal completion of the initial
algebra.

Proof. Notice that in Nom the fact that F0 6= 0 is equivalent to the existence of a finitely
supported map s : 1 → F0. Thus, if F can be extended to finitely supported maps, the
proof follows the same lines as Theorem 5.4 with a small difference. The maps Fns are
finitely-supported rather than equivariant. Since F is Nom-enriched the support of Fns is
included in the support of s for any finitely supported map s. This follows by Remark 4.3
since the maps FX,Y : [X,Y] → [FX,FY] are equivariant. Therefore the support of the
Cauchy sequence (xn)n is included in the support of x union the support of the map s.

As a side observation, notice that F being an enriched Nom-functor with respect to the
cartesian symmetric monoidal structure of Nom is equivalent to the existence of a strength,
a notion that we will also use in Section 6.1.

One can easily show that functors obtained from the grammar (5.4) below have the
properties required in Theorems 5.4 and 5.5.

Proposition 5.6. Endofunctors on Nom obtained from the grammar

F ::= V | K | Id |
∐

F | F × F | [V]F (5.4)

preserve monomorphisms, epimorphims and limits of ωop-chains and are Nom-enriched.
Above K denotes a constant functor,

∐
F denotes at most countable coproducts, while [V]F

denotes precomposition with the abstraction functor introduced in Definition 4.9.

Proof. It is immediate that the constant functors V and K, the identity functor Id preserve
all limits and colimits. Countable coproducts commute in Nom with limits of ωop-chains and

18 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

preserve monomorphisms and epimorphisms. Binary products commute in Nom with all
limits and preserve epimorphisms. Finally, the abstraction functor [V](−) : Nom→ Nom is
both a right adjoint, see [Pit13, Theorem 4.12], and a left adjoint, see [Pit13, Theorem 4.13].
Therefore [V](−) preserves all limits and colimits, in particular limits of ωop-chains, monos
and epis. The fact that [V](−) is Nom-enriched follows from [Pit11, Lemma 4.10]. The
functors obtained from products and coproducts can be easily proved to be Nom-enriched,
see [Kel82].

As a corollary, we can apply Theorem 5.4 to any endofunctor of the form (5.4) with
the additional property that a Nom-morphism s : 1 → F0 exists. Similarly we can apply
Theorem 5.5 to any functor of the form (5.4) with the additional property that F0 6= 0.

As an aside, note that the class of functors with the property that F0 6= 0 is not closed
under countable products:

Example 5.7. Consider the functors Fn : Nom → Nom defined by Fn(X) = Pn(V) + X
where Pn(V) is the nominal set of subsets of variables of cardinality n with the pointwise
action. Observe that for every n we have Fn0 6= 0 , but

∏
n<ω

Fn0 = 0.

5.2. Nominal Algebraic Data Types for Binding Signatures. In this section we
will introduce binding signatures [FPT99] and we will see how the set of finite raw terms,
respectively the set of α-equivalence classes of terms for a binding signature can be obtained
as initial algebras for Nom-functors. The results in this section are based on [GP01, Pit06,
Pit11].

Definition 5.8 (Terms coming from a binding signature). A binding signature is a pair
(Σ, ar) where Σ is a set of operations and ar : Σ → N∗ specifies the binding arity of the
operations. The set of finite raw terms TΣ for a binding signature (Σ, ar) is defined by the
inductive rules

(x ∈ V)
x ∈ TΣ

t1 ∈ TΣ, . . . , tk ∈ TΣ
(ar(op) = n1, . . . , nk)

op(〈x1〉.t1, . . . , 〈xk〉.tk) ∈ TΣ

(5.5)

where in the second rule of (5.5) xi denotes a list x1
i , . . . , x

ni
i of of names of length ni where

ni ≥ 0 and 1 ≤ i ≤ k. If k = 0, we write op() for representing constants. Note that (5.5)
defines raw terms, not quotiented by α-equivalence, but the intention here is to say that op
binds the names in the list xi in the scope given by the term ti.

Example 5.9 (λ-terms). The binding signature for λ-calculus consists of two operations
Abs (abstraction) and App (application) with respective arities

ar(Abs) = 1,

ar(App) = 0, 0.
(5.6)

The raw terms in this signature are the finite λ-terms not quotiented by α-equivalence. For
example, λx.x is written as Abs(〈x〉x) and (x y) as App(〈〉x, 〈〉y). Recall from Example 4.7
that the set of λ-terms can be equipped with an action of the group S(V) and thus turned
into a nominal set.

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 19

We can define inductively a S(V)-action on raw terms for an arbitrary binding signature

π · x = π(x) if x ∈ V,

π · op(〈x1〉.t1, . . . , 〈xk〉.tk) = op(〈π · x1〉.t1, . . . , 〈π · xk〉.tk),
(5.7)

where π acts pointwise on the lists xi, that is, if xi = x1
i , . . . , x

ni
i then π · xi is the list

π · x1
i , . . . , π · x

ni
i . Then we have that (TΣ, ·) is a nominal set. Notice that the support of a

term t ∈ TΣ is then the set of all variables occurring in t.

Definition 5.10 (Free and bound variables). We can inductively define the set of free
variables in a term t ∈ TΣ:

fv(x) = x if x ∈ V,

fv(op(〈x1〉.t1, . . . , 〈xk〉.tk)) =
⋃k
i=1 fv(ti) \

⋃k
i=1 xi.

(5.8)

The set of bound variables is defined similarly:

bv(x) = ∅ if x ∈ V,

bv(op(〈x1〉.t1, . . . , 〈xk〉.tk)) =
⋃k
i=1 bv(ti) ∪

⋃k
i=1 xi.

(5.9)

For the binding signature in Example 5.9 we obtain the usual definition of free and
bound variable in a λ-term.

We will now proceed to define α-equivalence on finite raw terms for a binding signature.
We will use the fact that TΣ is a nominal set. First let us recall the case of λ-calculus.
On finite λ-terms, α-equivalence can be defined inductively using the permutation action
· : S(V)× Λ→ Λ of Example 4.7, see [GP01].

Definition 5.11 (Alpha equivalence on λ-terms). Let M,N,M ′, N ′ ∈ Λ. The relation =α

is the least equivalence relation closed under the rules:

(var)
x =α x

M =α N M ′ =α N
′

(app)
MM ′ =α NN

′

(x z) ·M =α (y z) ·N z#(x, y,M,N)
(abs)

λx.M =α λy.N

The relation =α is equivariant, that is, M =α N implies π ·M =α π ·N for all π ∈ S(V).
Thus we obtain a nominal set (Λ/=α, ·) where supp(M) = fv(M).

Definition 5.12 (Alpha equivalence on terms coming from a binding signature). For an
arbitrary binding signature (Σ, ar), we can define α-equivalence on finite terms inductively:

(var)
x =α x

(xi zi) · ti =α (yi zi) · si 1 ≤ i ≤ k for fresh zi
(op)

op(〈x1〉.t1, . . . , 〈xk〉.tk) =α op(〈y1〉.s1, . . . , 〈yk〉.sk)

where each zi is a list of distinct elements of length ni which are fresh for all the terms
involved. Also, by (yi zi) we mean the composition of transposition (x1

i z
1
i) . . . (xnii znii).

20 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

The relation =α is equivariant, that is, t =α s implies π · t =α π · s for all π ∈ S(V).
Thus we obtain a nominal set (TΣ/=α, ·). The equivalence class of a term t ∈ TΣ is denoted
by [t]α and we have that supp([t]α) = fv(t).

We can express the α-equivalence classes of terms in a binding signature as an initial
algebra for a Nom-functor. The next result allowed Gabbay and Pitts to formulate α-
structural induction and recursion principles, see [Pit11, GP01, Pit06].

Theorem 5.13 (Nominal algebraic data types). The nominal set (TΣ/=α, ·) of finite α-
equivalence classes of terms is the initial algebra for the functor Fα : Nom → Nom given
by:

Fα X = V +
∐
op∈Σ

ar(op)=n1,...,nk

[V]n1X × . . .× [V]nkX. (5.10)

On the other hand, the nominal set (TΣ, ·) of finite raw terms is the initial algebra for
the functor F : Nom→ Nom given by:

F X = V +
∐
op∈Σ

ar(op)=n1,...,nk

(Vn1 ×X)× . . .× (Vnk ×X). (5.11)

We can also obtain TΣ as the initial algebra for a Set-functor. Indeed, we define a
functor

F : Set→ Set (5.12)

by the same formula as (5.11). The initial F -algebra is the set TΣ. Notice that F is a lifting
of F to nominal sets in the sense that the next diagram commutes.

Nom
F //

U
��

Nom

U
��

Set
F // Set

(5.13)

Remark 5.14. Notice that both functors Fα and F are obtained from grammar (5.4).

Example 5.15. Consider the binding signature for λ-calculus of Example 5.9. Then the
nominal set (Λ/=α, ·) is the initial algebra of the functor Lα : Nom → Nom already men-
tioned in the introduction (1.2):

Lα X = V + [V]X +X ×X
while the raw λ-terms for a nominal set which is the initial L-algebra for L : Nom → Nom
given by

L X = V + V ×X +X ×X.

An abstract account of α-equivalence. In the above example α-equivalence is the
kernel of the map Λ � Λ/=α. Using Definition 4.9 we see that this map is induced at the
level of Nom-endofunctors by the natural transformation

θX : V ×X � [V]X (5.14)

defined by (x, u) 7→ 〈x〉u.
Consider an arbitrary Fα : Nom→ Nom obtained from grammar (5.4) or, equivalently,

from a binding signature Σ. To Fα we can associate a functor F : Nom → Nom in which

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 21

all occurrences of the abstraction functor [V](−) are replaced by V × −. Therefore F is a
polynomial functor and the natural transformation (5.14) induces a natural transformation
q : F→ Fα given by the following inductive rules:

Fα = Id

F = Id q = id

Fα = V
F = V q = id

Fα = K

F = K q = id

Fα = [V]F′α q′ : F′ → F′α
F = V × F′ q = θ ◦ (V × q′)

Fα = F′α × F′′α q′ : F′ → F′α q′′ : F′′ → F′′α
F = F′ × F′′ q = q′ × q′′

Fα =
∐

(Fi)α qi : Fi → (Fi)α

F =
∐

Fi q =
∐
qi

(5.15)

Using the initial chain, this in turn gives a surjective map from the initial F-algebra
I = (TΣ, ·) to the initial Fα-algebra Iα = (TΣ/=α, ·). Indeed, we have the following diagram

0 //

[−]
(0)
α

��

F0 //

[−]
(1)
α

����

F20 //

[−]
(2)
α

����

· · · // I

[−]α
����
�
�
�

0 // Fα0 // F2
α0 // · · · // Iα

(5.16)

where [−]
(0)
α = id0 and [−]

(n+1)
α = qFnα0 ◦ F[−]

(n)
α . The horizontal arrows are defined as

in (2.1).
Since the functors F obtained from grammar (5.4) preserve surjections, we have that

all the maps [−]
(n)
α are surjective. The compositions Fn0 � Fnα0 → Iα form a cocone, thus

using the universal property of the colimit I we obtain a unique map [−]α : I→ Iα such that
diagram (5.16) commutes. To show that [−]α is surjective assume v, w : Iα → B are two
equivariant maps such that v[−]α = w[−]α. It follows that v and w equalise Fn0 � Fnα0→ Iα
for all n. Using the universal property of Iα, it follows that v = w. Hence [−]α is surjective.

Remark 5.16. We had to explain why the maps [−]
(n)
α are surjections. In Set this follows

easily, since all Set-functors preserve surjections (we just have to consider a right inverse).
In Nom we have equivariant surjective maps that do not have right inverses. E.g. the
unique map from V to the final nominal set {∗} has no equivariant right inverse, because
the support of ∗ is empty whereas all elements of V have non-empty support.

Given a binding signature (Σ, ar) we described α-equivalence on finite terms in two
equivalent ways:

• syntactically, as in Definition 5.12;
• semantically, via initial algebras, as in (5.16).

While the latter presentation of α-equivalence may seem rather pedantic, the abstract
perspective sheds some light on the problems one has with defining α-equivalence and finding
representatives for α-equivalence classes in the infinitary case.

22 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

5.3. Problems with Alpha Equivalence in the Infinitary Case. As an illustration,
let us first look at possible definitions of α-equivalence for the infinitary λ-calculus. We
see that there are two possible ways of defining α-equivalence classes and, contrary to all
expectations, they are not equivalent in case of a countable set of variables V.

Recall that the set of raw infinitary λ-terms Λ∞ is the final coalgebra of the Set-functor
in (3.4). We define α-equivalence on the set Λ∞ using truncations. This definition is slightly
different from, though equivalent, to those used in [KKSdV95, KKSdV97, KdV03].

Definition 5.17 (Alpha equivalence on infinitary λ-terms). We extend the notion of α-
conversion to the set Λ∞ via

M =α N iff Mn =α N
n for all n ∈ N.

We thus obtain the quotient
Λ∞/=α.

The notion of truncation can be extended to Λ∞/=α via [M]nα = [Mn]α.
A second approach to define the set of α-equivalence classes of infinitary terms is to

consider the metric completion of the quotient Λ/=α.

Definition 5.18 (Metric on α-equivalence classes). We define dα : Λ× Λ→ [0, 1] via

dα(M,N) = inf{2−n |Mn =α N
n, n ∈ N}. (5.17)

We have that dα is a pseudometric on Λ and dα(M,N) = 0 if and only if M =α N .
Thus dα gives rise to a metric on Λ/=α denoted by abuse of notation also by dα.

We consider the metric completion of Λ/=α with respect to dα, denoted by

(Λ/=α)∞.

Observe that dα extends to a pseudometric d∞α : Λ∞×Λ∞ → [0, 1] given by the same formula
as in (5.17). Then M =α N in the sense of Definition 5.17 if and only if d∞α (M,N) = 0.
Hence we obtain a metric on Λ∞/=α, also denoted by d∞α .

Theorem 5.19. Let V be uncountable. Then we have that (Λ∞/=α, d
∞
α) is isomorphic to

(Λ/=α)∞.

We do not include the proof of this theorem, since in this paper we are only interested
in the case where V is countable. The idea of the proof is to show that (Λ∞/=α, d

∞
α) is a

complete metric space and then to use the universality property of the metric completion.
This argument fails when the set of variables is at most countable. Indeed, we can show
that for countable V the space (Λ∞/=α, d

∞
α) is not complete.

Example 5.20. Assume that V is countable, say V = {x0, x1, . . .} and consider the sequence
([λxn.xn(x0(x1(. . . xn−1)))]α)n≥1 in Λ∞/=α. This is a Cauchy sequence with respect to d∞α ,
but has no limit in Λ∞/=α. Indeed, assume towards a contradiction that the limit ` exists.
On one hand we can prove that fv(`) = V, on the other hand ` should be of the form
[λu.u(x0(x1 . . .))]α for some variable u. But this contradicts the fact that u is free in `.

The example shows that with a countable V the two possible definitions of infinitary
λ-terms up to α-equivalence do not coincide. In other words, metric completion and quoti-
enting by α do not commute. We find the following formulation of this phenomenon useful
as well.

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 23

Remark 5.21. The canonical map

[−]α : Λ∞ → (Λ/=α)∞

taking the α-equivalence class of an infinitary λ-term is not surjective.

These problems of α-equivalence in the presence of countably many variables disappear
if we consider the set Λ∞ffv of infinitary terms with finitely many free variables.

Notation 5.22 (Restriction to finitely many free variables). Let Λ∞ffv denote the set {M ∈
Λ∞ | fv(M) is finite }.

Remark 5.23. Note that Λ∞ffv is different from the set (Λ∞)fs = Λ∞fs , defined in (4.2), of
λ-terms with finitely many variables, bound or free. We do have that Λ∞fs ⊆ Λ∞ffv, but the
inclusion is strict. Indeed, the following two terms belong to Λ∞ffv but not to Λ∞fs :

• ogre ≡ λx1.λx2.λx3 . . .
• infbv ≡ λx0.λx1.x0x1(λx2.x0x1x2(λx3.x0x1x2x3(. . .))).

For ogre we can find N ∈ Λ∞fs such that N =α ogre, e.g. N ≡ λx1.λx1.λx1 For infbv
this is not possible.

Remark 5.24. The equivalence relation =α of Definition 5.17 restricts to Λ∞ffv, but not to
Λ∞fs , as shown by ogre =α λx1.λx1.λx1 . . . where only the latter term is in Λ∞fs .

For all M,N ∈ Λ∞ffv we have that M =α N implies π ·M =α π · N . Hence we can
equip Λ∞ffv/=α with a S(V)-action given by π · [M]α = [π ·M]α and we can easily check that
(Λ∞ffv/=α, ·) is a nominal set. Indeed, [M]α ∈ Λ∞ffv/=α is supported by the finite set fv(M).

The permutation action on Λ/=α can be extended to (Λ/=α)∞ as follows. For each
π ∈ S(V) we have that π · (−) : Λ/=α→ Λ/=α is a uniformly continuous function with
respect to dα. Using the universal property of the metric completion, this function can be
extended to a uniformly continuous map on (Λ/=α)∞:

Λ/=α

π · (−) &&MMMMMMM
// (Λ/=α)∞

π · (−)

��

Λ/=α

''OOOOOOOO

(Λ/=α)∞

Thus we have a nominal set ((Λ/=α)∞fs , ·). In [KPSdV12] we showed that this nominal
set is isomorphic to (Λ∞ffv/=α, ·) and to the carrier of the final coalgebra of the Nom-functor
Lα. Hence, for each α-equivalence class of infinitary terms with finitely many variables we
can find a representative. This means that we have a surjective map

[−]α : Λ∞ffv → (Λ/=α)∞fs (5.18)

whose kernel is the α-equivalence relation on Λ∞ffv.

Remark 5.25. On the other hand, the restriction Λ∞fs → (Λ/=α)∞fs to Λ∞fs of (5.18) is not
surjective. For example the equivalence class of infbv ∈ Λ∞ffv is obtained as the limit of a
finitely supported (actually emptily supported) sequence:

24 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

[λx0.∗]α
[λx0x1.∗]α
[λx0x1.x0∗]α
. . .

and thus belongs to (Λ/=α)∞fs . However, for the term infbv there is no N ∈ Λ∞fs such that
N =α infbv.

To summarise, we have seen the following classes of λ-terms

Λ // //

����

Λ∞

����

Λ∞ffv

����

? _oo Λ∞fs
? _oo

��������������������

Λ∞/=α
��

��

Λ∞ffv/=α
��

∼=
����

Λ/=α
// // (Λ/=α)∞ (Λ/=α)∞fs

? _oo

(5.19)

with inclusions, injections and surjections as indicated by the arrows. Λ and Λ/=α are
initial algebras for L and Lα, respectively. Similarly Λ∞fs and (Λ/=α)∞fs are final coalgebras
for the same functors. But the coinductive situation is complicated by the fact that the
canonical map Λ∞fs → (Λ/=α)∞fs is not onto, that is, infinitary λ-terms upto α-equivalence
do not arise by quotienting, in Nom, the raw infinitary λ-terms (which do allow only finitely
many bound variables). Instead of Λ∞fs we need to work with Λ∞ffv, which is not a final
coalgebra. That Λ∞ffv can be given a semantic characterisation is one of the topics of the
next subsection.

5.4. Nominal Coalgebraic Data Types for Binding Signatures. The aim of this
section is to introduce nominal coalgebraic data types in their generality. We will generalise
the previous subsection to arbitrary binding signatures and give semantic characterisations
of all the vertices of (5.19). In particular, at the end of the section, we will have explained
the following diagram, which generalises (5.19) (eliding the middle row of (5.19) obtained
by epi-mono factorisations).

TΣ
// //

����

T∞Σ

��

(T∞Σ)ffv

����

? _oo (T∞Σ)fs? _oo

xxppppppppppp

TΣ/=α
// // (TΣ/=α)∞ (TΣ/=α)∞fs

? _oo

(5.20)

Recall from Section 5.2 the definition of TΣ and TΣ/=α. Also recall that TΣ and
TΣ/=α are initial algebras of the Nom-endofunctors F and Fα, (see respectively (5.11)

and (5.10)). The transformation TΣ
// // TΣ/=α induced by a natural transformation

F→ Fα is quotienting by α-equivalence. Next, we define T∞Σ .

Definition 5.26 (Infinitary terms coming from a binding signature). Consider a binding
signature (Σ, ar).

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 25

(1) The set of infinitary raw terms T∞Σ is defined coinductively by

(x ∈ V)
x ∈ T∞Σ

t1 ∈ T∞Σ , . . . , tk ∈ T∞Σ
(ar(op) = n1, . . . , nk)

op(〈x1〉.t1, . . . , 〈xk〉.tk) ∈ T∞Σ
(5.21)

(2) Truncation of raw terms at depth n is defined by induction on n:

t0 = ∗

tn+1 =

 x if t = x ∈ V

op(〈x1〉.tn1 , . . . , 〈xk〉.tnk) if t = op(〈x1〉.t1, . . . , 〈xk〉.tk)

(5.22)

where {∗} is a terminal object in Nom.
(3) To define α-equivalence, let t and s be two infinitary raw terms in T∞Σ . We say

that t =α s when the truncations at all depths are α-equivalent in the sense of
Definition 5.12, that is, for all n we have tn =α s

n.
(4) The sets fv(t) and bv(t) of free and bound variables of an infinitary raw term t ∈ T∞Σ

are defined as follows.

fv(t) =
⋃
n∈N fv(tn) bv(t) =

⋃
n∈N bv(tn).

Remark 5.27. T∞Σ is the final coalgebra for the Set-functor defined in (5.12).

Definition 5.28. We denote by (TΣ/=α)∞ the metric completion of TΣ/=α with respect
to the metric dα given by

dα([t]α, [s]α) = inf{2−n | tn =α s
n, n ∈ N}.

Notice that (TΣ/=α)∞ is equipped with a canonical permutation action, but it is not a
nominal set, since not all elements are finitely supported (namely those terms with infinitely
many free variables).

Remark 5.29. Going back to Section 2, and in the notation of (5.16), we have that
U I ∼= UFω0 ∼= TΣ and U Iα ∼= UFωα0 ∼= TΣ/=α. The completions T∞Σ and (TΣ/=α)∞ then can
be obtained as limits of ωop-sequences:

1 oo

��

����

UF1 oo

U [−]
(1)
α

����

UF21 oo

U [−]
(2)
α

����

· · · oo limUFn1 ∼= T∞Σ

[−]α
��

1 oo UFα1 oo UF2
α1 oo · · · oo limUFnα1 ∼= (TΣ/=α)∞

(5.23)

Moreover, the horizontal arrows in the diagram are precisely the truncations (with 1 = {∗})
and the kernels of the vertical arrows capture the α-equivalence of Definition 5.26. Since

all maps [−]
(n)
α : Fn1 → Fnα1 are surjective, each element of Fnα1 can be expressed as the

α-equivalence class of a raw term t ∈ Fn1. If [t]α ∈ Fnα1 we have that supp([t]α) = fv(t).

The set limUFnα1 ∼= (TΣ/=α)∞ appears to be a natural domain for infinitary terms up
to α-equivalence and it will reappear in Section 6.5. But it fails to have desirable properties.
Indeed, it is not a final coalgebra of a Set-functor in any obvious way, nor is it a nominal
set. Moreover the map [−]α : T∞Σ → (TΣ/=α)∞ is not surjective in general, as shown by
Example 5.20. In the case of the infinitary λ-calculus we solved this issue by restricting

26 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

our attention to terms with finitely many free variables [KPSdV12]. We do the same in the
case of a general binding signature.

Recalling from (4.2) the notation (−)fs, we now obtain from the rightmost edge of (5.23)

(T∞Σ)fs and (TΣ/=α)∞fs . (5.24)

In the first case we restrict to finitely many variables and in the second case to finitely many
free variables. More precisely, (TΣ/=α)∞fs consists of limits of Cauchy sequences ([tn]α)n of
α-equivalence classes of finite terms which altogether have only finitely many free variables,
that is,

⋃
n

fv(tn) is finite. Similarly (T∞Σ)fs consists of limits of Cauchy sequences (tn)n of

finite terms which altogether have only finitely many variables.

Remark 5.30. According to Theorem 5.5, we have that (T∞Σ)fs, respectively (TΣ/=α)∞fs ,
can be taken to be the final F-coalgebra T, respectively the final Fα-coalgebra Tα.

Just as in the case of the initial chains (see (5.16)), the natural transformation q : F→
Fα defined by (5.15) induces a unique map T → Tα from the final F-coalgebra to the final
Fα-coalgebra. However, unlike in the initial algebra situation (5.16), the induced map [−]α
is not surjective in general, see Remark 5.25. The aim of the remainder of this section is
to prove that, nevertheless, Tα is the quotient by α-equivalence of the infinitary terms with
finitely many free variables for which we introduce the following notation.

Definition 5.31. Denote by
(T∞Σ)ffv (5.25)

the set of elements of T∞Σ having only finitely many free variables.

Notice that (T∞Σ)ffv consists of limits of Cauchy sequences (tn)n of finite terms which
altogether have only finitely many free variables. The definition above relies on the syntactic
notion of free variable. Proposition 5.33 shows that a semantic definition is possible. To

this end, we first give a semantic definition of the inclusion (TΣ/=α)∞fs
� � // (TΣ/=α)∞ as

the map ια arising in (5.26).

Remark 5.32. As a final F-coalgebra, T induces a cone over the sequence (Fn1)n<ω, du-
alising (5.16). This induces a unique map ι : UT→ limUFn1. In the same way, by finality
of Tα, one obtains ια : UTα → limUFnα1.

1 oo

��

UF1 oo

����

UF21 oo

����

· · · oo limUFn1 oo ι

[−]α
��

UT

U [−]α
��

(∗)

1 oo UFα1 oo UF2
α1 oo · · · oo limUFnα1 oo

ια
UTα

(5.26)

Proposition 5.33. The set (T∞Σ)ffv of infinitary raw terms with finitely many free variables
is the pullback of the maps ια : UTα → limUFnα1 and [−]α : limUFn1→ limUFnα1.

limUFn1

[−]α
��

(T∞Σ)ffv

[−]α
��

? _oo �_

limUFnα1 UTα
ιαoo

(5.27)

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 27

Proof. First we have to define the map [−]α : (T∞Σ)ffv → UTα. Given t ∈ (T∞Σ)ffv, notice
that we can construct a finitely supported sequence in the sets Fnα1 by applying the map

[−]
(n)
α to the truncations at depth n of t. Indeed, each [tn]

(n)
α is supported by the finite set

of free variables in t. We define [t]α ∈ Tα to be the unique element whose projection in Fnα1

is exactly [tn]
(n)
α for all n. We can easily check that the square (5.27) commutes.

Consider a pair (t, s) with t ∈ limUFn1 ' T∞Σ and s ∈ UTα such that ια(s) = [t]α.

This implies that [tn]
(n)
α is equal to the projection of s into Fnα1, and thus the free variables

of each truncation tn are contained in the finite set that supports s. Therefore t has finitely
many free variables, that is, t ∈ (T∞Σ)ffv and s = [t]α. So (T∞Σ)ffv is indeed a pullback.

To summarise, we are now ready to give a semantic version of diagram (5.20) – which
we set about to prove at the beginning of the section:

I // //

����

limUFn1

��

P

����

? _oo �_
T? _oo

||yyyyyyyyy

Iα // // limUFnα1 Tα? _oo

(5.28)

with I and Iα the initial algebras as well as T and Tα the final (or terminal) coalgebras of
F and Fα, and P being a pullback in Set. To improve readability we omitted writing the
forgetful functor U : Nom→ Set in (5.28).

The map T � � // P above is obtained using the universal property of P and the com-

mutativity of the square (∗) in (5.26) and corresponds to the inclusion (T∞Σ)fs
� � // (T∞Σ)ffv ,

(see Proposition 5.33).

Theorem 5.34. Completing TΣ by Cauchy sequences (tn)n such that
⋃
n

fv(tn) is finite and

quotienting by α-equivalence commute. This means that

• the two equivalent diagrams below commute

U I

[−]α
����

// P

[−]α
����

U Iα // UTα

TΣ

[−]α
����

// (T∞Σ)ffv

[−]α
����

TΣ/=α
// (TΣ/=α)∞fs

semantic version syntactic version;

(5.29)

• the map [−]α : P → UTα is surjective, or equivalently each element in (TΣ/=α)∞fs
can be represented as an equivalence class of an infinitary raw term with finitely
many free variables.

Proof. The first bullet is easier to prove. We show that the semantic version of (5.29)
commutes, using the commutativity of

I

[−]α
����

// T

[−]α
��

Iα // Tα

(5.30)

The argument uses the finality of Tα and the fact that all the four arrows in (5.30) are
Fα-coalgebra morphisms.

28 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

By pasting the right-hand triangle of (5.28), we obtain the commutativity of the desired
diagram:

U I

[−]α
����

// UT

[−]α
��

� � // P

}}||||||||

U Iα // UTα

(5.31)

The second part of the theorem, stating that the map P → UTα in

1 oo

��

UF1 oo

����

UF21 oo

����

· · · oo limUFn1 oo

��

P

��

1 oo UFα1 oo UF2
α1 oo · · · oo limUFnα1 oo

ια
UTα

(5.32)

is surjective can be proved by going back to the syntax as in [KPSdV12], just that this
time, due to generalising from λ-calculus to binding signatures, the notation becomes even
heavier and quite unpleasant. Therefore, we will give a semantic proof in the next section,
so that surjectivity becomes a consequence of Theorem 5.72. This, in turn, is a consequence
of a more general result Theorem 5.46 about limits of sequences in nominal sets and will be
proved in the next section.

We state explicitly the most important consequence of the theorem as a corollary.

Corollary 5.35 (Nominal coalgebraic data types). The nominal set ((T∞Σ)ffv/=α, ·) of α-
equivalence classes of infinitary terms with finitely many free variables is the final coalgebra
for the functor Fα : Nom→ Nom corresponding to a binding signature (Σ, ar):

Fα X = V +
∐
op∈Σ

ar(op)=n1,...,nk

[V]n1X × . . .× [V]nkX. (5.33)

Remark 5.36. Let us point out that Diagram (5.28) does not actually depend on the func-
tors F,Fα arising from a binding signature and makes sense for any pair of Nom-endofunctors
F,Fα and any component-wise surjective natural transformation F → Fα subject to some
natural conditions (which are satisfied by functors that do arise from binding signatures),
namely that F preserves surjections and that both F,Fα have initial algebras and final coal-
gebras. Finally, we want the surjectivity of P → Tα and we give a semantic analysis of it
in the next subsection.

5.5. Presenting Limits in Nominal Sets. The motivation of this section is to give a
semantic proof of the fact that the final Tα-coalgebra is the quotient by α-equivalence of
(T∞Σ)ffv, the infinitary terms with finitely many free variables. We move this proof into
a separate subsection because the semantic analysis depends on certain facts on limits in
nominal sets and leads to a novel notion of ‘bound variable relative to a map’ which may
be of independent interest.

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 29

5.5.1. Bound variables, safe maps, and safe squares.

In nominal sets, the syntax dependent notion of free variable is replaced by the seman-
tic concept of minimal finite support. What about bound variables? Consider [−]α :
Λ → Λ/ =α and x(λy.y) ∈ Λ. Then the bound variables of xλy.y can be computed as
supp(xλy.y) \ supp([xλy.y]α) = {x, y} \ {x} = {y}. Of course, this calculation depends on
being able to assume that the bound variables and free variables of xλy.y do not overlap, or,
in the terminology of [KPSdV12], that xλy.y is α-safe. The next definition gives a semantic
formulation of an element being safe with respect to a map, which now does not need to be
a quotient by α-equivalence.

Definition 5.37 (Safe element). Let f : X → Y be an equivariant function. We call u ∈ X
f -safe when

|supp(u)| = max{ |supp(v)| | v ∈ f−1(f(u))}. (5.34)

The maximum in the right-hand side of 5.35 does not always exist, see Example 5.44.

Example 5.38 ([−]α-Safe Terms). We consider the equivariant map [−]α : Λ → Λ/=α.
Then M is an [−]α-safe term if it has a maximal number of variables among all the repre-
sentatives of its α-equivalence class. The terms x(λy.y) and λx.x(λy.y) are [−]α-safe but
x(λx.x) and λx.x(λx.x) are not.

Remark 5.39 (α-safe Term). A term M ∈ Λ is α-safe in the sense of [KPSdV12, Defini-
tion 19] if and only if M is [−]α-safe in the sense of Definition 5.37. Intuitively, a λ-term
M is α-safe when bv(M)∩ fv(M) = ∅ and M does not have two different λ’s with the same
binding variable, i.e. if λx and λy occur in two different positions of M then x 6= y.

If a λ-term M is [−]α-safe then the set bv(M) of bound variables of M is equal to
var(M) \ fv(M) = supp(M) \ supp([M]α). This motivates the following notation.

Notation 5.40. If f : X → Y is an equivariant map then we define

bvf (u) = supp(u) \ supp(f(u)).

When no confusion may arise, we omit the subscript and write bv(u) instead of bvf (u).

Remark 5.41. Let f : X → Y be equivariant and u ∈ X. Then supp(f(u)) ⊆ supp(u) and
|bvf (u)| = |supp(u)| − |supp(f(u))|.

Lemma 5.42. Let f : X → Y be an equivariant map. Then u is f -safe if and only if

|bvf (u)| = max{ |bvf (v)| | v ∈ f−1(f(u))}. (5.35)

Proof. Assume u is f -safe and consider v ∈ Y such that f(v) = f(u). Then

|bvf (u)| = |supp(u)| − |supp(f(u))| ≥ |supp(v)| − |supp(f(v))| = |bvf (v)|.
The converse is similar.

30 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

Definition 5.43 (Safe map). Let f : X → Y be an equivariant map in Nom. We call f
safe when for all v ∈ Y there exists an f -safe u ∈ X such that f(u) = v.

Example 5.44. The map [−]α : Λ → Λ/=α is safe [KPSdV12, Lemma 20]. But the map
! : Pfin(V)→ {∗} is not.

A diagram such as (5.36) is a weak pullback if for all identified u and v, there is a z
witnessing this fact, that is, if f(u) = q(v) then there exists z ∈ Z such that u = p(z) and
v = g(z). In the following we will need a similar but weaker condition, which, intuitively,
requires the existence of a witness only up to the renaming of bound variables.

Definition 5.45 (Safe square). A square

X oo
p

f
��

Z

g
��

W oo
q Y

(5.36)

is a safe square when for all f -safe u ∈ X and for all v ∈ Y such that f(u) = q(v) and
bvf (u)#v there exists a g-safe z ∈ Z such that p(z) = u and g(z) = v.

5.5.2. Representing limits in nominal sets.

Consider two ωop-chains in Nom and let limXn, respectively limYn denote their limits in
Nom.

X0
oo
p1

f0
����

X1
oo
p2

f1
����

X2
oo

f2
����

· · · oo limXn

f
��
�
�
�

Y0
oo
q1

Y1
oo
q2

Y1
oo · · · oo limYn

(5.37)

By the universal property of the limits we obtain a map f : limXn → limYn. In the
category of sets, we have the theorem that if all the squares are weak pullbacks and all the
fn are surjective, then f is surjective. But in our main example where the fn quotient by
α-equivalence, the squares are not weak pullbacks.

Recalling that U : Nom → Set denotes the forgetful functor, consider the limits of the
two chains in Set

UX0
oo

f0
����

UX1
oo

f1
����

UX2
oo

f2
����

· · · oo limUXn

g
��
�
�
�

oo a ___ U limXn

Uf
��

(∗)

UY0
oo UY1

oo UY1
oo · · · oo limUYn oo

b
___ U limYn

(5.38)

By the universal property of limits, there exist unique maps a : U limXn → limUXn and
b : U limYn → limUYn making the square (∗) commutative. Again, the map g : limUXn →
limUYn induced in the limit may not be surjective in general, see Example 5.20.

However we can prove the following general result:

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 31

Theorem 5.46. Assume that diagram (5.37) is such that for all n the square

Xn
oo
pn

fn
����

Xn+1

fn+1
����

Yn oo
qn

Yn+1

(5.39)

is safe and fn is a safe map. Let P denote the pullback

limUXn

g
��

oo r
P

h
��

�_

limUYn oo

b
U limYn

(5.40)

Then h : P → U limYn is a surjection.

Proof. We start with v ∈ limYn. Consider the projections vn ∈ Yn of v obtained via the
projections of the limiting cone. Since qn(vn+1) = vn and qn are equivariant maps we have
the following inclusions of finite sets

supp(v0) ⊆ supp(v1) ⊆ . . . ⊆ supp(v).

Thus the sequence stabilises eventually, that is, there exists n such that supp(vn) = supp(vn+k)
for all natural numbers k. Moreover since v = (v0, v1, . . .) we have that for all k ≥ 0

supp(vn+k) = supp(v).

We will now construct u = (u1, u2, . . .) in limUXn such that g(u) = b(v). First let un ∈ Xn

be an fn-safe element such that fn(un) = vn. For each k ≥ 1, we define an fn+k-safe
un+k ∈ Xn+k such that pn+k(un+k) = un+k−1 and fn+k(un+k) = vn+k.

The proof is by induction on k. Since supp(vn+1) = supp(vn), we have that (supp(un) \
supp(vn)) ∩ supp(vn+1) = ∅. Since all the squares (5.39) are safe squares, there exists an
fn+1-safe element un+1 ∈ Xn+1 in the preimage of vn+1 such that pn+1(un+1) = un. This
shows that the claim is true for k = 1.

For the inductive step k → k+1, notice that (supp(un+k)\supp(vn+k))∩supp(vn+k+1) =
∅ and that un+k is fn+k-safe. Using the safe square property, there exists fn+k+1-safe
un+k+1 ∈ Xn+k+1 with the desired properties.

For m < n define um = pmpm+1 . . . pn(un). Now observe that (u0, u1, . . .) is an element
of limUXn whose image in limUYn is (v0, v1, . . .). This means that

g((u0, u1, . . .)) = b(v).

Since P is the pullback of g and b, there exists w ∈ P such that r(w) = (u0, u1, . . .) and
h(w) = v. Thus h : P → U limYn is surjective.

Going back to Theorem 5.34 and looking at (5.32), we find that so far we established
the following corollary of Theorem 5.34.

Corollary 5.47. Let F,Fα be endofunctors on Nom having final coalgebras, and let F→ Fα
be a component-wise surjective natural transformation, and P be a pullback as in (5.20).
Moreover assume that F preserves surjections. If

• the induced maps [−]
(n)
α : Fn1→ Fnα1 are safe

32 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

• and the squares

Fn1 oo

[−]
(n)
α

����

Fn+11

[−]
(n+1)
α

����

Fnα1 oo Fn+1
α 1

(5.41)

are safe squares,

then P → UTα is onto.

In the following we will prove the second part of Theorem 5.34 using Corollary 5.47,
that is, by establishing the two bullet points above. Let us briefly outline the structure of

that argument. Recall that the maps [−]
(n)
α are defined inductively as follows: [−]

(0)
α = id1

and [−]
(n+1)
α = qFnα1 ◦ F([−]

(n)
α). Also recall that the natural transformation q : F → Fα is

defined inductively depending on the structure of F and Fα using the rules (5.15). Therefore,
the argument will proceed by induction on n and on the structure of F. For this, we need
some structural closure properties for safe maps. To this end, we also study a special case
of safe maps, namely maps with orbit-finite fibres. This will help us to prove the first bullet
point of Corollary 5.47. For the second bullet we need a detailed study of safe squares. This
is eventually done in Section 5.5.5.

5.5.3. Some properties of safe elements and safe maps.

Lemma 5.48. If u ∈ X is f -safe and π is an arbitrary finite permutation then π · u is
f -safe.

Proof. Suppose u ∈ X is f -safe. Consider v ∈ X such that v ∈ f−1(f(π · u)). Then
π−1 · v ∈ f−1(f(u)) because f is equivariant. Using Remark 4.6 we conclude

|supp(π · u)| = |supp(u)| ≥ |supp(π−1 · v)| = |supp(v)|.

Lemma 5.49. Assume f : X → Y is safe. Consider v ∈ Y and let S be an arbitrary finite
set of names. Then there exists an f -safe u ∈ f−1(v) such that bv(u) ∩ S = ∅.

Proof. Since f is safe, there exists an f -safe u ∈ f−1(v). Let T = S∩bv(u). If T is empty we
are done. If not, let T ′ be a finite set of names fresh for u, v, S which has the same number
of elements as T . Let π denote a finite permutation that swaps the elements of T and T ′

and fixes the remaining names in V. Then π · x = x for all x ∈ supp(v), thus π · u ∈ f−1(v).
By Lemma 5.48, π · u is f -safe. Moreover, by Remark 4.6 we have supp(π · u) = π · supp(u)
and thus bv(π · u) ∩ S = ∅.

Lemma 5.50. Assume f1 : X1 → Y1 and f2 : X2 → Y2 are safe maps. Then (u1, u2) is
(f1 × f2)-safe if and only if the following hold

ui is fi-safe for i = 1, 2

bv(u1)#u2

bv(u2)#u1.

(5.42)

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 33

Proof. Assume (u1, u2) satisfy (5.42) and let vi denote fi(ui) for i = 1, 2. We will show that
(u1, u2) ∈ (f1 × f2)−1(v1, v2) is (f1 × f2)-safe. First observe that

bv(u1, u2) = (supp(u1) ∪ supp(u2)) \ (supp(v1) ∪ supp(v2))

= (supp(u1) \ supp(v1)) \ supp(v2)∪

∪ (supp(u2) \ supp(v2)) \ supp(v1)

= bv(u1)] bv(u2).

(5.43)

The last equality holds by (5.42). Therefore

|bv(u1, u2)| = |bv(u1)|+ |bv(u2)|. (5.44)

In order to show that (u1, u2) is indeed (f1× f2)-safe consider (u′1, u
′
2) ∈ (f1× f2)−1(v1, v2).

We have the inequalities

|supp(u′1, u
′
2) \ supp(v1, v2)| = |(supp(u′1) ∪ supp(u′2)) \ (supp(v1) ∪ supp(v2))|

≤ |(supp(u′1) \ (supp(v1) ∪ supp(v2)))|+

+ |(supp(u′2) \ (supp(v1) ∪ supp(v2)))|

≤ |(supp(u′1) \ supp(v1)|+ |(supp(u′2) \ supp(v2)|

≤ |bv(u1)|+ |bv(u2)|.

(5.45)

The last inequality holds because u1 and u2 are f1-safe, respectively, f2-safe. Thus, us-
ing (5.44), we can conclude that

|supp(u′1, u
′
2) \ supp(v1, v2)| ≤ |bv(u1, u2)|.

Conversely, assume that (u′1, u
′
2) ∈ (f1×f2)−1(v1, v2) is (f1×f2)-safe. By Lemma 5.49,

there exists u1 ∈ f−1
1 (v1) an f1-safe element such that

bv(u1) ∩ supp(u2) = ∅. (5.46)

Similarly, there exists u2 ∈ f−1
2 (v2) an f2-safe element such that

bv(u2) ∩ supp(u1) = ∅. (5.47)

From (5.46) and (5.47) we can derive (5.42). By the first part of the proof we know that
(u1, u2) is (f1×f2)-safe and that the inequalities of (5.45) hold. Since (u′1, u

′
2) is also (f1×f2)-

safe we know that all the inequalities of (5.45) are equalities. For the last inequality of (5.45),
this implies that each u′i is fi-safe. For the second inequality of (5.45), this implies that
bv(u′1)#f2(u2) and bv(u2)#f1(u1). Hence, by the fact that also the first inequality of (5.45)
is actually an equality we have that bv(u′1)#bv(u′2). Since supp(u′1) = bv(u′1)∪ supp(f1(u′1))
we conclude that bv(u′2)#u′1. Similarly bv(u′1)#u′2.

Lemma 5.51. Let f : X → Y and g : Y → W be equivariant maps. If u is gf -safe, then
u is f -safe.

Proof. Consider v ∈ f−1(f(u)). Then gf(v) = gf(u). Since u is gf -safe, we have that
|supp(v)| ≤ |supp(u)|.

34 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

Unfortunately, safe maps are not closed under composition as the next example shows.

Example 5.52. Consider the set N of natural numbers as a nominal set equipped with
the trivial action and let Pfin(V) denote the nominal set of all finite subsets of V. Let
f : Pfin(V)→ N denote the map which sends any finite set of names to its cardinal and let
g : N → {∗} denote the unique map from N into the final nominal set {∗}. Both f and g
are equivariant and safe, but their composition g ◦ f is not safe.

Therefore we need a stronger notion of maps that still accommodates our examples but
with better closure properties. This is the purpose of the next section.

5.5.4. Maps with orbit-finite fibers.

In this section, we introduce the notion of maps with orbit-finite fibers and use it to

prove that the maps [−]
(n)
α : Fn1→ Fnα1 are safe.

Definition 5.53 (Orbite-finite fibers). We say that a Nom-morphism f : X → Y has orbit-
finite fibers when for all v ∈ Y we have that f−1(v) is included in the union of finitely many
orbits of X.

Lemma 5.54. The following are equivalent:

(1) f has orbit-finite fibers.
(2) For all v ∈ Y there exists a finitely presentable nominal subset Xv ⊆ X such that

f−1(v) ⊆ Xv.
(3) For all finitely presentable nominal subset Y ′ ⊆ Y the nominal subset f−1(Y ′) of X

is finitely presentable.

Proof. (1) ⇐⇒ (2) is immediate. (2) =⇒ (3): Consider Y ′ ⊆ Y a finitely presentable
nominal subset. Then Y ′ is a finite union of orbits Ov1 ∪ . . . ∪ Ovn . We have picked
generators v1, . . . , vn for these orbits. For each i there exists a finitely presentable nominal
subset Xi ⊆ X with f−1(vi) ⊆ Xi. Then for all π we have that f−1(π · vi) ⊆ π ·Xi = Xi.
Therefore f−1(Ovi) ⊆ Xi. Therefore, f−1(Y ′) ⊆ X1 ∪ . . . ∪ Xn. Since a finite union of
finitely presentable nominal sets is a finitely presentable nominal set, we conclude that
f−1(Y ′) is a nominal subset of a finitely presentable nominal set, thus it is itself a finitely
presentable nominal set. (3)⇐= (2): Consider v ∈ Y . Put Y ′ to be the one-orbit nominal
set generated by v. By (3) we have that f−1(Y ′) is a finitely presentable nominal subset of
X. We obviously have that f−1(v) ⊆ f−1(Y ′).

Lemma 5.55. If f : X → Y is surjective and has orbit-finite fibers, then f is safe.

Proof. If two elements of X are in the same orbit of f−1(v) their supports have the same
number of variables. Indeed, if u, u′ ∈ f−1(v) and u′ = π ·u for some permutation π, we have
that supp(u′) = π · supp(u), thus supp(u) and supp(u′) have the same number of elements.
By hypothesis f−1(v) is included in the union O1 ∪ . . . ∪ On of finitely many orbits of X.
By the above observation, the set

{|supp(u)| | u ∈ Oi ∩ f−1(v)}
is a singleton for each 1 ≤ i ≤ n. Since we have only finitely many orbits, it follows that

{|supp(u)| | u ∈ f−1(v)}
has at most n elements, and therefore has a maximum. Thus f is safe.

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 35

Lemma 5.56. Functions with orbit-finite fibers are closed under (1) finite products, (2)
coproducts, (3) abstraction, and (4) composition.

Proof.

(1) Consider fi : Xi → Yi for i = 1, 2 with orbit-finite fibers. Consider (v1, v2) ∈ Y1×Y2.
There exists finitely presentable nominal subsets X ′i ⊆ Xi such that f−1

i (vi) ⊆ X ′i.

Then (f1 × f2)−1(v1, v2) = f−1
1 (v1) × f−1

2 (v2) ⊆ X ′1 × X ′2. But, since orbit-finite
nominal sets are closed under finite products, see for example [BBKL12, Lemma 2],
we have that X ′1 ×X ′2 is orbit-finite, so we are done.

(2) That’s easy, component-wise.
(3) Consider f : X → Y with orbit-finite fibers. We want to prove that [V]f also has

orbit-finite fibers. Notice that

([V]f)−1(〈x〉v) = {〈x〉u | u ∈ f−1(v)}.
There exist a finitely presentable nominal subset X ′ ⊆ X such that f−1(v) ⊆ X ′.
Therefore ([V]f)−1(〈x〉v) ⊆ [V]X ′. By Lemma 4.18 we know that [V]X ′ is finitely
presentable.

(4) Assume f : X → Y and g : Y →W have orbit-finite fibers. We show that g ◦ f also
has orbit-finite fibers. Let w ∈ W . Then g−1(w) ⊆ Y ′ for some finitely presentable
nominal subset Y ′ of Y . By Lemma 5.54 we have that f−1(Y ′) is finitely presentable.
Since (g ◦ f)−1(w) = f−1(g−1(w)) ⊆ f−1(Y ′) we are done.

Example 5.57. The function θX : V×X → [V]X has orbit-finite fibers. Indeed, notice that
θ−1(〈x〉v) ⊆ V ×Ov where Ov is the orbit spanned by v. But V ×Ov is finitely presentable,
so we are done.

Lemma 5.58. The maps qX : FX → FαX have orbit-finite fibers.

Proof. This is proved by induction on the structure of F, since the map qX is obtained from
the identity map and θX , via products, coproducts and composition. We can therefore
apply Lemma 5.56.

Proposition 5.59. The maps [−]
(n)
α : Fn1→ Fnα1 have orbit-finite fibers and are safe.

Proof. We use induction on n. The base case is clear since [−]
(0)
α = id1. For the inductive

step, notice that [−]
(n+1)
α = qFnα1 ◦ F([−]

(n)
α). By items (1) and (2) of Lemma 5.56 we

have that F([−]
(n)
α) has orbit-finite fibers. Then we can apply item (4) of Lemma 5.56

and Lemma 5.58 to derive that [−]
(n+1)
α also has orbit-finite fibers. Since the [−]

(n)
α are

surjective, it follows from Lemma 5.55 that they are safe.

The maps with orbit-finite fibers have nice closure properties, but safe elements do not
behave well with respect to composition, as shown in the next example.

Example 5.60. Let P2(V) be the nominal set of two-element sets of names and let f :
V + P2(V) → V + 1 denote the map idV+! where ! denotes the unique map into the final
nominal set. Let g denote the unique map from V + 1 to 1. Notice that f , g (and therefore
their composition) have orbit-finite fibers and are safe. Nevertheless

• u ∈ V is f -safe and f(u) = u is g safe, but u is not (g ◦ f)-safe.
• {u, v} is (g ◦ f)-safe, but f({u, v}) is not g-safe.

Therefore, in the next section we need to study the properties of safe squares.

36 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

5.5.5. Properties of safe squares.

In the first part of this section we will show that safe squares are closed under products and
coproducts. Then we will show that also the ‘vertical’ composition of safe squares is safe
provided that some additional properties are satisfied by the maps at issue. This allows
us to prove the second bullet point of Corollary 5.47 and conclude our main result on the
surjectivity of P → UTα in Theorem 5.72.

Lemma 5.61. Consider a safe square

X oo
p

f
��

Z

g
��

W oo
q Y

(5.48)

If u ∈ X is f -safe, v ∈ Y and S is a finite subset of V such that f(u) = q(v), bvf (u)#v
and bvf (u)#S there exists a g-safe z ∈ Z such that p(z) = u, g(z) = v and bvg(z)#S.

Proof. By the definition of safe squares there exists a g-safe z such that g(z) = v and
p(z) = u. Let T denote the intersection S ∩ bvg(z). If T is empty we are done. Otherwise
consider a set T ′ of names fresh for u, v, z, S having the same cardinality as T and let π
denote a finite permutation that swaps the elements of T with the elements of T ′ and fixes
all the other elements of V. We will show that π · z has all the required properties. By
Lemma 5.48, π · z is g-safe. In order to prove that g(π · z) = v it is enough to check that
π · x = x for all x ∈ supp(v). This is true because T ⊆ bvg(z) and bvg(z) ∩ supp(v) = ∅,
hence T ∩ supp(v) = ∅. In order to check that p(π · z) = u, it is enough to show that
π · x = x for all x ∈ supp(u). But supp(u) = bvf (u) ∪ supp(f(u)) ⊆ bvf (u) ∪ supp(v). We
have established that T ∩ supp(v) = ∅. On the other hand, T ⊆ S and S#bvf (u) imply that
T ∩bvf (u) = ∅. Hence T#u. Since T ′#u we obtain that π fixes all the names in supp(u).

Lemma 5.62. Safe squares are closed under finite products and coproducts.

Proof. The case of coproducts is easy. We show the closure of safe squares under finite
products. Assume

Xi

fi
��

oo
pi

Zi

qi
��

Wi
oo
gi

Yi

(5.49)

for i ∈ {1, 2} are safe squares. We will show that

X1 ×X2

f1 × f2
��

oo
p1 × p2

Z1 × Z2

q1 × q2
��

W1 ×W2
oo

g1 × g2
Y1 × Y2

(5.50)

is a safe square. Consider f1×f2-safe (u1, u2) and (v1, v2) ∈ Y1×Y2 such that bv(u1, u2)#(v1, v2)
and fi(ui) = gi(vi). By Lemma 5.50 we know that ui is fi-safe and that bv(u1)#bv(u2).

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 37

Moreover we can compute that

bv(u1, u2) = bv(u1)] bv(u2).

Since bv(u1)#v2 and bv(u1)#bv(u2), by Lemma 5.61 (applied for S = bv(u2)) we can find
z1 ∈ Z1 such that

• bv(z1)#v2 and bv(z1)#bv(u2)
• z1 is q1-safe.
• q1(z1) = v1 and p1(z1) = u1.

Since bv(u2)#v1 and bv(u2)#bv(z1), by Lemma 5.61 (applied for S = bv(z1)) we can find
z2 ∈ Z2 such that

• bv(z2)#v1 and bv(z2)#bv(z1).
• z2 is q2-safe.
• q2(z2) = v2 and p2(z2) = u2.

By construction we have that bv(z1)#v2, bv(z2)#v1 and bv(z2)#bv(z1). It follows that
bv(z1)#z2 and bv(z2)#z1. By Lemma 5.50 we know that (z1, z2) is (q1 × q2)-safe.

Next we will show that under some mild conditions safe squares are closed under vertical
composition. Safe squares resemble weak pullbacks. It is straightforward to show that
vertical composition of weak pullbacks gives a weak pullback. However, in the case of
safe squares, some additional constraints are imposed on the elements, such as f -safety.
Therefore, safe elements should behave well with respect to the vertical composition of the
maps. We will find the following definitions handy.

Definition 5.63 (Forward-safe). Let f : X → Y and g : Y → W be safe maps. We say
that the pair (f, g) is forward-safe if, for all u ∈ X such that u is (g ◦ f)-safe, we have that
f(u) is g-safe.

Definition 5.64 (Backward-safe). Let f : X → Y and g : Y → W be safe maps. We say
that the pair (f, g) is backward-safe if, for all u ∈ X such that u is f -safe and f(u) is g-safe,
we have that u is (g ◦ f)-safe.

Lemma 5.65. Consider the following diagram

X1
oo
p

f
��

X2

h
��

(1)

Y1
oo
q

g
��

Y2

k
��

(2)

W1
oo
s W2.

(5.51)

such that (1) and (2) are safe squares, the pair (f, g) is forward-safe and the pair (h, k) is
backward-safe. Then the outer square in (5.51) is a safe square.

Proof. Consider u1 ∈ X1 and w2 ∈ W2 such that u1 is (g ◦ f)-safe, bvgf (u1)#w2 and
gf(u1) = s(w2). Since (f, g) is forward-safe we have that f(u1) is g-safe. We also have that
bvg(f(u1))#w2, because bvg(f(u1)) ⊆ bvgf (u1). Since (2) is a safe square there exists a
k-safe v2 ∈ Y2 such that k(v2) = w2 and q(v2) = f(u1).

38 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

Moreover by Lemma 5.61 we can assume that

bvk(v2)#bvf (u1). (5.52)

We can apply Lemma 5.61 in this case because bvf (u1)#bvg(f(u1)).
By Lemma 5.51 u1 is f -safe. We also have that bvf (u1)#v2. This holds because

supp(v2) = bvk(v2)] supp(w2) and both bvk(v2) and supp(w2) are fresh for bvf (u1). The
former is by (5.52) while the latter holds because bvf (u1) ⊆ bvgf (u1) and bvgf (u1)#w2.
Since q(v2) = f(u1), we use that (1) is a safe square to derive the existence of an h-safe
u2 ∈ X2 that satisfies p(u2) = u1 and h(u2) = v2. Since (h, k) is a backward-safe pair of
maps, u2 is h-safe and h(u2) = v2 is k-safe, we conclude that u2 is also (k ◦h)-safe and thus
satisfies all the requirements.

Lemma 5.66. If u is f -safe and x#bvf (u) then (x, u) is (θ ◦ (V × f))-safe.

Proof. By Lemma 5.50, (x, u) is (V × f)-safe. Consider (y, v) such that 〈x〉f(u) = 〈y〉f(v).
We will show that |supp(y, v)| ≤ |supp(x, u)|. We have that f(u) = (y x) · f(v). Then
f(u) = f((y x) ·v) because f is equivariant. Since (x, u) is (V ×f)-safe, |supp(x, (y x) ·v)| ≤
|supp(x, u)|. We also have that |supp(y, v)| = |(y x) · supp(y, v)| = |supp(x, (y x) · v)| ≤
|supp(x, u)|

Lemma 5.67. Back- and forward-safe pairs have the following closure properties:

(1) If (f1, g1) and (f2, g2) are forward-safe (backward-safe) pairs of maps then (f1 ×
f2, g1 × g2) is forward-safe (backward-safe).

(2) If (fi, gi) are forward-safe (backward-safe) then (
∐
fi,

∐
gi) is forward-safe (backward-

safe).
(3) If (f, g) is a forward-safe (backward-safe) pair of maps then (V × f, θ ◦ (V × g)) is

forward-safe (backward-safe).

Proof.

(1) Let us show first that (f1×f2, g1×g2) is forward-safe. Assume (u1, u2) is (g1×g2)◦
(f1 × f2)-safe. By Lemma 5.50 we know that each ui is gi ◦ fi-safe, bvg1f1(u1)#u2

and bvg2f2(u2)#u1. Since each (fi, gi) is forward-safe we have that fi(ui) is gi-safe.
Moreover since bvgi(fi(ui)) ⊆ bvgifi(ui) and supp(fi(ui)) ⊆ supp(ui) we conclude
that bvg1(f1(u1))#f2(u2) and bvg2(f2(u2))#f1(u1). Therefore we can apply again
Lemma 5.50 to conclude that (f1(u1), f2(u2)) is g1 × g2-safe.

Next we show that (f1 × f2, g1 × g2) is backward-safe when each (fi, gi) is. To
this end assume (u1, u2) is f1× f2-safe and (f1(u1), f2(u2)) is g1× g2-safe. We want
to show that (u1, u2) is (g1 × g2) ◦ (f1 × f2)-safe. By Lemma 5.50 we have that

– ui is fi-safe and fi(ui) is gi-safe,
– bvf1(u1)#u2 and bvf2(u2)#u1,
– bvg1(f1(u1))#f2(u2) and bvg2(f2(u2))#f1(u1).

Since (fi, gi) are backward-safe the first item above implies that each ui is gi ◦ fi-
safe. The next two items imply together that bvg1f1(u1)#u2 and bvg2f2(u2)#u1. By
Lemma 5.50 we conclude that (u1, u2) is (g1 × g2) ◦ (f1 × f2)-safe.

(2) As usual the case of coproducts seems trivial.
(3) We first prove the lemma for forward-safe maps. Assume (x, u) is (θY ◦(V×g)◦(V×

f))-safe. We will show that (x, f(u)) is (θY ◦ (V × g))-safe. By Lemma 5.51 we have
that (x, u) is ((V × g) ◦ (V × f))-safe. By Lemma 5.50 we have that u is (g ◦ f)-safe
and x#bvgf (u). Since (f, g) is forward-safe we have that f(u) is g-safe. Moreover

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 39

since bvg(f(u)) ⊆ bvgf (u) we have that x#bvg(f(u)). Therefore, by Lemma 5.50
we have that (x, f(u)) is (V × g)-safe. By Lemma 5.66 we know that (x, f(u)) is
(θY ◦ (V × g))-safe.

Now let us prove this closure property for backward-safe maps. Assume (x, u)
is (V × f)-safe and (x, f(u)) is (θ ◦ (V × g))-safe. We want to show that (x, u) is
(θ ◦ (V × g) ◦ (V × f))-safe. By Lemma 5.50 we know that u is f -safe and x#bvf (u).
By Lemma 5.51 we know that (x, f(u)) is (V×g)-safe, thus by Lemma 5.50 we know
that f(u) is g-safe and x#bvg(f(u)). Since (f, g) is backward-safe we have that u
is (g ◦ f)-safe. We can also check that x#bvgf (u). Thus (x, u) is (V × (g ◦ f))-safe.
Applying Lemma 5.66 we get that (x, u) is (θ ◦ (V × (g ◦ f)))-safe.

Lemma 5.68. For every safe map f : X → Y the pair of maps (F(f), qY) is both backward-
safe and forward-safe.

Proof. The proof is by induction on the grammar of Fα and Lemma 5.67.

Lemma 5.69. If

X

f
��

oo
p

Z

q
��

W oo
g Y

(5.53)

is a safe square then

V ×X

θ ◦ (V × f)
��

oo
V × p

V × Z

θ ◦ (V × q)
��

[V]W oo

[V]g
[V]Y

(5.54)

is a safe square.

Proof. We apply Lemma 5.65. Note that the pairs of maps (V × f, θ) and (V × q, θ) are
forward and backward-safe by Lemma 5.67 (3).

Lemma 5.70. For all equivariant f : X → Y the square

FY oo

qY
����

FX

qX
����

FαY oo FαX

(5.55)

is a safe square.

Proof. This is proved by induction on Fα using Lemmas 5.62 and 5.69.

Proposition 5.71. For all n the squares

Fn1 oo

[−]
(n)
α

����

Fn+11

[−]
(n+1)
α

����

Fnα1 oo Fn+1
α 1

(5.56)

are safe squares.

40 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

Proof. We use induction on n. For the inductive step observe that the (n + 1)th square is
the composition

FFn1 oo

F[−]
(n)
α

����

FFn+11

F[−]
(n+1)
α

����

FFnα1 oo

qFnα1

��

FFn+1
α 1

qFn+1
α 1

��

FαFnα1 oo FαFn+1
α 1

(5.57)

By Lemma 5.62 we know that the upper square in (5.57) is a safe square. By Lemma 5.70

the lower square in (5.57) is also safe. Moreover, by Lemma 5.68 we know that (F[−]
(n)
α , qFnα1)

is forward-safe and (F[−]
(n+1)
α , qFn+1

α 1) is backward-safe. Thus, we can apply Lemma 5.65

to conclude that the outer square in (5.57) is a safe square.

We established the two bullet points of Corollary 5.47 in Propositions 5.59 and 5.71:

Theorem 5.72. Let F,Fα be endofunctors on Nom obtained from a binding signature and
q : F→ Fα be the natural transformation defined in 5.12. Let P be a pullback as in (5.20).
Then P → UTα is onto.

6. Applications

In this section, we first give a general definition of substitution on the final coalgebra Tα of
a functor Fα coming from a binding signature. We, then, apply the general results given in
the previous sections to the infinitary λ-calculus by defining substitution and the notions
of Böhm, Lévy-Longo and Berarducci trees on α-equivalence classes of λ-terms.

6.1. Substitution on an Arbitrary Coalgebraic Data Type. The following lemma
[Mos01, Lemma 2.1] allows parameters in coinductive definitions. It dualises the way in
which primitive recursion strengthens induction. In order to express substitution, the set
X will be used for the term N in M[x := N] which is not subject to recursion and the set Y
will be used for the recursion.

Lemma 6.1. Let δ : D → F (D) be a final coalgebra and g : X → F (X) an arbitrary
F -coalgebra. Then, there is a unique map f : Y → D such that for any h : Y → F (X +Y),
the following diagram commutes:

Y

h
��

f
// D

δ
��

F (X + Y)
F ([g∗, f])

// F (D)

where g∗ : X → D is the unique homomorphism between (X, g) and (D, δ).

We apply Lemma 6.1 to define substitution on the final coalgebra Tα of a functor Fα
coming from a binding signature.

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 41

Definition 6.2 (Substitution on α-equivalence classes of infinitary terms coming from a
binding signature). Substitution on Tα is defined as the unique map such that the diagram
below commutes:

Tα × V × Tα

hsubsα
��

subsα //_______________ Tα

unfold
��

Fα(Tα + Tα × V × Tα)
Fα([id , subsα])

// Fα(Tα)

where hsubsα is defined in (6.1), (6.2) and (6.3).

Intuitively subsα([t]α, x, [s]α) is given by [t[x := s]]α. However, as explained in the
introduction, substitution cannot be formally defined as a total function on raw terms:
additional freshness side conditions are required. See also the explanation following (6.7).

In order to define the equivariant map hsubsα we can use the properties of the functor Fα.
As observed in Proposition 5.6 such functors are Nom-enriched, or equivalently (see [Koc72])
strong. That is, there exists a natural transformation

τX,Y : FαX × Y → Fα(X × Y).

Each functor obtained from the grammar in (5.4) can be equipped with a strength. Most
constructions are standard and if two functors are strong so is their composition, product
or coproduct. The only interesting case is that of the abstraction functor. We define a
strength using the concretion of Definition 4.10. Explicitly τX,Y : [V]X × Y → [V](X × Y)
is defined by

(〈x〉u, v) 7→ 〈y〉(〈x〉u@y, v)

where y is some/any fresh variable for x, u, v. By construction, τ is a well-defined and
natural in both X and Y .

The map hsubsα is defined as follows.

• For tuples of the form (x, x,N) we define hsubsα(x, x,N) as the composite

Tα × V × Tα
π3 // Tα

unfold // Fα(Tα)
Fα(inl)

// Fα(Tα + Tα × V × Tα) (6.1)

• For tuples of the form (y, x,N) with x 6= y or for tuples of the form (k, x,N) where
k is a constant, we define hsubsα(y, x,N) as the composite

Tα × V × Tα
π1 // Tα

unfold // Fα(Tα)
Fα(inl)

// Fα(Tα + Tα × V × Tα) (6.2)

• For tuples (M,x,N) such that M is not a variable we define hsubsα(M,x,N) as the
composite:

Tα × V × Tα

unfold× V × Tα
��

hsubsα //______ Fα(Tα + Tα × V × Tα)

Fα(Tα)× V × Tα
τTα,V×Tα

// Fα(Tα × V × Tα)

Fα(inr)

OO
(6.3)

42 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

Since {(x, x,N) | x ∈ V}, {(y, x,N) | x 6= y ∈ V}, {(k, x,N) | k constant} and
{(M,x,N) | M 6∈ V} are nominal sets that form a partition of Tα × V × Tα the map
hsubsα is well-defined and equivariant, thus we can apply Lemma 6.1 to prove the existence
of a unique substitution map subsα.

6.2. Substitution on α-Equivalence Classes of Infinitary λ-Terms. As an example
we spell out the concrete calculations for substitution on the nominal set Λ∞⊥ of finite and
infinite λ-terms with ⊥. The set Λ∞⊥ is defined as the final coalgebra of the functor Lb
defined by:

Lb X = V + {⊥}+ V ×X +X ×X. (6.4)

Adding the extra constant ⊥ is needed in order to write corecursive functions that compute
the Böhm, Lévy-Longo and Berarducci trees. We also consider the functor

Lbα X = V + {⊥}+ [V]X +X ×X. (6.5)

Notation 6.3. We write Λ∞α for the final coalgebra of Lbα, omitting the ⊥ in the notation
to improve readability. We continue to denote terms in Λ∞⊥ffv by M,N , but will denote
terms in Λ∞α by M,N. By Corollary 5.35 we have that Λ∞α is isomorphic to Λ∞⊥ffv/=α.

The injections for the coproduct X + Y are denoted as inlX,Y : X → X + Y and
inrX,Y : Y → X + Y . But for the case of Lα(X), we denote them as

inbotX : {⊥} → Lbα(X)

invarX : V → Lbα(X)

inabsX : [V]X → Lbα(X)

inappX : X ×X → Lbα(X).

We drop the superscripts when they are clear from the context.
Since unfold is an isomorphism that partitions its domain Λ∞α into four disjoint compo-

nents, see (1.2), we write typical elements of Λ∞α as x, ⊥, M1M2, λy.M where

x = unfold−1(invar x)

⊥ = unfold−1(inbot ⊥)

λy.M = unfold−1(inabs 〈y〉M)

M1M2 = unfold−1(inapp (M1,M2)).

(6.6)

We use x to denote both an element in V and also its copy in Λ∞α .

Example 6.4 (Substitution on α-equivalence classes of infinitary λ-terms with ⊥). By
instantiating the definition of the map hsubsα given in (6.1), (6.2) and (6.3) for the functor

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 43

Lbα we obtain hsubsα : Λ∞α × V × Λ∞α → Lbα(Λ∞α + Λ∞α × V × Λ∞α) given by

hsubsα(x, x,N) = unfold(N)

hsubsα(y, x,N) = invar y if y 6= x

hsubsα(⊥, x,N) = inbot ⊥

hsubsα(M1M2, x,N) = inapp ((M1, x,N), (M2, x,N))

hsubsα(λy.M, x,N) = inabs 〈z〉((〈y〉M)@z, x,N) if z#(λy.M, x,N).

To improve readability we omitted Lbαinr or Lbαinl in the definition of hsubsα . We obtain
the substitution function

subsα : Λ∞α × V × Λ∞α → Λ∞α
given by

subsα(x, x,N) = N

subsα(x, y,N) = x if y 6= x

subsα(⊥, y,N) = ⊥

subsα(M1M2, x,N) = subsα(M1, x,N) subsα(M2, x,N)

subsα(λy.M, x,N) = λy.subsα(M, x,N) if y#(x,N).

(6.7)

It should be pointed out that subsα defined in (6.7) is the ‘semantic’ version of the substi-
tution map since it is defined on the (or any) final Lbα-coalgebra. It is Corollary 5.35 that
allows us to identify the element λy.M ∈ Λ∞α with the α-equivalence class of an infinitary
term [λy.M]α having finitely many free variables. Thus we obtain a ‘syntactic’ version of
the substitution map which looks indeed just like a notational variant of the Set-based (1.3),
but is now fully justified as a coinductive definition on α-equivalence classes of λ-terms.

We can now define β-reduction using subsα.

Definition 6.5 (β-reduction on α-equivalence classes). We define βα-reduction as the small-
est relation on Λ∞α × Λ∞α that satisfies

(βα)
(λx.P)Q→βα subsα(P, x,Q)

P→βα P′

(abs)
λx.P→βα λx.P′

P→βα P′

(appL)
PQ→βα P′Q

Q→βα Q′

(appR)
PQ→βα PQ′

We define the notion of β-head reduction which contracts only the redex at the head
position and corresponds to the normalising leftmost strategy. This reduction is used to
define Böhm trees.

44 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

Definition 6.6 (Head β-reduction on α-equivalence classes). We define β1-reduction as the
smallest relation on Λ∞α × Λ∞α closed under

(β1)
(λx.P)Q→β1 subsα(P, x,Q)

P→β1 P′

(abs)
λx.P→β1 λx.P′

P→β1 P′ P is not an abstraction
(appL)

PQ→β1 P′Q

A term M is in head normal form (hnf) if it is of the form λx1 . . . xn.yN1 . . .Nm.

We restrict the β-head reduction by not contracting β-redexes in the body of an ab-
straction and obtain the weak head β-reduction which is needed to define the notion of
Lévy-Longo tree.

Definition 6.7 (Weak head β-reduction on α-equivalence classes). We define β2-reduction
as the smallest relation on Λ∞α × Λ∞α closed under

(β2)
(λx.P)Q→β2 subsα(P, x,Q)

P→β1 P′

(appL)
PQ→β2 P′Q

A term M is in weak head normal form (whnf) if it is either a head normal form or an
abstraction.

We now define the notion of top β-reduction which only contracts β-weak head redexes
at depth 0 and it will be used to define Berarducci trees.

Definition 6.8 (Top β-reduction on α-equivalence classes). We define β3-reduction as the
smallest relation on Λ∞α × Λ∞α closed under

M→→β2 (λx.P)
(β3)

MQ→β3 subsα(P, x,Q)

A term M is a top normal form (tnf) if it is either a weak head normal form or an application
of the form NP where N cannot reduce to an abstraction.

The reflexive, transitive closures of →β1 , →β2 and →β3 are denoted by →→β1 , →→β2 and
→→β3 , respectively. The corresponding normal forms, head normal form (hnf), weak head
normal form (whnf) and top normal form (tnf), should they exist are unique.

6.3. Computing the Infinite Normal Form of α-Equivalence Classes of λ-Terms.
We now define the notions of Böhm tree, Lévy-Longo tree, and Berarducci tree using the
finality of unfold : Λ∞α → Lbα(Λ∞α).

Definition 6.9 (Böhm tree on α-equivalence classes). We define the Böhm tree of M as
BTα(M) where BTα is the unique map such that

Λ∞α

gBTα
��

BTα // Λ∞α

unfold
��

Lbα(Λ∞α)
Lbα(BTα)

// Lbα(Λ∞α)

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 45

commutes, with gBTα : Λ∞α → Lbα(Λ∞α) being defined as

gBTα(M) =

 unfold(N) if M→→β1 N and N is in hnf,

inbot ⊥ otherwise.

Definition 6.10 (Lévy-Longo tree on α-equivalence classes). We define the Lévy-Longo
tree of M as LLTα(M) where LLTα is the unique map such that

Λ∞α

gLLTα
��

LLTα // Λ∞α

unfold
��

Lbα(Λ∞α)
Lbα(LLTα)

// Lbα(Λ∞α)

commutes, with gLLTα : Λ∞α → Lbα(Λ∞α) being defined as

gLLTα(M) =

 unfold(N) if M→→β2 N and N is in whnf,

inbot ⊥ otherwise.

Definition 6.11 (Berarducci tree on α-equivalence classes). We define the Berarducci tree
of M as BeTα(M) where BeTα is the unique map such that

Λ∞α

gBeTα
��

BeTα // Λ∞α

unfold
��

Lbα(Λ∞α)
Lbα(BeTα)

// Lbα(Λ∞α)

commutes, with gBeTα : Λ∞α → Lbα(Λ∞α) being defined as follows.

gBeTα(M) =

 unfold(N) if M→→β3 N and N is in tnf,

inbot ⊥ otherwise.

Similar to the remark on the substitution map mentioned at the end of Example 6.4, the
maps BTα, LLTα and BeTα are the ‘semantic’ counterparts of the maps that compute the
Böhm, Lévy-Longo and Berarducci trees. Corollary 5.35 allows us to obtain a ‘syntactic’
version of these maps which look like a notational variant of the Set-based (3.6), (3.7)
and (3.8), but are now fully justified as coinductive definitions on α-equivalence classes of
λ-terms.

6.4. Nominal Sets of Infinite Normal Forms and Bisimulations. Recall the infor-
mal corecursive definitions for the sets of Böhm, Lévy-Longo and Berarducci Trees given
in Definitions 3.3, 3.4 and 3.5. In this section, we formally define the first two ones on
α-equivalence classes as an application of Corollary 5.35. In order to define the set of
Berarducci trees, one needs to extend the notion of binding signature to include infinite
products, which is beyond the scope of our paper.

46 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

Example 6.12 (Böhm trees up to α-equivalence). We define the functor SBT by

SBT(X) = {⊥}+ V +
∐
k[V]k(V × List(X)).

The final coalgebra of SBT, denoted by BT α, exists and it is isomorphic to the set (BT)ffv/=α

of α-equivalence classes of Böhm trees with finitely many free variables by Corollary 5.35
(see also (3.6)).

The nominal set Λ∞α can be equipped with a SBT-coalgebra structure. Explicitly, con-
sider ξBT : Λ∞α → SBT(Λ∞α) defined by

ξBT(M) =

x if M→→β1 x,

〈x1〉 . . . 〈xn〉(x,M1, . . . ,Mn) if M→→β1 λx1 . . . λxn.xM1 . . .Mm,

⊥ otherwise.

Since BT α is the final SBT-coalgebra, we have a unique morphism BTα : Λ∞α → BT α
such that the diagram below commutes. Notice that this morphism is obtained by restricting
the codomain of the map BTα from Definition 6.9.

Λ∞α
BTα //

ξBT
��

BT α

'
��

SBT(Λ∞α)
SBT(BTα)

// SBT(BT α)

We can now define the head bisimulation ∼hnf on Λ∞α as the kernel pair of the map
BTα, that is, M ∼hnf N if and only if M and N have the same Böhm tree. Explicitly, ∼hnf

is defined as the pullback

∼hnf
π1 //

π2
��

_� Λ∞α

BTα
��

Λ∞α BTα
// BT α

Since [V](−) preserves pullbacks and pullbacks commute with coproducts and limits in
Nom, we have that SBT preserves pullbacks, thus the outer square of the diagram

SBT(∼hnf)
SBT(π1)

//

SBT(π2)

��

SBT(Λ∞α)

SBT(BTα)

��

∼hnf
π1 //

π2
��

ggO O O O O O

_� Λ∞α

ξBT

77ppppppppppppp

BTα
��

Λ∞α

ξBTwwooooooooooooo BTα
// BT α

''OOOOOOOOOOOO

SBT(Λ∞α)
SBT(BTα)

// SBT(BTα)

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 47

is also a pullback. Therefore we obtain an SBT-coalgebra structure on ∼hnf such that the
diagram

Λ∞α

ξBT
��

∼hnf

��

π1oo
π2 // Λ∞α

ξBT
��

SBT(Λ∞α) SBT(∼hnf)
SBT(π1)

oo

SBT(π2)
// SBT(Λ∞α)

(6.8)

commutes. This shows that ∼hnf is a bisimulation in the sense of [AM89]. The com-
mutativity of (6.8) means that ∼hnf is a binary relation on Λ∞α such that for all M and
N, if M ∼hnf N and M →→β1 λx1 . . . λxn.xM1 . . .Mm, then there are N1, . . . ,Nm such that
N→→β1 λx1 . . . λxn.xN1 . . .Nm and Mi ∼hnf Ni for all 1 ≤ i ≤ m.

Example 6.13 (Lévy-Longo trees up to α-equivalence). We define the functor SLLT by

SLLT(X) = {⊥}+ [V]X + V × List(X).

The final coalgebra of SLLT, denoted by LLT α, exists and is isomorphic to the set (LLT)ffv/=α

by Corollary 5.35 (see also (3.7)).
The nominal set Λ∞α can be equipped with an SLLT-coalgebra structure ξLLT : Λ∞α →

SLLT(Λ∞α) as follows:

ξLLT(M) =

〈x〉N if M→→β2 λx.N,

(x,M1, . . . ,Mn) if M→→β2 xM1 . . .Mm,

⊥ otherwise.

The unique map from ξLLT into the final SLLT-coalgebra is given by the restriction of
the map LLTα from Definition 6.10 and maps the equivalence class of an infinitary λ-term
to its Lévy-Longo tree.

The weak head bisimulation can be defined as the kernel pair of the map

LLTα : Λ∞α → LLT α.
Similarly to the case of head simulation, we can show that ∼whnf is a bisimulation in the
sense of [AM89], namely we have an SLLT-coalgebra structure on ∼whnf such that

Λ∞α

ξLLT
��

∼whnf

��

π1oo
π2 // Λ∞α

ξLLT
��

SLLT(Λ∞α) SLLT(∼whnf)
SLLT(π1)

oo

SLLT(π2)
// SLLT(Λ∞α)

(6.9)

The commutativity of the above diagram means that the weak head bisimulation ∼whnf is
a binary relation on Λ∞α such that for all M and N, if M ∼whnf N, the following hold:

(1) M→→β2 λx.M then N→→β2 λx.N and M ∼whnf N.
(2) M→→β2 xM1 . . .Mm then N→→β1 xN1 . . .Nm and Mi ∼whnf Ni for all 1 ≤ i ≤ m.

Example 6.14 (Berarducci trees up to α-equivalence). By Theorem 5.4, the final coalgebra
of SBerT exists where

SBerT(X) = [V]X + {⊥} × List(X) + V × List(X) + Stream(X)

48 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

However, we cannot apply Corollary 5.35 in this case because our current definition of
binding signatures does not include infinite products, e.g. Stream.

6.5. Infinitely Many Free Variables. In this section we follow a suggestion from Pitts
to treat the case of terms with infinitely many free variables. In Theorem 5.19 we proved
that (Λ∞/=α, d

∞
α) is isomorphic to (Λ/=α)∞ provided that V is uncountable. However,

the isomorphism does not hold if V is countable (Example 5.20). Moreover, even if V is
countable and the set (Λ/=α)∞ can be equipped with a permutation action, (Λ/=α)∞ is not
a nominal set, since the terms with infinitely many free variables are not finitely supported.
One way to deal with terms with infinitely many free variables, without leaving the world
of nominal sets, is to extend the calculus with constants and to regard the free variables as
constants.

Let C be a countable set of names. The sets Λ(C) and Λ(C)∞ are the sets Λ and Λ∞

extended with a set of constants C. We can equip the set C with the trivial permutation
action and consider the functor Lα + C : Nom → Nom. The following proposition follows
from [Pit11, Theorem 5.12], or [Pit06, Theorem 5.1, Remark 5.3].

Proposition 6.15. The initial algebra of Lα + C is the nominal set Λ(C)/=α of λ-terms
extended with C-constants up to α-equivalence.

The following proposition follows from Corollary 5.35 since Lα+C is a functor obtained
from a binding signature (see Definition 5.8 and Proposition 5.6).

Proposition 6.16. The final coalgebra of Lα + C is isomorphic to the nominal sets
(Λ(C)/=α)∞fs and Λ(C)∞ffv/=α.

Proposition 6.17. Let ρ : V → C be a bijection. We have an isomorphism Tr between
Λ/=α and the set of closed terms in (Λ(C)/=α)0.

Proof. The map Tr : Λ→ Λ(C)0 is defined inductively as follows:

Tr(x) = ρ(x)

Tr(MN) = Tr(M)Tr(N)

Tr(λx.M) = λx.Tr(M)[x/ρ(x)]

where Tr(M)[x/ρ(x)] is the result of replacing ρ(x) by x in Tr(M).
It is easy to check that if M =α N then Tr(M) =α Tr(N). Hence, Tr can be defined

on equivalence classes and we have Tr : Λ/=α→ (Λ(C)/=α)0. Note that the map Tr is not
finitely supported. For example, Tr((xy) ·x) 6= (xy) ·Tr(x) if ρ(x) 6= ρ(y). Hence, we cannot
apply Pitts’ alpha structural induction principle.

The inverse of Tr is defined as follows. Given an α-equivalence class [M]α ∈ (Λ(C)/=α)0,
we can find a representative M ∈ Λ(C)0 such that the set of bound variables of M is disjoint
from the image under ρ−1 of the constants occurring in M . We put Tr−1(M) to be the
equivalence class of the term obtained by replacing each constant b occurring in M by
ρ−1(b).

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 49

Proposition 6.18. The set (Λ/=α)∞ is isomorphic to (Λ(C)∞ffv/=α)0.

Proof. By the universal property of the Cauchy completion, Tr is extended to an isomor-
phism between (Λ/=α)∞ and the completion of (Λ(C)/=α)0. The proof is complete by ob-
serving that the isomorphism between (Λ(C)/=α)∞fs and Λ(C)∞ffv/=α (see Proposition 6.16)
cuts down to an isomorphism between the completion of (Λ(C)/=α)0 and (Λ(C)∞ffv/=α)0.
Explicitly, given a Cauchy sequence in Λ/=α, the image under Tr is a finitely supported
Cauchy sequence in (Λ(C)/=α)0, and thus also in Λ(C)/=α. Thus it converges to a unique
element of (Λ(C)∞ffv/=α)0. Conversely, given M ∈ (Λ(C)∞ffv/=α)0, we consider the trunca-

tions Mn. Their translations Tr−1(Mn) in Λ/=α form a Cauchy sequence and we map M
to its limit.

Substitution is defined on Λ(C)∞ffv/=α by instantiating Definition 6.2. Now, β-reduction
restricts to (Λ(C)∞ffv/=α)0 and can be defined on (Λ/=α)∞ via the translation Tr. We
illustrate how this works with an example.

Example 6.19. Consider the term (λx0x1.x0x1)allfv, where allfv = x0(x1(x2(. . .))) given
in (1.4). Suppose C = {c0, c1, . . .} and ρ(xi) = ci for all i.

Then,
Tr((λx0x1.x0x1)allfv) = (λx0x1.x0x1)allconst

where allconst = c0(c1(c2(. . .))). The translated term does not contain free variables, but
bound variables and constants only. It is important to stress the fact that the constants
represent the free variables of the original term. We can now safely perform the β-step

(λx0x1.x0x1)allconst→β (λx1.x0x1)[x0 := allconst] = λx1.allconst x1. (6.10)

This β-step is possible because substitution is defined on the set (Λ(C)∞ffv/=α). According
to Proposition 6.18, the equivalence class [λx1.allconst x1]α translates back to an element in
(Λ/=α)∞ which is the limit of the Cauchy sequence ([λxn.x0(x1 . . . (xn−1 ∗))xn]α)n. Similar
to Example 5.20, it does not have any preimage under [−]α : Λ∞ → (Λ/=α)∞.

7. Related and Future Work

The problem of having insufficiently many fresh variables does not arise if we use de Bruijn
indices [dB72, Dup00]. However, it is unclear whether using de Bruijn indices could lead to
a coalgebraic treatment of the corecursion principle.

It would also be interesting to investigate nominal coalgebraic data types with infinitely
many free variables based on either Section 6.5 or on variations of nominal sets allowing
countable supports, see e.g. [Che06, DG12]. This could have applications to the semantics
of processes which are able to generate infinitely many fresh names.

Using the ‘same’ endofunctor as [GP99], but on a different category, namely the category
SetF of presheaves on finite sets, [FPT99] also exhibits finite λ-terms as an initial algebra.
Roughly speaking, the difference between Nom and SetF is that the latter already comes
equipped with a notion of substitution, see [Sta07, Section 7.3] for details. [MU04] further
develop substitution for algebraic and coalgebraic datatypes over presheaf-categories and
describe the set of infinitary λ-terms as a final coalgebra. [AMV11] furthermore study
the so-called rational fixed point, again over SetF, as a semantic universe for solutions of
higher-order recursion schemes.

50 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

In [HvO03], the authors define a calculus with an operator called adbmal to deal with
α-conversion. This operator removes the scope of a variable. It will be interesting to extend
this calculus for infinite terms. Using this operator, it would give an alternative approach
to dealing with the problem of having insufficient fresh variables.

Nominal Isabelle provides infrastructure for declaring nominal data types and defining
recursive functions over them [Urb08]. Proposals for codata types in Isabelle are presented
in [TPB12]. It will be nice to include nominal codata types in Isabelle in order to formalise
the proofs of some theorems on λ-calculus concerning Böhm trees and infinitary λ-calculus.

Nominal extensions of typed λ-calculus have been proposed in [Pit10, Che09] for system
T, in [Che12] for LF and in [WSA09] for the Calculus of Inductive Constructions. Further
research could include a study of typing that combines nominal syntax with coinductive
data types.

The corecursion principle presented in this paper cannot handle infinitary meta-terms as
defined for Infinitary Combinatory Reduction Systems (iCRS) [KS11]. It will be interesting
to prove an α-coinduction principle that includes meta-variables and meta-terms. However,
it is not straightforward to define α-equivalence on them [FG07].

One could also study how to extend the notion of binding signature and Corollary 5.35
to include infinite products for representing the set of Berarducci trees up to α (see Example
6.14). Another possible solution, suggested by a referee, would be to use a version of Bekič
lemma [LS81, BBvGvdW95, Fre92] and to replace a nested final coalgebra by a non-nested
many-sorted one.

It will also be worthwhile to study α-corecursion principles for sets of infinitary terms
obtained from alternative metrics such as the 001- and 101-metrics [KKSdV97] or the metric
that captures the infinite normal forms of reactive programs [SdV12]. Also, meta-terms for
Infinitary Combinatory Reduction Systems that satisfy the finite property chain can be
defined using an alternative metric ([KS11, page 20]).

Acknowledgements

We are grateful to Andy Pitts for suggesting us to treat the infinitely many free variables of
a term as constants. We would also like to thank Christian Urban for helpful discussions.
Finally, we acknowledge insightful improvements suggested by the referees.

References

[Abr90] S. Abramsky. The lazy lambda calculus. In Research Topics in Functional Programming,
pages 65–116. Addison-Wesley, 1990.

[Adá03] J. Adámek. On final coalgebras of continuous functors. Theoretical Computer Science,
294(1/2):3–29, 2003.

[AM89] P. Aczel and N. P. Mendler. A final coalgebra theorem. In CTCS, pages 357–365, 1989.
[AMV11] J. Adámek, S. Milius, and J. Velebil. Semantics of higher-order recursion schemes. Logical

Methods in Computer Science, 7(1), 2011.
[AN80] A. Arnold and M. Nivat. The metric space of infinite trees. algebraic and topological prop-

erties. Fundamenta Informaticae, 4:445–476, 1980.
[AO93] S. Abramsky and C.-H. Luke Ong. Full abstraction in the lazy lambda calculus. Information

and Computation, 105(2):159–267, 1993.
[AR94] J. Adámek and J. Rosicky. Locally Presentable and Accessible Categories. Cambridge Uni-

versity Press, 1994.

NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS 51

[Bar84] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Ams-
terdam, Revised edition, 1984.

[Bar99] M. Barr. Terminal coalgebras for endofunctors on sets. Theoretical Computer Science,
114(2):299–315, 1999.

[BBKL12] M. Bojanczyk, L. Braud, B. Klin, and S. Lasota. Towards nominal computation. In POPL,
pages 401–412, 2012.

[BBvGvdW95] R. C. Backhouse, M. Bijsterveld, R. van Geldrop, and J. van der Woude. Categorical fixed
point calculus. In Category Theory and Computer Science, pages 159–179, 1995.

[Ber96] A. Berarducci. Infinite λ-calculus and non-sensible models. In Logic and algebra (Pontignano,
1994), pages 339–377. Dekker, New York, 1996.

[Che06] J. Cheney. Completeness and Herbrand theorems for nominal logic. Journal of Symbolic
Logic, 71(1):299–320, 2006.

[Che09] J. Cheney. A simple nominal type theory. Electronic Notes on Theoretical Computer Science,
228:37–52, 2009.

[Che12] J. Cheney. A dependent nominal type theory. Logical Methods in Computer Science, 8(1),
2012.

[dB72] N. G. de Bruijn. Lambda Calculus Notation with Nameless Dummies, a Tool for Automatic
Formula Manipulation, with applications to the Church-Rosser Theorem. Indagationes Math-
ematicae, 34:381–392, 1972.

[DG12] G. Dowek and M. J. Gabbay. Permissive-nominal logic: First-order logic over nomi-
nal terms and sets. ACM Transactions on Computational Logic, 13(3):A1–A37, 2012.
http://www.odysci.com/article/1010113018587267.

[Dup00] Y. D. Duppen. A coalgebraic approach to lambda calculus. Master’s thesis, Vrije Universiteit
Amsterdam, 2000.

[FG07] M. Fernández and M. J. Gabbay. Nominal rewriting. Information and Computation,
205(6):917–965, 2007.

[FPT99] M. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable binders. In LICS, pages
193–202, 1999.

[Fre92] P. Freyd. Remarks on algebraically compact categories. In Applications of Categories in
Computer Science, volume 77 of London Math. Soc. Lecture Notes Series, pages 95 – 106.
Cambridge University Press, 1992.

[GP99] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax involving binders. In
LICS, pages 214–224, 1999.

[GP01] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.
Formal Aspects of Computing, 13(3–5):341–363, 2001.

[Hof99] M. Hofmann. Semantical analysis of higher-order abstract syntax. In LICS, pages 204–213,
1999.

[HvO03] D. Hendriks and V. van Oostrom. Adbmal. In CADE, pages 136–150, 2003.
[Jec73] T. Jech. The axiom of choice. North-Holland, 1973.
[KdV03] J. R. Kennaway and F. J. de Vries. Infinitary rewriting. In Terese, editor, Term Rewriting

Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science, pages 668–711.
Cambridge University Press, 2003.

[Kel82] M. Kelly. Basic Concepts of Enriched Category Theory. Number 64 in London Mathematical
Society Lecture Notes. Cambridge University Press, 1982.

[KKSdV95] J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. Infinite lambda calculus and
Böhm models. In RTA, pages 257–270, 1995.

[KKSdV97] J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. Infinitary lambda calculus.
Theoretical Computer Science, 175(1):93–125, 1997.

[Koc72] A. Kock. Strong functors and monoidal monads. Archiv der Mathematik, 23(1):113–120,
1972.

[KPSdV12] A. Kurz, D. Petrişan, P. G. Severi, and F. J. de Vries. An alpha-corecursion principle for the
infinitary lambda calculus. In CMCS, pages 130–149, 2012.

[KS11] J. Ketema and J. Grue Simonsen. Infinitary combinatory reduction systems. Information
and Computation, 209(6):893–926, 2011.

52 NOMINAL COALGEBRAIC DATA TYPES WITH APPLICATIONS TO LAMBDA CALCULUS

[Lév76] J.-J. Lévy. An algebraic interpretation of the λβK-calculus, and an application of a labelled
λ-calculus. Theoretical Computer Science, 2(1):97–114, 1976.

[Lon83] G. Longo. Set-theoretical models of λ-calculus: theories, expansions, isomorphisms. Annals
of Pure and Applied Logic, 24(2):153–188, 1983.

[LS81] D. J. Lehmann and M. B. Smyth. Algebraic specification of data types: A synthetic approach.
Mathematical Systems Theory, 14:97–139, 1981.

[Mos01] L. S. Moss. Parametric corecursion. Theoretical Computer Science, 260:139–163, 2001.
[MU04] R. Matthes and T. Uustalu. Substitution in non-wellfounded syntax with variable binding.

Theoretical Computer Science, 327:155–174, 2004.
[Pet12] D. Petrişan. Investigations into Algebra and Topology over Nominal Sets. PhD thesis, Uni-

versity of Leicester, 2012.
[Pit03] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and

Computation, 186:165–193, 2003.
[Pit05] A. M. Pitts. Alpha-structural recursion and induction. In TPHOLs, pages 17–34, 2005.
[Pit06] A. M. Pitts. Alpha-structural recursion and induction. Journal of the ACM, 53:459–506,

2006.
[Pit10] A. M. Pitts. Nominal system T. In POPL, pages 159–170, 2010.
[Pit11] A. M. Pitts. Nominal sets. Notes for Midlands Graduate School, 2011.
[Pit13] A. M. Pitts. Nominal Sets. Cambridge University Press, 2013.
[Sal01] A. Salibra. Nonmodularity results for lambda calculus. Fundamenta Informaticae, 45:379–

392, 2001.
[SdV11] P. G. Severi and F. J. de Vries. Weakening the axiom of overlap in the infinitary lambda

calculus. In RTA, pages 313–328, 2011.
[SdV12] P. G. Severi and F. J. de Vries. Pure type systems with corecursion on streams: from finite

to infinitary normalisation. In ICFP, pages 141–152, 2012.
[Sta07] S. Staton. Name-passing process calculi: operational models and structural operational se-

mantics. Technical Report UCAM-CL-TR-688, University of Cambridge, Computer Labo-
ratory, June 2007.

[TPB12] D. Traytel, A. Popescu, and J. C. Blanchette. Foundational, compositional (co)datatypes
for higher-order logic: Category theory applied to theorem proving. In LICS, pages 596–605,
2012.

[Urb08] C. Urban. Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning, 40(4):327–
356, 2008.

[WSA09] E. M. Westbrook, A. Stump, and E. Austin. The calculus of nominal inductive constructions:
an intensional approach to encoding name-bindings. In LFMTP, pages 74–83, 2009.

	1. Introduction
	2. Preliminaries on Algebra and Coalgebra
	3. Preliminaries on Infinitary Lambda Calculus
	3.1. Infinitary Terms as a Final Coalgebra
	3.2. Computing the Infinite Normal Forms using Corecursion

	4. Preliminaries on Nominal Sets
	5. Alpha Corecursion Principle for Nominal Coalgebraic Data Types
	5.1. Final Coalgebras of Nom Functors
	5.2. Nominal Algebraic Data Types for Binding Signatures
	5.3. Problems with Alpha Equivalence in the Infinitary Case
	5.4. Nominal Coalgebraic Data Types for Binding Signatures
	5.5. Presenting Limits in Nominal Sets

	6. Applications
	6.1. Substitution on an Arbitrary Coalgebraic Data Type
	6.2. Substitution on -Equivalence Classes of Infinitary -Terms
	6.3. Computing the Infinite Normal Form of -Equivalence Classes of -Terms
	6.4. Nominal Sets of Infinite Normal Forms and Bisimulations
	6.5. Infinitely Many Free Variables

	7. Related and Future Work
	Acknowledgements
	References

