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Abstract
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which the property is only required to hold up to a certain equivalence relation on terms. Finally, we extend the
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1. INTRODUCTION

This paper extends the established theory of term rewriting to include infinite terms and infinite
rewriting sequences. At first sight, such an extension might appear to be only of theoretical in-
terest. However, it arises naturally from the use of term rewriting in functional programming, in
several ways. One can write an expression whose normal form is, intuitively speaking, an infinite
term — the list of all prime numbers, for example. Such infinite normal forms are approached
as the limits of infinitely long reduction sequences. Infinite terms and rewrite sequences also
arise when considering the correspondence between graph rewriting and term rewriting. Graph
rewriting extends term rewriting with the idea of sharing subterms and is an important imple-
mentation technique for functional languages. Some implementations use cyclic graphs in order
to make certain optimisations. For example, the Y combinator from combinatory logic can
be used to implement functions defined by recursion. An efficient representation of the graph
rewrite rule for the Y-combinator involves cyclic graphs. Cyclic graphs correspond to certain
infinite terms; rewriting cyclic graphs corresponds to infinite computations on terms. Hence
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to study the soundness of graph rewriting as an implementation of term rewriting requires
extending term rewriting with infinite terms and rewrite sequences.

The infinite computations which are useful in such contexts are the computations whose
successive intermediate results reveal increasingly larger parts of the final outcome. The parts
of the intermediate results that approximate the final result should be final as well, in the sense
that in the remainder of the computation no rewrite step will be made in these approximating
fragments. So not only should the outcome be the limit of the intermediate results (cf. example
1.1.2), but it should also be the limit of the final fragments of the intermediate results (cf.
example 1.1.3). We will call such infinite reductions strongly converging.

ExAMPLE 1.1 Some examples of infinite computations.

1. With the rules A — B and B — A, the sequence A — B — ... is not converging.

2. With the rule A(z) — A(B(z)), the sequence A(zx) — A(B(z)) — A(B(B(z))) —
A(B(B(B(z)))) — --- converges to A(B“), but no part of any intermediate result is
final. Each reduction is performed at the root of the (syntax tree of the) term.

3. With the rule A — S(A), the sequence A — S(A) — S(S(A)) — S(S(S(4))) — ---
converges to S“, which is the limit of the successive final fragments [ ], S[ ], S(S([ ])),

SESSADD, -

If an infinite computation reaches a limit which is not yet a normal form, we can compute
further. So, infinite reductions may be transfinite.

In this paper we will concentrate on strongly converging reductions and reconsider the basic
theory of orthogonal term rewriting systems. In a companion paper [KKSdVar] we consider the
relationship between cyclic graph rewriting and transfinite term rewriting.

1.1 Overview

In Section 2 we give the basic definitions of finite and infinite terms, and of finite reduction
sequences. In Section 3 we introduce Cauchy convergent and strongly convergent transfinite
reduction sequences. Cauchy convergence is the well-known topological concept, applied to the
topological space of finite and infinite trees. We find a stronger notion of convergence to be more
useful, for reasons that will be discussed in the final section. Section 4 considers the notions
of residual, projection, and Lévy-equivalence for transfinite reduction sequences, and notes that
these concepts require the notion of strong convergence rather than Cauchy convergence for
their definitions. Section 5 shows that every transfinite strongly convergent reduction sequence
is equivalent to one of length at most w. Section 6 considers the Church-Rosser property. In
orthogonal rewrite systems, this property holds for finitary reduction, but in general does not
hold for infinitary reduction. Necessary and sufficient conditions are given for the infinitary
Church-Rosser property to hold in an orthogonal system. Section 7 considers properties relating
to the uniqueness of normal forms in orthogonal systems. Section 8 considers reduction strate-
gies, generalising Huet and Lévy’s results concerning needed reduction in orthogonal rewrite
systems. Finally, in Section 9 we compare our concepts and results with Farmer and Watro’s
studies of combinator reduction with cycles, and the studies of Dershowitz, Kaplan, and Plaisted
on Cauchy-convergent transfinite reduction.

Table 1 summarizes the main properties of transfinite reduction, for both strong convergence
and Cauchy convergence.
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Cauchy converging reductions | strongly converging reductions
Residuals can be defined NO (3.3) YES (4.1)
Projection of reductions NO (3.3) YES (4.8)
Compressing Lemma NO [Far89], [Der91], (3.8) YES (5.1)
Inf. Church-Rosser Property NO (6.2) NO (6.2)
Fair reductions result in w-normal forms [Der91] normal forms (8.20)
Unique normal form properties | Partial yes (Section 9) YES (7.15)
Unique w-normal forms NO (6.2) NO (6.2)

Table 1. Basic facts for infinitary orthogonal term rewrite systems.

1.2 Acknowledgments

We acknowledge Nachum Dershowitz, Aart Middeldorp, Vincent van Oostrom and an anony-
mous referee for valuable comments at various stages of the paper, and Paul Taylor for the use
of his commutative diagram package and his help in using it.

2. PRELIMINARIES ON TERM REWRITING SYSTEMS

First we recall briefly the basic concepts of finitary term rewriting systems. For ample introduc-
tions the reader is referred to [DJ90] and [Klo92].

Then we define infinitary term rewriting systems. As infinite terms we will consider only
terms which, when considered as trees, have the property that each node is at finite distance
from the root. Our notion of infinitary term rewrite system generalises finitary term rewriting
systems:

e The set of terms over a signature is extended by the infinite terms over that signature.

e The right-hand side of a rewrite rule may be an infinite term.

2.1 Finitary Term Rewriting Systems
A finitary term rewriting system over a signature ¥ is a pair (Ter(X), R) consisting of the set
Ter(X) of finite terms over the signature ¥ and a set of rewrite rules R C Ter(X) x Ter(X).

The signature ¥ consists of a countably infinite set Var of variables (z,y, z,...) and a non-
empty set of function symbols (A, B,C,..., F,G,...) of various finite arities > 0. Constants are
function symbols with arity 0. The set Ter(X) of finite terms (t,s,...) over ¥ is the smallest
set containing the variables and closed under function application.

The set O(t) of positions (or occurrences) of a term ¢t € T'er(X) is defined by induction on the
structure of ¢ as follows: O(t) = {A} if ¢ is a variable, and O(t) = {A\}U{i-u|l <i<nandu €
O(t;)}, if t is of the form F(t1,...,t,). If w € O(t) then the subterm t|u at position u is defined
as follows: t|]\ =t and F(t1,...,t,)|i - u = t;|u. The depth of a subterm of ¢ at position u is the
length of u. Two positions are disjoint if neither is a prefix of the other. Two subterms of the
same term are disjoint if their positions are disjoint.

Contexts are terms in Ter(X U {O}), in which the special constant O, denoting an empty
place, occurs exactly once. Contexts are denoted by C[] and the result of substituting a term ¢
in place of O is C[t] € Ter(X). A proper context is a context not equal to O.

Maps o : Var — Ter(X) satisfying the equation o(F(t1,...,tn)) = F(o(t1),...,0(ts)) are
called substitutions.
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The set R of rewrite rules contains pairs (I, r) of terms in Ter(X), written as [ — r, such that
the left-hand side [ is not a variable and every variable occurring in r also occurs in [. The result
19 of the application of the substitution o to the term [ is an instance of I. A redex (reducible
expression) is an instance of a left-hand side of a rewrite rule. A reduction step ¢t — s is a pair
of terms of the form C[l?] — C|r?], where [ — r is a rewrite rule in R. The position of the
redex in the term C[I?] is the position of the occurrence of O in C[]. The positions of ¢ which
are pattern-matched by the reduction step are those of the form w - v, where u is the position of
the redex and v is the position of an occurrence of a function symbol in [. Two redexes in the
same term are disjoint if their positions are disjoint. Concatenating reduction steps we get finite
reduction sequences or infinite reduction sequences. A finite reduction sequence has an initial
term ¢ and a final term t'; we say that the sequence reduces t to t', and that ¢ is reducible to t'. ¢
is convertible with t' if there is a finite series of forwards and reverse reduction sequences of the
form t —* t1 «<* to... =* t, <* t'. (That is, convertibility is the reflexive transitive symmetric
closure of —.)

A normal form is a term containing no redexes. A term t has a normal form n if t is reducible
to n and n is a normal form.

2.2 Infinitary Terms

An infinitary term rewriting system over a signature ¥ is a pair (Ter®(X), R) consisting of
the set Ter>(X) of finite and infinite terms over the signature ¥ and a set of rewrite rules
R C Ter(X) x Ter®(X). It takes some elaboration to define the set Ter®™(X) of finite and
infinite terms.

The set Ter(X) of finite terms for a signature ¥ can be provided with an metric d : Ter(X) x
Ter(X) — [0,1]. The distance d(t,s) between two terms ¢t and s is 0, if ¢ and s are equal, and
27k otherwise, where k € w is the largest natural number such that all nodes of s and t at depth
less than or equal to k have the same label. The set of infinitary terms Ter®(X) is the metric
completion of Ter(X). (This is all well known, see for instance [AN80]). Note that in infinitary
TRSs, arities are still assumed to be finite, as are the left-hand sides of rewrite rules.

The notions of substitution, context, redex, reduction step, and normal form as defined for
finitary term rewriting systems generalise trivially to the set of infinitary terms Ter®(X). Trans-
finite reduction sequences, that is, those of length greater than w — the main subject of this
paper — will be introduced in the next chapter.

We shall henceforth drop the word “infinitary”; all TRSs we consider in this paper will be
infinitary.

2.3 Orthogonal term rewriting systems
The following properties for finitary term rewriting systems extend verbatim to infinitary term
rewriting systems:

DEFINITION 2.1 Let R be a finitary or an infinitary TRS.

1. A rewrite rule [ — r of R is left-linear if no variable occurs more than once in the left-hand
side [.

2. R is non-overlapping if for any two left-hand sides s and t, any position « in ¢, and any
substitutions ¢ and 7 : Var — Ter(X) it holds that if (¢ju)” = s7 then either t|u is a
variable or ¢ and s are left-hand sides of the same rewrite rule and uw = X (i.e. non-variable
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parts of different rewrite rules do not overlap and non-variable parts of the same rewrite
rule overlap only entirely).

3. R is orthogonal if its rules are left-linear and non-overlapping.

Unless explicitly stated otherwise our results in this paper will concern orthogonal infinitary
term rewrite systems. It is well known (cf. [Ros73, K1092]) that finitary orthogonal term rewriting
systems satisfy the finitary Church-Rosser property, i.e., — o —* C —* o "~ where —* is the
transitive, reflexive closure of the relation —. It is not difficult to see that infinitary orthogonal
term rewriting systems with finite right-hand sides inherit this finitary Church-Rosser property.
Without that condition they may not.

3. STRONGLY CONVERGING REDUCTIONS

In [DKP91| Dershowitz, Kaplan and Plaisted have introduced (transfinite) Cauchy converging
reductions. These are transfinite reduction sequences whose elements form a transfinite Cauchy
sequence in the complete metric space Ter™(X).

DEFINITION 3.1 A transfinite reduction sequence consists of a function f whose domain is an
ordinal «, such that f maps each 3 < «a to a reduction step fg — fg41. The length of the
sequence is « if o is a limit ordinal, otherwise it is « — 1. When « is a limit ordinal, the sequence
is called open, otherwise it is closed.

Note that for limit ordinals 8 < «, the above definition does not stipulate any relationship
between fz and the earlier terms in the sequence. A first requirement to ensure this is that the
earlier terms converge to fg (see Figure 1).

DEFINITION 3.2 A reduction sequence as denoted above is Cauchy continuous if the sequence
of terms {f3|8 < a} is a continuous function from o (with the usual topology on ordinals) to
the metric space Ter>(X). More explicitly, for every limit ordinal A < «, it is required that
Ve>038<AVy(B<y< A — d(ty,tx) < €). The sequence is Cauchy convergent if it is a closed
sequence.

Note that all finitely long reduction sequences are trivially Cauchy convergent.

We denote a Cauchy convergent sequence of length a starting from a term ¢ and ending as a
term t' by t —¢ t'. A Cauchy continuous open sequence of length @ may be denoted by ¢ —¢, .. ..
To indicate that the length of some sequence is not more than a, we may write t —<_ t’ or
t =%, .... When we do not wish to explicitly indicate the length of the sequence, we write
t —¢_ t' for any finite or transfinite closed sequence, and ¢t —¢_ ... for an open one. We will
often consider the terms of a sequence t —¢ t' to be indexed by the ordinals from 0 to «, and
write tg —¢, ta.

For orthogonal TRSs, the relationship between t, for a limit ordinal o and the earlier terms
in the Cauchy converging sequence is not strong enough to generalise the notion of residual,
which plays a fundamental role in the theory of finitary rewriting in orthogonal TRSs. Consider
for example the following TRS.

ExAMPLE 3.3 Let R be the orthogonal TRS given by the rules:
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AAAAA A

Figure 1. Cauchy converging sequence: reduction activity may occur anywhere.

AERATATAY

Figure 2. Strongly converging sequence: reductions occur deeper and deeper.

{AmmaAmw
C—-D

The following infinite reduction in R is Cauchy converging:
A(C,C) — A(C,C) — A(C,C) — ... =, A(C,C).
In contrast, the following reduction:
A(C,D) — A(D,C) — A(C,D) — ...
has no limit.

The example shows that in the reduction A(C,C) —, A(C,C) one cannot determine which
occurrence of C' in the original term A(C, C) the left occurrence of C' in the limit A(C,C) is a
residual of.

What is needed to extend the notion of residual to the limit of a sequence is that for any
residual there will be a moment during the reduction such that no symbols of the redex pattern
itself, nor any symbol between the root of the term and the residual will be rewritten. These
considerations lead to the notion of transfinite strongly converging reductions.

Informally, we need to add the condition that as a sequence approaches a limit ordinal, the
depth of the redexes which are reduced at each step tends to infinity (see Figure 2).

DEFINITION 3.4 Given a Cauchy continuous open or closed reduction ty —¢ ... or tg —¢ ta,
let dg be the depth of the redex reduced in tg3 — tg4q for 8 < a. The sequence is strongly
continuous (written tg — to) if for every limit ordinal A < «, the sequence {dg|3 < A} tends
to infinity. If the reduction is closed then it is strongly convergent.

Note that all finitely long reduction sequences are trivially strongly convergent.

As for Cauchy convergent reduction, we use the notations t —<, t' and t —«, t’ for strongly
convergent reductions of length up to a or of arbitrary length, respectively.
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From a computational point of view the length of convergent reductions can be rather unre-
alistic. For example, the TRS with the single rule A — A allows Cauchy converging reductions
A —=¢ A for any ordinal «, even uncountable ordinals. In contrast, the length of a strongly
converging reduction is always countable, which is a corollary of the following lemma.

LEMMA 3.5 In any TRS, iftg —» t) s strongly convergent, then the number of steps inty — t)
reducing a redex at depth < n is finite for any n.

PRrROOF. Assume ty — t) is strongly convergent. If it contracts any redex at a depth no more
than n, then by strong convergence there is a largest o < A such that the step t, — to+1 is such
a reduction step. Consider the initial segment ¢y —, to, and repeat the argument. Since there
are no infinite descending chains of ordinals, this process stops in finitely many steps. O

COROLLARY 3.6 FEuvery strongly converging reduction has countable length. O

EXERCISE 3.7 Given any countable ordinal o construct a strongly converging reduction of length
« in the Binary Tree TRS given by the single rule C' — B(C, (). When « is a countable limit
ordinal, choose this reduction so as to converge to normal form.

In fact, we will later prove that in a left-linear TRS, every strongly converging reduction is
equivalent to a strongly converging reduction of length at most w (the Compressing Lemma,
5.1). It is equivalent not only in the sense that it has the same endpoints, but that it can be
seen as doing the same reductions in a different order. This implies that the computational
power of transfinite reduction is not increased by considering reductions longer than w; the full
power of the notion is already attained for sequences of length w. In contrast, the compression
property does not hold for Cauchy converging reductions, as shown by the following example of
Farmer and Watro [FW91]:

ExAMPLE 3.8 Let R be the orthogonal TRS given by the rules:

G(z,B) — G(F(z), B)
B—-C

The term G(A, B) cannot reduce to G(F*,C) in w many or less steps. The shortest Cauchy-

convergent reduction from G (A4, B) to C has length w + 1:

G(A, B) — G(F(A), B) — G(F(F(A)), B) —., G(F*, B) — G(F*,C)

In this TRS, the right-hand sides of the rules are not all normal forms. If it is desired to find a
counterexample that does have that property, that is easily arranged. Replace the first rule in
the above system by G(z, B,y) — G(F(z),y,y), and consider reducing the term G(A, B, B) to
G(F“,C, B).

From now on we will concentrate on the theory of strongly converging reductions. In section 9
we will compare our results with results of Dershowitz, Kaplan and Plaisted in [DKP91] who
have based their study on Cauchy converging reductions.
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4. PROJECTION OF STRONGLY CONVERGING REDUCTIONS
In this section we extend the notions of residuals, developments, projection of reduction se-
quences, and Lévy-equivalence to the transfinite situation.

4.1 Complete developments

We saw in Example 3.3 that the notion of the residual of a subterm by a Cauchy convergent
reduction in an orthogonal TRS is problematic. In this section we demonstrate that subterms
do have well-defined residuals by strongly convergent reduction sequences, and that the well-
known apparatus of Lévy-equivalence and projection of reduction sequences can almost entirely
be duplicated for the infinitary theory based on strong convergence.

DEFINITION 4.1 Let S = tg —4 to be a strongly convergent sequence. Let U be a set of positions
of t. The residuals or descendants of U by S are the positions of ¢, defined by induction thus.

e If o =0, then S is the empty sequence and U/S is just U.

o If @ = 1, let the redex R reduced in ty — t; be at position v. Take any u € U. If v is
not a proper prefix of u, then u/R = {u}. If u is one of the positions pattern-matched by
R, then u/R = (. Otherwise, if u = v - w - x, where w is the position of a variable in the
left-hand side of R, then u/R consists of all positions of the form v - w' - z, where w' is a
position of the same variable in the right-hand side of R. U/R is the union of all u/R for
uelU.

o Ifa=03+1, then U/S = (U/(to —3 t’@))/(tﬁ — tﬁ—{—l)-

o If o is a limit ordinal, then w € U/S iff u € U/(to —p tg) for all large enough (3 < a.

In an orthogonal system, if R is a set of redexes of ¢y, whose positions are the set U, then by
R/S we denote the set of redexes of ¢, at positions in U/S. Orthogonality ensures that these
are redexes, and that a residual of a redex r is a redex of the same rule as r. We further note
that when the length of S is a limit ordinal «, and w is the position of a member of U/S and is
also the position of a redex, then for all sufficiently large 8 < «a, u is the position of a redex of
the same rule in ¢g, and the redex at u in ¢, is the unique residual of the redex at u in tg.

Sets of disjoint redexes will be technically important. The following proposition is immediate
from the above definition.

PROPOSITION 4.2 If R is a set of disjoint redexes, then so is R/S for any sequence S. a

DEFINITION 4.3 A development of a set of redexes R of a term ty is a strongly converging
reduction g —¢ t such that for any 8 < o the step tg — tg41 reduces a residual of a member
of R by tg —g tg. If t, contains no residual of R, then the developments is said to be complete.

Note that strong convergence is part of the definition of a development. For example, given
the rule /(z) — z and the term I(I(I(---))) (which we abbreviate to /*), any reduction which
attempts to reduce every redex of I(I(I(---))) is Cauchy convergent but not strongly convergent.
The set of all redexes of I(I(I(---))) therefore has no complete development.

PROPOSITION 4.4 FEvery set of pairwise disjoint redexes has a complete development. The final
term s uniquely determined by the set of redexes.
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ProoOF. Let the redexes be at positions w1, ug, ...in a term ¢. Then each redex has exactly
one residual by reduction of any other redex in the set, and the residual is at exactly the same
position as the original redex. The operation of replacing each redex by its reduct can therefore
be carried out for each redex independently of the others, and it is clear that the resulting term
does not depend on the order in which the reductions are made. Since arities are finite, only
finitely many reductions can be performed at any given finite depth, implying that reduction of
all the redexes, in whatever order, is strongly convergent. a

DEFINITION 4.5 A collapsing rewrite rule is a rule whose right-hand side is a variable. That
variable is the collapsing variable of the rule, and its unique position in the left-hand side of the
rule is the collapsing position of the rule A collapsing redex is a redex of a collapsing rule. A
collapsing string of redexes is a finite or infinite set of collapsing redexes in a term at positions
ug, Ug - U1, Ug - U1 * U3, ..., such that when 7 is positive and less than the number of redexes,
the collapsing position of the rule matching occurrence ug - - - u;—1 is u;. If the set is infinite, it
is called a collapsing tower. An example of a collapsing tower is the term I“ mentioned above.

PROPOSITION 4.6 (Complete developments.) In an orthogonal system, let R be a set of redexes
in a term t. If R contains no collapsing tower, then R has a complete development. (In
particular, every finite set of redexes has a complete development.) Every complete development
of R, if any, ends at the same term.

PROOF. Let n be the minimum depth of any member of R. Since all function symbols have finite
arity, there can only be finitely many members of R at depth n. Therefore by the standard theory
of finitary rewriting, we can perform a complete development of those redexes (the fact that the
whole term may be infinitely large does not affect things). We now consider the residuals of the
other members of R by this complete development, and perform the same operation. Repeating
this, either we reach in a finite number of stages a term containing no residuals of R, or we
continue for w stages. In the first case, the reduction sequence is finitely long, therefore strongly
convergent.

Consider the second case. In the first stage of the construction, we reduced all members of
R at depth n. At the second stage, there can only be residuals of R at depth n if some redex
reduced at the first stage was a collapsing redex. In general, a residual of R at the k-th stage
can only be at depth n if there was initially a chain of collapsing redexes of length £ starting
from a redex at depth n. Since R contains no infinitely long chains of collapsing redexes, and
there can only be finitely many finite chains starting at depth n, there is an upper bound, say m,
on the length of those chains. After m stages of the construction, all remaining residuals of R
must be at depths strictly greater than n. Repeating the argument shows that the development
we have constructed is strongly convergent.

To prove completeness, note that every outermost member of R will eventually be reduced.
If some member r of R is contained inside n other members of R, then when (a residual of)
the outermost of them is reduced, either a residual of r will be erased, or it will be contained in
n — 1 other members of the set of residuals of R. Therefore it must eventually either be erased
or become an outermost member, and in the latter case is eventually reduced. Therefore the
limit term cannot contain any residual of R, and so the development is complete.

We now prove by induction that every finite prefix of the final term depends only on R and
not on the development. It is sufficient to prove that the function symbol at the root of the final
term depends only on R.
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tO ........... t,B t,@+1 ......... ta
R Rs Ran Ra
Sw <w <w
80 .......... Sﬁ —><w SB+1 ......... sa

up/sp
Figure 3. The infinitary strip lemma

If no member of R is at the root of ¢, then the root of the final term is the same as the root
of t.

Suppose a non-collapsing member of R is at the root of t. Let the rule for that redex be
Cilz1, ..., 20 — Crlziy, ..., x;,]. Then t has the form Ci[tq,...,t,], and the limit of any com-
plete development of R must have the form C.[t] ,...,t; ], where each t;j is the limit of a
complete development, starting from ¢;, of those members of R in ¢;.

If ¢t contains a collapsing string of n redexes starting at its root, then by some point in the
sequence, all of those redexes must be reduced. Let ¢’ be the subterm of ¢ at the foot of the
collapsing string. Then the limit of any complete development of R must be identical to the
limit of a complete development, starting from #', of all redexes of R in t'. By hypothesis, none
of these redexes is a collapsing redex at the root of #, so one of the previous cases applies to t'. O

COROLLARY 4.7 Let R and R' be two sets of redexes of the same term t. If RUR' does not
contain a collapsing tower, then the sets of redexes R/R’ and R' /R have complete developments,
and they end at the same term.

PROOF. The sequences R-(R'/R) and R'-(R/R') are both complete developments of RUR'. O

4.2 The Strip Lemma
In this section we will prove a generalisation to infinitary orthogonal term rewriting of the Strip
Lemma for finitary orthogonal term rewriting.

LEMMA 4.8 THE INFINITARY STRIP LEMMA. Let S = tg —4 to be a strongly converging
reduction in an infinitary orthogonal TRS. Let ty reduce to sg by complete development of a set
of disjoint redexes R of ty. Let t, reduce to sy by complete development of R/S. Then there is
a strongly convergent reduction of sg to s,,.

Proor. We prove this by induction on «, constructing the diagram shown in Figure 3.
For o = 0 this is trivial.

Let a = 8+ 1, and assume the diagram has been constructed up to ¢g and sg. Then we must
construct the rightmost square of Figure 4. This is an instance of Corollary 4.7, applied to the
single redex reduced in tg — tgy; and the set R/(to —3 tg).
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fg oreenennns ts tgy1
R R Rsr)

<w <w W

S trrreees 35 —<uw Sﬁ+1

ug/sp

Figure 4. Successor case

Let « be a limit ordinal. Assume that the lemma holds for all 3 < «. There are two
possibilities: either there exists a 8 < a such that there are no residuals of R in g, or there
does not. In the first case, we define s, =t for all v with 8 < v < a. It follows that sg — ---
strongly converges to s4.

Otherwise, assume there is no such (.

We will show that for any d, the entire sequence from sg to sgy1 takes place at depth at least
d, for all sufficiently large 3 — that is, that so — ... is strongly convergent.

Consider the complete development of R, and the effect this has on the depths of nodes of
to. We will show that for every depth d, there exists a depth d’ such that for every node n of ¢
of depth at least d’, every residual of n in s, has depth at least d’. To do this we will construct
for each node of t, a lower bound on the depth of its residuals in s,. Given any node n of t,,
label n with d(n) — p(n), where d(n) is the depth of n, and p(n) is the number of nodes between
n and the root of ¢, not counting n itself, which are part of the pattern of any member of R,.
Every residual of n in s, must have depth at least d(n) — p(n), since R, will lift a redex by the
greatest possible amount if it collapses its pattern to one of the leaf nodes of the pattern.

Now consider the sequence of labels one sees on any path from the root of t,. The sequence is
obviously increasing (not not necessarily strictly increasing). If the path is infinite, the sequence
is also unbounded. This follows from the disjointness of R: there can be at most one redex on
any path, and its left-hand side must be finite.

Since t,, is finitely branching, it follows from Ko6nig’s lemma that there can be only finitely
many nodes of t,, whose labels are less than a given value (since otherwise the subtree containing
the infinite set of such nodes would have to contain an infinite path with bounded labels).

Now choose any d, and then choose d’ such that for every node of t, of depth at least d’, all
its residuals in s, have depth at least d. Choose (3 so that every step in tg3 — t, takes place at
depth at least d’. Then the prefix of ¢g to depth d' is a prefix of all later ¢,. Therefore if a node
of tg is at depth d' or greater, then its residuals by complete development of Rz must also be
at depths at least d in sg.

This demonstrates not only the strong convergence of the bottom side of Figure 3, but also
that its limit is s,,. O
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Figure 5. Projection of reductions

4.8 Lévy equivalent transfinite reductions

Lévy defined for the lambda calculus a notion of two reduction sequences with the same endpoints
doing “the same work”. We extend this notion to the transfinite setting. All systems are assumed
to be orthogonal.

DEFINITION 4.9 Let S = tg —4 to and T = t5 —g t5 be two strongly convergent reduction
sequences with tg = tg. The projection of S over T, when it exists, is denoted by S/T, and is
constructed by induction on the lengths of S and 7.

We construct the following objects. See Figure 5.

e A doubly infinite sequence of terms ¢; ;, where 0 <7< aand 0< 7 < 5.

o A set of redexes S; ; of t; ;, having a complete development S; ; from ¢; ; to t;11 ;, where
0<i<aand 0<j<pG.

o A set of redexes 7; ; of ¢;;, having a complete development T; ; from ¢; ; to t; j+1, where
0<i<aand 0<j<p.

Let S; be the concatenation of the sequences S; ; for all ¢, and let T; be the concatenation of
the sequences T; ; for all j. We also write S; 71 ; for the concatenation of all Sy ; for ¢ <4 <,
and similarly T} ; ;7. For example, T, [y 51 is the horizontal sequence in Figure 5 from ¢, o to the
term ¢, s in the centre of the diagram.

We shall say that the construction has been carried out to (v,6) if S;; and 7; ; have been
defined and Sy ,1; and Tj g 5] are strongly convergent, for all 7 and j such that 0 <i <y and
0<j<6é.

Define S; g to be the ith step of S, the complete development of a single redex S; ¢. Similarly,
take Tp ; to be the jth step of T'.
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It is immediate that the construction has been carried out to (0, 0).

Suppose that the construction has been carried out to (v,6). We extend it to (y + 1,6)
by defining for j < 6, §,,; = So,j/T%[O,j]. Each of the sets S, ; is a set of pairwise disjoint
redexes, and hence has a strongly convergent complete development S, ;. For j < §, define
Tyt+1,; = 1y,3/Sy,;- Ty41,; similarly has a strongly convergent complete development Ty41 ;.
Symmetrically, the construction may be carried out to (y,8 + 1).

This leaves the case of extending the construction to (v,6) where both v and é are limit
ordinals, and the construction has been carried out for all (v/,¢') where v/ < and ¢’ < 6, and
at least one inequality is strict. In this case, all that is needed is to define 7', 5. This is taken to
be the common limit of the sequences Sy ;s and T, 9 5], provided these sequences are strongly
convergent and have the same limit. If this fails to be the case (and we will later see that this
can happen), then the construction cannot be carried out to (v, 6).

If the construction can be carried out to (a,3), then we define S/T = Sjg 41 3. S/T is the
projection of S over T. We symmetrically define T'/S =T, 19 5}, the projection of T" over S.

DEFINITION 4.10 Two sequences S and T with the same initial term and the same final term
are Lévy-equivalent, written S ~p T, if S/T and T/S both exist and are empty.

A square of reductions of the form S, T, S/T, and T'/S will be called the projection square or
tile based on S and T'. It is elementary if S and T are both complete developments (in which
case S/T and T'/S will also be so).

Note that the order in which the whole of Figure 5 is constructed is not completely determined.
However, it is easy to see that the final result is the same. The following equivalent description
of the figure without reference to the order of its construction makes this clear. It consists of
elementary tiles based on S, s and T, 5, where S, s = S, /T, 105 and T 5 = To,6/S[0,4],5» With
all the rows and columns being strongly convergent and all pairs of reductions of the form Sy ) 5
and T, [o 5] having the same endpoint.

The next two propositions list some basic properties of projection and Lévy-equivalence. Their
proofs are immediate from the construction.
ProposITION 4.11 1. S/S is empty. Hence S ~p, S.

2. If S/T and T/S ezxist, they have the same final term.

3. Let R be a set of redexes in the common initial term of S and T. If S ~p T then
R/S=R/T.

4. All complete developments of the same set of redexes are Lévy-equivalent.
5. (S-T)/U = (S/U)-(T/(S/U)); if either exists then so does the other.

6. U/(S-T)=(U/S)/T; if either exists then so does the other.

7. 8- (T)S) ~p T-(S/T); if either exists then so does the other.

8. Let S, T, and U be sequences with suitable endpoints. If S ~p, T, then U/S = U/T if both
exist, and S/U ~p, T /U if both exist.
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Figure 6. Projection laws.

Proor. Items 1-3 follow immediately from the construction. For item 4, let S and T be two
complete developments of a set R of redexes. If the construction of Figure 5 is applied to S
and T, every reduction step in the resulting diagram reduces a residual of a member of R. Since
S and T are complete developments, the right and bottom sides of the diagram are therefore
empty. Therefore S ~y, T. Items 5 and 6 describe the situation of Figure 6(i), and are immediate
from the definition of the construction. Item 7 follows from the first and Figure 6(ii). Item 8 is
illustrated by Figure 6(iii). O

Finally, we note that the concept of Lévy-equivalence casts further light on the proof of the
Strip Lemma.

PROPOSITION 4.12 In Figure 3, the sequences ty — to, — So and tg — sy — S, are Lévy-
equivalent.

ProOF. The use of the Strip Lemma in the construction of Figure 5 immediately implies that
Figure 3 is a special case of Figure 5. The two sequences are therefore S-(R/S) and R - (S/R),
which by Proposition 4.11, are equivalent. O

5. THE COMPRESSING LEMMA

In this section we prove the Compressing Lemma for left-linear TRSs. This states that for
any reduction of length greater than w, there is an equivalent reduction of length at most w,
equivalent in the sense that it not only has the same endpoints, but is Lévy-equivalent.

The lemma reassures us that transfinite strongly converging reductions are just “slow” vari-
ants of the strongly converging reductions of length at most w, and that the power of transfinite
reduction does not depend on being able to execute reductions of length greater than w. These
might otherwise be felt to be computationally meaningless, whereas reductions of length w are
naturally interpreted as approaching arbitrarily close to their limit with enough finite computa-
tion.

LEMMA 5.1 COMPRESSING LEMMA.  For any strongly converging reduction of length o in
a left-linear TRS, there is a strongly converging reduction of length at most w with the same
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endpoints. If the TRS is orthogonal, that reduction can be chosen to be Lévy-equivalent to the
given reduction.

PRrROOF. For finitely long reductions this is trivial. Let the given reduction be ty —,+q twta for
some «. We shall prove the theorem by induction on a.

e The case a = 0 is trivial.

e Let a = 4 1. By the induction hypothesis applied to 3, we can first compress the initial
segment tg —g tg down to length at most w. It then suffices to show that any reduction
to —w+1 twt+1 can be compressed into ty —<. tw+1, Lévy-equivalent in the case of an
orthogonal TRS.

Let tg —w+1 twr1 be a strongly converging reduction. Let the redex R, contracted in
t, — to,+1 have depth d, and position u,. Put d = d, + h, where h is the height of the
left-hand side of the rule associated with the redex R,,. By strong convergence there exists
an N such that for n > N the depth of the redex R, contracted in t,, — t,1 is larger than
d. This implies that in every ¢, with n > N, there is a redex at u,, by the same rule as
R, and that R, is the unique residual of each of these redexes by the sequence from ¢, to
t,. Note that left-linearity is essential here, but not orthogonality, since by construction
R, and Ry are far enough apart that they cannot conflict.

We will now construct a strongly converging reduction tg —<, to+1. For the first NV steps
we take tg —n ty. Then when N < k < w we reduce tp — s by contracting the redex
R, at w in t. By construction, the redex Ry reduced in ¢y — tx41 is either disjoint from
R, or below it.

Define reductions sy —<,, sk+1 by contracting the copies of Ry, resulting from the contrac-
tion of R, in ;. It is easy to see that the resulting reduction sequence sy —<, SN+1 —<w
SN4+2 —<w - - strongly converges to s, = t,41. If the right-hand side of the rule reduced
by R, is finite, each of the sequences s; —<. sx4+1 must also be finite, and the reduction
of sy to t,+1 has length at most w, proving the lemma. However, it is possible that the
right-hand side of the rule is infinite. We deal with this possibility by showing that the
reduction of s to ¢,41 (which might have length up to w?) can be reordered so as to bring
its length down to at most w.

Every step of the reduction of ¢ty to t, takes place at depth at least d. Therefore the
reduction proceeds independently in each of the subterms of {5 whose root is at depth
exactly d, and it can be seen as an interleaving of a finite set of reduction sequences,
one in each such subterm. Consider what the reduction of R, in ty does to each of these
subterms. Those not contained in R, are left unchanged, but those contained in R, may be
replaced by any number of copies of themselves, possibly infinitely many. sy can therefore
be reduced to s, by applying to each such copy of a subterm of ¢ the reduction sequence
which that subterm is subject to in the reduction of ¢y to t,. We thus obtain possibily
countably infinitely many reductions, each of length at most w, of subterms of sy, such
that the combination of all these reductions reduces sy to s,. To obtain a reduction of
sy to s, or length at most w, we need only interleave these reduction sequences.

It follows directly from this construction that in an orthogonal system, the projection of
the original sequence over the compressed sequence is empty, and vice versa. Therefore
they are Lévy-equivalent.
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Figure 7. Compressing Lemma, limit case

e Finally, let & = A for some limit ordinal A\. We make the following claim, to be proved
later.

CrAamM 5.2 (Cf. [FW91].) Given a strongly converging reduction of the form

Sd —<w,d Td —<\d t

there exists also one of the form
Sd =g Sd+1 —<wd+l Td+1 —<hd+1 b

Continuing the main proof, write the given reduction as ty —<w 0 tw —x,0 twt+r, and let
so = tg, ro = tw, t = tu,+x. We may then repeatedly apply Claim 5.2 so as to construct
Figure 7. Clearly the reduction sequence so —( s1 —] s2 —5 - - - strongly converges to the
limit 5.

For orthogonal systems, we will show in proving Claim 5.2 that the two routes from top
left to bottom right in each of the rectangles in Figure 7 bounded by s4, s4+1, and .1 are
Lévy-equivalent. It follows that for such systems, the sequences tg — sg —§ 51 = f,42
and to — sg —( 7o — 0 twt+a are Lévy equivalent.

It remains to prove Claim 5.2.

First we observe that by the definition of strong convergence, for any limit ordinal A, any
strongly converging reduction tg — g t can be split into tog —, 4 t, —x/ 441, where p < A
and ) is a limit ordinal such that X < A.

Next we construct Figure 8.

The areas marked by (1) are constructed using this observation. For the top right triangle
marked (1), we also take 3 to be less than X\'. This is possible because X is a limit ordinal
and the upper side of the triangle is strongly converging. We then use the induction
hypothesis to construct the triangle marked (2).

For each triangle marked (1), the two routes round the triangle are identical reduction
sequences. By induction we may assume that in an orthogonal system, the two routes
round triangle (2) are Lévy-equivalent. Therefore the two routes round the perimeter of
Figure 8 are Lévy equivalent. These are also the two routes round the rectangle in Figure
7 bounded by s4, sq+1, and t,1, which as therefore Lévy equivalent, as required. a
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Note that the condition of left-linearity is essential for this part of compressing lemma, as
witnessed by the following counterexample from [DKP91]:

COUNTEREXAMPLE 5.3 Let R be the following TRS:

A— G(A)
B — G(B)
F(z,z) = C

The term F(A, B) cannot reduce to C' in at most w many steps: the shortest reduction to C is
the strongly converging reduction

F(A, B) —, F(G¥,G*) — C.

6. THE TRANSFINITE CHURCH-ROSSER PROPERTY

The Church-Rosser property with respect to finite reductions holds for infinitary orthogonal
TRSs with finite right-hand sides: the usual proofs for the finitary case go through verbatim.
We will see that it does not necessarily hold when there are infinite right-hand sides. One can
also formulate a version of the Church-Rosser property for transfinite reductions.

DEFINITION 6.1 Let R be an infinitary TRS. R has the transfinite Church-Rosser property if
For any term ¢ in R and any reductions t —, s and ¢t —g r, there exist a term u and reductions
s — u and r —5 u (cf. Figure 9.1).

We shall in this section demonstrate to what extent this property holds for orthogonal in-
finitary TRSs. For such systems, the compression lemma implies that it is equivalent to the
following version:

e for any term ¢ and any reductions t —<,, s and t —<,, r there exist a term u and reductions
s —<w u and 7 —<,, u (cf. Figure 9.ii).
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The Strip Lemma implies that this already holds when at least one of the two sequences is
finitely long. For orthogonal TRSs, the transfinite CR property is therefore equivalent to:

e for any term ¢ and any reductions t —, s and t —, 7 there exist a term u and reductions
s —<w u and 7 —<,, u (cf. Figure 9.iii).

In contrast to the finitary case, the Church-Rosser property for transfinite reductions in or-
thogonal TRSs is in general false, for both strongly and Cauchy converging reductions. Even the
finite Church-Rosser property can fail. We noted above that it holds when all right-hand sides
are finite. We also noted that the Strip Lemma implies that a pair of finite coinitial reduction
sequences can always be joined; however, with infinite right-hand sides it is sometimes only
possible to join them by infinite sequences. The following counterexamples demonstrate these
claims.

COUNTEREXAMPLE 6.2 e Rules: A(z) — z, B(z) — z, C — A(B(z))
Sequences: C — A(B(C)) — A(C) — A(A(B(C))) — A(A(C)) —, A¥
C — A(B(C)) — B(C) — B(A(B(C))) — B(B(C)) —, B

Hence ' —<,, A as well as C' —<,, B“. But there is no term ¢ such that A¥ —<, t —<,
B“ (whether by strongly or Cauchy converging reduction). (This example also demon-
strates that in general w-normal forms are not unique, for both notions of convergence.)

e Rules: D(z,y) — y, C — D(A,D(B,(C))
Sequences:
C — D(A,D(B,C)) — D(A,C) —3 D(A,D(A,C)) —9 D(A,D(A,D(A,C))) —
C — D(A,D(B,C)) — D(B,C) —2 D(B,D(B,C)) —9 D(B,D(B,D(B,())) —
It is not possible to join the limits of these two sequences.
e Rules: A — B, F(z) — G(z,G(z,G(z,...))).
Sequences:
F(A) — G(A,G(A,G(A,..)))
F(A) — F(B)
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The terms G(A,G(A,G(A,...))) and F(B) can both be reduced to G(B,G(B,G(B,...))),
but not by a pair of finite reduction sequences.

In the first two counterexamples, we only include the last rewrite rule in order to have examples
in which the reduction sequences start from finite terms. As with Example 3.8, we can in
addition arrange that none of the right-hand sides of the rules contain redexes. In the first
example, replace the third rule by C(D,z) — A(B(C(z,z))), and consider sequences starting
from C(D, D). More interestingly, we can exhibit the phenomenon within combinatory logic
(CL), which is the TRS having nullary symbols S, K, and binary application (which we will
indicate, using the usual convention, by left-associative juxtaposition), and rules Szyz — zz(yz)
and Kxy — x. A counterexample to the transfinite Church-Rosser property for this system will
be constructed following Theorem 6.10.

We shall, however, prove several slightly weaker forms of the Church-Rosser property for
orthogonal systems. One approach will be to restrict the form of rules. The above counterexam-
ples suggest that collapsing rules are the source of the problem, and this is indeed the case. We
shall establish restrictions on the form of collapsing rules which will restore the Church-Rosser
property. Another approach is based on the notion that the terms in the above counterexamples
are in an intuitive sense meaningless. They not only have no normal forms, they have no head
normal forms, in the sense that every term they can be reduced to can be further reduced to
a redex. In an orthogonal system, such a term cannot “make a difference” to any surrounding
context (a notion which will be formalised later). If we identify together all such “meaningless”
terms, we find that the Church-Rosser property is restored for all orthogonal systems.

6.1 Depth-preserving orthogonal Term Rewriting Systems

In this section and the next we consider two classes of orthogonal TRS in which the infinitary
Church-Rosser property holds for strongly converging sequences. In this section we will consider
a very restrictive condition on the form of rewrite rules and prove the Church-Rosser property
for such systems. This will serve as a stepping-stone to proving a more general form of the
property which requires less restrictive conditions.

DEFINITION 6.3 A depth-preserving TRS is a left-linear TRS such that for all rules the depth
of any variable in a right-hand side is greater than or equal to the depth of the same variable in
the corresponding left-hand side.

THEOREM 6.4 A depth-preserving orthogonal TRS has the infinitary Church-Rosser property
for strongly converging sequences.

PRroOOF. Let tgg — to,1 — ... —w tow and too — t10 — ... = tu,0 be strongly convergent.

Construct the projection diagram for the two sequences as in Figure 10. The Strip Lemma
suffices to construct all of this diagram save for the bottom-right-hand corner. We must prove
that the right-hand side and the bottom side of the diagram are strongly convergent and have
the same limit. Each of the other rows and columns of the figure is strongly convergent. By
the depth-preserving property it holds for all m < w and n < w that the depth of the redexes
reduced in ¢, m —u tnm+1, being the residuals of the redex Rg ., in tgm — tom+1, is at least
the depth of Ry, itself. Because tg0 — to,1 — ... —u tow is strongly convergent, it follows that
tw,0 —<w tw,1 —<w tw2 ... is strongly converging. Let us call its limit ¢, .
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In the same way the terms ¢, ., are part of a strongly converging sequence. The limit of this
sequence is also equal to ., ., as can be seen with the following argument.

Let € > 0. Because (tw,n)nw is a Cauchy sequence, there is an N; such that if Ny <m < w
then d(tw,m, tww) < 3€.

Because 9,90 — <. tw,o is strongly converging, there is an N3 such that for n > No we have that
2-dn < %e where d,, is the depth of the redex R,, reduced at step ¢, o — tn+1,0. Since the residuals
of this redex R, occur at least at the same depth, and since the TRS R is depth-preserving, we
get d(tn,m, twm) < %e for all m < w and n > N».

For similar reasons there is an N3 such that if n < w and N3 < m < w then d(tp o, tn,m) < %e.

Therefore taking N to be the maximum of N1, Ns and N3, for n > N we find by the triangle
inequality that

d(tn,cm tw,w) S d(tn,un tn,n) + d(tn,n7 tw,n) + d(tw,?m tw,w)
< 1 n 1 n 1
—e+ —€+ —¢€
- 3 3 3
< e

6.2 Almost non-collapsing orthogonal Term Rewriting Systems
DEFINITION 6.5

o A rewrite rule is a collapsing rule if its right hand side is a variable. The arity of a
collapsing rule is the number of different variables that occur in its left hand side.

e A TRS R is non-collapsing if all its rewrite rules are non-collapsing.

e A TRS is almost non-collapsing if all its rewrite rules are non-collapsing, but for at most
a single collapsing rule, with the left-hand side of that rule containing no variables other
than the one which is its right-hand side.

We will show that an orthogonal TRS satisfies the Church-Rosser property for strongly converg-
ing reductions if and only if it is almost non-collapsing. The proofs will use a variant of Park’s
notion of hiaton (cf. [Par83]) in order to transform every almost non-collapsing system into a
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depth-preserving one, and deriving the Church-Rosser property for the given system from that
for the transformed system.

The basic idea is to replace a depth-decreasing rule like A(z, B(y)) — C(y) by a depth-
preserving variant A(z, B(y)) — C(e(y)). In order to keep the rewrite rules applicable to terms
involving hiatons, we also have to add more variants such as A(z,e™(B(y))) — C(e™*(y)) for
m > 0. By adding to an arbitrary TRS enough depth-preserving variants of its rewrite rules,
we transform it into a depth-preserving TRS.

DEFINITION 6.6 Let R be a TRS based on the alphabet ¥. Let ¥, be the extension of ¥ with
a fresh unary symbol e.

1. Let the e-hiding function p : Ter®(X.) — Ter®(X) be partially defined by induction as
follows:

t1,---ytn)) = f(p(t1),-..,p(ty)) for fin ¥ and t; € Ter™ (%) for 0 <i < n,
(c) p(e(t)) = p(t) for t € Ter>(X,).

p is well-defined on terms in Ter® (%) containing no infinite string of es.

2. A term t € Ter™®(X,) is an e-variant of a term s € Ter>®(X) if p(t) = s, that is, if hiding
the €s in t results in s.

3. An e-variant of a rule [ — r is a pair of terms (I, r.) such that

(a) p(le) =

(b) p(re) =

(c) the root symbol of I is not e.

(d) [ does not contain a subterm of the form e(z) for any variable z.

(e) the root symbol of 7, is not € unless r is a variable,

4. An e-completion R¢ of R has alphabet ¥.. TIts rules are depth-preserving e-variants of
rules of R, chosen thus: for each rule [ — r of R, and each e-variant [, of [ satisfying the
conditions of item 3, R includes exactly one depth-preserving e-variant of the rule having

le as its left-hand side. We denote reduction in R® by —¢. Note that R® is not uniquely
defined; the precise choice of R¢ will not be significant.

The following lemma is immediate.

LEMMA 6.7 The e-completion of an orthogonal TRS is depth-preserving and orthogonal. O

LEMMA 6.8 Let R be a non-collapsing orthogonal TRS.

1. Let te be an e-variant of a term t of R. If t. strongly e-converges in w steps to some term
s wn RS, then s does not contain a branch ending in an infinite string of €s.

2. Let ty be an e-variant of some term sg. If tg —, t,, s a strongly converging reduction n
Re, then so is sg —, Sw in R, where s; = p(t;) for 0 <i < w.

3. Let tg —, t, be a strongly converging reduction in R. Let so be an e-variant of tg. Then
there exists a strongly converging reduction sy —¢, s, tn R° such that each s; is an e-variant
of the corresponding t;, and similarly for the reduction rules used.
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PROOF.

1. Since there are no collapsing rules, a string of es can only be made longer by a reduction
occurring at the parent node of its topmost €. Strong convergence implies that only finitely
many such reductions can be made, and therefore that an infinite string of es cannot be
created.

2. Since tp is an e-variant it does not contain an infinite string of es. Neither do any of the ¢;
for i € w, nor t,, itself by item 1. Hence, p(t,) is well-defined for all 0 < n < w.

Because there are no infinite strings of €s in t,,, every infinite path from the root of ¢, must
contain infinitely many occurrences of members of 3. Note also that t,, is necessarily an
infinite term.

Since by 1, t,, contains no infinite string of es, it must contain occurrences of members of
3. at arbitrarily great depth.

Given any finite number k, consider those occurrences v of t,, such that the path from
the root to v contains at least k occurrences of symbols in 3. By the preceding remarks,
there must be at least one such occurrence. Let Ny be the minimum length of all such v.
Because there are no infinite strings of es, N must tend to infinity with k. Since tg —, t,
is strongly converging there exists for any £ > 0 an N such that for n > N, the depth of
the redex reduced in t,—1 — t,, is at least N,. This implies that the corresponding redex
in s,—1 — Sy, is at depth at least k, and hence sy —, s, is strongly convergent.

3. The e-variant sy of fy contains the corresponding e-variant of the redex reduced in .
Apply an e-variant of the corresponding rule. The resulting reduction satisfies the required
properties. O

THEOREM 6.9 Fvery non-collapsing orthogonal TRS satisfies the infinitary Church- Rosser prop-
erty for strongly converging reductions.

PRrROOF. Let R be an orthogonal TRS. Construct its e-completion R¢. By Theorem 6.4 the depth-
preserving orthogonal TRS R€ satisfies the infinitary Church-Rosser property. So if we start with
two strongly converging reductions ¢ —<, s1 and ¢t —<, s, then by Lemma 6.8(3) these reduc-
tions lift to two strongly converging reductions in R¢, let us say t =< r1 and t =< ro. By Theo-
rem 6.4 there exists a join u for the two lifted reductions such that r; —¢_ u as well as ry —<, u.
Erasing all es using Lemma 6.8(2) we see that the term p(u) is the join in R of t —, s; and

t —<w S9.

THEOREM 6.10 An orthogonal TRS satisfies the infinitary Church-Rosser property for strongly
converging reductions if and only if it is almost non-collapsing.

PROOF.

If: If the TRS has no collapsing rule then it is Church-Rosser by theorem 6.9. Otherwise, let
its collapsing rule be C[z] — x for some context C[] containing no free variables. First,
note that the proof of the previous theorem cannot be directly applied in the presence
of the rule C[z] — x. Consider the rules A(z) — I(z), B(z) — I(z), I(z) — z. There
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are obvious reductions of the term A(B(A(B(---)))) to both A“ and B“. These lift to
reductions ending with A(e(A(e(---)))) and e¢(B(e(B(---)))) respectively. If we now apply
the Church-Rosser property of the depth-balanced system, we obtain reductions of these
terms to e(e(e(e(--+)))), which cannot be lifted to strongly convergent reductions in the
original system.

A simple modification of the previous proof establishes the present theorem. We modify
the depth-preserving transformation by introducing two versions of e: € itself, and €’. The
rule C[z] — z is replaced by the depth-preserving version Clz] — €™(z), where n is the
depth of the hole in C[]. The other rules are transformed as before, except that wherever
€ would appear on the left-hand side in the original transformation, either € or € is used,
in all possible combinations. On the right-hand sides, only € is used. It is easy to see
that the resulting system is depth-preserving and orthogonal, and hence that the infinite
Church-Rosser property holds.

The distinction between € and € can be thought of as labelling those occurrences of e
which arise from reductions by Clz] — €™(z).

Now consider two strongly converging reductions ¢t —«, s1 and ¢ —<, s2. As in the proof
of the previous theorem, we obtain in R a term u and two strongly converging reductions
r1 —%, u and ro =% u, where 7 and 73 are e-variants of s; and ss.

We cannot in general erase every € and €' from these sequences to obtain a join for s; and
89, since u may contain infinite branches consisting only of € and €. (which we shall call
e-branches for short). But we will show that we can transform these sequences in such a
way as to eliminate such branches, after which the erasing process can be performed safely.

In every e-branch in u, there must be infinitely many occurrences of €. This follows for
the same reason that in the non-collapsing case, no infinite branch of €s can arise.

Now consider an occurrence of €' in an e-branch of u. This must arise from a reduction by
the rule C'fz] — €(z) at some point in each of the sequences r1 —<, wand 7o —<, u. This
reduction is performed on a subterm of the form C[T], where T reduces to an e-branch.
By orthogonality, it is impossible for the reduction of the C[T] redex to be necessary for
any later step of the sequence to be possible. If we omit it, the only effect is that certain
subterms of the form of ¢™(...) later in the sequence will be replaced by C[.. ].

We therefore omit from both 1y —< u and ry =% u every reduction by C[z] — ¢™(z)
which gives rise to an occurrence of € in any e-branch of u. This gives a term «’ containing
no such occurrences of €, and reduction sequences r; —¢, u and ro —¢, u’. These
sequences have the property that they contain no e-branch anywhere. They may therefore
be lifted to strongly convergent reductions in the original system, providing a strongly
convergent joining of the original reduction sequences.

Only if: If the given TRS is not almost non-collapsing, then it contains either two unary col-
lapsing rules, or an n-ary collapsing rule with n > 2. In either case one can construct a
counterexample similar to those of Counterexample 6.2. m|

From the argument for the “only if” case of the theorem we can easily construct a counterex-
ample to the Church-Rosser property for CL. Consider the two collapsing redexes KxK and
KxS. Tt is enough to find a term A of CL which reduces to K(KAK)S. Then A reduces both
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to K(K(K...K)K)K and to K(K(K ...S)S)S, which have no common reduct. Such an A can
be constructed by means of the following definitions:

I=SKK

B=S(KS)K

C = S(BBS)(KK)

Z = B(SI)(SII)

T=77

A=T(C(BK(CKK))S)

We then find that A —* K(KAK)S. Note that T is Turing’s fixed point operator, with the
property that T'f —* f(Tf), and that C(BK(CK K))S has the property that C(BK(CKK))Sz —*
K(KzK)S.

7. REDUCTIONS TO NORMAL FORM

In the previous section we showed that the infinitary Church-Rosser property holds for almost
non-collapsing orthogonal TRSs. In this section we will show that various infinitary normal form
properties hold for arbitrary orthogonal TRSs.

7.1 Unique normal form properties
DEFINITION 7.1

e A TRS has the normal form property (NF) if for any term ¢ with a strongly converging
reduction to normal form n and any strongly converging reduction from ¢ to s, there exists
a strongly converging reduction from s to n:

e A TRS has unique normal forms (UN) if convertible normal forms are identical, where ¢
is convertible with t' if there is a finite series of forwards and reverse reduction sequences
of the form t —o, t1 <o 2 ... — oo tn oo t'. (That is, convertibility, for infinitary TRSs,
is the reflexive transitive symmetric closure of —.)

e A TRS has unique normal forms with respect to reduction (UNT) if all normal forms of a

term are identical. .

o |6

niy = N9

Note that in the finitary case, the definition of NF could be equivalently stated by taking G to
be 1, instead of an arbitrary finite number. Call the property so defined NF!. In the infinitary
setting, NF! is weaker than NF, as the following counterexample shows.

Consider the (non-orthogonal) rule system A(B(z)) — B(z) and A(B(z)) — A(A(B(z))). In
the definition of NF, take ¢ to be A(B(C)) and n to be B(C). Then for every finite reduction
from ¢ to a term s, there is a finite reduction of s to n, and so the system satisfies NF'. However,
t can be reduced to the infinite term A“, which cannot be reduced to B(C). Thus the system
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does not satisfy NF. Similarly, we may consider the property UN', where one of ¢; and ¢;,; must
be reducible to the other in a single step. The same example satisfies UN! but not UN, since
A¥ ig a normal form.

The NF property is sometimes stated in a form that allows ¢t to be convertible with s rather
than reducible to it; this is equivalent to the definition given here, as is easily seen by an obvious
induction on the (finite) number of forward and backward reduction sequences in the conversion
of t to s.

As in the finitary case, certain relations among the above properties and CR are immediate.

LEMMA 7.2 CR = NF = UN= UN— O

7.2 Reduction modulo equivalence of hypercollapsing terms

In this section, we prove a weakened version of the Church-Rosser theorem. Unlike the earlier
Theorem 6.10, this one applies to all orthogonal TRSs, but only requires that the two given
sequences be joinable “up to” a certain equivalence relation on terms.

DEFINITION 7.3 e A hyper-collapsing reduction sequence is a strongly continuous reduction
sequence containing infinitely many collapsing reductions performed at the root.

o A hyper-collapsing term is a term from which there is a hyper-collapsing reduction se-
quence.

o t ~p. t' (in words: t and t' are he-equivalent) if and only if there is a term t” and substi-
tutions o and ¢’ such that ¢t = o(t"), ' = o'(t"), and o and ¢’ are defined on the same set
of variables and map them to hyper-collapsing terms.

e A TRS is CRy, if whenever tg —, t1 and tg —g t2, there exist sequences t; —, t3 and
to —s t5 such that t3 ~p, t5.

THEOREM 7.4 Fuvery orthogonal TRS is CRp..

The proof of this theorem occupies the remainder of the section. We proceed by transforming
the given TRS into an almost non-collapsing one, applying the Church-Rosser property for the
transformed system, and transforming the resulting reduction sequences back into the reduction
sequences required by the theorem.

DEFINITION 7.5 Let R be a TRS. R! is the almost non-collapsing TRS obtained from R by
adding a new unary function symbol I and a rule I(z) — z, and replacing every collapsing rule
[ — = (where [ is a term and z is a variable) by | — I(z).

When considering reductions and the equivalence ~., we will when necessary indicate by
superscripts whether we intend them in R or in R!. Note that prima facie, ~£ and Nfcl are
not obviously the same, although we shall later prove them identical. R (and therefore also R)
will be assumed to be orthogonal.

DEFINITION 7.6 Let t be a term of R!. If I is not a subterm of ¢, then ¢ is defined to be the
result of a complete development of all I-redexes of t.

LEMMA 7.7 Ift =R ¢, then t =R ¢'.
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Proor. Int —>§O t', replace each collapsing step s — s’ which uses a rule [ — x by a two-step
reduction s — s’ — s’ using the R'-rules | — I(x) and I(z) — z. Each of these steps takes
place at the same depth as s — s’ did, and so the resulting sequence is still strongly converging. O

LEMMA 7.8 If t is hyper-collapsing, then there is a hyper-collapsing reduction sequence starting
from t of length w.

PrOOF. Let S be a hyper-collapsing strongly continuous reduction sequence starting from t¢.
S must have the form SirSs, where r is the first root-collapsing step. Apply the Compressing
Lemma to S7, to obtain a sequence Ss of length at most w with the same endpoints. By strong
convergence, S3 must have the form 5455, where Sy is finite and r is the unique residual by
S5 of a root redex r’. Apply the Strip Lemma to 7’ and S5 to obtain a sequence Sg = S5/r’.
This transforms the original sequence S into the form S47'SgSs, in which Sy is finite, 7’ is a
root-collapsing reduction, and SgSs is hyper-collapsing (because Sy is a final segment of S).
Repeating the construction on SgS; generates a hyper-collapsing sequence starting from ¢ of
length w. a

LEMMA 7.9 Ift is hyper-collapsing and t — s, then s is hyper-collapsing.

Proor. By the Compressing Lemma, we may assume that { —., s has length at most w.
Choose any strongly continuous hyper-collapsing reduction S starting from ¢t. By Lemma 7.8,
S can be chosen to be of length w.

First consider the case where t — s is a single step. Apply the Strip Lemma to t — s and
each step of S, to generate a reduction sequence S’ = S/(t — s) from s. If t — s is a root
reduction, then it will cancel out the first root reduction of S, and hence the final segment of S
after that point will also be a final segment, of S’. This implies that S’ is hyper-collapsing. If,
instead, ¢ — s is not a root reduction, then its residuals by any initial segment of S must be
either a single root redex, or a set of non-root redexes. If the former case ever happens, then
by the same argument, S’ must contain a final segment of S, and hence be hyper-collapsing.
If only the latter case happens, then each root reduction of S must be projected into a root
reduction of S’ by the same rule. In particular, the root-collapsing reductions of S project to
root-collapsing reductions of S’. Hence S’ is hyper-collapsing in this case also.

By iterating the above argument, the lemma holds for any finite reduction t —* s.

Now consider the case t —,, s. By strong convergence, this sequence contains only finitely
many root reductions. We can apply the case already established to obtain a hyper-collapsing
sequence starting from a point in ¢t —, s after the last root reduction. Otherwise put, we may
assume without loss of generality that t —,, s contains no root reductions.

Apply the Strip Lemma to ¢t —, s and each step of S, obtaining a sequence S’ starting from s.
Because t —,, s contains no root reductions, an argument similar to that used in the first part
of the proof shows that every root reduction of S up to and including the first root-collapsing
reduction must be projected to a root reduction of S’, and the root-collapsing reduction must
project to a root-collapsing reduction. See Figure 11, in which the annotations ‘r’, ‘r¢’, and ‘-7’
indicate root reductions, root-collapsing reductions, and non-root reductions respectively. The
projection of ¢ —,, s over that initial segment may contain root reductions. However, we can
now repeat the argument for that sequence and the remainder of S. In this way, we generate a
hyper-collapsing sequence from s. O
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LEMMA 7.10 In any orthogonal TRS, if t —o t', then there is a reduction t —o t" containing
no reduction steps in hyper-collapsing subterms, such that t" ~p. t'.

ProoF. Without loss of generality we may assume that ¢ —, ¢’ has length at most w. Write
the sequence as tg — t1 — ...t<,. We will define a sequence sy —<1 $1 —<1 ...8<, Which
performs no reductions in hyper-collapsing subterms. Take sy = ty. Assume s,, has been defined
and that ¢, ~pe Sn.-

If t,, — tny1 is a reduction in a hyper-collapsing subterm of ¢y, then take s,+1 = s,. Clearly,
tnt1 ~he Snt1-

Otherwise, since t, ~p. Sn, there is a term r and substitutions ¢ and ¢’ such that ¢, = o(r)
and s, = o'(r), where o and ¢’ map the same set of variables to hyper-collapsing terms. The
reduction of ¢, to t,4+1 must be at a position of ¢, which is also the position of a redex in
r. Suppose reducing this redex in r yields /. Then t,41 = o(r’) and s, — o'(r'). Take
Spp1 = 0'(r'); then t,41 ~he Sny1-

If tg —<. t<w is finitely long, the above proves the lemma. If it has length w, apply the above
argument to each step of tg —, t,. Every nonempty step s, — sp+1 is at the same depth as
tn — tnt1, therefore the sequence from sg is strongly convergent. We must show that ¢, ~p. s, -

Consider an outermost hyper-collapsing subterm of ¢, at position u. By strong convergence,
from some t, onwards, no reduction takes place at any position which is at a prefix of w.
Therefore t,|u is also hyper-collapsing, since it reduces to t,|u. Since t, ~pe Sn, Sn|u is hyper-
collapsing for all m > n. Since s,|u reduces to s,|u, by Lemma 7.9 s,|u is hyper-collapsing.
Symmetrically, t,, has an outermost hyper-collapsing subterm everywhere that s, has. Since t,
and s, cannot differ anywhere outside their maximal hyper-collapsing subterms, t, ~pe so,. O

. . I . . .
LEMMA 7.11 Consider a reduction sequence t —% t' in which no term contains I* as a subterm.
Then there is a reduction sequence t' —E 1.

PROOF. Consider first a single step ¢ —% ¢’ where neither ¢ nor ¢ contains I* as a subterm.
If this step is an I-reduction, then ¢t/ = ¢'/, and the theorem is satisfied by the empty reduction
sequence. If it is a reduction by a rule of the form [ — I(z), then ¢! reduces to t'/ by the rule
| — . Otherwise, ¢! reduces to ¢’/ by the same rule that reduced ¢ to t'.

If we apply this to every step of a sequence ¢ _)501 t' of arbitrary length, we obtain a reduction
sequence of R from ¢! to t'/. It remains to show that this sequence is strongly convergent.

Let A be a limit ordinal not exceeding the length of the given sequence. t) does not contain
I¥ as a subterm. By Konig’s lemma it follows that for every d there is an e such that for every
position u of t) of depth at least e, the number of occurrences of function symbols other than I
at positions which are prefixes of u is at least d. This implies that t{|d = (t)|e)’|d. By strong
convergence, there is an n such that when all n < m < A, t,,|maz(d,e) = ty|maz(d,e) and the

reduction ¢,, — t,+1 is at a position deeper than maz(d,e). Therefore for such m, tl,|d = ti|d,
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I

: I
and the reduction of ¢;, to t;,

11 is at a depth at least d, demonstrating strong convergence. O

LEMMA 7.12 A term of R is hyper-collapsing in R if and only if it is hyper-collapsing in R'.

PrOOF. The forwards implication is immediate from Lemma 7.7. For the converse, let ¢ be
hyper-collapsing in R!. Applying Lemma 7.11 to a hyper-collapsing sequence in R! from ¢ gives
a hyper-collapsing sequence in R from t. O

LEMMA 7.13 Ift and t' are terms of R, then t ~& t' if and only if t N,?CI t.

PROOF. Immediate from Lemma 7.12. O

LEMMA 7.14 Let t and t' be terms of R! which do not contain I* as a subterm. Ift Nfcl t,
then t! ~F 1.

PROOF. Let t and t' reduce to s and s’ respectively by complete development of all I-redexes
which are not contained in hyper-collapsing subterms. (Note that these redexes must be at the
same positions in ¢ and t'.) Let u be the position of an outermost hyper-collapsing subterm
of s. Then s|u is the residual by the I-reduction of an outermost hyper-collapsing subterm of
t at some position v. Since t ~p. t', t' has an outermost hyper-collapsing subterm at v, and
s’ must have an outermost hyper-collapsing subterm at u. Symmetrically, everywhere that s’
has an outermost hyper-collapsing subterm, so must s. Therefore s ~,. s'. Complete devel-
opment of the remaining /-redexes in s and s’ yields the terms ¢/ and t'/ respectively. These
redexes are contained in hyper-collapsing subterms. Therefore by Lemma 7.9, the outermost
hyper-collapsing subterms of s and s’ are at the same positions as those of t! and #'/. Thus
t B s B LRT YL By Lemma, 7.13, t1 ~R 11 o

PROOF OF THEOREM 7.4. By Lemma 7.7, to —2 t; and ty —& t,. By Theorem 6.10, R’ is
Church-Rosser, and so there is a t3 in R such that ¢; —>OROI t3, and t9 —>OROI ts.

RI RI

By Lemma 7.10, there are R!-reductions t; —& s and ts —% s”, such that s’ ~p. t3 and
y oo o0

§" ~pe t3. Hence s' ~p s".
By Lemma, 7.11, there exist R-terms ¢y and t§ and reductions t; —£ ¢} and t, —& t}§ such
that s’ and s” reduce respectively to ¢, and t5 by complete development of all I-redexes.
y 3 3 PY

Since s’ Nﬁj s", Lemma 7.14 implies that tj ~% t§, completing the proof of the theorem. O

7.8 Proofs of unique normal form properties
THEOREM 7.15 Every orthogonal TRS has the NF, UN, and UN™ properties.

ProOF. By Theorem 7.4, such a TRS is CRy.. Suppose t reduces to normal form n and to a
term s. By CRy,, s and n reduce to terms s’ and n’ such that s’ ~,. n’. But n is a normal form,
therefore n = n/. From the definition of ~, it is immediate that the only term hc-equivalent to
a normal form n is n itself. Therefore s’ = n. This demonstrates NF, which by Lemma 7.2 also
implies UN and UN™". O
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8. REDUCTION STRATEGIES
In this section we generalise to the infinitary setting some existing theory for reduction strategies
in finitary term rewriting. We first introduce some terminology regarding infinitary strategies.

DEFINITION 8.1 o A reduction strategy for a TRS is a function that maps every term t of
the TRS to a (possibly empty) set of finite reductions starting from ¢.

e For any strategy S, the strategy quasi(S) maps each term ¢o to the set of reductions of
the form tg —p, tn —m tntm, where t, —p, them € S(tn)-

o A reduction sequence tg —* t1 =" ...tg —" tg41 ...t is generated by a reduction strategy
S from the term tp if for all < «, tg —* tg41 is a member of S(tg).

DEFINITION 8.2 e A reduction sequence is transfinitely normalising if it ends with a normal
form.
e A reduction sequence is normalising if it ends with a normal form and had length at most

w.

A reduction strategy is transfinitely normalising if it generates a transfinitely normalising
sequence from every term which has a normal form.

A reduction strategy is normalising if it generates a normalising sequence from every term
which has a normal form.

A reduction strategy S is (transfinitely) hypernormalising if quasi(S) is (transfinitely)
normalising.

For finitary TRSs, Huet and Lévy have shown that needed reduction is normalising for or-
thogonal systems [HL79, HL.91], where a needed redex of a term is one such that every reduction
of the term to normal form reduces at least one residual of the redex. This does not immediately
generalise to the infinitary setting. A simple example is provided by the TRS consisting of the
single rule: A — B(A, A). The term A has a normal form which is the infinite binary tree with
B at each node. At every finite stage in a reduction starting from A, every redex is needed.
However, it is easy to exhibit infinite reductions from A which do not compute the infinite nor-
mal form. For example, if we take the leftmost redex at each step, we generate the reduction:
A — B(A,A) — B(B(A,A),A) — B(B(B(A,A),A),A) — ... A condition of fairness must be
added to obtain normalising strategies in the infinitary setting.

DEFINITION 8.3 Given a reduction sequence S starting from ¢, a position u of ¢ is preserved by
S if no reduction step of S is performed at any position v < u.

Let R map each term to a set of its redexes. A strongly converging reduction ¢t —<,, ¢ is
R-fair if for every term ¢” in the reduction, and every redex r of R(t”), there exists some finite
part of the remaining reduction starting at ¢’ that either reduces some residual of r, or does not
preserve r. A reduction is fair if it is R-fair, where R is the set of all redexes in the initial term.

We will show that, informally speaking, needed-fair reduction is normalising for infinitary
TRSs.
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8.1 Neededness and infinitary reduction
For infinitary TRSs the notion of needed redex can be verbatim the same as for finitary TRSs.
The definition is implicitly changed by the possibility of infinite normal forms.

DEFINITION 8.4 A redex s of a term ¢ is needed if in every strongly converging reduction of ¢ to
normal form some residual of s is rewritten.

THEOREM 8.5 For orthogonal TRSs, in every term having a normal form but not in normal
form, there is at least one needed redez.

ProOOF. Huet and Lévy prove this for finite terms in [HL79, HL91]. A study of their proof
reveals that it applies equally to infinite terms and strongly convergent reductions to normal
form. We only note the few points where the infinitary aspects need some care. Two lemmas
need new proofs.

Lemma 3.15 of [HL91] (Lemma 3.11 of [HL79]), stating that every nonempty reduction S has,
in Huet and Lévy’s terminology, an external redex, is proved by induction on the length of S,
and needs a quite different proof to cope with transfinite sequences and infinite terms. First, we
recall the definitions of external position and external redex.

Given a reduction sequence S starting from ¢, a position u of ¢ is preserved by .S if no reduction
step of S is performed at any position v < u. A position u of t is external for S (written
u € X(S)), if one of the following holds:

e y is preserved by S.

e S has the form S155S53, where S; preserves u, Sy is a single step at address v < u, such
that u is one of the positions pattern-matched by the redex, and v is external for Ss.

A redex r of t is reduced by S if some step of S reduces a descendant of r. We write R(S)
for the set of positions of such redexes of t, and £(S) = X(S) NR(S) for the set of positions of
external redexes of t for S.

For finite reduction sequences the definition of external position coincides with that of [HL91].
Strong convergence implies that for transfinite sequences, the inductive definition is still well-
founded, since in a proof that u is an external position, each application of the second case of
the definition must choose a different reduction step of the sequence at a position less deep than
u. But since u is finitely long, this can happen only finitely many times.

Lemma 3.15 of [HL91] (Lemma 3.11 of [HL79]) asserts that if S is nonempty, so is £(S). We
shall prove this. Assume S is nonempty.

X(S) is clearly prefix-closed. If it contains all positions of ¢, then every redex of ¢ (and there
must be one, since S is nonempty) is in £(S). Otherwise, we must prove that X'(S) contains
some member of R(S). So suppose that it does not.

If, throughout S, no member of X'(S) ever became the position of a redex, then S would
preserve not only X(S), but every successor of every member of X'(S), and these successors
would also be in X'(S). X'(S) would therefore contain every position of ¢, contradiction.

Consider the first point .S where some member of X'(S) is the position of a redex. There must
be a step to, — tor1 of S which creates this redex in t,41, since by strong convergence a redex
cannot suddenly appear at a limit term. Let the created redex be at position u € X(S), and
the redex reduced by t, — to41 be at position v > w. By hypothesis, v is not in X'(S). Let w
be the position and 7 the integer such that v < w < w-i < v, w € X(S), and w -7 ¢ X(S).
Since no prefix of w is the position of any redex in t — t,, w - ¢ is preserved by t —, t,, and
is pattern-matched by the redex at w.
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If the redex at u is never reduced, then by orthogonality, w-i is preserved by the tail of S from
to+r1 onwards. Since it is also preserved by t — 441 ta+1, it is preserved by S, and is therefore
in X(S), contradiction.

Therefore the redex at u is eventually reduced. Write S = 515253, where S5 is the first
reduction step performed at w. (S; will include the whole of ¢ —441 ta41.) Since u € X(S5)
and u is preserved by S1S2, u is in X(S3). By orthogonality, w - i is preserved not only by
t —a+1 ta+1, but by the whole of S;. It is pattern-matched by the reduction step Sp, and
therefore w - i € X(5), contradicting the definition of w and 1.

This concludes the proof of nonemptiness of £(S).

Lemma 3.25 of [HL91] (Lemma 3.16 of [HL79]) also needs a different proof, but a simple
modification works here. The lemma states that every term having a normal form but not in
normal form has an external redex, that is, a redex at a position which is external to every
reduction starting from that term. The proof proceeds by induction on the size of the term,
applying the inductive hypothesis to the immediate subterms of the given term. For infinite
terms, such an induction would not be well-founded. However, it is clear that the induction can
be recast as an induction on the stable depth of the term, i.e. the depth d such that no reduction
in any sequence starting from that term can be at depth d or less. The only terms that such an
induction would miss are the infinite terms in normal form, for which the lemma is trivial. O

DEFINITION 8.6 e A needed reduction to normal form is a strongly convergent reduction in
which only needed redexes are reduced.

e A strongly convergent reduction to normal form is quasi-needed if in between the needed
reduction steps at most finitely many other reductions take place.

For the case of needed reduction, the stipulation of strong convergence is redundant. To
prove this, we must first introduce the notion of head normal forms and establish some of their
properties.

DEFINITION 8.7 A head normal form is a term which cannot be reduced to a redex. A term
has a head normal form if it can be reduced to a head normal form.

The following equivalent characterisation of terms having head normal forms is useful.

DEFINITION 8.8 A perpetual reduction is a strongly continuous reduction containing infinitely
many reduction steps performed at the root. A perpetual term is a term from which there is a
perpetual reduction.

PROPOSITION 8.9 A term t has a head normal form if and only if it is not perpetual.

PrOOF. By a proof analogous to that of Lemma 7.9, we can see that the property of being
perpetual is preserved by reduction. Thus if there were a perpetual reduction starting from ¢,
then there would be one starting from every term which ¢ was reducible to, and hence every
such term would be reducible to a redex. So ¢t would have no head normal form.

Conversely, if t has no head normal form, then every term to which ¢ is reducible is reducible
to a redex. Thus one can construct a perpetual reduction by reducing ¢ to a redex, reducing
that redex, reducing the resulting term to a redex, and so on. O
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THEOREM 8.10 A reduction, in which no step is performed inside a subterm having no head
normal form, is strongly convergent.

Proor. If a reduction is not strongly convergent, then there will be some position which is
infinitely often the position of the redex reduced by a reduction step. Choosing an outermost
such position, after some finite number of reductions at that position, there would be infinitely
many reductions performed at that position while no reduction was performed at any prefix of
that position. The subterm at that position would thus have a perpetual reduction, and hence
have no head normal form. m|

COROLLARY 8.11 A redex of a term, contained in a subterm having no head normal form, is
not needed.

Proor. By the previous theorem, every reduction sequence reducing only redexes outside all
such subterms is strongly convergent. Therefore by transfinite induction we may construct such
a sequence starting from the given term, and extending to as high an ordinal as one chooses,
subject to not reaching a normal form. However, all strongly convergent sequences have count-
able length, and therefore a normal form must be reached. The resulting sequence does not
reduce any residual of any redex in any subterm having no normal form, demonstrating that
they are not needed. O

COROLLARY 8.12 Every needed reduction starting from a term having a normal form is strongly
converging.

ProOF. Immediate from Corollary 8.11 and Theorem 8.5. O

Needed reduction is the strategy mapping each term t to the set of one-step reductions starting
from t which reduce a needed redex. Corollary 8.12 can be stated in another form.

COROLLARY 8.13 Needed reduction s transfinitely normalising. a

DEFINITION 8.14 A converging reduction ¢ —<,, t' is needed-fair if for every term t” in the
reduction, and every needed redex r of t”, there exists some finite part of the remaining reduction
starting at ¢’ that does not preserve r.

To prove that needed-fair reduction is normalising, we must first develop some of the properties
of external redexes.

LEMMA 8.15 Ift can be reduced to a redex, then it can be reduced to a redex of the same rule
mn finttely many steps.

ProOF. By the Compressing Lemma, if ¢t has a strongly convergent reduction to a redex, then
it has such a reduction of length at most w. If the reduction is finite, the statement is proved.
Otherwise, let t —,, s be a reduction of ¢ to a redex. By strong convergence, and the finiteness
of left-hand sides, some finite initial segment of this sequence must already reduce ¢ to such a
redex. m|
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Figure 12.

LEMMA 8.16 If a term is reducible to a redex, then external-fair reduction will reduce it to a
redex of the same rule in finitely many steps.

PROOF. Let ty have a head normal form, and let tg — ... be an external-fair reduction. By
Lemma 8.15, there is a finite reduction tg —* sg of g to a redex. Choose such a reduction of
minimal length. We will construct the tiling diagram of Figure 12. Since tg — ... is external-
fair, and every term not in normal form has an external redex, the sequence must consist of
finite strings of non-external reductions alternating with external steps. Since a root redex is
always external, the finite strings of non-external reductions do not perform any root reductions.
Neither does the reduction of ¢y to sg, since that reduction is a minimal length reduction of ¢y to
a redex. It follows that t) —oo s and sg —oo S must consist of non-root reductions. sy —oo 1,
being the projection of an external redex, must be either empty or a single step. If it is a single
step, then it is external, and since s; is a redex, the reduction must be of the root redex of sj.
Therefore the step t{, — t; must also be a root reduction. If sj — $1 is empty, then this can
only be because in the tiling diagram, some step of t; —* s; cancelled out the step tj — t;. Both
steps must be the unique residuals of an external redex of t5. Therefore ¢, — t; also cancels
out ty —* sp, and ¢t; —* s; contains no residuals of that redex. Since t; —* sp can contain
only finitely many external steps, repeating the above argument shows that eventually, some
external step ¢, — t,+1 must have a nonempty projection s/, — s,11, and hence must be a root
reduction. a

LEMMA 8.17 If a term has a head normal form, then external-fair reduction will reduce it to
head normal form in finitely many steps.

PRrOOF. Let t have a head normal form. Either ¢ is in head normal form, or it is reducible to a
redex. In the first case the lemma is trivial. In the second, by Lemma 8.16, external-fair reduc-
tion will reduce t to a redex in finitely many steps. Since a root-redex is external, external-fair
reduction must eventually reduce that redex. If the resulting term is reducible to a redex, then
the process is repeated. It can only be repeated finitely often, since by hypothesis ¢t has a head
normal form. Therefore external-fair reduction must in finitely many steps reduce ¢ to a term
not reducible to a redex, i.e. a head normal form. O

COROLLARY 8.18 FExternal-fair reduction is normalising.

Proor. Let t have a normal form. Then ¢ has a head normal form, and by Lemma 8.17,
external-fair reduction starting from ¢ will yield a head normal form ¢’ in finitely many steps.
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The external redexes of t' are just the external redexes of the immediate subterms of ¢/, and
therefore external-fair reduction of ¢' will reduce each of those subterms to head normal form
in finitely many steps. Continuing the process clearly yields a strongly convergent reduction to
normal form of length at most w. o

COROLLARY 8.19 Needed-fair reduction is normalising.

PRrOOF. Every needed-fair reduction is external-fair. m|

COROLLARY 8.20 Fair reduction is normalising.

PROOF. Every fair reduction is needed-fair. m|

8.2 Other normalising reduction strategies

In the finitary setting the parallel-outermost strategy is hypernormalising. Our example at the
beginning of this section shows that in the infinitary setting the parallel-outermost strategy does
not guarantee reductions of at most length w:

LEMMA 8.21 Parallel-outermost reduction is transfinitely hypernormalising.

Proor. Consider a reduction R starting from a term which is strongly reducible to normal
form. If R always eventually performs a parallel-outermost reduction, then R is needed-fair,
and Cauchy-converging to normal from, hence strongly converging. Hence parallel-outermost
is a transfinitely hypernormalising strategy. (It might not be hypernormalising, since a single
parallel-outermost part of the sequence may itself be infinitely long.) m]

We would like to have a normalising reduction strategy, that is, one which obtains normal
forms in at most w steps. The depth-increasing strategy has this property.

DEFINITION 8.22 Depth-increasing reduction is the following strategy DI. Given a term tg, for
each n < 0 let t,+1 be derived from ¢, by complete development of all redexes at positions of
depth no more than n. Then DI(tp) is the set whose only member is the sequence tg —* t; —*

to —* ...
THEOREM 8.23 Depth-increasing reduction ts hypernormalising.

PRrROOF. A residual of an external redex is always at the same position as the original redex.
Therefore for each external redex of ¢ at depth n, quasi(DI(t)) will reduce that redex at the nth
stage of applying DI. Therefore quasi(DI) is external-fair, so by Corollary 8.18 is normalising.
Therefore DI is hypernormalising. a

9. RELATED WORK

Farmer and Watro [FW91] are the first to have studied transfinite reduction based on strong
convergence. They are primarily concerned with proving the relationship between term graph
reduction and term reduction of orthogonal systems such as combinatory logic. The possibility of
cyclic graphs, which ‘unwind’ to infinite terms, requires a consideration of transfinite reduction.
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Their results on transfinite reduction are limited to those which they need for that aim, and for
example they prove a Compressing Lemma only for reductions of length up to w?.

Dershowitz, Kaplan and Plaisted [DKP91] have also studied transfinite reduction, basing
their notion on Cauchy convergence rather than strong convergence. We have preferred strong
convergence, for two main reasons.

Firstly, the notion of residual does not easily carry over from finitary reduction to Cauchy
convergent transfinite reduction. As a result, while the Strip Lemma may hold for Cauchy
convergent reduction (we conjecture that it does but have not proved it) the construction of
the particular sequences s/r and r/s depends on strong convergence, and a quite different proof
would be necessary for the situation of Cauchy convergent reduction, if it holds at all.

Secondly, several of the results of Dershowitz et al. depend on conditions stronger than Cauchy
convergence. To obtain the Compression Lemma for orthogonal systems (in their terminology, w-
closure), they require the hypothesis of top-termination, which requires that, in our terminology,
no finite term should have a perpetual reduction. Top-termination in fact implies that every
reduction starting from a finite term is strongly converging, and this is the underlying reason
that the Compression Lemma holds. The confluence properties of [DKP91] depend on the
condition of w-convergence of the system, which means that every reduction starting from a
finite term converges. That paper also considers, instead of normal forms, w-normal forms,
which are terms which may not be in normal form, but which reduce only to themselves. These
seem less meaningful as final results of a computation than normal forms, and their results
concerning uniqueness of w-normal forms again depend on the condition of w-convergence. In
contrast, when normal forms and strongly convergent reduction are considered, unique normal
form results require no hypotheses beyond orthogonality.

For these reasons, the concept of strong convergence seems to us fundamental to transfinite
rewriting.

We also note that for most orthogonal TRSs, the more liberal Cauchy reduction does not
yield any new normal forms. We state the following theorem without proof.

THEOREM 9.1 In an orthogonal TRS for which there is an upper bound on the set of depths of
its left-hand sides, if a term has a Cauchy convergent reduction to normal form, then it has a
strongly convergent reduction to the same normal form.

The method of proof is to show that it is possible to omit from the given reduction sequence all
steps which are performed within subterms having no head normal form. The resulting sequence
is strongly convergent and has the same limit.

The theorem in general fails without the boundedness restriction. A counterexample is given
by the rules A(B™(C)) — A(B"*1(C)) (for n > 0) A(C) reduces to the normal form A(B“) by
Cauchy convergent reduction, but has no normal form by strongly convergent reduction.
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