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Chapter 12

Infinitary rewriting

In this chapter we will give the basic definitions and properties of infinite
terms and infinite reduction sequences, for both term rewriting systems and
the A-calculus. We will then study confluence properties in orthogonal sys-
tems, which turns out to be significantly more complicated than in the finitary
case. In general, these systems are only confluent up to an identification of
a certain class of terms. The breakdown of confluence leads us to consider
the concept of a meaningless term, which further suggests a link with the A-
calculus concept of B6hm reduction (Barendregt [1984]), and to denotational
semantics for TRSs.

Authors: J.R. Kennaway and F.J. de Vries

12.1. Introduction

In the previous chapters terms were finite and the focus was on finite com-
putations. Computations are supposed to produce an outcome in a finite
amount of time. However, we can imagine infinite computations: think of
a computation calculating the decimal expansion of v/2. Infinite terms also
make an intuitive sense in lazy functional programming. Lazy evaluation al-
lows functional programmers to write down expressions which denote infinite
data structures, such as a list of all primes. Although only a finite number
will ever be evaluated, one can consider an infinite computation as tending to
a limit in which the entire infinite list has been built. The following rewrite
rules illustrate this.

filter(xz : y,0,m) — 0: filter(y,m, m)
filter(x : y,s(n),m) — x: filter(y,n,m)
sieve(0:y) — sieve(y)
sieve(s(n) 1 y) — s(n) : sieve(filter(y,n,n))
nats(n) — mn:nats(s(n))
primes —  sieve(nats(s(s(0))))
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Figure 12.1: A cyclic graph

This is a version of the sieve of Eratosthenes in which the filter function re-
places struck-out members of the list by zeros, which are subsequently deleted
by the sieve function. (It is a natural implementation of the hand-calculation
one would perform on a blackboard, avoids the necessity of doing any arith-
metic other than counting, and is as efficient as the usual method of perform-
ing division tests. Despite its simplicity it appears to be novel.)

Although the lazy order of evaluation will produce each prime after com-
puting only a finite part of the list of all natural numbers, the expression
nats(s(s(0))) can be thought of as denoting the infinite list of all natural
numbers. Longer and longer evaluations of the term approximate closer and
closer to that value.

Another situation in which infinite terms may arise is in graph rewriting.
Representing terms by directed acyclic graphs allows repeated subterms to
be represented by pointers to the same subgraph, with a saving of both space
and time, since reductions performed within that subgraph are equivalent to
two or more reductions of the corresponding term. However, once one begins
to use graphs to represent terms, the possibility arises of using cyclic graphs
to represent infinite terms. The infinite list Cons(1, Cons(1, Cons(1,...)))
can be more compactly represented by the cyclic graph in Figure 12.1, which
we can write with the notation z : Cons(1,x). The relation between cyclic
graphs and the rewriting of infinite terms is explored in Kennaway et al.
[1994].

It is therefore natural to inquire whether one can extend the theory of
rewriting to allow infinite terms and infinite reduction sequences which con-
verge to limits.

As an example of the kind of infinite reductions we have in mind, consider
the rule
C — B(C,C)

Parallel-outermost reduction of the term C gives an infinite reduction to a
binary tree, as shown in Figure 12.2. This limit is reached in infinitely many
reduction steps and is clearly a normal form. However, leftmost—innermost
reduction leads in infinitely many steps to the term on the right in Figure 12.3.
This limit is not a normal form and can be reduced further, which gives a
reduction sequence of length greater than w.
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Figure 12.2: An infinite reduction
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Figure 12.3: Two infinite terms

12.2. Infinitary term rewriting systems

As in the finitary setting, an infinitary term rewriting system will be given by
a signature and a set of rewrite rules, but the signature is now understood to
generate a class of finite and infinite terms. The signature may also contain
infinitely many symbols.

In this setting it may seem natural to consider rewrite rules which are pairs
of possibly infinite terms. However, based on the computational intuition that
performing a reduction should require only a finite amount of work, we will
consider rewrite rules with finite left- and right-hand sides only. We also
restrict attention to left-linear systems, since the test for syntactic equality
required by a non-left-linear rule cannot always be done in finite time when
terms are infinite.

But first, we must define infinite terms. A finite term can be described as
the set of its positions, together with a function from that set to the function
symbol at each position. The set of positions must be finite and prefix-closed,
and if position u maps to symbol F', then u -7 must be in the set of positions
if and only if ¢ is between 1 and the arity of F. The class of finite and
infinite terms can be obtained simply by dropping the requirement that there
be only finitely many positions. Each position is still finite, but the set of
positions can be unbounded in length. This yields infinite terms such as those
illustrated in Figure 12.3. We allow the signature to be an infinite set, but
still require that the arity of each symbol be finite, although the set of arities
is allowed to be unbounded. The set of such terms over a signature X is
denoted Ter*™(%).
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A more formal mathematical construction of the set of finite and infinite
terms can be given by defining a metric on finite terms and taking the metric
completion. The set Ter(X) of finite terms over ¥ can be provided with
a metric d : Ter(X) x Ter(X) — [0,1]. Define d(t,t') = 0 if the terms
are identical, otherwise d(t,#') = 2%, where k is the length of the shortest
position at which the two terms differ.

12.2.1. THEOREM. The metric completion of Ter(X) is isomorphic to
Ter™(%).

ProOOF. The definition of the metric can be applied verbatim to Ter™(X)
and yields a metric on that set. Since the metric completion is unique up to
isomorphism, we need only show that Ter® (%) with this metric is complete.

Suppose we have a Cauchy sequence of finite or infinite terms {¢; | 7 € N }.
Let p; be the set of positions of ¢;, and f; map p; to the function symbols of ¢;.
If d(t;, t;) < 27%, then p; and p; must have the same members of lengths up to
k, and f; and f; must agree on those members. Define p = ;[ j>i pj, which
by the above must be the same as (); |J j>i p;. For each u € p, there must be
an ¢ such that for j > 4, v € p; and f;(u) = fi(u). Define f(u) = fi(u). The
conditions for p and f to define a (possibly infinite) term ¢ are easily verified,
as is the property that if d(t;,t;) < 27F, then d(¢;,t) < 27%. Therefore ¢ is
the limit of the sequence. (]

Ter>(X) includes the finite terms, and infinite terms like those of Figures 12.2
and 12.3. Note that there are no nodes at the end of an infinite path in a
term. The position of each node in a term is a finite string, and we do not
need to consider infinite positions. There is in this framework no such term as
A(A(A(...infinitely many As...(B)...))); such terms have no obvious com-
putational meaning and do not appear in the metric completion of Ter(X).

12.2.2. DEFINITION. An infinitary reduction rule (or rewrite rule) is a pair
(t,s) where t € Ter(X) and s € Ter®™(X), such that ¢ is not a variable, and
every variable in s occurs in t.

An infinitary term rewriting system, or 1TRS, is a pair R = (3, R) of a
signature X and a set of infinitary reduction rules R.

Many concepts generalize immediately to the infinitary setting: context, posi-
tion, redex, reduction step, normal form left-linear rule, non-duplicating rule,
and (non-)overlapping rules, orthogonality. Many results also carry over.

Proofs must sometimes be changed, since structural induction over terms
is not well-founded for infinite terms. In many cases, such inductions can be
replaced by inductions over positions of a term, since positions are always
finite. For example, to prove that two terms are equal, in the finitary case
one can prove that they have the same symbol and same arity at the root,
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and assume by induction that their corresponding subterms are equal. In the
infinitary case, one could instead prove that for every position common to
both terms, the terms have the same symbol and same arity at that posi-
tion. Induction over the length of positions, with the base case being the root
position, establishes that all corresponding finite prefixes of the terms are
identical, hence the terms themselves are identical. Similarly, if a proof re-
quires the construction of some term, in the finitary case it can be constructed
from the leaves upwards or from the root downwards. In the infinitary case,
only the latter construction is valid.

We shall henceforth drop the word ‘infinitary’; all TRSs we consider in this
chapter will be infinitary. The TRSs of previous chapters will be referred to
as finitary TRSs.

12.2.3. EXERCISE. Recall that finitary orthogonal TRSs are finitely confluent, that
is, = - 4= C 4 - —». Give an example of an orthogonal iTRS which is not finitely
confluent. Show that if all its reduction rules are finitary, then an orthogonal iTRS
is finitely confluent.

12.3. Strongly converging reductions

As well as infinite terms, we wish to consider infinitely long reduction se-
quences which may converge to limits.

In our construction of infinite terms, we required each occurrence of a
function symbol to be at finite depth, i.e. distance from the root, considering
terms containing positions of length w or greater to be without computational
meaning. A similar criticism might be raised against reduction sequences
longer than w. However, the infinite terms as we have defined them do not
require us to consider any larger set, since the limit of any sequence of terms
in Ter*(X) is another term in Ter®(X). Terms with function symbols at
infinite depth do not arise. In contrast, there is no reason to expect the
limit of an infinite reduction sequence to be in normal form. Reducing a
redex in the limit term at once gives a sequence of length w 4+ 1. Thus
reductions of length greater than w cannot be ruled out of consideration. In
general, a reduction sequence might be of any ordinal length (although we
will later prove that according to the definition we are about to give, they
will never be of uncountable length). As for their computational meaning,
for orthogonal systems the Compression Lemma (Theorem 12.7.1) shows that
they are equivalent to sequences of length no longer than w.

12.3.1. DEFINITION. A transfinite reduction sequence of length «, where «
is any ordinal number, is a sequence of reduction steps (t3 — tg1+1)g<q. In
the step tg — ?g+1, let the redex be reduced at position ug of t3. Let dg be
the length of ug (called the depth of the redex).
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The sequence is weakly continuous if, for every limit ordinal A < «, the
distance d(tg,t5) tends to 0 as [ approaches A from below.

It is strongly continuous if in addition, dg tends to infinity as 3 approaches
A from below.

It is weakly convergent or strongly convergent if the corresponding continu-
ity condition holds for every limit ordinal A < a. (Thus convergence is only
distinct from continuity when « is itself a limit ordinal.)

We write t —» t' for a strongly convergent reduction of any finite or infinite
length, and ¢ — ¢’ for a strongly convergent reduction of ordinal length «;
t =52 ¢ and t —<® ¢’ denote strongly convergent reductions whose lengths
satisfy the indicated condition. As in previous chapters, the notation ¢ —» ¢/
still refers to reduction sequences that are at most finitely long (of possibly
infinite terms).

12.3.2. REMARK. Readers familiar with ordinal topology will recognize that a
weakly continuous or convergent sequence is one which is continuous or convergent
with respect to the usual topology on ordinals and the metric on terms.

This concise definition may become clearer in the light of some examples.
Firstly, all finitely long reductions are (trivially) strongly convergent. Now
consider a reduction ty — t; — --- of length w. For this to be weakly
convergent to a limit ¢, requires that for every depth d, there is some n such
that all the terms of the sequence after ¢, are identical down to depth d. For
it to be strongly convergent requires, in addition, not only that those terms
are identical down to depth d, but that the position of each reduction from
that point onwards has depth greater than d.

Figures 12.4 and 12.5 give an example of the distinction between weak and
strong convergence. Both of these sequences are weakly convergent, since
larger and larger prefixes of the terms are identical as one proceeds along the
sequences. The first is not strongly convergent, since every reduction step
takes place at depth 0. The second is strongly convergent, since the depths
of the reduction steps tend to infinity.

Now consider a reduction t —* t' —“ ", of length w+w. This is weakly or
strongly convergent if and only if both of its w-long halves have that property.
In general any concatenation of finitely many weakly or strongly convergent
sequences will be weakly or strongly convergent respectively.

For a reduction t; —% t; —“ --- of length w? to be weakly or strongly
convergent, it is necessary for each of the w-long segments to be so. This
is not sufficient: we also require that the continuity condition hold at w?,
and for strong convergence, the depth condition also. This amounts to the
condition that for every depth d, there is an o < w? such that all terms in
the sequence t, —yw? t,2 must be identical down to depth d, and all reduction
steps in that sequence must be at depths greater than d.
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Figure 12.4: Weakly but not strongly convergent reduction with the rule
Az) = A(C(x))

A — B —

W W W W

Figure 12.5: Strongly convergent reduction with the rule A — B(A)

Weak convergence (also called Cauchy convergence) is studied by Der-
showitz et al. [1991]. However, without imposing further restrictions it does
not have good properties. From a computational point of view it is intuitively
lacking, since a reduction sequence may weakly converge to a limit even al-
though every step in the sequence is performed at the root, and the term can
be thought of as still changing, even although in the limit it is being reduced
to itself. More precisely, weakly convergent reduction in orthogonal systems
does not satisfy the Compression Lemma (Theorem 12.7.1). The construction
of tiling diagrams and projection (Definition 12.6.1) also cannot be performed,
because when one passes to a weakly convergent limit, information about the
subterm structure is lost. This is illustrated by the following two examples.

12.3.3. EXAMPLE. Consider the rules A(z,y) — A(y,z) and C — D. The term
A(C,C) reduces to itself in one step, and therefore also by a weakly convergent
reduction of length w. However, it is impossible to say which of the two occurrences
of C in the limit term descends from which of the two occurrences in the initial
term. This can be seen by reducing the left-hand occurrence to D in the initial
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term, and performing the same sequence of reductions. This gives a divergent
sequence A(D,C) — A(C,D) — A(D,C) — A(C,D) — ---.

12.3.4. EXAMPLE. Consider the rule I(z) — z and the term I(I(I(...))), which
we will abbreviate to I¥. Suppose we try to perform a complete development of
each of the infinitely many redexes in this term, outermost first. We obtain the
sequence I'(I2(I3(...))) — I2(I3(I*(...))) — I3(I*(I%(...))) — ---, where we have
attached labels to show how each subterm is derived from the subterms of the
previous term. The sequence weakly converges to I(I(I(...))). In the process,
every redex of the initial term gets reduced, yet in the limit, we appear to still have
all of them left. Where did they come from?

For this reason we do not further consider weak continuity or convergence.
When we talk of reduction sequences, they will be assumed to be strongly
continuous, and if they have limits, they will be assumed to strongly converge
to them. The condition on depths of reduction which strong convergence adds
was first stated (for sequences of length up to w?) by Farmer and Watro [1990].

12.3.5. EXERCISE. (i) Show that all finite reductions are strongly converging.

(ii) Give an example of a non-converging reduction.

(iii) Show that all reductions in the binary tree iTRS given by the rule C —
B(C,C) are strongly convergent and that they can be of any countable length.

(iv) Show that all reductions in the iTRS with the single rule A — A are weakly
convergent and that for each ordinal there is a weakly converging reduction of that
length. Prove that no infinite reductions are strongly convergent.

(v) Describe the normal form by strongly convergent transfinite reduction of
F(A, B), given the rule F(z,y) — G(z, F(y, H(z,y))).

(vi) Consider the iTRS J(z) — J(z). Let J¥ —%. J* abbreviate the strongly
convergent reduction J¥ — J“ — - - in which the redex contracted at the nth step
is at depth n. Why is the long sequence J“ =%, J* =%, JY =%, JY =%, --- of
length w? not strongly converging?

12.3.6. EXERCISE. Sh ow that in any iTRS, a reduction sequence is strongly con-
vergent if and only if for every natural number n, the number of steps of the
sequence which reduce a redex at depth less than n is finite.

Use the preceding exercise to prove

12.3.7. PROPOSITION. FEwery strongly converging reduction has countable
length.

The major difference between finitary and transfinite reduction is that for
orthogonal systems, the transfinite Church-Rosser property fails. That is,
§ 4 - —» t does not imply s —» - «— t. As this fact has inspired
many of our results about transfinite rewriting, we exhibit here the canonical
counterexample.
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Take the rules A(z) — x and B(z) — z, and the term A(B(A(B(...)))).
This can be transfinitely reduced to both A(A(A(...))) and B(B(B(...))),
each of which reduces only to itself.

The failure of the Church—Rosser property is not confined to specially
constructed pathological cases, but occurs also for such standard systems as
combinatory logic, or the rules for describing lists with head and tail opera-
tors.

12.3.8. EXERCISE. (i) Find a counterexample to the Church—Rosser property for
the rules Head(Cons(z,y)) — = and Tail(Cons(z,y)) — y.

(ii) Combinatory logic has the rules Sryz — zz(yz) and Kzy — z. Find a
finite closed term ¢ and two infinite reductions ¢t —» t5 and t — ¢; such that ¢
and ?¢; have no common reduct.

(iii) With just the rule Kzy — z, find a closed term ¢ and two infinite reductions
t = to and t = t1 such that ¢y and ¢; have no common reduct.

In Theorem 12.8.2 we will see that examples like these are the only way in
which the Church—Rosser property fails.

12.4. Infinitary lambda calculus

The theory of infinite rewriting can also be carried out for A-calculus, and as
most of the results and proofs are common to both, we shall now describe
infinitary A-calculus.

Infinite A-expressions can be defined in the same way as infinite terms are
defined. We take the function symbols to be the binary application operator,
the unary symbol Az and the nullary symbol x for each variable . However,
the question of a-conversion raises a slight complication. It is customary to
define finite A-expressions up to a-equivalence. In the infinitary case, we must
deal with renamings of infinite sets of variables, and substitutions applied to
infinitely large terms. The desired result is that we can write expressions
using explicit variables, but assume that a-conversion is implicitly performed
to avoid variable capture. To achieve this formally requires a certain amount
of care.

The most direct way to proceed is to define infinite A-terms exactly as for
ordinary terms, without regard to a-conversion. Then define a-equivalence
for finite and infinite terms, and finally define the distance between two a-
equivalence classes as the infimum of the distances between pairs of respective
members.

Alternatively, we can define the distance metric on a-equivalence classes
of finite terms, and then take the metric completion. This gives us a space
in which the finite elements are a-equivalence classes of finite terms, and in
which the infinite elements can be identified with the a-equivalence classes of
infinite terms as previously defined.
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To carry out the first method, we must define a-equivalence for infinite
terms. We will assume that a textual replacement of a variable x by a variable
x' without regard to binding is unproblematic, even for infinite terms. We
denote this operation by [z — z].

12.4.1. DEFINITION. A conflict between (finite or infinite) A-terms s and ¢
is a common occurrence u such that one of the following holds:

1. uw = () and s and t are not identical variables, not both applications,
and not both abstractions;

2. u=mn-v, s = 85y, t = l1ty, and v is a conflict of s, and ¢, (n =1 or
2);

B.u=1-v,s=A.s', t = X\'.t', and v is a conflict of s'|[x — z"] and
t'[z" — "], where z"” is a variable not occurring in s or ¢’

We say s and t are a-equivalent if there is no conflict between them.
This definition also gives us a convenient way of defining the metric.

12.4.2. DEFINITION. If s and ¢ have no conflict, then d(s,t) =4 0. Other-
wise, d(s,t) =4 27", where n is the minimum depth of any conflict between
them.

12.4.3. EXERCISE. (i) Prove that for finite terms, the above definition of a-
equivalence coincides with the classical definition.

(ii) Prove that d gives a metric on a-equivalence classes of terms, by establishing
the following:

(1) if s and s" are a-equivalent, then d(s,t) = d(s',t) for every term t;

(2) d(s,t) =0 if and only if s and ¢ are a-equivalent.

The second method of defining the space of infinite terms begins by ignor-
ing issues of a-equivalenceand considering the metric on finite terms given by
considering them as terms over a signature in which Ax is a unary operator for
every variable z. Call this metric d’. Then define a metric on a-equivalence
classes of finite terms by defining d'(S,T) = min{d'(s,t) | s € SAt € T}
for a-equivalence classes S and 7T'. Finally, take the metric completion of the
space.

12.4.4. EXERCISE. Prove that this gives a space isomorphic to the space of a-
equivalence classes of finite and infinite terms with metric d.

In the finitary theory, it is customary to introduce the variable convention
at this point, to avoid dealing explicitly with a-conversion. This convention
stipulates that the free variables of a term are distinct from its bound vari-
ables, and that when a substitution of a term for a variable in another term
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is made, bound variables are implicitly renamed to avoid variable capture.
In the infinitary case it is slightly more complicated, since if there are only
countably many variables, a term might include all of them free, leaving no
room to pick new variables. We solve this problem by the ‘Hilbert hotel’
trick. If all of the variables are in use at some point in an argument, and
we still need more, then an implicit renaming of every variable z; by xo; is
performed, which frees an infinite number of variables for reuse.

In Section 12.2 we remarked on the way that inductive constructions on
infinitary terms must proceed coinductively from the root downwards rather
than inductively from the leaves upwards. As an example, here is a formal
definition of substitution and a proof of the Substitution Lemma.

12.4.5. DEFINITION. The result of substituting N for z in M, notated
Mz := N], is defined to be the term whose positions and symbols are as
follows.

The positions of M[z := N| are the positions of M other than the free
occurrences of z, and the positions u - v where M|, = x and v is a position
of N.

In the first case, the root symbol of M|z := N]|, is that of M|,. In the
second case, the root symbol of M[z := N||,., is that of N|,.

12.4.6. LEMMA (Substitution Lemma, see Barendregt [1984] 2.1.16.). If
x #y and z s not free in L, then

Mz = N]ly:=L] = Mly:= L|[z := N[y := L]

PROOF. Let u be any common position of two terms of the above form. We
will show by induction on the length of u that u is not a conflict between
those terms.

We proceed by cases of the form of M. If M is x then both sides are
N[y := L]. If M is y, then both sides are L. If M is any other variable, both
sides are M. In all these cases, the two sides are identical and therefore have
no conflict.

If M is A\z.M;, we may assume by the variable convention that z is not z
or y and is not free in N. Then the two terms are A\z.M;[z := N|[y := L] and
Az.Miy := L]z := N[y := L]]. Now () is not a conflict of these terms, and
i-vis a conflict if and only if i = 1 and v is a conflict of M;[z := N[y := L]
and M, [y := L]z := N[y := L]|. By induction, it cannot be.

If M = M;M,, then the two terms are (Mi[z := N][y := L]|)(Mz[z =
N]ly := L]) and (M,]y := L][z := Ny := L]])(Ms[y := L][z := N[y := L]]).
Now () is not a conflict of these terms, and i-v is a conflict if and only if i = 1
and v is a conflict of M;[z := N][y := L] and M,y := L]z := N[y := L]], or
i =2 and v is a conflict of My[z := N[y := L] and M,y := L|[z := N[y :=
L]]. By induction, neither alternative is possible. (]
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Both (- and n-reduction are defined for infinitary A-calculus in terms of sub-
stitution in the same way as for the finitary calculus. However, n-reduction
has a property that is unsatisfactory from a computational point of view. To
determine whether a term Az.(Mz) is an 7-redex, one may have to inspect
the whole of M to determine whether x occurs free. If M is infinite, this
is an infinite amount of work that must be completed before the redex can
be reduced. In effect, the pattern of the p-rule is infinite. A [-redex, in
contrast, can be recognized by seeing just two nodes of the parse tree: an
application with an abstract on its left. Although a 3-redex may require an
infinite amount of work to reduce, one may devise computational schemes
(such as explicit substitution — Abadi et al. [1991]) which allow any finite
part of the reduct to be computed in finite time.

From now on, we will deal with iTRSs and infinitary A-calculus together.
The primary differences between them will be seen to arise from the more
complicated way in which in the A-calculus, descendants of a single redex can
become nested inside each other, whereas they always remain disjoint in term
rewriting.

By ‘orthogonal systems’ we mean orthogonal (i)TRSs and the A-calculus;
by ‘left-linear systems’ we mean left-linear (i)TRSs and the A-calculus.

12.4.7. EXERCISE. Based on the exercises in the previous section, or otherwise,
find a counterexample to the Church—Rosser property for the infinitary A-calculus
with g-reduction.

12.5. Descendants and developments

The concepts of descendant and development extend in a straightforward
manner to the transfinite context. For a single-step reduction with infinite
terms, there is nothing new, but to deal with infinite sequences we must define
how to take the limit of a sequence of sets of descendants.

12.5.1. DEFINITION. Let o : t; =% t, be a strongly convergent sequence.
Let U be a set of positions of t;. The set of descendants of U by o is a set of
positions of ¢, denoted by U/o, and defined by induction as follows.

— If @ =0, then o is the empty sequence and U/o is just U.

— If @ =1, let the redex R reduced in ¢ty — ¢; be at position v. Take any
u € U. If v is not a proper prefix of u, then u/R = {u}.

(For term rewriting) If u is one of the positions pattern-matched by R,
that is, a function symbol in the left-hand side of R is matched to the
node of the term at u, then u/R = @. Otherwise, if u = v - w - z,
where w is the position of a variable in the left-hand side of R, then
u/ R consists of all positions of the form v-w' -z, where w' is a position
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of the same variable in the right-hand side of R. U/R is the union of
all u/R for u € U.

(For A-calculus) If w = v -1, then u/R =@. Ifu=wv-1-1-w, then
u/R={v-w} Ifu=wv-2 w, then u/R is the set of all u-w' - w,
where u - w' is the position of any occurrence of the bound variable of
the abstraction of the redex.

— Ifa=pF+1, then U/O' = (U/(t() —3 tﬂ))/(tg — tﬂ+1).

— If o is a limit ordinal, then u € U/o iff u € U/(ty —4 tg) for all large
enough f < a.

12.5.2. EXERCISE. Prove that in the last case of the above definition, the condition
‘for all large enough 8 < o’ can equivalently be replaced by ‘for arbitrarily large
B <a.

12.5.3. DEFINITION. In an orthogonal system, let o : t; =% ¢, be a strongly
convergent, sequence. Let R be a set of redexes of ¢y, whose positionsare the
set U. R/o denotes the set of redexes of t, at positions in U/o.

In the above definition, orthogonality ensures that there is a redex at each
position in U/o, and that each redex is a redex of the same rule as its ancestor.

12.5.4. LEMMA. In a left-linear system, let o be a reduction whose length is
a limit ordinal. FEvery redex in the final term of o is the unique descendant
of a redex in some earlier term.

PROOF. Let there be a redex at position u in the final term. Let d be
the depth of the left-hand side of a rule which matches at u. By strong
convergence, every step of o after some point must be at depth at least
|u| + d. In every term from that point on, there must be a redex of the same
rule at u. The redex in the final term is the unique descendant of all of them.

I

The following proposition is immediate from the definition of descendants.

12.5.5. PROPOSITION. In an iTRS, if R is a set of pairwise disjoint redezes,
then so is R/o for any strongly converging reduction sequence o. For the \-
calculus this 1s true when o s a single step and R s a single redez.

12.5.6. DEFINITION. A development of a set of redexes R of a term %, is a
strongly converging reduction ¢ty —“ t, such that for any 8 < « the step
tg — tgy1 reduces a descendant of a member of R by ¢ty —3 t5. If ¢, contains
no descendant of R, then the development is said to be complete.
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Our examples of the failure of the Church—Rosser property also demonstrate
that the Complete Developments Theorem fails: not every set of redexes has
a complete development. For example, given the rule I(x) — z and the
term I(I(I(...))), the set of redexes in this term has no complete develop-
ment, since any reduction which attempts to reduce all of the redexes will
not be strongly convergent. (See Example 12.3.4.) However, we can prove a
restricted version of the theorem.

Let S be a set of redexes in a term ¢ of an orthogonal iTRS or A-calculus.
We will begin by exhibiting a construction of which we will later prove that,
when it exists, it constructs the final term of every complete development of
S, and when it does not, S has no complete development.

We first informally describe the basic idea, in the setting of iTRSs. We use
the notion of a path in a term, which in the A-calculus has been used in Asperti
et al. [1994] and Asperti and Laneve [1995] for characterizing Lévy’s redex
families. A path starts from the root of ¢ and proceeds from each node to
an immediate descendant, until we encounter the root of a redex in S, at
some position u. All the nodes traversed before this point will be nodes of
the result F(t, S) of a complete development of S; u will also be a position of
F(t,S), but to determine the symbol there we must jump to the root of the
term r, the right-hand side of the rule [ — r that applies at u. We continue by
traversing r, with each non-variable node we reach corresponding to a node
of F(t,S). When we reach an occurrence in r of a variable x, we must jump
back to ¢ at the position corresponding to the occurrence of x in [.

For A-expressions, the method is similar. When we reach the root of a
(B-redex in S, we jump to the root of its body; when we encounter within the
body an occurrence of the bound variable, we must jump to the root of the
right-hand side of the redex.

This construction will fail if we find ourselves making an infinite sequence
of jumps without passing along an edge of ¢ or of a right-hand side. It is
precisely in such cases that S will fail to havea complete development.

We now give a formal description and a proof that it yields a term with
the claimed properties.

12.5.7. DEFINITION. For a given term ¢ in an iTRS and a set of redexes S of
t, define a path as a certain kind of finite sequence of nodes and edges. Each
node is labelled by a term and a position of that term, and each edge is either
unlabelled or labelled by an integer. The term labelling a node is either ¢ or
the right-hand side of some rule.

Every path of ¢ begins with a node labelled by (t,()). Suppose the final
node of a path is labelled with (s,u). The path may be extended in any of
the following ways.

1. Either s is ¢, and u is not the position of a redex in S, or s is a right-
hand side ¢, and u is any position of ¢. If u - i is a position of ¢ or ¢/
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respectively, then the path can be extended with an edge labelled ¢ and
a node labelled (¢, u - i) or (¥, u - ) respectively.

2. Alternatively, s is t, and u is the position of a redex in S, the right-hand
side of whose rule is #. Then the path can be extended by an unlabelled
edge and a node labelled with (¢, ()).

3. Otherwise, s is a right-hand side ¢, and #'|, is a variable z. Let the last
occurrence of ¢ in a node label of s be with position v. Then v will be
the position of a redex in S having a rule t" — ¢/, and the path may
be extended by an unlabelled edge and a node labelled with (t,v - w),
where w is the position of the (unique) occurrence of x in ¢".

For a A-expression ¢, the construction is similar, the cases being:

1. Let s is ¢, and u is not the position of a redex in S. If u - ¢ is a position
of ¢, then s can be extended with an edge labelled ¢ and a node labelled
(t,u-1).

2. Alternatively s is ¢, and u is the position of a #-redex in S. Then s can
be extended by an unlabelled edge and a node labelled by (¢,u-1-1).

3. Otherwise, s is ¢, and u is the position of a variable of £ bound by a
redex in S at position v. Then s can be extended by an unlabelled edge
and a node labelled by (¢, v - 2).

Let P(t,S) be the set of all such paths. Define U(¢,S) to be the set of
sequences of edge labels of the paths. For any u € U(t, S), let s be a path of
maximal length for which w is its sequence of edge labels. Then s is uniquely
determined. It may be finite or infinite. If s is always finite, we will say that
S has finite jumps. When s is finite, it has a final node. Let its label be
(t',v). Define F(u) to be the symbol of ¢ at v. Thus the domain of F is all
of U(t, S) if and only if S has finite jumps.

12.5.8. PROPOSITION. If the domain of F is all of U(t,S), then U(t,S) and
F together define a term, which we will denote by F(t,S).

PROOF. U(t,S) is prefix-closed by definition. w - is in U(¢, S) if and only
if 7 is no more than the arity of F'(u). Therefore the set of positions U(t, S)
and the labelling F' define a term. (]

12.5.9. PROPOSITION (Finite Jumps Developments Theorem). In an ortho-
gonal system, let S be a set of redexes in a term t having finite jumps.

(i) Every complete development of S has F(t,S) as its final term.
(i1) For any position u of t, the set of descendants of u by a complete
development of S is independent of the choice of development.
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(iii) The same is true for the descendants of any redex of t.
(iv) S has a complete development.

PROOF. (i) Let ¢t andS be as described. Suppose that we are given a complete
development of S. We will show by induction that for every term %, in the
sequence, containing descendants S, of S, P(t,, S,) is obtainable from P(t, S)
by deleting some unlabelled edges (or perhaps none of them), and hence that
S, has the finite jumps property, and F(ts, So) = F(t, S).

For to = t this is immediate.

For the successor case, let ¢, 1 result from reducing a redex s in t,. By trac-
ing through the P construction, one can (tediously) verify that P(ta.1, Sat1)
is obtainable from P(t,,S,) by deleting some unlabelled edges. Therefore
Sa+1 has the finite jumps property, and F(toi1, Sat1) = F(ta, Sa) = F(t,5).

For the limit case, assume that the claim holds up to a limit ordinal A.
P(ty, Sy) results from P(t,S) by deleting all the unlabelled edges that were
deleted in any of the previous P(t,,S,). Therefore S\ has the finite jumps
property, and F(ty, Sy) = F(t,5).

We conclude that this holds for the final term ¢'. But then F(¢,S) =
F(t',@) =1t and t' is thus independent of the development.

(ii) We leave it to the reader to carry through a similar argument to show
how the descendant relationships between ¢ and ¢’ can also be determined
from P(t,S), and are therefore also independent of the development.

(iii) Similar to (ii) above.

(iv) Let p € P(t,S). Let r € S be a redex encountered in p. Let d(p,r)
be the number of labelled edges from the beginning of p up to r. This is
the depth at which some descendant of r can be reduced in an outermost
development of S (as is easily proved by induction along the sequence of
redexes preceding r in p). Conversely, every descendant of r reduced in an
outermost development is reduced at a depth obtained in this way. Since
P(t,S) is finitely branching, there are only finitely many occurrences (r, p) of
redexes r in P(t,S) having a given value of d(r,p). Therefore in an infinite
outermost development, the depth of reductions must tend to infinity. That
is, the sequence is strongly convergent. Outermost reduction can therefore
be continued until a complete development is obtained. (]

A concrete example of a class of sets of redexes having the finite jumps prop-
erty is the finitely nesting sets of redexes, i.e. those sets of redexes whose
positions contain no infinite chain u; < uo < ug < ---.

12.5.10. ProrosITION (Finitely Nesting Developments Theorem). Let S be
a set of finitely nesting redexes in a term t.

(i) Ewvery development of S is strongly convergent.

(i) If S and T are sets of finitely nesting redexes in a term t, then T/S is
finitely nesting, where T'/S is the set of descendants of TUS after a complete
development of S.
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PROOF. (i) A non-strongly convergent reduction must contain a subsequence
of reductions all at the same position. In an iTRS, this is impossible for
the descendants of a set of finitely nesting redexes, since a reduction in an
iTRS can never change the nesting relationship between two redexes. For \-
calculus, this argument is insufficient, since reduction of one redex can cause
descendants of non-nested redexes to be nested. To deal with this, consider
the following relation on S: r; < ry if either r; contains ry, or there is a
redex r3 € S of the form Az.t;t, such that r; iscontained in %¢;, r; contains
x free, and 7y is contained in t,. We extend this to its transitive closure.
Since 71 < 19 implies that their positions u; and wus satisfy u; < wus in the
lexicographic partial order, this relation on S is (the irreflexive part of) a
partial order. If a descendant of r; can contain a descendant of ry in some
development of S, then r; < ry. Therefore if this relation has no infinite
chains, S cannot have a non-strongly-convergent development. That it has
no infinite chains follows from Lemma ?? below.

(ii) T'/S is well-defined because of Proposition 12.5.9. Thus it is sufficient
to demonstrate that the set of descendants remaining after any development
of a finitely nesting set S is finitely nesting. This follows from the same
partial ordering as in the first part: that partial ordering includes all the
nesting relationships that can hold among descendants of S. I

12.5.11. LEMMA. LetT be a finitely branching tree. Let N be a subset of the
nodes of T'. The prefiz ordering restricted to N s a partial ordering which we
will denote by ng < my. Define a second relation on N by ng <' ny if ng is
before ny in the lexicographic ordering of positions, and some common prefix
of ng and ny is in N. Then if < has no infinite chains, neither does < U <.

ProoF. By Konig’s Lemma, the absence of infinite chains in N implies that
N under the prefix ordering consists of a finite or infinite set of finite trees.
The definition of <’ implies that when ny <’ n;, they belong to the same
such tree. The same is trivially true of <. Therefore every chain of < U <’ is
contained in one of those trees, and is finite. (]

The above theorems may be generalizable to various types of higher-order
rewriting. Lemma ?? was required to establish them for A-calculus, due to
the possibility of nesting of descendants. Higher-order systems can in general
create more complicated forms of nesting, and would likely require stronger
forms of the lemma. The remainder of the proofs of Propositions 12.5.9 and 77
is largely independent of the details of rewriting.

The importance of the Finite Jumps and Finitely Nesting Developments
Theorems is that they allow us to construct elementary tiles: diagrams of the
form of Figure 12.6. H and V are complete developments of finitely nesting
sets H and V. H/V is a complete development of the finitely nesting set
H/V, and V/H is defined similarly. The theorems tell us that H/V and V/H
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H
too ——to,1

Vi iV/H

t1,0 th,l

Figure 12.6: Elementary tile

have the same final term, since H - (V/H) and V - (H/V') are both complete
developments of the finitely nesting set H U V.

12.5.12. LEMMA. Let U be a set of positions of a term t and S : t —» t' be
a reduction sequence. Suppose that every step of S has depth greater than d.
Then U and U/S have exactly the same members of depth at most d.

ProoOF. This is immediate from the fact that a reduction cannot affect any
part of the term at lesser depth than itself. (]

12.6. Tiling diagrams

Extending to transfinite rewriting the notion of projection of one sequence
over another requires some extra work to deal with limit ordinals. Unlike the
finitary case, projections need not exist, even in orthogonal systems, for the
same reason that the Church—Rosser property does not always hold.

In this section we reconstruct the theory of projectionsand tiling diagrams
for transfinite rewriting. In the next section we will use these results to
establish approximate Church—Rosser properties, and exact properties for a
restricted class of orthogonal iTRSs.

12.6.1. DEFINITION. A tiling diagram for two strongly converging reductions
V itoo =% tao and H : g0 —P to,s consists of a rectangular arrangement of
strongly convergent reduction sequences as in Figure 12.7, subject to certain
conditions.

— Each component reduction H, s : ty5 = ¢y 541 is a complete develop-
ment of a set of redexes H, 5 of t, 5. Each V, 5 is similarly related to a
set V, 5.

— Ho,s is the redex reduced in step § of H, and V,; is the redex reduced
in step v of V.

— Let H, [55) : t,,5s = 1,5 be the (strongly convergent) concatenation of
all H, s for § < ¢§" < §'. If §' is a limit ordinal, H, 5) is the result of
omitting the final term of H, 551. Define Vi, .5 and V}, s similarly.
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Figure 12.7: Tiling diagram

Then H,,5 = Ho,s/Vioy,s and V, 5 = Vo o/Hy0,5)-

A partial tiling diagram for H and V is defined similarly, except that the
diagram is only required to include H and V, and if it includes ¢, s, it also
includes t, 5, Hy 5, and Vy 5 for all 7/ <y and ¢’ < 6. The conditions must
hold whenever all the objects they refer to exist.

If H and V have a tiling diagram, then the strongly convergent sequences
along the bottom and right edges will be denoted by H/V and V/H respec-
tively.

Not all pairs of sequences have tiling diagrams, as illustrated by the coun-
terexample to the Church—Rosser property. The next few theorems establish
some sufficient conditions for a tiling diagram to exist.

12.6.2. LEMMA. Let U be a set of positions of redexes in a term t. For each
u € U, define l, to be the maximum depth of any variable occurrence in the
left-hand side of the rule for the redex at u in t. Then as |u|+ I, tends to
infinity, so does |ul.

PROOF. In an orthogonal iTRS and in infinitary A-calculus, distinct redexes
of the same term must be at different positions. There are only finitely many
positions u of a given depth, and so only finitely many values of |u| + [, for
any given |u)|. (]
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Note that since arities and left-hand sides are unbounded, the condition that
U is a set of positions of a single term is essential, although ¢ plays no other
part in the lemma. For A-calculus, the lemma is trivial, since [, is always 2.

The next result is a standard finitary result which holds for orthogonal
iTRSs unchanged, but for which only a limited version holds for infinitary
A-calculus.

12.6.3. THEOREM (Strip Lemma). (i) In an orthogonal iTRS, let H and V
be strongly convergent reductions with the same initial term, with V' being one
step long. Then H and V have a tiling diagram.

(ii) In A-calculus, (i) will hold given any one of the following additional
assumptions: H/V is strongly convergent, V is a head reduction, or H is
finite.

ProoOF. (i) If H is empty this is trivial, and if the theorem holds for H of
length 3, then by the Finitely Nesting Developments Theorem it also holds
for H of length 3 + 1.

Let H have limit ordinal length 3, and consider Figure 12.7 with o = 1.
Let the one step of V' reduce a redex at position u. Choose a depth d. By
Lemma 12.6.2, there is a d’ such that for v € Vg, if |u| + [, > d', we have
|lu| > d. Let | be the maximum depth of any left-hand side for the redexes
of ty 3 at positions u € V3 having length not more than d’. Since there
are finitely many such redexes, [ is finite. Choose 7 such that every step of
Hy [, 6 has depth at least d' + [. Then for any € > v, the positions in V
of depth at most d’ are the same as those of V; g, and the redexes there are
redexes by the same rules. These redexes are descendants of a single redex,
therefore pairwise disjoint (which need not be true in A-calculus). Therefore
every member of H, . is contained in at most one member of V, ., and so
every member of H,./Vo. must have depth at least d. It follows that every
step of Hy [, ) has depth at least d. Therefore H/V is strongly convergent,
and converges to t; g.

(ii) Suppose that V//H has no strongly convergent complete development.
Then for some position u, there is a development of V/H performing infinitely
many steps at u. Let u have depth d. Since H and H/V are strongly con-
vergent, there is a o such that every step of these sequences from #,, or ¢ 4
respectively has depth at least d.

The sets Vy g for B > o must have complete developments which perform
larger and larger numbers of reductions at u as  increases. This implies that
for arbitrarily large values of 3, Hyg/Vo s must include a redex at u/Vpg.
Because H is strongly convergent, u/Vp s must be eventually constant as (3
increases. But this contradicts the strong convergence of H/V .

If V is a head reduction, then the set of its descendants by any reduction is
either empty, or a single descendant in the same position as V. A descendant
of a step of H at depth d by the descendant (if any) of V' must have depth at
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least d—2. Therefore when V' is a head reduction, H/V is strongly convergent
and the previous case applies.

Lastly, if H is finite then the set of descendants of V' byevery initial segment
of H is finitely nesting. The Finitely Nesting Developments Theorem then
assures that each of the finitely many tiles of the tiling diagram exists. (]

Here is a counterexample showing that the iTRS part of the Strip Lemma fails
for the A-calculus. Let t be a finite term with the property that tz —* z(tx).
Such a t is easily constructed by means of a fixed-point operator. Consider
the term t¢r, where r = Az.(Ay.x)w. This reduces to r(¢r), and then to
(Ay.(tr))w, and so in infinitely many steps to the infinite term s such that
s = (Ay.s)w. The term ¢r also reduces in one step to t(Az.z). These cannot
have any common reduct, because w is free in every reduct of s, but every
reduct of ¢t(Az.x) is closed. Notice that the infinite chain of redexes in s are
all descendants of the single redex (Ay.z)w. If we try to construct the Strip
Lemma tiling diagram, we find that H/V consists of an infinite repetition of
the sequence t(Az.x) —* (Az.x)(t(Ax.z)) — t(Ax.z), which is not strongly
convergent.

12.6.4. THEOREM. Let H and V be strongly convergent reductions with the
same initial term. Using the notation of Definition 12.6.1, suppose that a
tiling diagram exists for Hyos and Vo0 with v < a. In an orthogonal
iTRS, a tiling diagram exists for Hoy o5 and Vioy4110. In A-calculus, it will
exist provided that HO,[O,J]/‘/[')',')'—I—I],O is strongly convergent, Viy 4110 45 a head
reduction, or § is finite.

PROOF. Apply the Strip Lemma to the reductions H., o5 and Viy,4150- ]

12.6.5. THEOREM. In an orthogonal ¢TRS or A-calculus, let H and V be
strongly convergent reductions with the same initial term, whose lengths are
limit ordinals B and a respectively. Suppose that all of the data for a tiling
diagram for H and V' exists, except that t,z is not known to exist, and the
sequences H/V and V/H are not known to be strongly convergent, although
every proper initial segment of them is. Then the following conditions are
equivalent.

1. The tiling diagram can be completed, i.e. H/V and V/H are strongly
convergent and have the same limat.

2. H/V is strongly convergent.
3. V/H is strongly convergent.

4. The sequence of rows is uniformly strongly convergent, by which is meant
that for every depth d there is a 6 < 3 such that for all v < «, every
step of H, 55 has depth at least d.
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5. The sequence of columns is uniformly strongly convergent.

PROOF. Suppose that the rows are uniformly strongly convergent. Choose a
depth d. There is a 0 < (3 such that for all 7 < «, every redex in H, s has
depth at least d. Since H,, is the limit of H, s for v < «, it follows that
every redex in H, s has depth at least d, and therefore so does every step of
H, 5. Therefore H/V is strongly convergent. This proves that (4) implies
(2), and therefore by symmetry that (5) implies (3).

Suppose that V/H is strongly convergent. Choose any depth d. Then for
some v, every step of V|, ) s has depth at least d. By strong convergence of
each row of the diagram, we can find a  such that every step of H, 55 has
depth at least d. Therefore by Lemma 12.5.12, every horizontal or vertical
step in the diagram below and to the right of (v,0) has depth at least d.
This demonstrates horizontal and vertical uniform strong convergence, strong
convergence of the right and bottom edges, and their convergence to the same
limit. This proves that (3) implies (4), (5), and (1).

It is clear that (1) implies all the others. Combining these implications
shows that all the items are equivalent. (]

12.6.6. EXERCISE. Consi der the counterexamples given earlier to the Church—
Rosser property. Show that they satisfy the hypothesis of Theorem ?7?, and that
all of the enumerated properties are false.

12.6.7. THEOREM. Let H and V be reduction sequences having the tiling
diagram of Figure 12.7. Let u be a position of too. Then the set of descendants
of u by any path in the diagram from (0,0) to (v, 0) is independent of the path
and of the choice of complete developments for the edges of the tiles. The same
holds for the descendants of any redex r of ty.

Proor. By Proposition 12.5.10 this is true for each path consisting of a single
tile-edge. The theorem follows. (]

12.7. The Compression Lemma

To perform an infinite number of computational steps to obtain some final
result may reasonably be thought of as an idealisation of the notion of com-
puting indefinitely to obtain more and more of the final result. To perform
an infinite number of steps, and then to perform more steps, looks less rea-
sonable. Reduction sequences of length greater than w might therefore be
considered to have no computational significance. The Compression Lemma
gives such sequences computational meaning. This property, which holds
for left-linear iTRSs and for A-calculus, is that for every sequence of length
greater than w, there is another sequence with the same endpoints of length
at most w.
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Figure 12.8: (w + A)-compression

12.7.1. THEOREM (Compression Lemma). In every left-linear iTRS, if
s —%t then s =¥ t.

Proor. This is proved by induction on «. It is trivial for a < w.

Suppose @ = w + 1. We have s; —“ s, — t. The redex reduced in the
final step must be the unique descendant by s, —“ s, of a redex r in s,, at
the same position u. Every step of s, —“ s, has depth greater than d plus
the depth of the pattern of r. Thus there can be no conflicts between that
sequence and the descendants of r, so its projection over r can be constructed
exactly as in the orthogonal case. It can be considered as an interleaving of a
number of copies of subsequences of that sequence, each of length at most w,
and acting on disjoint parts of s/. That interleaving might have length w?,
but there clearly also exists an interleaving of length at most w.

Suppose o = #+1 > w+1, and the theorem has been proved for 5. Then
by applying the theorem for the first 3 steps, we reduce this to the case of
w+ 1.

Suppose « is a limit ordinal greater than w, and the theorem has been
proved for all smaller ordinals. Then o = w + A where A is a limit ordinal.
Let d be the minimum depth of any step of the given sequence. We can
construct Figure 12.8, where the first label on each arrow is a lower bound on
the depth of its reductions, and the second indicates its length. Subdiagrams
(1), (2), and (4) exist by strong convergence. Subdiagram (3) exists by the
Compression Lemma, for ordinals less than A.

This transforms the sequence into a finite initial segment of depth d ending
at some term u, followed by a final segment from u to ¢ of length at most
w—+ A and of depth at least d+1. The latter segment is not necessarily shorter
than the sequence we started with, in the sense of number of steps, but it is
shorter in terms of the metric, lying entirely within a ball of diameter 2791
We can repeat this construction starting with the reduction of s’ to t. By
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concatenating the finite segments s —%* s’ —d+t1* g/ 4d+2* ... we obtain a
sequence of length at most w strongly converging to ¢. (]

12.7.2. THEOREM. In A-calculus, if s =%t then s ==Y t.

ProoOF. The only change required to the proof of the preceding theorem is
in establishing the case o = w + 1, since the argument in every other case is
independent of the details of rewriting.

Let s % s; — t be a sequence of length w + 1. We can split s —“ s; into
s —<¥ 59 —* 51 in such a way that the redex reduced in s; — ¢ is present
at the same position in sy, and every step of s —* s; takes place at greater
depth. All that is then required is to reduce that redex in s, to give a term
s3, and demonstrate that the remainder of the sequence s, —* s’ can be
performed beginning from s3 and permuted into an order of length not more
than w. The detailed construction can be found in Kennaway et al. [1997]. ]

It can be proved that the compressed sequence is Lévy equivalent to the
given sequence, in the sense that a tiling diagram for the two sequences exists,
and its right and bottom sides are empty. Thus the shorter sequence is just
a reordering of the longer one.

To demonstrate the necessity of left-linearity for the Compression
Lemma, consider the system whose rules are F(r) — A(F(x)) and
G(z,z) — H. The term G(F(C),F(D)) reduces in w steps to the term
G(A(A(A(...)), A(A(A(...)))), and then in one step to H. But there is no
reduction of G(F(C), F(D)) to H in fewer than w + 1 steps.

Compression is technically useful, as it can be used to simplify proofs about
transfinite rewriting systems.

Compression fails for weakly convergent reduction. An example is the
rules A(z) — A(B(x)) and B(z) — C(x). These allow a weakly convergent
reduction A(D) — A(B(D)) — A(B(B(D))) — --- — A(B¥) — A(C(BY¥))
of length w + 1. There is clearly no reduction of A(D) to A(C(B¥)) in w or
fewer steps.

In A-calculus, compression fails for gn-reduction Let M = Az.M'zz, where
M' =Y mz.y(mz) and Y = Af.(Az.f(zx))(Az.f(xzz)). Then M contains no
n-redex, but the subexpression (M'z) reduces in w steps to the term y* =
y(y(y(...))), following which we can eta-reduce Az.y“z to y*. M does not
fBn-reduce to this term in w or fewer steps. The infinite reduction of (M'z)
pushes the free variable x down to infinity, creating an n-redex in the limit.

12.8. A partial Church—Rosser property

We shall now show that the failure of the Church-Rosser property is due to
a certain class of terms, the hypercollapsing terms.
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12.8.1. DEFINITION. A collapsing redex is a redex whose reduct is the de-
scendant of a proper subterm of the redex. A collapsing rule is a rewrite rule,
every redex of which is collapsing. A term t is hypercollapsing if every term
it can reduce to can be reduced to a collapsing redex. H denotes the set
of hypercollapsing terms. A hypercollapsing reduction is one which contains
infinitely many collapsing reduction steps at the root of the term.

For term rewriting systems, a collapsing rule is one whose right-hand side is
a variable. For A-calculus, the (- and n-rules are collapsing.

12.8.2. THEOREM. If an tTRS has two or more collapsing rules, or it has a
single collapsing rule whose left-hand side contains a variable not occurring
on the right, then it is not Church—Rosser.

PROOF. In the first case, let the left-hand sides of the two-rules be Ci[z]
and Cs[y|, where x and y are the variables on their respective right-hand
sides. In the second case, let C|z,y] be the left-hand side, where x is the
variable occurring on the right and y is a variable occurring on the left but
not the right. Then define Ci[z] = C|z,a] and Cs[z] = C[z,b] where a
and b are distinct variables. Now consider the term C1[C5[C1[C5]. . .]]]]. This
transfinitely reduces to both C1[C{[Cy[...]]] and Cy[Cy[Cy]...]]], which are
distinct but reduce only to themselves. (]

We now establish a limited version of the Church-Rosser property. Firstly,
we establish an important characterization of hypercollapsing terms.

12.8.3. THEOREM. If there is a hypercollapsing reduction starting from t
then t is hypercollapsing.

We will prove this with the following series of lemmas. The argument for
iTRSs is slightly different from the argument for A-calculus.

12.8.4. LEMMA. In an 1TRS, if t has a hypercollapsing reduction and t — s,
then s has a hypercollapsing reduction. In the \-calculus, this is true if t — s
reduces the head rede.

PROOF. By the Strip Lemma (applied to ¢ — s and the strongly convergent
initial segments of the given hypercollapsing reduction ¢ —» ---), we can
build a tiling diagram for ¢ —+ --- and ¢t — s, except that it will have no
right-hand edge. See Figure 12.9. The set of descendants of 7 in ¢ must be
either a single redex at the root of ¢, or a set of pairwise disjoint redexes
below the root. (In the A-calculus, in the latter case the set is empty.)

In the first case, that descendant at the root will cancel out the next root-
collapsing step of ¢ —» ---. From that point on, the bottom line of the
diagram will be identical to the top, giving a hypercollapsing reduction for s.
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Figure 12.9: Proof of Lemma 12.8.4

If the first case never happens, then the descendants of r are always below
the root, and all of the collapsing root-reductions in ¢ — - - - project to col-
lapsing root-reductions in s — - - -, again giving a hypercollapsing reduction
of s. I

For the A-calculus we nowneed the following lemma, which carries a finitary
result over to the infinitary setting.

12.8.5. LEMMA. In the infinitary \-calculus, if a term is reducible to a redex,
it 1s so reducible by head reduction.

PROOF. Let t be reducible to a redex. By the Compression Lemma this
can be done in at most w steps, and by strong convergence, ¢t must already
reduce to a redex r within finitely many steps. A finitely long reduction can
only depend on a finite prefix of £. More precisely, we can write ¢ as £, =
Clt1,...,t,], where C[zq,...,2,] (Where z1,...,z, are new) is a finite term
which reduces to a redex 7y = C'[z1, ..., x,], such that r = C'[t],...,1 ] and
each ¢} is a substitution instance of t;. From Barendregt [1984]Lemma 11.4.6,
there is a reduction in the finitary A-calculus of the form ¢ty —» s —» 1y
where ty —» s consists of head reductions and s —» r consists of non-head
reductions. Since a non-head reduction cannot create a root redex, s is a
redex. t therefore reduces to a substitution instance of s by head reduction.

I

12.8.6. LEMMA. Ift reduces to a collapsing redex, andt — s by a reduction
containing no collapsing steps at the root, then s reduces to a collapsing redez.

Proor. We have that ¢ must reduce to a collapsing redex in finitely many
steps, none of which are collapsing reductions at the root: ¢ —» r. In the
A-calculus, these can be assumed to be head reductions. By the Strip Lemma
we can form a complete tiling diagram for ¢ —» r and ¢ —» s, reducing
both r and s to a term ¢q. Because the two sequences contain no collapsing
reductions at the root, neither can the entire diagram. Since 7 is a collapsing
redex, so is ¢. Therefore s reduces to a collapsing redex. I

12.8.7. LEMMA. In the A-calculus, if t has a hypercollapsing reduction, its
head reduction is hypercollapsing.
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Figure 12.10: Proof of Lemma 12.8.7

PROOF. Suppose we have a reduction ¢ —» t; — to —» ---, where t; — ¢
is a root reduction. We can construct Figure ??. The annotations are r,
reduction at the root, h, head reduction, nr, not a reduction at the root,
nh, not a head reduction. Compression lets us assume that ¢ — t; has
length at most w. By strong convergence, this reduction must arrive at a
redex in finitely many steps, giving (1). Subdiagram (2) follows from the
Strip Lemma, since a redex at the root is a head redex. Subdiagram (3)
is given by Lemma 12.8.5. The term 5 must be a redex. Reducing it and
applying the Strip Lemma gives (4). We then have a head reduction of ¢ to
a redex tg, followed by a hypercollapsing reduction tg —» t5 —» 1o —» - --
Repeating the construction on the latter sequence generates a hypercollapsing
head reduction of . I

PROOF OF THEOREM 12.8.3. By the Compression Lemma, we may assume
that the given hypercollapsing reduction ¢ — s has length at most w. Divide
it into t —» t' —» s, where all the root-reductions take place in t —» ¢'.
By Lemma 12.8.4, t' has a hypercollapsing reduction. By Lemma 12.8.6, s
reduces to a collapsing redex r. Repeating the argument on the reduction
t —» s —» r generates a hypercollapsing reduction from s. (]

12.8.8. REMARK. We note for later reference that nothing in this proof depends
on the particular nature of collapsing redexes: the proof applies equally well to the
class of reductions which perform infinitely many steps at the root by any given
subset of the rewrite rules.

We now investigate the Church-Rosser property and its relation to hypercol-
lapsing terms.

12.8.9. DEFINITION. We write s 7% ¢ for a reduction step in a hypercollaps-

ing subterm of s, and s 2 4 for a reduction step outside all hypercollapsing
g

subterms of s. Every reduction step is of exactly one of these types. The

. . . in H, tH
corresponding types of reduction sequence are written s L5 tand s 255 ¢
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12.8.10. DEFINITION. A collapsing tower of redexes in a term is a set of
collapsing redexes {ri, s, ...} such that the descendant of any 7,1 by r; is
at the same position as r;.

12.8.11. LEMMA. Let R be a set of redezes in a term t, andr € R. If R/r
contains a collapsing tower, so does R.

Proor. This is trivial for term rewriting, due to the fact that reductions
cannot create new containment relations between descendants. For A-calculus
it is almost trivial: a single reduction step has only a limited capacity to
create containment relations. If u, v, and w are positions of ¢, with respective
descendants u', v', and w' by r such that v’ < v' < w', then either u < v or
v < w. An infinite chain of containment relations therefore cannot be created
in a single step. I

12.8.12. REMARK. Note that it is possible for a collapsing tower of new redexes to
be created in a single step, as demonstrated by the term (Az.(z(z(z(...)))))(Az.2).

12.8.13. LEMMA. If a set of redexes has no complete development, then it
contains a collapsing tower.

PRrROOF. Let R be a set of redexes with no complete development. Perform a
maximally long development of R, reducing a descendant of minimum depth
at each step. The depths of successive steps are thus non-decreasing. If they
increased to infinity, this would give a strongly convergent complete develop-
ment, contrary to hypothesis. Therefore after finitely many steps, we must
reach a term ¢’ such that every subsequent step is at depth d. Furthermore,
there must be a position u of ¢’ at depth d at which infinitely many reductions
are performed. This implies that there is a collapsing tower at u in t'. Let R’
be the set of descendants of R in /. By Lemma 12.8.11, R has a collapsing
tower. (]

12.8.14. LEMMA. In an orthogonal system, if s ou e to and s LENG ty, then
for some q, tg = q and t; = q.

PROOF. Let the two given reductions be S and 7. We will prove that S and
T have a tiling diagram. We know this is true when S and 7" are at most one
step each. An inductive argument over ordinals requires us to prove it when
S is one step and 7" has limit ordinal length, and when both S and T have
limit ordinal length. We may assume that for S and 7" shorter than those
being considered, the theorem is known to hold.

The first of these cases is covered by the Strip Lemma for iTRSs, which
does not require the out H restriction. For A-calculus, we must show that the
set of descendants of (the redex) S by T has a strongly convergent complete
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Figure 12.11: Non-strongly-convergent zig-zag path in a tiling diagram

development. Suppose it does not. By Lemma 12.8.13, S/T must contain a

collapsing tower. Let it be at position u. Consider a non-empty final segment

Tt 2% ¢ of T which performs no reductions at positions which are

prefixes of u (possible by strong convergence and limit length of 7'). Then

t]y LKA t'|,. Since t'|, is hypercollapsing, so is t|,. Therefore ¢|, o |y is

the empty sequence and t|, = t'|,. But then ¢|, contains a set of descendants
of s having no complete development, contradicting the inductive assumption.

We now consider the case where S and 7" both have limit ordinal length.
Assume the notation of Definition 12.6.1 for the terms and sequences appear-
ing in their tiling diagram. We have to show that the right and bottom sides
of the diagram are strongly convergent and have the same limit.

Suppose that this is false. By Theorem ??, this implies that neither the
right nor the bottom edge is strongly convergent, and the diagram is neither
vertically nor horizontally uniformly convergent. From this we will demon-
strate the presence of a reduction within a hypercollapsing subterm in the
top edge, contradicting the hypotheses.

From the non-convergence properties, we can construct a zig-zag reduction
path through the diagram, starting from the top left corner, and proceed-
ing through infinitely many horizontal and vertical segments, which is not
strongly convergent. See Figure 12.11.

Let d be the smallest depth for which such a path can be found contain-
ing infinitely many steps of depth d. Then some lower right segment of the
diagram will contain no steps of depth less than d. By choosing a suitable
subterm of the top left term of depth d, and considering the reduction se-
quences restricted to that subterm, we can assume without loss of generality
that d = 0. Finally, by symmetry we can assume that the path contains
infinitely many vertical steps of depth 0.

When the right edge of an elementary tile contains a redex of depth 0,
either the left edge also contains such a redex, or if it does not, the top
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Figure 12.13: Construction for Lemma 12.8.14

edge must contain a collapsing redex of depth 0, as in Figure 12.12. Since S
contains no steps of depth zero, wherever there is a vertical redex of depth 0
in the term ?(; j), there must be a j' < j such that 7;; includes a collapsing
redex of depth 0. See Figure 12.13.

We now change the path so as to begin with Sjg ;0 Tjjo,1 - Si,5. This gives
us a path which contains a collapsing redex at depth 0, and then continues
to later perform infinitely many steps at depth 0. Consider the subdiagram
whose top left corner is at (141, j). We have a path from (i+ 1, j) containing
infinitely many redexes of depth 0, and therefore a similar path in the diagram
from (7', j) for some ¢’ > i such that the left edge of that diagram contains no
steps of depth 0. Thus we can repeat the argument to show that we can find
a path from (i + 1, j) onwards that also contains a collapsing step of depth 0.

Therefore the path contains infinitely many collapsing steps of depth 0.
By Theorem 12.8.3, this implies that ¢, is hypercollapsing, contradicting
the assumption that S and T reduce no redexes in hypercollapsing subterms.

I

Note that in both iTRSs and A-calculus the reductions from ¢y and ¢; to
¢ in the above lemma need not be (out #H)-reductions, because there is no
particular reason that a descendant of an (out H)-redex by an (out H)-redex
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would be (out H).

12.8.15. COROLLARY. An orthogonal iTRS containing no collapsing rules is
transfinitely Church—Rosser.

. . tH .. .
PROOF. Since there are no hypercollapsing terms, == coincides with —.

I

In the next section we will establish more refined Church—Rosser properties
in a more general setting.

12.9. Meaningless terms

12.9.1. Concepts of meaninglessness

The hypercollapsing terms do not have any obvious meaning. The function
symbols A and B in the canonical counterexample both represent the identity
function, and the two limit terms A(A(A(...))) and B(B(B(...))) can both
be interpreted as least fixed points of the identity. The terms in the other
examples are of a similar nature.

In a denotational semantics the hypercollapsing terms would usually be
mapped to L (called ‘bottom’), the undefined element of a semantic domain.
So it is natural to consider them ‘meaningless’ and to identify them with each
other. When we do this, we find that a Church—Rosser property is restored,
and that direct Lévy equivalence is once again an equivalence relation. These
properties are not unique to the set of hypercollapsing terms. The same is
true if we instead take certain other sets of terms and identify them with
each other. For example, we may define the root-active terms to be those
terms, each reduct of which can be reduced to a redex. Let R be the set of
root-active terms. This set is also a candidate for a notion of ‘undefinedness’
in a term rewriting system.

In Kennaway et al. [1999] we have axiomatized some properties which such
classes of terms should have, and proved that for classes satisfying them,
certain standard theorems relating to the concept of undefinedness can be
proved. In the past these theorems have only been proved for particular
notions of undefinedness. These theorems are Genericity, an approximate
Church—Rosser property, Relative Consistency, and the existence and unique-
ness of Béhm trees. The last of these gives rise to denotational semantics for
orthogonal term rewriting systems.

One of the axioms requires the following definition.

12.9.1. DEFINITION. Let ¢ be an instance o(() of the left-hand side [ of some
rewrite rule. Thus ¢ is a redex. This redex is said to overlap its subterm at
position u if u is a non-empty position of [ and [ | u is not a variable.
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This definition can be stated for the A-calculus in more concrete terms: a
redex (Az.s)t overlaps just the subterm Az.s.

The following are the properties of a set of terms U which make it a
suitable notion of undefinedness.

Descendants: Every descendant of a subterm in I/ is in U.

Overlap: If a redex t overlaps a subterm, and this subterm is in U/, then ¢ €
U. For A-calculus, this is equivalent to: if Az.s € U then (A\z.s)t € U.

Hypercollapse: H C U.

Root-activeness: R C U4.

Indiscernibility: Define s 45 ¢ if 5 can be transformed into ¢ by replacing

a set of pairwise disjoint of subterms of s in U by terms in Y. If s &t
then s € U if and only if t € U.

These properties are essentially those studied in Kennaway et al. [1999], with
some simplifications. and 5 and to Axioms 1 and 3 for A-calculus. Note that
since H C R, the root-activeness axiom implies the hypercollapse axiom. For
A-calculus, both classes are identical, since the -rule is a collapsing rule. For
more details about classes of terms which have these properties, and many
examples, we refer the reader to Kennaway et al. [1999] and Kennaway et
al. [1997]. The latter paper demonstrates that many notions of meaningless
term that have appeared in the A-calculus literature satisfy the axioms. We
will explain here the computational motivation for the axioms.

If computation is performed by reduction, then a meaningless term, or a
meaningless subterm of a term, should not allow information to be obtained
from it by reduction. Thus, its descendants in any computation should also
be meaningless.

To extract information from a term ¢, one may reduce ¢; more generally,
one may place ¢ in some context C|] and reduce that. For example, Print(t)
might be intended to reduce to some sort of printable representation of £. In
order for this to happen, ¢ must be reducible to a term which can be pattern-
matched ‘from outside’, that is, a term which can be overlapped by a redex.
If ¢ is meaningless, it should not be possible to extract information from ¢,
therefore whenever such a t is overlapped by a redex, that redex should also
be meaningless. This gives the overlap property.

The Overlap property can also be related to Knuth—Bendix completion. If
we have a rule which rewrites any member of I/ to the undefined symbol L (as
we will do later), then a redex which overlaps a subterm in ¢/ is an example
of a conflict between that rule and the rule for the redex. The conflict is
resolved if the redex itself is also in U.
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We have described above the motivation for considering all the hypercol-
lapsing terms to be meaningless. The root-active terms represent computa-
tions which continue indefinitely without ever reaching even a partial final
result, since further computation at the root of the term can always take
place. These terms may reasonably be considered meaningless. Technically,
the root-activeness axiom ensures the existence of Bohm normal forms for all
terms. This class includes all the hypercollapsing terms. For A-calculus the
two classes coincide, since the 3-rule is in effect a collapsing rule.

The indiscernibility axiom expresses that the meaningfulness of a term
does not depend on the identity of its meaningless subterms.

The following lemma precisely relates the descendants property to the
axioms of Kennaway et al. [1999].

12.9.2. LEMMA. Consider the following two properties of a class of terms U:

Closure: U is closed under reduction.

Substitution: U is closed under substitution.

For an iTRS, the descendants property is equivalent to closure, and for the
A-calculus, it is equivalent to closure and substitution.

PrROOF. In an iTRS, the possible descendants of a subterm are exactly all its
possible reducts. In the A-calculus, its possible descendants are exactly the
possible reducts of all its substitution instances. I

We now state the properties which follow from these axioms.

12.9.2. Consequences of meaninglessness
Genericity

12.9.3. DEFINITION. A totally meaningful term is a term of which no sub-
term is in U.

Suppose that for every term s in & and every context C[], if C[s] reduces
to a totally meaningful term ¢, then C[r] reduces to ¢ for every r. Then U is
called a generic set.

12.9.4. THEOREM. In a left-linear system, if U has the descendants and
overlap properties, it is generic.

Church—Rosser modulo U

12.9.5. DEFINITION. Given an equivalence relation ~ on the terms of a
rewriting system, the reduction relation is said to be confluent up to = if
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§ ¢« - —» t implies s = - & - «— t. It is said to be confluent modulo ~
if s «— - &~ - —» t implies s —» - & - «— t. The reduction relation is said

to be confluent up to (resp. modulo) U if it is confluent up to (resp. modulo)
u

12.9.6. THEOREM. In an orthogonal system, if U has the descendants, over-

lap, hypercollapse, and indiscernibility properties, the system is confluent
modulo U.

For iTRSs, we can prove a weaker confluence property from just one of the
axioms.

12.9.7. THEOREM. In an orthogonal iTRS, if U has the hypercollapse prop-
erty, the iTRS is confluent up to U.

Relative Consistency

12.9.8. DEFINITION. A rewriting system is called consistent if it contains
two normal forms which are not related by (—» U «)*.

For a set of terms U, it is called U-consistent if there exist two totally
meaningful terms (with respect to &) which are not related by (— U ««— U
u *

The system is relatively consistent with respect to i if for all totally mean-
ingful terms s and t, s(— U 2= U )"t implies s(— U )"t

12.9.9. THEOREM. In an orthogonal system, if U has the descendants, over-
lap, hypercollapse, and indiscernibility properties, the system is relatively con-
sistent with respect to U.

Bohm trees

In the A-calculus, Bohm trees are used to represent ‘normal forms’ of terms
which may be infinite and have undefined subterms (Barendregt [1984]).
Roughly speaking, they are finite or infinite \-expressions containing no re-
dexes, and which may contain an extra nullary function symbol L to represent
undefined subterms.

We generalize this notion to iTRSs and infinitary A-calculus provided with
a class of undefined terms. In this setting, Bohm trees will be exactly normal
forms with respect to transfinite reduction by the rules of the system, together
with an extra rule rewriting undefined terms to L.

12.9.10. DEFINITION. Given a set of undefined terms i/, add a new nullary
symbol L to an infinitary system, and define U, to be the set of terms ¢
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(in the extended system) for which some replacement of occurrences of L by
terms in U (a L-instance of t) can yield a term in U.

Béhm reduction (over a set U) is reduction by the rules of the original
system together with the L-rule: ¢t - L if t € Y, and ¢t #L. We write —, |
for reduction by the L-rule, and —p, for Bohm reduction. When i is clear
from context we may write —, and — .

A Béhm tree over a set U is a normal form of the extended system with
respect to Bohm reduction.

A Béhm tree of a term t over U is a normal form of ¢ by Bohm reduction
over U.

12.9.11. THEOREM. In an orthogonal system, if U has the root-activeness
property, then every term has a Bohm tree. If U also has the descendants,
overlap, and indiscernibility properties, then every term has a unique Bohm
tree.

12.9.12. EXAMPLE. When U is the set of terms having no head normal form,
the Bohm tree of a term as defined above is the classical Bohm tree defined in
Barendregt [1984]. When it consists of the terms having no weak head normal form,
it gives the Lévy—-Longo trees (Lévy [1976], Longo [1983]), and when it consists of
the root-active terms, it gives the Berarducci trees (Berarducci [1994]).

12.9.13. COROLLARY. FEwvery orthogonal system has the UN property.

Undefined terms cast a further light on the relation between weak convergence
and strong convergence. Write t —»" s for a weakly convergent reduction,
and define weak Bohm reduction to be the union of weak reduction and — | .

12.9.14. THEOREM. (i) Assume that U has the root-activeness property. If
t —»" s, then the sequence of depths of out U steps tends to infinity.

(ii) Assume that U has the root-activeness, descendants, overlap, and in-
discernibility properties. If t —»" s, then there are s’ and s" such that
t = 5" =9 s« s.

12.9.15. COROLLARY. Theorem 12.9.11 also holds for weak Béhm reduction.

12.9.3. Proofs

Our proofs of these properties are in the spirit of Barendregt [1984] Chapter 15
for the finitary A-calculus. The proofs depend on a collection of commutation
properties of certain relations constructed from .

Similarly to Definition 12.8.9, we write 2Y and 2 to denote reduction
steps inside a subterm of I or outside all such subterms.
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12.9.16. DEFINITION. (i) Let A be a set of pairwise disjoint positions of

subterms of s in U. s % 4 t if s can be transformed into ¢ by replacing
thosesubterms by arbitrary terms.

(ii) With A and s as before, s s, tif s can be transformed into ¢ by
replacing the subterms of s at A by terms in &/. We omit A where it is not

important to identify it. (This coincides with the definition of < introduced
in the statement of the indiscernibility property.)

(iii) L is the transitive closure of the union of <25, over all A.

12.9.17. LEMMA. In any rewriting system, U has the indiscernibility prop-
erty if and only if & s transitive.

PROOF. Suppose that U has indiscernibility and r PN AS M a t. Let A”
be the set of minimal members of A U A’. Indiscernibility implies that every
subterm of 7, s, and ¢ at positions in A” is in &. From this it follows that

T &)A” t.

Now suppose that & s transitive, s € U, t € U, and s &)A t. Let the
minimum depth of members of A be d. s and ¢ are identical down to that
depth. Choose any member p of A. Trivially, we have s & s|p & t|p, since
all of these terms are in /. By transitivity and s &5 + we obtain slp & B
t &)C t|p for some sets B and C. Since t ¢ U, B and C cannot be empty or
contain (). Therefore s|p, ¢, and ¢|p all have the same function symbol at the
root, and their immediate subterms must all be respectively related by &
Let s|p = F(s1,...,5,) and t|p = F(t1,...,t,). Then s; &)Di t; for all ¢ and
some D;. Define D = {p.i.q|q € D;}. Every member of D has depth greater
than d. Letting F' = (A — {p}) U D, we have s pt.

If we perform this transformation for every p € A of depth d, we obtain a

set A" of positions of minimum depth d’ > d, such that s & 0 t. But then s
and ¢ are identical down to depth d’, so by repeating the argument, they are
identical down to an arbitrarily large depth, i.e. s = ¢, contradiction. (]

12.9.18. LEMMA. In a left-linear system, if U has the descendants and in-
. g ey . n U . . u
discernibility properties then s —» t implies s <— t.

PROOF. Suppose s n8s ¢. Let A be the set of positions of maximal subterms
of sin U. Suppose that some step of the sequence is performed at a position of
which no member of A is a prefix. There must be a first such step s’ DY Y Let
its position be u. Since this is an (in U)-step, s'|, € U for some prefix v of u.
Since all previous steps are within subterms at positions in A, the descendants
property implies that s|, & s|,. By the indiscernibility property, s|, € U.
But this implies that some member of A is a prefix of u, contrary to the choice
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of u. Therefore the entire reduction of s to ¢ happens within the subterms
at positions in A. By descendants, those subterms of ¢ are also in U, and

s <t I

12.9.19. LEMMA. In a left-linear system, assume U has the overlap prop-
erty.

(i) Ifs & 25 ¢ then s —» - £ 1.
(ii) If s <5 - 2285 ¢ then s —» - 5 ¢t

(ili) If s 2= - 2255 ¢, then s —» - == t.

PROOF. (i) Suppose s & AT LA By the overlap property, each reduction

in the sequence r U+ must reduce a redex whose pattern lies entirely out-
side the descendants of the positions in A. This implies that the sequence of
positions of reductions in that sequence defines a reduction sequence starting

from any s for which r s (The hypothesis of left-linearity is required to
ensure that those positions are still the positions of redexes after the substi-

. u .
tution » — s.) Corresponding members ' and s’ of the two sequences are

related by r’ “ a8, where A’ is the set of descendants of A in r.
(ii) This is established by a proof similar to the previous item.
(iii) Immediate from the previous item. I

12.9.20. LEMMA. In a left-linear system, assume U has the descendants and

overlap properties.

(1) IfS n U . out U t then s out U . n U ‘

(ii) If s =» t then s 2% . 8 ¢
out U

(iii) If s = t and t is totally meaningful then s —» t.

PROOF. (i) Let A be the set of minimal positions of undefined subterms of

s. Then the reduction s ~¥s r consists of an interleaving of reductions of
each of those subterms. The proof then follows the same pattern as for that

of Lemma 12.9.19(i). The required reductions of the form s’ “nls ' are
constructed by applying the same reductions to the subterms of s’ at A’ as

were applied to their ancestors in s.

(ii) If s = ¢ consists of an alternation of finitely many “nly and 255

segments, then this is established by a finite number of applications of part (i).
If there are infinitely many segments, a more complex argument is required.
First, we use the compression property to assume without loss of generality
that s —» t has length w, and hence that it can be expressed as an alternation
of only w ink and 244 segments, each finitely long. We can then use the
result of the previous part to construct all of Figure 12.14 except its right-
hand edge. The given sequence forms the zig-zag edge of the diagram, and
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Figure 12.14: Diagram for the proof of Lemma 12.9.20(ii); ¢ = in U, o =
out U.

each square is given by part (i). To construct the right edge, the reduction
of r to t, we must show that each of the horizontal sequences is strongly
convergent, and that their limits can be joined by suitable vertical segments,
whose concatenation will strongly converge to ¢.

From the construction of part (i), Lemmal2.5.12, each step of each hor-
izontal sequence of the diagram is at the same depth as the corresponding
horizontal step in the zig-zag. Since by hypothesis the latter is strongly con-
vergent, so is the former.

Each segment of the right edge exists by the same argument as used in
part (i).

Finally, we prove strong convergence of the whole right edge. Choose any
depth d. By strong convergence of the given sequence, there is an n such

that every step of the zig-zag after the nth RALXS segment has depth greater
than d. Therefore every step of the top row after the nth segment has depth
greater than d, as do all the horizontal segments below those. Therefore every
segment of the right edge after the nth is the projection of one sequence of
depth greater than d over another, and therefore has depth greater than d.
Therefore the right edge is strongly convergent.

Furthermore, after n segments, the terms of the right edge are within a
distance of 27¢ of the corresponding terms of the zig-zag. Therefore the right

edge has the same limit as the given sequence, ¢.
(iii) From the previous part we conclude that s outl, . ¥, . But since ¢ is

totally meaningful, the descendants property implies that the ¥, reduction
must be empty. (]

PROOF OF THEOREM 12.9.4. Suppose s € U, t is totally meaningful, C[] is
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a context, and C[s] = .

Clrl& Cls] =t = C[r] & Cs] 24% ¢ by Lemma 12.9.20(iii)
= C[r] =» - £y by Lemma 12.9.19(i)
Sinc e t is totally meaningful, C[r] — t. I

12.9.21. LEMMA. In a left-linear system, assume U has the descendants,
overlap, and indiscernibility properties.

(i) IfsZ£ - =t then s —» - 2= ¢
(i) If s X standtis totally meaningful then s UK g,

PRrOOF. (i)
st = s ML Ty by Lemma 12.9.20(ii)
= 5o = 2y by Lemma 12.9.19(ii)
= 5=t by Lemma 12.9.18

(ii) From the part (i), since a totally meaningful term is related by ==
only to itself. I

12.9.22. LEMMA (postponement). In a left-linear system, if s —»p5 t then
s —» - = t. (No properties of U need be assumed.)

PROOF. Let the steps of s =+t be s =5 s34+1, where s = 5y and t = s,.
Define a new sequence by transfinite induction thus.

Base case: s; = sp.

Successor case: Suppose sf@ has been defined. If sg —p sgy1 is a L-
reduction, define sj,; = sj. Otherwise let it be a reduction by a rewrite
rule applied at position u. Define s'ﬁ — s’ﬁ 41 by reduction at wu.

Limit case: If sf@ has been defined for all 3 less than a limit ordinal A, define
s to be the limit of the sequence.

To prove that this defines a reduction sequence, we must show that in the
successor case, s’ﬂ has a redex at u, and in the limit case, the limit s/ exists.
We will also need to know that for all 3, s’ﬂ —1 s3. These can be proved
simultaneously by induction. Clearly, if sj; =+, sg and sg — 541, then sj
has a redex everywhere that s; does, and sj,; — 1 sgy1. Since s — sj5.;
takes place at the same place as sg — sgy1, the constructed sequence is
strongly convergent, and therefore s/ exists.

This also shows that s, =, s, = t. (]
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Figure 12.15: Proof of confluence up to ¢ (Theorem ?7)

PROOF OF THEOREM ?77. Suppose s «<— X s t. We construct Figure 77.
Subdiagram (1) is given by the descendants, overlap, and indiscernibility
properties, and Lemma 12.9.21(i). Subdiagram s (2) and (3) are given by the
descendants and overlap properties, and Lemma 12.9.20(ii). Subdiagram (4)

is given by the hypercollapse property and Lemma 12 8.14. The descendants

and indiscernibility properties imply that PIER C —, so subdiagrams (5),

(6), and (7) follow from the same hypotheses as (1). I

Proor oF THEOREM 12.9.7. This requires quite a complicated argument.
We shall give an outline here and refer the reader to Kennaway et al. [1995]
and Kennaway et al. [1997] for the details.

First, we transform the system into a system which is not merely non-
collapsing, but also depth-preserving, that is, one in which the depth of any
occurrence of a variable in the right-hand side of a rule is at least as great
as its depth in the left-hand side. This is done by inserting a new nullary
function symbol € into the right-hand sides as necessary to make this so, and
adding further rules with es on the left-hand side as necessary to preserve
the reduction relation. All reductions in such systems are strongly conver-
gent, and orthogonal systems are confluent. Not all terms of the resulting
system are translatable back to the original system: subterms of the form
€(e(e(...))) cannot be translated. These subterms arise only from reductions
in hypercollapsing subterms.

Thus, if we are given two reductions s —» t; and s — ¢; in the original
system, we can transform these into reductions s — t; and s — ] in
the transformed system, extend them by confluence to a common endpoint
r, and translate the resulting sequences back to sequences s —» ty —» 1
and s —» t; —» r; by omitting from ¢; —» r all reductions within

hypercollapsing subterms. The resulting ry and r; are related by 2 any
larger U. [
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PROOF OF THEOREM 12.9.9. The hypotheses, together with Theorem ?7,
show that if s and ¢ are in the relation (—# U 2= U «)* then for some s’

and t/, s =% ¢ X« t. But since s and ¢ are totally meaningful, so are
s" and ¢/, which must therefore be identical. I

12.9.23. LEMMA. Let U have the indiscernibility property. If some -
instance of t is in U, then every L-instance is.

For each of the properties of descendants, overlap, hypercollapse, root-
activeness, and indiscernibility, of U has that property, then so does U, .

PROOF. Let t' and t” be L-instances of t. Then they differ only by substitu-
tion of subterms in . By indiscernibility, t' € U if and only if ¢ € U.

For the second part, we prove the overlap property as an example. Proofs
for the others are equally simple. Let ¢ € U, , and let C[t] be a redex whose
pattern includes the root of . Let ¢’ € U result from a substitution of members
of U for L in t. Let C'[ | result from C[ | by making some substitution of
members of U for occurrences of L. Then C'[t'] is a redex whose pattern
overlaps the root of ¢'. By the overlap property for U, C'[t'] € U. Therefore
Cltle U,. (]

PROOF OF THEOREM 12.9.11. From root-activeness it follows that every

2 reduction is strongly convergent, and that therefore every term s is
reducible by ordinary reduction to a term ¢ containing no redexes outside
subterms in Y. Reducing all maximal such subterms by the l-rule gives a
Bohm tree. Therefore every term has a Bohm tree.

For uniqueness, see Figure 12.16. Suppose that s —5 tg and s —p t;. By
existence, these reductions can be extended to Bohm normal forms ug and
u1. Lemma 12.9.22 gives us subdiagrams (1) and (3) of the figure, where
vo and v; have no redexes (by the ordinary rules) outside subterms in .
Subdiagram (2) is given by Theorem ??. The in U property of the reductions
to wy and w; follows from the just-mentioned property of vy and v;. By the

indiscernibility property, — 5 is contained in 2. By the descendants and
indiscernibility properties, and Lemma 12.9.18, ¥, is contained in 2= By
the indiscernibility property and Lemma 12.9.17, &L is transitive. Therefore

U . .
g = 4. Since these are Bohm normal forms, uy = ;. (]

PrOOF OF COROLLARY 12.9.13. The UN property follows from Theo-
rem 12.9.11, since normal forms are Béhm trees. I

PROOF OoF THEOREM 12.9.14.
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Figure 12.16: Proof of UN for B6hm reduction(Theorem 12.9.11)

(i) Given a reduction ty —»¥ t,, let u be a position of minimum depth such
that every final segment of the sequence contains a reduction at w. Then
some final segment, starting from some ¢4, will contain no reductions at any
proper prefix of u. Therefore ¢g|u reduces to t,|u by a weakly convergent
reduction with infinitely many steps at the root. By the root-activeness and
Theorem 12.8.3 (as extended by Remark ?7), every term of that sequence
is in U, and hence the corresponding steps of the original sequence are not
out U steps.

(ii) Reduce each term tsz in the sequence ¢ —»" s to its normal form
t; with respect to —,. Such reductions are strongly convergent. Theo-
rem 77, applied to t5 — tg41 and tg — ¢, implies that if t5 25 5,1 then

ts M—)—)—)L tis,1, the first step being at the same position. By part (i), this

gives a strongly convergent Bohm reduction from ¢ to s’, where s —, .
Lemma 12.9.22 implies there is a reduction ¢t =% s” — | §.

Proor oF COROLLARY 12.9.15. Theorem 12.9.14 implies that every weak
Bohm reduction can be extended to a reduction with the same initial and
final terms as some strongly convergent Bohm reduction. The UN property
for the latter therefore implies UN for the former. (]

12.9.4. Examples of classes of meaningless terms

For orthogonal systems, Kennaway et al. [1999] presents four candidates for
notions of undefinedness in term rewriting systems: the opaque terms, the
w-undefined terms, H, and R.

Call a term opaque if no reduct of the term can be overlapped by a redex.
That is, no reduct of the term is an instance of a proper non-variable subterm
of a left-hand side. This class is motivated by the idea that a meaningful
term should be capable of being pattern-matched ‘from outside’, as described
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Figure 12.17: A paradoxical infinite term

in our justification for the overlap property. The overlap property requires
that if a meaningless term is pattern-matched, the outer redex must also be
meaningless. The class of opaque terms is based on the stronger idea, that
the meaningless terms are precisely the terms which can never be pattern-
matched.

A finite term is w-undefined if all terms reachable from it can be decom-
posed into ‘redex compatible’ parts. We add a nullary symbol w, and define
a partial ordering on terms containing w by stipulating that w < ¢ for all ¢,
and that all function symbols are monotonic. Say that a term ¢ (which may
contain w) is a partial redex if t < t' for some redex t'. Define the w-rule:
t — w if t is a partial redex other than w. It is easy to show that every finite
term ¢ has a unique normal form w(¢) by this rule. For an infinite term ¢,
define w(t) to be the least upper bound of w(t') for all finite terms ¢’ < ¢t. A
term t is w-undefined if for every reduct ¢’ (by the ordinary rewrite rules of
the system) of every instance of ¢, w(t') = w. This notion is based on ideas
from Huet and Lévy [1991]. The w-rule embodies the idea of ignoring the
right-hand sides of the given rewrite rules.

In an orthogonal system, each of these classes satisfies all the axioms, ex-
cept that ‘H does not always have the root-activeness property. The properties
all either are immediate from the definitions, or follow by a simple argument
from orthogonality. The theorems therefore all apply, except that Bohm
trees are not necessarily unique for the class H. See Kennaway et al. [1999]
for proofs, and counterexamples for left-linear, non-orthogonal systems.

For A-calculus, the same paper demonstrates that many concepts of unde-
finedness that have appeared in the literature satisfy all the axioms.

12.10. A refinement of infinitary lambda calculus

Some of the infinite A-terms as defined earlier have paradoxical properties.
Consider the term (((...z)z)z)x. See Figure 12.17. This term has a combi-
nation of properties which is rather strange from the point of view of finitary
A-calculus. By the usual definition of head normal form — being of the form
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AT1... A\xp.yty .. .1, — it is not in head normal form. By an alternative for-
mulation, trivially equivalent in the finitary case, it is in head normal form —
it has no head redex. It is also a normal form, yet it is unsolvable (that is,
there are no terms ti,...,t, such that tt; ...t, reduces to I). The problem
is that application is in some sense strict in its first argument, and so an
infinitely left-branching chain of applications has no obvious meaning. We
can say much the same for an infinite chain of abstractions Azi.Axs.Ax3. ...

This suggests that we consider a different notion of depth, where all the
nodes on the left spine of a term are considered to have depth 0. More
generally, we can consider the three different contexts which the immediate
subterms of a A-term can have: the body of an abstraction, and the left and
right components of an application. For each of these contexts, we can define
the depth of the position of the subterm as either 0 or 1. This gives eight
different notions of depth. We can label each with a string of three numbers
abc. We then have a depth measure parameterized by a, b, and ¢ measuring
the length of any position of a term:

D*(t,()) = 0
D (\z.t,1-u) = a+ D™(t,u)
D (st,1-u) = b+ D"(s,u)
D% (st,2-u) = c+ D™t u)

Using D%¢ as the notion of depth in Definition 12.4.2 gives eight different
metrics d** on the space of finite terms, each of which has a different metric
completion. The metric d*!! is the metric we have been using up to now, and
completion gives all possible infinite terms. Completion using each of the
other metrics excludes all those infinite terms which contain an infinite path
along which the depth does not increase to infinity. At the opposite extreme
to DM D% allows no infinite terms at all and gives the discrete metric
d®? on finite terms. There are no strongly convergent infinite reductions.
This is the ordinary finitary A-calculus. Of the other six, only two have good
properties. Measure 001 considers all nodes on the left spine of a A-term
to have depth 0, and therefore excludes terms having an infinite left spine.
The examples we gave earlier of paradoxical terms are all excluded. Measure
101 has connexions with the lazy A-calculus of Abramsky and Ong [1993].
It excludes infinite left-branching chains of applications, but allows infinitely
nested lambdas.

Each depth measure gives a corresponding notion of Bohm tree, equivalent
to those in Example 12.9.12.

12.10.1. EXERCISE. In the definition of D¢ we could take a, b, and ¢ to be any
non-negative numbers. Prove that the topology of the resulting complete metric
space depends only on which of these numbers are non-zero.
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The appropriate generalization of the class of root-active terms is the class
of 0-active terms: those terms whose every reduct reduces to a term having
a redex at depth 0. For the depth measures 111, 001, and 101, the class of
0-active terms satisfies all the axioms for a class of undefined terms. This
immediately gives us the genericity property, confluence up to equality of
0-active subterms, relative consistency, and the existence and uniqueness of
Bohm trees. For every other depth measure, the class violates at least one
axiom.

12.10.2. EXERCISE. For each depth measure and each axiom for a class of mean-
ingless terms, either prove that the class of 0-active terms for that measure satisfies
that axiom, or exhibit a counterexample. With these results, verify the above claim.

The counterexample we gave to the Strip Lemma for the A-calculus with
measure 111 also works for the measure 101. It fails for the depth measure
001, since the infinite term s = (\y.s)w does not exist for that measure,
but we can find a similar counterexample. Let ¢ be (as with the earlier
example) a finite term with the property that tz —» z(tx) (by a finitely long
B-reduction). Consider the term ¢r, where r = Ay.((Az.z)(Aw.y)). The term
tr reduces to r(tr), and then to (Az.z)(Aw.tr), and so in infinitely many steps
to an infinite term s = (Az.z)(Aw.s). The same term also reduces in one step
to t(Ayw.y). Every reduct of s contains subterms of the form Az.x, because
it is not possible to reduce all of these in a strongly convergent reduction.
However, no reduct of ¢(Ayw.y) contains such subterms. They therefore have
no common reduct, and the Strip Lemma diagram cannot be completed.

Historical remarks

The basic reference on transfinite rewriting is Kennaway et al. [1995] for
term rewriting, and Kennaway et al. [1997] is that for the A-calculus. The
concepts have yet to be extended to higher-order rewriting systems. The link
between transfinite term rewriting and term graph rewriting was explored
in Kennaway et al. [1994]. The general axioms for notions of undefinedness
in rewriting systems were established in Kennaway et al. [1999].
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