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set of rootative terms, whih is the smallest set of omputational meaninglessterms that an onsistently be equated. The operational semantis that we areinterested in is observational equivalene with respet to rootative behavior.The denotational semantis is the model of the Berardui trees (Berardui,1996), whih are a more detailed variant of B�ohm trees: the main di�erenebeing that rootative terms instead of terms without a head normal form getreplaed by a dummy symbol ?.Berardui trees an be best dealt with as the �-?-normal forms of terms inthe ompletion �1? of the lambda alulus with a new symbol ?, in�nite termsand the new rule that replaes �-rootative terms by ? (Berardui, 1996),(Kennaway et al., 1997). In the alulus �1? it is not diÆult to see that if twoterms have the same Berardui tree then they are observationally equivalent.The onverse however is not true, essentially for two reasons. The �rst reasonis intrinsi for Berardui trees: the lambda alulus is not powerful enough toB�ohm out the argument of a �-rootative term. The seond reason is similarto why the analogous statement is not true for B�ohm trees, namely the B�ohmout of a subterm an return an �-expansion of it.Therefore, in a move harateristi for full abstratness problems, we will en-rih the lambda alulus �1? in a rather minimal way with two more onstantsO and A with aompanying rules. Any term in the enrihed alulus �1?OAan redue in a �nite number of steps to a pure �-term and therefore the Be-rardui tree of a term in �1?OA will not ontain O and A. For any two terms of�1?OA we an prove that Berardui tree equality is equivalent to observationalequivalene with respet to rootative terms.1.1 Previous WorkHistorially, quoting from (Barendregt, 1984)(page 215), \the notion of B�ohmtree is suggested by the original proof of B�ohm's theorem". B�ohm's theoremstates that given two distint �-�-normal forms there is a ontext C[ ℄ suhthat C[M ℄ = x and C[N ℄ = y, where x; y are arbitrary distint variables. Themethod used to �nd suh a ontext is alled the B�ohm out tehnique (Baren-dregt, 1984)(Setion 10.3).In (Wadsworth, 1976) Wadsworth, generalizing B�ohm's theorem, shows thattwo �-terms M;N have the same B�ohm tree modulo in�nite �-expansions ifand only if for all ontexts C[ ℄ the following holds:C[M ℄ has a head normal form , C[N ℄ has a head normal form.The proof tehnique used to obtain the \if" part is the B�ohm out tehnique.2



The same property holds even onsidering B�ohm trees modulo �nite �-ex-pansions and normal forms, as shown in (Hyland, 1975/76). More preiselyHyland proves, using the B�ohm out tehnique, that two �-terms M;N havethe same B�ohm tree modulo �nite �-expansions if and only if for all ontextsC[ ℄ the following holds:C[M ℄ has a normal form , C[N ℄ has a normal form:The results of (Wadsworth, 1976) and (Hyland, 1975/76) an be rephrased asfollows:The lambda alulus internally disriminates as B�ohm tree modulo in�nite(respetively �nite) �-expansions when the set of values is the set of headnormal forms (respetively normal forms).To internally disriminate terms having di�erent B�ohm trees Dezani et al.(Dezani-Cianaglini et al., 1998b) add to the pure lambda alulus a non-deterministi hoie operator + and an adequate numeral system (as de�nedin Setion 6.4 of (Barendregt, 1984)). The redution rules for + are:M +N �!M and M +N �! N:Clearly the non-deterministi hoie operator allows to de�ne ombinatorslike Plotkin's parallel-or (Plotkin, 1977) when one onsiders may onvergene,under whih a term onverges if at least one of the possible omputations start-ing from it ends. This extension inreases the power of the lambda alulusto detet onvergene internally also in those ases in whih a term onvergesas soon as at least one of its subterms does, no matter in whih order theyare evaluated. This amounts to have the de�nability of all ompat pointsin a standard model, that is, by Milner's theorem (Milner, 1977), to have afully abstrat interpretation for the language. The numerals play an essentialrole to disriminate between a term possessing a head normal form and its�-expansion, essentially sine they an never be applied to an argument, whileall pure �-terms an be seen both as funtions and as arguments. This resultis proved using a variation of the B�ohm out tehnique as well as harateristiterms and test terms (Boudol, 1994).Instead, L�evy-Longo trees orrespond to observational equivalene with re-spet to weak head normal forms in suitably enrihed versions of the lambdaalulus, as shown in (Sangiorgi, 1994), (Boudol and Laneve, 1996), (Dezani-Cianaglini et al., 1999). Now, we briey reall suh approahes.In (Sangiorgi, 1994), Sangiorgi onsiders the embedding of lazy lambda alu-lus in some onurrent aluli. First, Milner's enoding of lazy lambda alulusin �-alulus is studied. Then the lazy lambda alulus is enrihed with a sim-ple non-deterministi operator, whih, when applied to an argument, eithergives the argument itself or diverges. In both ases the proesses are ompared3



using bisimulation. The proof tehnique is the B�ohm out tehnique.Boudol and Laneve (Boudol and Laneve, 1996) introdue a \resoure on-sious" re�nement of lambda alulus, in whih every argument omes witha multipliity. The redution proess (whih uses expliit substitutions in anessential way) remains deterministi, but a deadlok an appear. The termsare ompared by means of the standard observational equivalene. The prooftehnique is again the B�ohm out tehnique.Dezani et al. (Dezani-Cianaglini et al., 1999) onsider the behavior of pure �-terms inside ontexts of the onurrent lambda alulus as de�ned in (Dezani-Cianaglini et al., 1998a). This alulus is obtained from the pure lambdaalulus (with all-by-value and all-by-name variables) by adding the non-deterministi hoie operator disussed above and a parallel operator k, whosemain redution rule is M �!M 0 N �! N 0 (jj)MkN �!M 0kN 0where �! stands for one-step redution.The terms are ompared by means of the standard observational equivalene.The proof tehnique for proving that observational equivalene implies treeequality is that of harateristi terms and test terms.More reently Boudol in (Boudol, 2000) shows that the equivalene on �-termsindued by the all-by-name CSP transform is L�evy-Longo tree equality.In order to disriminate pure �-terms having di�erent Berardui trees, thepaper (Dezani-Cianaglini et al., 2000) extends the lambda alulus with twoonstants O and A. The essential feature of the B�ohm-out tehnique onsistsin seleting a subtree of the tree of a term by means of an appropriate ontext.The seletion of a subtree was performed in the original B�ohm algorithm bysubstituting a variable in head position by an appropriate ombinator. ForBerardui trees, the top normal forms also inlude appliations that may nothave a variable in head position, as in 

 (where 
 � (�x:xx)(�x:xx)). Forthese new ases the seletion of a subtree an be performed using the onstantsO and A. The onstants O and A selet the operator and the argument of alosed, �-rootstable appliation. These onstants have the following redutionrules: O(MN) �!M if M is a losed �-zero termA(MN) �! N if M is a losed �-zero term4



where a �-zero term is de�ned in De�nition 2. For instane, 
II (where I ��x:x) and 

I are disriminated by the ontext A(O[ ℄). In fat:A(O(
II)) �! A(
I) �! IA(O(

I)) �! A(

) �! 
All pure �-terms having di�erent Berardui trees an be disriminated usingthese two onstants (Dezani-Cianaglini et al., 2000). However non-pure �-terms having di�erent Berardui trees annot be disriminated only withthese rules. For example, O(A
) and O(O
) have di�erent Berardui trees,though they are observationally equivalent. Hene in this paper we add moreredution rules for the onstants O and A in order to disriminate also non-pure �-terms.1.2 SummaryIn this paper we onsider an extended lambda alulus �OA for whih theequality of Berardui trees oinides with observational equivalene. This al-ulus will be a variant of the one presented in (Dezani-Cianaglini et al., 2000).As in (Dezani-Cianaglini et al., 2000) it will ontain the onstants O and Athat selet the operator and argument of a �-rootstable appliation. The set�OA of terms will be a restrition of the one in (Dezani-Cianaglini et al., 2000)and new redution rules will be added for the onstants. In (Dezani-Cianagliniet al., 2000), we have proved that Berardui tree equality oinides with ob-servational equivalene only for pure �-terms. The new redution rules willallow us to extend this result to non-pure �-terms. Hene in this paper, wewill prove:Theorem 1 For all X; Y 2 �OA it holds that they have the same Berarduitree if and only if for all ontexts C[ ℄ 2 �OAC[X℄ 2 ROA , C[Y ℄ 2 ROAwhere ROA is the set of �OA-rootative terms in �OA. 4The \if" part will be proved by a variation on the B�ohm out tehnique. For the\only if" part we adapt tehniques from in�nitary lambda alulus. We willprove that the Berardui tree of a term is the unique normal form of the termin that alulus. Sine this normal form always exists and is unique, we anbuild a model of the extended lambda alulus in whih the interpretations of4 The de�nition of �OA-rootative is given in De�nition 27.5



terms are their Berardui trees. Hene, our main theorem states that suh amodel of the extended lambda alulus is fully abstrat.1.3 OutlineIn Setion 2 we reall the de�nition of the �nite lambda alulus � and itsin�nitary extension �1? . We explain that the Berardui tree of a term M in�1? is just its normal form in �1? . However nie the properties of �1? , it is notexpressive enough to prove that observational equivalene implies Berarduitree equality. Therefore we introdue in Setion 3 the in�nitary extension�1?OA. It is more expressive than �1? , but inherits some of its nie properties.In Setion 4 we show for terms in �1?OA that Berardui tree equality impliesobservational equivalene, and in Setion 5 we prove the onverse. The �nalSetion 6 disusses the result.
2 Finite and In�nite Lambda CalulusThis setion is to �x notations and onepts. We will reall the in�nitaryextension �1? of the �nite lambda alulus (Berardui, 1996), (Kennawayet al., 1997). This is an extension not only with in�nite terms but also withan extra symbol ? and a rewrite ruleM 6= ? and �-rootative (?)M ! ?where �-rootativity is de�ned in De�nition 4(ii).The extension �1? has the following important properties:{ the in�nitary onuene property holds,{ eah term has a unique normal form for the ombined �;? redution,{ eah �-normal form is also a normal form for the new ? rule.The Berardui tree of a term M is now the (tree of the) possibly in�nitenormal form of M for the �-?-redution. In the present paper we will alwaysidentify terms with their trees. 6



2.1 Finite Lambda CalulusOur starting point is the �nite untyped lambda alulus (Barendregt, 1984).The set � of �nite untyped �-terms is given by the following indutive gram-mar: M ::=ind x j (�xM) j (MM);where x is a variable from some �xed ountable set of variables V. We follow theusual onventions on syntax. Terms and variables will respetively be writtenwith (super- and subsripted) letters M;N and x; y; z. Terms of the form(M1M2) and (�xM) will respetively be alled appliations and abstrations.A ontext C[ ℄ is a term with a hole in it, and C[M ℄ denotes the result of �llingthe hole by the term M , possibly by apturing some free variables of M . Aterm of the form (�xM)N is a �-redex.We will silently take equivalene lasses of terms modulo a hange of boundvariables and follow the variable naming onvention (Barendregt, 1984)(2.1.13).We will use the following abbreviations:�x1 : : : xn:M =def (�x1(�x2 : : : (�xnM) : : : ))MN1 : : : Nn =def (: : : (MN1) : : : Nn)I =def �x:x S =def �xyz:(xz)yz K =def �xy:x B =def �xyz:x(yz)� =def �x:xx �� =def �x:x(�y:xy) �M =def �x:xxM
 =def �� 
M =def �M�MY =def (�xy:y(xxy))(�xy:y(xxy))The redution relation !� on � is the smallest binary relation that is losedunder ontexts 5 and ontains the rule:(�xM)N !M [N=x℄ (�)and !�� is its reexive and transitive losure.The struture of a �-term an be desribed with help of the notions of �-zero,�-rootstable and �-rootative term.De�nition 2 (Berardui, 1996) Let M be a �-term in �. If M annot �-redue to an abstration, then M is alled a �-zero term.5 A relation!� is losed under ontexts if M !� N implies C[M ℄!� C[N ℄ for allontexts C[ ℄. 7
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�Fig. 1. Tree representation of the in�nite �-normal forms of 
I;YK and YY.It is easy to verify that:Lemma 3 (Berardui, 1996),(Kennaway et al., 1997) A �-term �-redueseither to a variable, to an abstration, to an appliation of the form MNwhere M is a �-zero term, or to a �-redex.De�nition 4 (Kennaway et al., 1997) Let M be a �-term.(i) If M annot �-redue to a �-redex, then M is alled �-rootstable or a�-rootstable form.(ii) If for all N suh that M an �-redue to N , the term N an further be�-redued to a �-redex, then M is alled �-rootative.For example, 
 is a �-zero term and it is �-rootative. The term III is anexample of a term whih is neither �-rootative nor �-rootstable, beause itan �-redue to the �-rootstable term I.Note that:Lemma 5 (Kennaway et al., 1997) A term an not �-redue to a �-rootstableform if and only if it is �-rootative.A �-term has a �-normal form if it an �-redue to a term that does notontain �-redexes anymore. Of ourse not all �nite terms have a �nite �-normal form. Some of these terms however seem to onverge to an in�nite �-normal form well beyond the sope of the �nite lambda alulus. For example:
I !� 
II!� 
III!� 
IIII!� : : :YK!�� K(YK)!� �y0:YK!�� �y0y1:YK!�� : : :YY!�� Y(YY)!�� YY(YY)!�� YY(YY)(YY(YY))!�� : : :The in�nite �-normal forms of these redutions an more learly be repre-8
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}}y zFig. 2. Tree representation of the in�nite �-normal forms of BYS and BY.sented as planar trees instead of linear formulas, see Figure 1. 6For another example, one an alulate that BYS and BY �-redue to thesame in�nite �-normal form �yz:yz(yz(yz(: : : ))) (see Figure 2). This showsthat in�nite redutions are an alternative to adding Sott's indution to thelambda alulus (Sott, 1975). 72.2 In�nite Lambda CalulusWe will now reall the in�nitary extension �1? (Kennaway et al., 1997). Itprovides the proper ontext to introdue in�nite �-terms and onverging re-dutions formally.We �rst de�ne the set �? of �-terms extended with a onstant ?.De�nition 6 The set �? of partial terms is de�ned by the indutive grammar:M :=ind x j ? j (�xM) j (MM); where x 2 V:We give a oindutive de�nition of the set �1? of in�nite �-terms whih isequivalent to the one given in (Kennaway et al., 1997) and (Kennaway et al.,1999) as a metri ompletion.6 The one-one orrespondene between terms and trees is given in De�nition 13.7 Barendregt reformulated Sott's remark as an open problem: Show that the equa-tion BYS = BY annot be proved in lambda alulus without indution. Theseterms are proved to be equal in (Kennaway et al., 1997) without using indution,provided one replaes the �nite zig and zags in the de�nition of �-onversion bystrongly onverging �-redutions. Sott's indution is then impliit in the de�nitionof equality on the ompletion. 9



De�nition 7 The set of terms of the in�nitary extension �1? of the purelambda alulus is de�ned by the oindutive grammar 8 :M ::=oind ? j x j (�xM) j (MM); where x 2 V:Notie that the grammar of �? di�ers from that of �1? only for being indutiveinstead of oindutive.We need an expliit de�nition of distane between two �-terms in order toharaterize �1? as a metri ompletion, as it is de�ned in (Kennaway et al.,1997) (Kennaway et al., 1999), and to introdue the notion of onvergingredution sequene.De�nition 8 (i) Ourrenes are �nite words over the set f0; 1; 2g. Let h idenote the empty word.(ii) The subterm M ju of a term M 2 �1? at ourrene u is partially de�nedby indution on the length of u as usual:(a) M jh i =def M ,(b) (�xM0)j0u =def M0ju,() (M1M2)j1u =def M1ju,(d) (M1M2)j2u =def M2ju.Note that the term M ju may not exist. If it exists, then u is an ourreneof M .(iii) The depth of a subterm N at ourrene u of M 2 �1? is the length ofthe ourrene u.(iv) The distane d(M;N) of two terms M;N 2 �1? is 0 if M and N areidential and it is 2�k if k is the length of the shortest ourrene u suhthat M ju and N ju exist and di�er.With this distane �1? beomes a metri spae: it is easy to verify that �1? isthe metri ompletion of the set �?.We skip the details of extending substitution to in�nite terms and refer toDe�nition 2 of (Kennaway et al., 1997).We extend some onepts related to �-redution from � to �1? .De�nition 9 (i) The redution relation !� on �1? is the smallest binaryrelation that is losed under ontexts and ontains the rule:(�xM)N !M [N=x℄ (�)8 In fat �1? is the �nal oalgebra of the polynomial endofuntor F : Set �! Setde�ned by F (X) = 1 + V + V � X + X � X, where V is the set of variables. See(Barr, 1993) for the ategorial bakground.10



(ii) If M 2 �1? annot �-redue to an abstration, then M is alled a �-zeroterm.(iii) A term M 2 �1? is alled �-rootstable if M [
=?℄ annot �-redue to a�-redex.(iv) A term M 2 �1? is alled �-rootative if for all N 2 �1? suh thatM [
=?℄ an �-redue to N , the term N an further be �-redued to a�-redex.(v) R1? is the set of �-rootative terms in �1? .(vi) The redution relation !�? on �1? is the smallest binary relation that islosed under ontexts and ontains the two rules:(�xM)N !M [N=x℄ (�) M 6= ? and �-rootative (?)M ! ?Note that ? is a �-rootative term, sine ?[
=?℄ = 
 and 
 is �-rootative.De�nition 10 (i) An in�nite redution M0 !�? M1 !�? M2 !�? : : : isCauhy onverging with limit M! (notation limn!!Mn =M!) if8� > 0:9n:8k � n:d(Mk;M!) < �.(ii) An in�nite redution M0 !�? M1 !�? M2 !�? : : : is strongly on-verging with limit M! if limn!!Mn = M! and limn!! dn = !, that is,8n:9m:8k � m:dk > n, where dk denotes the depth of the redex at our-rene u in Mk redued in the redution step Mk !�? Mk+1.(iii) We say that a term M has a possibly in�nite �-?-redution to N (nota-tion M !!�? N) if either there is a �nite �-?-redution M !��? N orthere is a strong onverging �-?-redution starting from M with limit N .It is well known that without rule ? strongly onverging redutions jeopar-dize the onuene property for �-redution. Unlike �nite redutions, Cauhyonverging and even strongly onverging �-redutions are not onuent (Be-rardui, 1996), (Kennaway et al., 1995), (Kennaway et al., 1997). The �niteterm Y(�z:K(Kzy)x) an onverge in an in�nite �-redution to the in�niteterm K(K(: : : x)x) not ontaining y. It an also onverge to the in�nite termK(K(: : : y)y) that does not ontain x. Both terms an not be joined; they anonly �-redue to themselves. A simpler example (Berardui, 1996) is the term(�x:I(xx))(�x:I(xx)) whih redues to both 
 and to I(I : : : )); also these twoterms annot be joined.Strongly onverging redutions are Cauhy onvergent, but not onversely. Forexample, 
 !� 
 !� : : : is weakly onvergent but not strongly onvergent,as the depth of the redued redexes is always zero.We reall here the ruial properties of !!�? redution whih will be use-11



ful in the following and are proved in (Berardui, 1996), (Kennaway et al.,1997), (Kennaway and de Vries, 2000), and we refer the reader to those pa-pers to know more on this subjet. In partiular the interested reader will �ndthere that!!�? redution has been de�ned for sequenes of trans�nite ordinallength. However these an be ompressed into similarly onverging redutionsof at most ! length with same initial and �nal terms. The ompression lemmaof !!�? for terms in �1? easily generalizes to !!�?-redutions of terms in theextensions onsidered later in this paper.Theorem 11 (Berardui, 1996) (Kennaway et al., 1997) (Kennaway andde Vries, 2000)(i) If a term in �1? has a �-rootstable form then suh a form an be omputedin �nitely many steps.(ii) The redution !!�? is onuent.(iii) Every term in �1? has a unique �-?-normal form.2.3 Berardui Trees as Normal Forms in �1?In this setion we give the entral de�nition of this paper, i.e. the de�nition ofBerardui tree. Sine the notion of Berardui tree will be given as a oreur-sive funtion, the odomain of this funtion has to be given by oindution.Hene we �rst de�ne the odomain of this funtion, i.e. the set of trees.De�nition 12 The set of trees is de�ned by the oindutive grammar:T ::=oind ? j x j �xT j �T ��� T;;; ; where x 2 V:It is not diÆult to show that this notion of tree is a partiular ase of thenotion of �-labelled tree de�ned in (Barendregt, 1984) (De�nition 10.1.1) asa partial map from the set of sequene numbers to �, where � = fx; �x jx 2 Vg [ f?;�g. In our terminology, a tree is a partial map from the set ofourrenes (see De�nition 8(i)) to �.De�nition 13 gives a natural one-one orrespondene between trees and termsof �1? . So in the following we will freely identify trees and terms of �1? .De�nition 13 The tree T (M) of the term M 2 �1? is de�ned by oreursion:T (?) = ?;T (x) = x; 12



T (�x:N) = �xT (N) ;T (M1M2) = �T (M1) vvvvv T (M2)HHHHH .We an now give the de�nition of Berardui tree in a graphially pleasingtree format in the spirit of Barendregt's de�nition of B�ohm tree (Barendregt,1984).De�nition 14 (Berardui, 1996) The Berardui tree BeT (M) of a termM 2 �1? an be onstruted via the following oreursive proedure:(i) if M !�� x, then BeT (M) = x;(ii) if M !�� �x:N , then BeT (M) = �xBeT (N) ;(iii) if M !�� M1M2, where M1 is a �-zero term, thenBeT (M) = �BeT (M1) rrrrrr BeT (M2)LLLLLL ;(iv) otherwise, (exatly when M is �-rootative) BeT (M) = ?.The in�nitary lambda alulus with ?-rule �1? is an extension of the lambdaalulus that has been so designed that in this extension the Berardui treeof a term is nothing else but its unique (possibly in�nite) �-?-normal formthat an be found by a possibly in�nite redution.Theorem 15 (Berardui, 1996)(Kennaway et al., 1997) The Berardui treeBeT (M) of a term M 2 �1? is the unique �-?-normal form N suh thatM !!�? N .The following result onnets Berardui trees with ontexts. It plays a ruialrole in this paper:Theorem 16 (de Vries, 1997) For all terms M and ontexts C[ ℄ in �1? itholds that BeT (C[M ℄) = BeT (C[BeT (M)℄):The proof is simple: just reognize that the left hand side and the right handside of the equation represent two ways of reduing to the unique �-?-normalform of C[M ℄. 13



2.4 A brief note on B�ohm Trees and L�evy-Longo TreesB�ohm Trees (Barendregt, 1984) and L�evy-Longo trees (L�evy, 1976), (Longo,1983), (de Vries, 1997) an be seen as normal forms in similar extensions as�1? . The extensions use the same syntax and �-rule but have both di�erent andmore ?-rules. In all ases the basi idea is that terms \without omputationalvalue" will be replaed by ?.In (Kennaway et al., 1997), (Kennaway et al., 1999) andidate sets of termswith no omputational value that lead to aluli with in�nite onuene prop-erties have been systematially investigated for lambda alulus. Three suhsets resulted: the set of terms without �-head normal form 9 (Barendregt,1984), (Wadsworth, 1976), the set of terms without weak �-head normal form 10 (Abramskyand Ong, 1993) and the set of �-rootative terms.The redution relation !B�ohm on �1? is the smallest binary relation that islosed under ontexts and ontains the four rules:(�xM)N !M [N=x℄ (�)M ! ?, provided M 6= ? and has no �-head normal form (?)�x:? ! ? (?�)?M ! ? (?app)The normal forms of �-terms with these rules are better know as B�ohm trees.De�nition 17 (Barendregt, 1984) The B�ohm tree B�oT (M) of a �-term Man be onstruted via the following oreursive proedure:(i) if M !�� �x1 : : : xn:yM1 : : :Mk, thenB�oT (M) = �x1 : : : xn:yB�oT (M1) kkkkkk : : : B�oT (Mk)SSSSSS ;(ii) otherwise, when M has no �-head normal form B�oT (M) = ?.The redution redution relation !LeLo on �1? is the smallest binary relation9 A �-term has a �-head normal form when it �-redues to a term of the form�x1 : : : xn:yM1 : : :Mk.10 A �-term has a weak �-head normal form when it �-redues to a term of the form�x:M or yM1 : : :Mk. 14



that is losed under ontexts and ontains the three rules:(�xM)N !M [N=x℄ (�)M ! ?, provided M 6= ? and has no weak �-head normal form (?)?M ! ? (?app)The normal forms of �-terms with these rules are better known as L�evy-Longotrees.De�nition 18 (L�evy, 1976), (Longo, 1983) The L�evy-Longo tree LLT (M)of a �-term M an be onstruted via the following oreursive proedure:(i) if M !�� xM1 : : :Mk, then LLT (M) = xLLT (M1) pppppp : : : LLT (Mk)NNNNNN ;(ii) if M !�� �x:N , then LLT (M) = �xLLT (N) ;(iii) otherwise, when M has no weak �-head normal form LLT (M) = ?.Comparing the tree formats we �nd that the L�evy-Longo tree of a term revealsat least the same omputational ontent of a term as its B�ohm tree does. TheB�ohm tree of YK is just ?, as YK does not have a head normal form. Inontrast, the L�evy-Longo tree ofYK is the in�nite term in the entre of Figure1. L�evy-Longo trees don't inlude all in�nite normal forms of the �nite lambdaalulus: the L�evy-Longo tree of YY is ? and not the term depited in Figure1. Berardui trees are very nie from a theoretial point of view in that theyprovide the maximal 11 \omputational" value of a term. From a pratialpoint of view they seem to be less useful than B�ohm trees and L�evy-Longotrees, being it undeidable whether a term is a �-zero term or not.3 The Extended Calulus �1?OAThe notion of Berardui tree gives an equivalene relation: two terms in �1?are equivalent if and only if they have the same Berardui tree (modulo �-onversion, as de�ned in (Kennaway et al., 1997)). A ompletely di�erent wayof omparing terms in �1? is observational equivalene (Morris Jr., 1968), in11 The set of �-rootative terms is the smallest set of terms in � whih an bemapped into ?, suh that the orresponding �1? has the unique �-?-normal formproperty (Kennaway et al., 1997). 15



whih we say that M is equivalent to N if:8C[ ℄ 2 � (C[M ℄ is �-rootative , C[N ℄ is �-rootative):Here we put M and N in various ontexts and observe whether the behaviorof M and N in those ontexts is the same, that is whether C[M ℄ and C[N ℄are both �-rootative terms. Berardui tree equality implies observationalequivalene (de Vries, 1997):Theorem 19 For all M;N 2 �1? , BeT (M) = BeT (N) implies 8C[ ℄ 2 �C[M ℄ 2 R1? , C[N ℄ 2 R1? .PROOF. This an be easily seen with help of Theorem 16 whih for anyterm M and ontext C[ ℄ says:BeT (C[M ℄) = BeT (C[BeT (M)℄):If M;N are two terms with the same Berardui tree, then we �nd thatC[M ℄ 2 R1? , BeT (C[M ℄) = ? , BeT (C[BeT (M)℄) = ? ,, BeT (C[BeT (N)℄) = ? , BeT (C[N ℄) = ? , C[N ℄ 2 R1? :In a similar way we an prove that B�ohm and L�evy-Longo tree equality impliesobservational equivalene.The onverse of Theorem 19 is not true: observational equivalene does notimply Berardui tree equivalene. We show two examples of di�erent nature.The �rst one shows that �-onvertible terms annot be disriminated. Con-sider the �-onvertible terms � and �� whose Berardui trees are �x�x ���� x====

and �x�x ���� �yAAAA �x }}}} y<<<<

. Sine both terms have no free variables, it is enough
to show that for all M 2 �, M [x := �℄ 2 R1? , M [x := ��℄ 2 R1? .This is proved by ase analysis. We know that M !�� N where N is either16



a variable, an abstration, an appliation whose operator is a �-zero termor a �-rootative term. The interesting ase is when N is an appliation ofthe form xP1 : : : Pn. If P1 is a �-zero term then �P1 : : : Pn !� P1P1 : : : Pn,��P1 : : : Pn !� P1(�y:P1y) : : : Pn, and both terms are �-rootstable. If P1 �-redues to an abstration then �P1 : : : Pn and ��P1 : : : Pn are �-onvertible.The seond example shows that even if we onsider Berardui trees modulo �-expansions, the onverse of Theorem 19 is not true. Consider the terms 

 and


 whose Berardui trees are �? ��� ?;;; and �� ��� ?<<<? ��� ?;;;

. It is enoughto prove that for all M 2 �, M [x := 

℄ 2 R1? , M [x := 


℄ 2 R1? . Theproof proeeds by ase analysis similarly to the previous example.In order to obtain the onverse of Theorem 19, we will extend the lambdaalulus with two new symbols and four new rules.3.1 SyntaxAssoiated with the pure lambda alulus � and its extensions �?;�1? wede�ne the extensions �OA;�?OA and �1?OA with the onstants ?;O and A.First we introdue the syntax of these sets and then the redution rules.De�nition 20 (i) The extension �OA of � with the onstants O;A is de�nedby the indutive grammar:V :=ind P j (OV ) j (AV ) j (�xV ) j (V P ); where P 2 � is losedX :=ind M j V; where M 2 �:(ii) The extension �?OA of �OA with partial terms is de�ned by the indutivegrammar:V :=ind P j (OV ) j (AV ) j (�xV ) j (V P ); where P 2 �? is losedX :=ind M j V; where M 2 �?:(iii) The in�nitary extension �1?OA of �OA is de�ned by the indutive gram-mar:V :=ind P j (OV ) j (AV ) j (�xV ) j (V P ); where P 2 �1? is losedX :=ind M j V; where M 2 �1? :17



These extensions with two new onstants O and A are rather minimal sinethe syntax de�nition implies the following onditions:{ a term an ontain only �nitely many ourrenes of O and A,{ O and A themselves are not terms,{ O and A an only be applied to losed terms and{ O and A an our in the argument of an appliation only if the operator isO or A.For example, �x:O(AI) 2 �?OA but I(AI) 62 �?OA.3.2 Rewrite RulesWe introdue now the redution relations of the various aluli in a oniseform. We will use some standard notational onventions. Let �0 be some ex-tension of the set �.De�nition 21 Let !1 and !2 be redution relations on �0.(i) The redution relation !12 is de�ned as the union of the redution !1with !2.(ii) The redution relation !=1 is the reexive losure of !1.(iii) The redution relation !�1 is the reexive and transitive losure of !1.In what follows, we need the notions of �-zero, �-rootstable and �-rootativeterm given in De�nition 9. We now introdue the notion of OA-uniform termthat will be used in De�nition 24 . The idea behind this notion is that theonstants O and A applied to ertain terms alled OA-uniform will behave like\onstant funtions".De�nition 22 Let �1? � �0 � �. We say that a term in �0 is OA-uniform ifit is either an abstration or a �-rootative term.Proposition 23 Let �1? � �0 � � and M a losed term in �0. Then M !��N where N is either a OA-uniform term or a �-rootstable appliation.PROOF. A losed term either �-redues to an abstration, to a �-rootativeterm, or to PQ where P is a losed �-zero term.Now we introdue the redution rules for the onstants O and A that willallow us to disriminate terms using the B�ohm-out tehnique. If a losed termis a �-rootstable appliation then the onstant O selets the operator of the18



appliation and A selets the argument. On the other hand, if the losed termis OA-uniform the onstants O and A behave as \onstants funtions".De�nition 24 Let �0 � �OA and M;N be losed terms of �0 that do notontain O or A.(i) We de�ne the redution relations !OA on �0 as the smallest binary rela-tion that is losed under ontexts and ontains the following rules:M is �-zero (O-seletion)O(MN)!M M is �-zero (A-seletion)A(MN) ! NM is OA-uniform (O-onstant)OM ! I M is OA-uniform (A-onstant)AM ! I(ii) An OA-redex is a term in �0 of the form OM or AM where M is anylosed term in �0 that does not ontain O or A.In (Dezani-Cianaglini et al., 2000), the onstants O and A only performedrespetively the seletion of the operator and of the argument of an appli-ation by rules O-seletion and A-seletion. By adding the rules O-onstantand A-onstant, terms having di�erent Berardui tree in (Dezani-Cianagliniet al., 2000) are equated by redution. For example, the terms O(A
) andO(O
) were di�erent normal forms in (Dezani-Cianaglini et al., 2000) andnow they both OA-redue to I.Example 25 Let �0 � �?. The fat that ? is a losed �-zero term impliesthat:(i) O(?M1 : : :MnN)!OA ?M1 : : :Mn(ii) A(?M1 : : :MnN)!OA Nfor all M1; : : : ;Mn; N losed �-terms of �0 (n � 0).It is easy to show that the redution !�OA eliminates all ourrenes of theonstants O and A.Lemma 26 Let X 2 �1?OA. Then there is M 2 �1? suh that X !��OA M .PROOF. The proof by indution on the de�nition of �1?OA using Proposi-tion 23 is easy.We generalize the notions of �-zero, �-rootstable and �-rootative term givenin De�nition 9. We say that a �OA-redex is either a �-redex or an OA-redex.19



De�nition 27 Let �0 � �OA and � be � or �OA.(i) We say that a term in �0 is �-zero if it annot �-redue to an abstration.(ii) We say that a term X 2 �0 is �-rootstable if X[
=?℄ annot �-redue toa �-redex.(iii) We say that a term X 2 �0 is �-rootative if all the reduts of X[
=?℄an �-redue to �-redexes.Notie that a term is �-rootative if and only if it an not �-redue to a�-rootstable term.A short notation for the set of terms in �OA;�1?OA whih are �OA-rootativewill be handy.De�nition 28 (i) ROA is the set of of terms in �OA whih are �OA-rootative.(ii) R1?OA is the set of of terms in �1?OA whih are �OA-rootative.We an haraterize the set of rootstable terms for the extended set �1?OA andthe redution !�OA.Proposition 29 A term X in �1?OA is �OA-rootstable if and only if it hasone of the following shapes:{ a variable,{ an abstration,{ an appliation of the form MN with M a �-zero term.We an also say that �OA-rootativity and �-rootativity oinide in the fol-lowing sense:Lemma 30 (i) If X 2 �1?OA is �OA-rootative then there exists a termM 2 �1? suh that X !��OA M and M is �-rootative.(ii) If X 2 �1?OA is �-rootative then X 2 �1? .PROOF.(i) It follows from Lemma 26.(ii) If X 62 �1? then X = (�x1 : : : xn:Y )M1 : : :Mk and either O or A our inthe head position of Y . Hene either X �-redues to an abstration or toan appliation whose head is O or A. In both ases, X is �-rootstable.The last rule we introdue allows us to equate all rootative terms.De�nition 31 Let �0 � �?. We de�ne the redution relation !? as thesmallest binary relation on �0 that is losed under ontexts and ontains the20



rule: X 6= ? and X is �-rootative (?)X ! ?where X ranges over �0.We will now �rst onsider the ombinations (!�OA;�OA) and (!�?OA;�?OA),and later (!�?OA;�1?OA).3.3 Conuene of Finite Redutions in �OA and �?OAWe use the Hindley-Rosen Lemma (Proposition 3.3.5 of (Barendregt, 1984))to prove that the redution relations !��OA on �OA and !��?OA on �?OA areonuent. We need a few auxiliary lemmas.Proposition 32 There is at most one OA-redex in a term belonging to �?OA.Hene !OA is trivially onuent.PROOF. By indution on the de�nition of �?OA.Lemma 33 (i) The relation !�� is onuent in �OA.(ii) The relation !��? is onuent in �?OA.PROOF. Beause the O and A symbols are not redued they an be thoughtof as fresh free variables. More preisely:X !� Y if and only ifX[O=x;A=y℄!�Y [O=x;A=y℄ for all X 2 �OA and X !�? Y if and only if X[O=x;A=y℄ !�?Y [O=x;A=y℄ for all X 2 �?OA. Hene part (i) follows from the onueneproperty for !� in � (see (Barendregt, 1984), Theorem 3.28) and part (ii)follows from the onuene property for !�? in �1? (see (Kennaway et al.,1997), (Kennaway et al., 1999)).Lemma 34 (i) The relation !�OA ommutes with the relation !�� in �OA:X �
//OA

��

Y1OA
��Y2 =� //Z(ii) The relation !�OA ommutes with the relation !��? in �?OA:21



X �?
//OA

��

Y1OA
��Y2 =�? //ZPROOF. We give the proof for !�?OA. The proof for !�OA is similar, justdrop all referenes to !?. Suppose that C[AM ℄ !OA C[N ℄ and C[AM ℄ !�?X. We distinguish four ases depending on the shape of M and whether the!�? redution redues a subterm in C[ ℄ or in M .{ A !�? redution step in C[ ℄ an ause substitutions of variables insideC[ ℄. Sine M does not ontain free variables, it remains unhanged. Henethe resulting term will be of the form C 0[AM ℄.C[AM ℄ �?

//OA
��

C 0[AM ℄OA
��C[N ℄ �? //C 0[N ℄{ If M is OA-uniform, a !�? redution step in M does not a�et the redexAM , beause OA-uniform terms are losed under !�?. This gives us thediagram: C[AM ℄ �?

//OA
��

C[AM 0℄OA
��C[I℄ C[I℄{ If M � PN where P is a �-zero term, a !�? redution step in P does nota�et the redex A(PN), beause �-zero terms are losed under !�?. Thisgives us the diagram: C[A(PN)℄ �?

//OA
��

C[A(P 0N)℄OA
��C[N ℄ C[N ℄{ Finally if M � PN where P is a �-zero term, a !�?-redution step in Nommutes trivially: C[A(PN)℄ �?

//OA
��

C[A(PN 0)℄OA
��C[N ℄ �? //C[N 0℄22



The proof for the ases involving O is similar.Theorem 35 (i) The relation !��OA is onuent in �OA.(ii) The relation !��?OA is onuent in �?OA.PROOF. The Hindley-Rosen Lemma (Barendregt, 1984) states that if weknow that two redution relations !�1 and !�2 both are onuent, and that!�1 ommutes with !�2, then !�12 is onuent. Lemmas 32, 33 and 34 implythese onditions both for !�� and !�OA, and for !��? and !�OA.Remark 36 The extended alulus �OA and the new redution rules werehosen arefully in order to get onuent redution relations. If the O-seletionrule ould be applied to open �-zero terms, then (�x:O(xI))K would redueto bothK and I. If the O-onstant rule ould be applied to open �-zero terms,then (�x:O(xI))
 would redue to both I and 
. In both ases, we would looseonuene.
4 Tree Equality implies Observational EquivaleneThe goal of this setion is to prove along similar lines as for �1? (Theorem 19)that Berardui tree equality in �1?OA implies observational equivalene in�1?OA.Our �rst step is to de�ne !!�?OA-redutions for �1?OA and show that theseredutions are in�nitary onuent. Beause terms in �1?OA ontain at mosta �nite number of symbols O and A we an base the proof on the in�nitaryonuene of �1? via a few straightforward lemmas.De�nition 37 The relation !!�?OA is de�ned as (!!�? [ !OA)�.In order to avoid unneessarily heavy notation we did not de�ne !!�?OA asa strongly onverging redution of arbitrary ordinal length, as ustomary inin�nitary lambda alulus (Berardui, 1996), (Kennaway et al., 1997), (Ken-naway and de Vries, 2000). However, the reader may hek that there is noloss of generality: any suh arbitrary redution would ontain at most �nitelymany A;O-redution steps, and the �?-redution sequenes in between anbe ompressed to �?-redutions of length at most !.23



4.1 Conuene of Strongly Convergent Redutions in �1?OAWe will prove onuene of strongly onvergent redutions in �1?OA along thesame lines as we proved onuene of �nite redutions in �?OA.Lemma 38 (i) There is at most one OA-redex in a term belonging to �1?OA.(ii) The relation !�OA ommutes with the relation !!�?.PROOF.(i) By indution on �1?OA.(ii) Similar to the �nite ase onsidered in Lemma 34. After onstrution ofthe four base ases the proof proeeds now by indution on the ordi-nal length of !!�?. The only interesting ase is the limit ordinal !: weonstrut C[AM ℄ �?
//OA

��

C1[AM1℄OA
��

�?
//C2[AM2℄OA

��

C![AM!℄OA
��C[N ℄ �? //C1[N1℄ �? //C2[N2℄ C![N!℄Observe that the depth of the ourrenes of A in the terms on the toprow beomes �xed after a while. If that were not the ase, then by thestrongly onvergene property there would be no A present in the limit.Now it is routine to verify that the redution in the bottom row inheritsthe strongly onvergene property of the redution in the top row.Theorem 39 The relation !!�?OA is onuent in �1?OA:X �?OA

// //�?OA
��
��

Y1�?OA
��
��Y2 �?OA// //ZPROOF. Similar to the proof of Theorem 35 using the Hindley-Rosen Lemma,Theorem 11(iii) and Lemma 38. Notie that !!�?OA is by de�nition (!!�?[ !OA)�.We have now the tools to onlude the unique normal form property for �1?OAfrom the unique normal form property for �1? .Corollary 40 For eah term in �1?OA there is a unique normal form N suhthat M !!�?OA N . 24



PROOF. Normalization follows from Lemma 26 and normalization of !!�?in �1? (Theorem 11(iii)). Uniity follows from Theorem 39.4.2 From Tree Equivalene to Observational EquivaleneWe have now all the mahinery to pull the rabbit out of the hat. First we willextend the de�nition of Berardui tree from terms in �1? to terms in �1?OA.We will show the orrespondene with the unique normal forms. We will on-lude with a proof that Berardui tree equality in �1?OA implies observationalequivalene in �1?OA.De�nition 41 The Berardui tree BeT : �1?OA ! �1? is de�ned by oreur-sion on �1?OA as follows:(i) if X !��OA x then BeT (X) = x;(ii) if X !��OA �x:M then BeT (X) = �xBeT (M);(iii) if X !��OA MN and M is a �OA-zero term thenBeT (X) = �BeT (M) sssss BeT (N)KKKKK ;(iv) otherwise (exatly when X is �OA-rootative), BeT (X) = ?.Note that this de�nition does not need to onsider lauses for O;A beause ofonuene of !�OA and Lemma 26.Theorem 42 Let X 2 �1?OA.(i) BeT (X) is in normal form;(ii) X !!�?OA BeT (X);(iii) BeT (X) is the unique normal form of X.PROOF.(i) Suppose that BeT (X) is not in normal form. Then a subtree of BeT (X)ontains a �-redex of the form BeT (M)BeT (N). But M is a �OA-zeroterm. A ontradition.(ii) We onsider the strongly onvergent redution sequene obtained by thedepth-�rst outermost strategy 12 . The limit of this sequene satis�es the12 The depth-�rst outermost strategy redues at eah step the leftmost redex withminimal depth. Notie that this strategy applied to XY , where X is a �OA-zeroterm and it has an in�nite normal form and Y an be redued, does always redue25



onditions of the de�nition of BeT (X). By the oindution priniple, thislimit is BeT (X).(iii) It follows from the previous parts and Corollary 40.Corollary 43 For all terms X 2 �1?OA and ontext C[ ℄ 2 �1?OA it holds thatBeT (C[BeT (X)℄) = BeT (C[X℄).PROOF. Theorem 42(iii) gives the following diagram:C[X℄ �?OA
// //�?OA

��
��

C[BeT (X)℄�?OA
��
��BeT (C[X℄) BeT (C[BeT (X)℄)Finally we an prove that Berardui tree equality in �OA and �1?OA impliesobservational equivalene respetively in �OA and �1?OA.Theorem 44 (i) For all X; Y 2 �OA, BeT (X) = BeT (Y ) implies8C[ ℄ 2 �OA: C[M ℄ 2 ROA , C[N ℄ 2 ROA:(ii) For all X; Y 2 �1?OA, BeT (X) = BeT (Y ) implies8C[ ℄ 2 �1?OA: C[X℄ 2 R1?OA , C[Y ℄ 2 R1?OA:PROOF. We prove (ii) sine (i) is a partiular ase of (ii). Let X; Y be termsin �1?OA. Suppose BeT (X) = BeT (Y ). Let C[ ℄ be a ontext in �1?OA. Usingthe previous orollary we get:BeT (C[X℄) = BeT (C[BeT (X)℄)= BeT (C[BeT (Y )℄)= BeT (C[Y ℄):Suppose C[X℄ 2 R1?OA. Then BeT (C[X℄) = ?. Hene also BeT (C[Y ℄) = ?.And so we �nd that C[Y ℄ 2 R1?OA. We onlude that X and Y are observa-tionally equivalent.Y after a �nite number of steps. This is beause if n is the minimal depth of redexesin Y , there is always an integer m suh that if the depth-�rst outermost strategyapplied to X after m redution steps gives X 0, then the minimal depth of redexesin X 0 is greater than n. 26



Remark 45 Theorem 44 annot be proved using approximants as for B�ohm(Dezani-Cianaglini et al., 1998b) or L�evy-Longo trees (Boudol and Laneve,1996). This is beause appliation is not ontinuous with respet to the Be-rardui tree topology (see also (Berardui and Dezani-Cianaglini, 1999)).For example, take the ontext C[ ℄ = [ ℄I and the direted set X = f?; �x:?g.Clearly,? = C[FX℄ 6= FC[X℄ = ?I. Appliation is, a fortiori, not monotoni.E.g. ? < �x:?, but C[?℄ = ?I = ? = C[�x:?℄.5 Observational Equivalene implies Tree EqualityIn this setion we will prove that observational equivalene of terms in �1?OAwith respet to the extended aluli �OA implies equality of Berardui trees.The proof will be a variant of the B�ohm out tehnique (Barendregt, 1984)de�ned for B�ohm trees.Some terminology �rst. The label at the root of a tree T is denoted by root(T )and de�ned by ases:root(x) = x, root��xT � = �x, root� �T1 ��� T2===

� = �, and root(?) = ?.Like in De�nition 10.4.6 of (Barendregt, 1984) we will say that an ourreneis useful to disriminate between two Berardui trees if the labeled nodes inall proper pre�xes of the ourrene are idential, while the labeled nodes atthe end of the ourrene are di�erent.De�nition 46 An ourrene u is useful for two trees T; T 0 if root(T jv) =root(T 0jv) for all v < u, but root(T ju) 6= root(T 0ju).We will use substitutions that map any variable in �1? to a term in f
;

g.More preisely we will onsider the substitution �
 de�ned by�
(x) = 
 for all variables xand the substitutions �x
, one for eah variable x, de�ned by�x
(y) = 8><>:

 if x = y
 otherwise.Lemma 47 Let M 2 �1? be a �-zero term and let � be the substitution �
or �x
 for some �xed x. Then the substitution instane M� is a losed �-zeroterm. 27



PROOF. By de�nition of �, M� is a losed term. Suppose towards a on-tradition that M� �-redues to an abstration. Then either M �-redues toan abstration or to a term of the shape yN1 : : : Nn for some variable y. Byhypothesis M is a �-zero term and so it annot �-redue to an abstration.Hene M �-redues to yN1 : : : Nn. This implies M� �-redues to 
N�1 : : : N�nor to 

N�1 : : : N�n , whih are both losed �-zero terms.Theorem 48 (i) For all X; Y 2 �OA it holds that8C[ ℄ 2 �OA C[X℄ 2 ROA , C[Y ℄ 2 ROA ) BeT (X) = BeT (Y ):(ii) For all X; Y 2 �1?OA it holds that8C[ ℄ 2 �1?OA C[X℄ 2 R1?OA , C[Y ℄ 2 R1?OA ) BeT (X) = BeT (Y ):PROOF. The proof of (i) and (ii) is essentially the same, sine we onsideronly the Berardui trees of X and Y whih in both ases belong to �1? . Sowe only show (i). The proof will be by ontraposition.Let X; Y be terms in �OA suh that BeT (X) 6= BeT (Y ). Then there existsan ourrene u that is useful for BeT (X) and BeT (Y ). Depending on whatlabel we see at the root of BeT (X)ju and BeT (Y )ju, we de�ne a substitution� as follows:{ If BeT (X)ju = x and BeT (Y )ju = y, let � be �x
.{ If BeT (X)ju = x and BeT (Y )ju = ? or onversely, let � be �x
.{ In all other ases let � be �
.By indution on the length of u we will de�ne a ontext C[ ℄ 2 �OA that andisriminate X and Y with respet to � in the sense that either C[X�℄ 2 ROAand C[Y �℄ 62 ROA, or vie versa.Base ase: u = hi.{ If BeT (X) or BeT (Y ) is a leaf, then we hoose C[ ℄ = [ ℄ as ontext todisriminate X and Y with respet to �.We have four sub-ases:� if BeT (X) = x and BeT (Y ) = y then X� !��OA 

 and Y � !��OA 
;� if BeT (X) = x and BeT (Y ) = ? (or vie versa) thenX� !��OA 

 62 ROAand Y � 2 ROA (or vie versa);� if BeT (X) is not a leaf and BeT (Y ) = x (or vie versa) then X� 62 ROAand Y � !��OA 
 2 ROA (or vie versa);� if BeT (X) is not a leaf and BeT (Y ) = ? (or vie versa) then X� 62 ROAand Y � 2 ROA (or vie versa). 28



{ If BeT (X) = �BeT (M1) rrrrrr BeT (M2)LLLLLL 13 with X !��OA M1M2and BeT (Y ) = �xBeT (N1) with X !��OA �x:N1 (or vie versa),then we hoose C[ ℄ = O[ ℄
.By the shape of BeT (X) it follows that M1 is a �-zero term. Hene M�1 is alosed �-zero term by Lemma 47. >From this fat and beause C[X�℄!��OAO(M�1M�2 )
 !OA M�1 
, we �nd that is C[X�℄ is �OA-rootstable. On theother hand we �nd that C[Y �℄ is �OA-rootative, beause C[Y �℄ !��OAO(�x:N1)�
!OA I
!� 
.Indution step: u = i � v.{ Suppose BeT (X) = �BeT (M1) rrrrrr BeT (M2)LLLLLL with X !��OA M1M2and BeT (Y ) = �BeT (N1) sssss BeT (N2)KKKKK with Y !��OA N1N2.We have two sub-ases:� If i = 1 then by the indution hypothesis we have a ontext C 0[ ℄ that dis-riminates M1, N1 with respet to �. Then we de�ne C[ ℄ = C 0[O[ ℄℄. Asin the base ase we get that M�1 is a losed �-zero term. Now learlyC[X�℄ !��OA C 0[O(M�1M�2 )℄ !OA C 0[M�1 ℄ and similarly C[Y �℄ !��OAC 0[O(N�1N�2 )℄ !OA C 0[N�1 ℄. Hene by indution C[ ℄ disriminates X andY with respet to �.� If on the other hand i = 2, then by the indution hypothesis there is aontext C 0[ ℄ that disriminates M2 and N2 with respet to �. We nowhoose C[ ℄ = C 0[A[ ℄℄ to disriminateX and Y with respet to �. The proofproeeds as before. Again M1 is a �-zero term, and M�1 is a losed �-zeroterm. So we an alulate that C[X�℄ !��OA C 0[A(M�1M�2 )℄ !OA C 0[M�2 ℄and similarly we see that C[Y �℄ !��OA C 0[A(N�1N�2 )℄ !OA C 0[N�2 ℄. Heneby indution C[ ℄ disriminates X and Y with respet to �.{ Suppose BeT (X) = �xBeT (M1) with X !��OA �x:M1
13 Notie that BeT (X) = �BeT (M1) rrrrr BeT (M2)LLLLL does not imply X !��OAM1M2, sine, for example, BeT (I(

)) = �BeT (I
) sssss BeT (I
)KKKKK = �? ��� ?<<< .29



�? ��� x:::

�� ���� �xAAAA�x>>> xx
�� ���� �xAAAA�x>>> �y�y xx

�� yyyyy ?EEEEEx ��� �EEEEE� yyyyy �EEEEEx ��� ? ?EEEE
yyyy x:::Fig. 3. Berardui trees of 
x;
I, 
K, and x(x
(
x))
.and BeT (Y ) = �xBeT (N1) with Y !��OA �x:N1.Then i = 0. Let C 0[ ℄ be the ontext that by indution hypothesis dis-riminates M1 and N1. We now hoose C[ ℄ = C 0[[ ℄�(x)℄. We observethat C[X�℄ !��OA C 0[(�x:M1)��(x)℄ !� C 0[M�1 ℄ and similarly we see thatC[Y �℄ !��OA C 0[(�x:N1)��(x)℄ !� C 0[N�1 ℄. Hene, by indution, C[ ℄ dis-riminates X and Y with respet to �.Reapitulating, given the two terms X; Y in �OA and an ourrene u that isuseful to disriminate their Berardui trees, we have onstruted a ontextC 0[ ℄ together with a substitution � able to disriminate X and Y . To �nisho� the proof we will now build a ontext from these two ingredients that andisriminate X and Y :C[ ℄ = C 0[(�x1:::xn:[ ℄)�(x1) : : : �(xn)℄;where x1; : : : xn is the set of free variables in X and Y .Sine (�x1:::xn:X)�(x1) : : : �(xn) and (�x1:::xn:Y )�(x1) : : : �(xn) are losed,we note that C[X℄ and C[Y ℄ belong to �OA. Now, beauseC[X℄ = C 0[(�x1:::xn:X)�(x1) : : : �(xn)℄!��OA C 0[X�℄and similarly C[Y ℄!��OA C 0[Y �℄ and by onstrution C 0[ ℄ disriminates X; Ywith respet to �, we get that C[X℄ is �OA-rootative and C[Y ℄ is not, or vieversa.Example 49 The Berardui trees of some terms onsidered in this exampleare shown in Figure 3.(i) When M = 
, N = 

 and u = hi the above proedure gives us theempty ontext as a disriminating ontext for M and N .(ii) If M = 
, N = 
x, and u = hi, then we �nd that C[ ℄ = (�x:[ ℄)
disriminates M and N . 30



(iii) For M = 
x, N = 
y and u = 2 we �nd that C[ ℄ = A((�xy:[ ℄)(

)
)is a disriminating ontext.(iv) Let M = 
I, N = 
K, and u = 2 � 0. The disriminating ontext weobtain is C[ ℄ = A[ ℄
.(v) In ase of M = x(x
(
x))
, N = y(y
(
y))
, and u = 1 � 2 � 2 � 2, adisriminating ontext is C[ ℄ = A(A(A(O((�xy:[ ℄)(

)
)))).This last ase shows the power of the onstants O;A. One problem in on-struting suh disriminating ontexts is that di�erent ourrenes of the samevariable may have to be used to selet di�erent arguments. This problem wassolved in the original algorithm of B�ohm by using suitable ombinators whihequate �-onvertible terms (see Setion 10.4 of (Barendregt, 1984)) and in(Sangiorgi, 1994), (Dezani-Cianaglini et al., 1999), (Dezani-Cianaglini et al.,1998b) by allowing a non-deterministi hoie operator. In all these ases thetrik is to replae di�erent ourrenes of the same variable by di�erent terms.Instead, in the above algorithm for Berardui trees the seletion is performedby the two onstants O and A while the variables always get substituted by 
or 

.By Theorems 48 and 44, Berardui tree equality of terms (possibly non-pureand/or in�nite) oinides with observational equivalene. So the Berarduitrees build a fully abstrat model of the (in�nitary) lambda alulus extendedwith the onstants O and A.6 ConlusionsIn (Sangiorgi, 1994) Sangiorgi proves that by adding well-formed operatorsto pure lambda alulus we annot disriminate more than L�evy-Longo treesdo. As a matter of fat, our operators O;A are not well-formed aordingto the Groote-Vaandrager format allowed in (Sangiorgi, 1994). The reason isthat this format does not allow a premise asking for a term to be a losed�-zero term. In this respet our development ompletely agrees with that ofSangiorgi.Looking bak at the present work and the related papers (Dezani-Cianagliniet al., 1998b) and (Dezani-Cianaglini et al., 1999) that de�ne extensions ofpure lambda alulus that an internally disriminate as respetively B�ohmtrees and L�evy-Longo trees do, then one an wonder to what extent the hosendisriminating extensions atually depend on the nature of the problems dealtwith. For instane it is not lear whether there are extensions of lambda alu-lus ompletely di�erent from the present one and whih internally disriminateas Berardui trees do: we are tempted to onjeture that the extension withO;A is minimal in the sense that any other extension with the same disrimi-31
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