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Abstract. First we establish some fundamental facts in the theory of infinitary orthogonal term rewriting
systems (OTRSs): for strongly convergent reductions we prove the Infinitary Parallel Moves Lemma and the
Compression Lemma. Strongness is necessary as shown by counterexamples. Normal forms (finite or
infinite) are unique, in contrast to w-normal forms. Strongly converging, fair reductions result in normal forms.

Secondly we address the infinite Church-Rosser property, which in general OTRSs fails both for strongly
converging reductions and for converging reductions. For OTRSs with no collapsing rules other than one
rule of the form I{x) — x the infinite Church-Rosser Property holds for strongly converging reductions. Non-
unifiable OTRSs form a special class of them: here any converging reduction is strongly converging. The top-
terminating OTRSs of Dershowitz ¢.s. are examples of non-unifiable OTRSs. We generalize head normal
form, Bdhm reduction and B6hm tree from Lambda-Calculus to Term rewriting. For OTRSs any term has a
unique Bdhm tree, and Béhm reduction satisfies the infinite Church-Rosser property.

Thirdly, results concerning needed redexes from finitary orthogonal rewriling carry over to the infinite
setting by adding fairness considerations: needed-fair reductions are normalizing, parallel-outermost
reduction is transfinitely hypernormalizing and depth-increasing reduction is hypernormalizing.

Finally the relation between graph rewriting and infinitary term rewriting is considered. The link with
infinitary rewriting allows us to treat cyclic graphs as well. Sekar and Ramakrishnan's notion of nacessary set is
useful to handle needed redexes in a graph: Neaded redexes in a graph correspond to necessary sets of
redexes in the unraveling of the graph. It {ollows that for strongly sequential orthogonal term graph rewrite

systems an effective normalizing strategy exists. Graph rewrite systems are tree-reducible and OTRSs are
graph-reducible.
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1. INTRODUCTION

The theory of Orthogonal Term Rewrite Systems (OTRS) is now well established within theoretical
computer science. Comprehensive surveys have appeared recently in [Der90a, Klo91]. In this paper
we consider extensions of the established thcory to cover infinite terms and infinite rewriting
reductions.

1.1. Motivation.

At first sight, the motivation for such cxtensions might appcar of theoretical interest only, with little
practical rclevance. However, it turns out that both infinite terms and infinite rewriting reductions do
have practical relevance.

A practical motivation for studying infinite tcrms and term rewriting arises in the context of lazy
functional languages such as Miranda {Tur85] and Haskell [Hud88]. In such languages it is possible
to work with infinite terms, such as the list of all Fibonacci numbers or the list of all primes. This
style of programming has been advocated by Tumer [Tur85]), Peyton-Jones [Pey87] and others, Of
course the outcome of a particular computation must be finite, but it is pleasant o define such results
as finite portions of an infinite term. It would be even more pleasant to know that nice properties (for
example the Church-Rosser Property) held for infinite as well as finitc rewriting, but the standard
theory does not tell us this. As we show in Scction 5, the Church-Rosser Property is one of several
standard results which does not hold for infinite rewriting in general, although it does hold for fairly
natural classes of orthogonal TRSs.

A second practical motivation for considering infinite reductions ariscs from thc common graph-
rewrite based implementations of functional languages. The correspondence between graph rewriting
and term rewriting was studied in [Bar87] for acyclic graphs. When cyclic graphs are considered, the
correspondence with term rewriting immediately requires consideration of infinite terms and infinite
reductions. For ¢xample, the cyclic graph r:B(r) ‘unravels’ to the infinite term B(B(B(......))).
Reduction of a single redex of a cyclic graph — for example, by applying the rule B(x) — C(x) to the
above graph — can correspond 10 reduction of infinitely many redexes of such an infinite term.
Furthermore, a finite reduction of graph reductions may correspond 10 an infinitary term reduction —
a composition of reductions which may themselves be infinite. For example, applying B(x) — C(x),
and then C(x) — D to the example graph corresponds to an infinite term reduction B(B(B(...))) —®
C(C(C(...))) — D. The correspondence with graphs is the motivation for (Far89], which presents a
treatment of infinite reduction similar to the one below.

1.2. Overview.

The paper consists of seven sections. You are reading Section 1, the introduction.

In Section 2 the preliminary definitions for finitary and infinitary term rewriting systems arc given.
Infinite reductions result in infinite sequences of terms. In a natural fashion terms over some given
signature can be thought of as clements of in a metric space (cf. [Am80]). So it seems just as natural
to consider converging reductions as the basic reduction notion for infinite tcrm rewriting. This is the
line Dershowitz, Kaplan and Plaisted have followed (cf. [Der89a,b and Der90b]). We take a different



approach:

In Section 3 we define strongly converging reductions of transfinite length, and present some
clementary results. Strongly converging reduction sequences of length at most ® seem to have been
considered for the first time by Farmer and Watro (cf.[Far89])

Section 4 contains fundamental propertics for strongly converging reductions. First, for OTRSs
we prove the Infinitary Parallel Moves Lemma, the infinitary gencralization of the finite Parallel
Moves Lemma. Then we show for left-linear TRSs that any strongly converging reduction of length
greater then ® can be compressed into a strongly converging reduction with same final term but of
length lesser than or equal to @. This puts the Compression Lemma of Dershowitz, Kaplan and
Plaisted in a more general perspective. Next, reductions of length at most ® to normal form are
characterized as stable reductions. Fourth, we prove that normal forms ((in-)inite terms not
containing any redex) are unique in OTRSs. Finally we show that in OTRSs the limit of any fair,
strongly converging sequence is a normal form.

The following table summarizes the results for strongly converging reductions in contrast with
related results for converging reductions:

Basic fa r infinit T, rit
converging reductions strongly converging reductions
Transf. Parallel Moves Lemma NO 4.1.3) YES @.1.2)
Inf. Church-Rosser Property NO (5.1.1) NO 5.1.1)
Unique w-normal forms NO .1 NO .1.1)
Unique normal forms YES (4.3.10) YES (4.3.10)
Compression Lemma NO [Far89], (4.3.1) YES 4.3.5)
partial result in [Far§9]
Fair reductions result in o-normal forms [Der90b), (4.3.12.i) normal forms (4.3.12.ii)
(Table 1.1)

Section 5 is devoted to the infinitc Church-Rosscr property. First a counterexample is presented
showing that the infinite Church-Rosser property docs not hold for cither the strongly converging
reductions we are interested in nor for converging reductions of Dershowitz c.s.. We provide several
ways out.

¢ Consider a more restricted class of reductions. The infinite Church-Rosser property holds rather
trivially for stable reductions becausc of the unique normal form property. This is not a very
informative solution.

* Investigate for which classes of OTRSs for which the infinite Church-Rosscr property does
hold for strongly converging reductions. First we prove the infinite Church-Rosser property for
depth preseving OTRS, then we cxtend this result to OTRSs that contain no collaps rules other than
one rule of the form I(x) — x. This result is optimal in the sense that addition of more collapsing
rules generates the countcrexample. It explains and generalizes the infinite Church-Rosser property
for top-terminating OTRSs, as occurring more or less implicit in the work of Dershowitz c.s..

s Consider Bshm reduction, a more liberal notion of reduction borrowed from Lambda Calculus



in which one is allowed to replace subterms that have no head normal form for the reduction relation
of the given OTRS by a special symbol L. Bbhm-reduction is normalizing and satisfies the infinite
Church-Rosser property both for strongly converging reductions and converging reductions.

Section 6 is devoted to the extension of some theorems by Huet and Lévy on needed redexes to the
context of infinitary rewriting. This gencralization tumns out to be unproblematic: needed-fair
reduction is normalizing; parallel-outermost reduction is transfinitely hypernormalizing in contrast to
depth-increasing reduction which is hypernormalizing. That parallel-outermost reduction is not just
hypemommalizing is due to the possibility that an infinitc tcrm may contain infinitely many outermost
redexes.

In Section 7 we give some applications to graph rewriting. We concentrate on term graph
rewriling, which seems to be emerging as central object of study in the Semagraph project. Our study
of infinite term rewriting allows us 1o cxtend results by [Bar87] on the relationship between (term-
)graph rewriting and term rewriting 10 a context including cyclic graphs and transfinite reductions.
We obtain that every GRS (tcrm graph rewrite system) is tree reducible and every orthogonal TRS is
graph reduciblc in its standard lifting. Sckar and Ramakrishnan’s notion of necessary set is useful to
handlc nceded redexes in a graph: Needed redexes in a graph correspond 1o necessary sets of redexes
in the unraveling of the graph. It follows that for strongly sequential orthogonal term graph rewrite
systems an effective normalizing strategy cxists.

Finally we discuss relations of our present work with works of others.

Acknowledgments

We acknowledge useful and pleasant discussions with Aart Middcldorp and Jeroen Warmerdam.

2. PRELIMINARIES ON TERM REWRITING SYSTEMS

We bricfly recall the definition of a finitary tcrm rewriting system, before we define infinitary
orthogonal term rewriting systems involving both finitc and infinitc terms. For more details the reader
is referred to [Der90a] and [Klo91]

2.1. Finitary term rewriting systems

A finitary term rewriting system over a signature  is a pair (Ter(Z),R) consisting of the set Ter(Z) of
finite terms over the signature X and a sct of rewrite rules R € Ter(Z)xTer(Z).

The signature T consists of a countably infinite set Varg of variables (X,y.z,...) and a non-emply
set of function symbols (A,B,C,....F,G,...) of various finite aritics 2 0. Constants arc function
symbols with arity 0. The sct Ter(Z) of finite tcrms (U,s,...) over I can be defined as usual: the
smallest set containing the variables and closcd under function application.

The set O(t) of occurrences in tis defined by induction on the structure of t as follows: O(t) = (<
>} if tis a variable and O(1) = {< >} W {<i,u> | 1<i<n and <u>e O(1;)} if t is of the form F(ty.....tn).
If ue O(t) then the subterm t/u at occurrence u is defined as follows: t/< > = t and F(ty,...,tp)/<i,u> =
t;/u. The depth of a subterm of t at occurrence u is the length of u.

Contexts are terms in Ter(Zu{0}). in which the special constant O, denoting an empty place,



occurs cxactly once. Contexts are denoted by C[ ] and the result of substituting a term t in place of O
is Cltle Ter(Z). A proper context is a context not equal to 0.

Substitutions are maps o:Varg—Ter(Z) satisfying o(F(ty,...,tn)) = F(6(ty),....6(tn)).

The set R of rewrite rules contains pairs (1,r) of ierms in Ter(Z), written as 1 — r, such that the
left-hand side 1is not a variable and the variables of the right-hand side r are contained in 1. The result
19 of the application of the substitution of ¢ to the term 1 is called an instance of 1. A redex (reducible
expression) is an instance of a left-hand side of a rewrite rule. A reduction step t — s is a pair of
terms of the form C[1°] — C[r®], where 1 — ris a rewrite rule in R. Concatenating reduction steps
we get cither a finite reduction 19— t) — ... = ty, which we also denote by tg —q, ty, or an infinite
reduction tp >t — ...

Finally we can now give the definition of an orthogonal TRS.

2.1.1. DEFINITION. LetR be a finitary TRS.

(i) Ris left-linear if no variable cccurs more than once in a left-hand side of R's rewrite rules,

(i) (informally) R is non-overlapping (or non-ambiguous) if non-variable parts of different rewrite
rules don't overlap and non-variable parts of the same rewrite rule overlap only entirely:

(i1") (formally) R is non-overlapping if for any two left-hand sides s and t, any occurrence u in t,
and any substitutions ¢ and t:Vary —Ter(Z) it holds that if (t/u)® = sT then either t/u is a variable or t
and s are left-hand sides of the same rewrite rule and u is the empty occurrence < >, the position of
the rool.

(iii) R is orthogonalif R is both left-lincar and non-overlapping.

Itis well-known (cf. [Ros73], [K1091]) that finitary orthogonal TRSs satisfy the finitary Church-

Rosser property, i.c., <o ° <o € < * <ot Where =, is our notation for the transitive,
reflexive closure of the relation —.

2.2. Infinitary term rewriting systems

An infinitary term rewriting system over a signature I is a pair (Ter*(Z),R) consisting of the sct
Ter=(Z) of finite and infinite terms over the signature £ and a set of rewrite rules
RcTer(Z)xTer=(Z). We don’t consider rewrite rules with infinite left-hand sides. But we allow
right-hand sides to be infinite in order 10 be able to interpret various liberal forms of graph rewriting
in infinitary term rewriting. In [Der90b] only finite right-hand sides are considered.

It takes some elaboration to define the set Ter(Z) of finite and infinite terms precisely. Finite
terms may be represented as finite trees, well-labelled with variables and function symbols. Well-
labelled means that a node with n 2 1 successors is labelied with a function symbol of arity n and that
a nodc with no successors is labelled cither with a constant or a variable. Now infinite terms are
infinite well-labelled trees with nodes at finite distance to the root. Substitutions, contexts and
reduction steps gencralize trivially to the set of infinitary terms Ter=(X).

To introduce the prefix ordering < on terms we extend the signature T with a fresh symbol Q. The
prefix ordering < on Ter=(ZU(Q}) is defined inductively: x < x for any variable x, Q <t for any
term t and if t] < 81, ...,tn £ sp then F(t1,...,tn) £ F(81,...,5p). For terms t in Ter*(Zu{Q}) we
denote by [t| the minimal distance of an occurrence of € in t 10 the root, if there is any, otherwise ||

= oo,



If all function symbols of Z occur in R we will write just R for (Ter(Z).R).
The definition of orthogonality for finitary TRSs extends verbatim (o infinitary TRSs:

2.2.1. DEFINITION. Let R be an infinitary TRS.
@) Ris left-linear if no variable occurs more than once in a left-hand side of R's rewrite rules,

(@) Ris non-overlapping if for any two left-hand sides s and t, any occurrence u in t, and any
substitutions ¢ and t:Varg —Ter(Z) it holds that if (/u)® = sT then cither t/u is a variable ort and s are
left-hand sides of the same rewrite rule and u is the empty occurrence < >, the position of the root.

(i) R is orthogonal if R is both left-lincar and non-overlapping.

2.3. Metric spaces of terms

In this paper we will consider limit behavior of infinite reduction sequences. As reduction
sequences are just a special kind of sequences in which the terms of the sequence have a particular
relation with each other, we can borrow tcrminology regarding converging sequences from Topology
(any handbook on Topology will do; we refer to [Kel55]). To discuss convergence of sequences it is
convenient to recognize the set Ter(Z) as a complete metric space. We will briefly recall this well-
known fact, see for instance [Am80)].

The set Ter(Z) of finite terms for a signaturc £ can be provided with an ultra-metric d:
Ter(X)xTer(Z) — [0,1]. The distance d(t,s) of two terms t and s is O if t and s are cqual, and
otherwise 2. where ke N is the largest number such that the labels of all nodes of s and t at depth
less than or cqual to k are cqually labelled. For example: d(F(F(x,y),z), F(F(x,F(F(C,C),0)),z)) =
22, as the depth of the node of y, up to which depth both terms are cqual, is 3.

The metric completion of Ter(Z) is isomorphic to the sct of infinitary terms Ter(Z) (cf. [Am80]).
As a result in Ter™(Z) all Cauchy scquences of ordinal length ® have a limit in Ter*?(Z).

We will consider scquences of infinitary length:

2.3.1. DEFINITION. A sequence is a sct of clements indexed by some ordinal, denoted by (1p)<a.
Instead of (tg)<a+1 We often write (I)p<o.

The notion of Cauchy sequence gencralizes to finite and transfinite scquences. In Topology
convergence of sequences has been generalized 1o convergence of nets, sets of clements indexed by a
directed set; ordinals are directed sets. This comes down to:

2.3.2. DEFINITION. A sequence (tp)p<a is converging (or the sequence (18)p<o CONverges to 1), i.e.
lim 1B = tq, iffor any neighborhood V of 1 there is an ordinal B<a. such that for all B<y<c: the terms
Bffe in the neighborhood Vi, that is Ve>0 3p<a Yy (B<y<o - d(tyter) <E),

For the purpose of term rewriting this notion of convergence is not enough. Needed is a notion of
what could be called everywhere converging sequence: a sequence of which all its initial sequences
are converging to the next element, or more formally:

2.3.3. DEFINITION. A sequence (Ip)psa is everywhere converging if the initial sequences (18)p<y
converge 1o ty for all 1sy<o.

We do not know whether everywhere converging sequences have been studied in Topology.



3. STRONGLY CONVERGING REDUCTIONS

In Section 3.1 we will introduce the basic notion of a strongly converging reduction of arbitrary
length. Then in section 3.2 we will prove an elementary but important fact: the number of stepsin a
strongly converging reduction that contribute to a finite prefix of the final term of the reduction is
finite. The proof of the Compression Lemma will be based on this fact.

We start with some examples.

@ A—-B—o>A—->B-..,inaTRS withruless A—> BandB — A,

(i) C — S(C) = S(S(C)) » ..., in a TRS with rule C — S(C);
@(iii) D(E) = D(S(E)) = D(S(S(E))) ..., in a TRS with rule D(x) — D(S(x)).

The first example illustrates a reduction scquence that does not converge to any limit. In the second
example it is tempting to say that the limit of C will be S®, an infinite reduction of S (plus all the
necessary brackets), and similar D(E) should have as limit D(S®). Cauchy convergence is the natural
formalism in which to express all this. The difference between the second and the third example is
that in the third example the contracted redex is at depth 0 in the successive steps, whereas in the
second example the depth of the reduced redexes tends to infinity. The third example is an example of
a converging reduction, the second example is an example of strongly converging reduction.

As the limits are themselves terms which can be reduced it is natural to study reduction sequences
of length possibly greater than @: transfinite reduction sequences.

3.1. Strongly convergence

We will now introduce reduction sequences as special sequences.

3.1.1. DEFINITION. (i) A reduction (1g)p<o. is a scquence such that tg — tg41 for all p+1 < c. The
redex contracted tg — tg4+ will be denoted by R, its depth as subterm of tg by dg.

@ii) A reduction (1g)p<a is closed if o is a successor ordinal; a reduction (Ig)p<c i$ open if ais a
limit ordinal.

@iii) The length of a closed reduction (i)g<a+1 is 0. The length of a open reduction (tg)g< isA.

For example, the length of the open reduction (g = t; = ... = th = tpe] = ... iS ©, just as the
length of the closed reduction tg = 1] = ... 2 tp 2 Iy} = ol .

This notion of reduction on its own is a bit peculiar from the point of view of computing. In, for
example, the TRS with the rules A — B and B — A the following closed reduction of length ® is
allowed: A - B —» A — ... C. What is missing in this example is any relation between the initial

terms A and B and the final term C. The notion of cverywhere converging sequence will remedy this
defect.

3.1.2. DEFINITION. A converging reduction is a rcduction whose underlying sequence is everywhere
converging.

Convcrging reduction is the notion of reduction as introduced by Dershowitz, Kaplan (cf.



[Der89a], [Der90b]). Despite its naturality, we necd a stronger form of converging reduction in order
to state and prove the fundamental facts for infinitary term rewriting. More precisely, we will define
when a reduction is strong and then consider strongly converging reductions. Strong reductions are
reductions in which the depth of the reduced redexes tend to infinity. We present the definition for
reductions of arbitrary infinitary length. Strongly converging reductions are introduced by Farmer
and Watro [Far89].

3.1.3. DEFINITION. By induction on the ordinal o we define when a reduction (tB)B<a is a strong
reduction: (zero)  (1g)p<o is a strong reduction,
(successor) (ty)y<p+1 is a strong reduction if (ty)y<p is a strong reduction,
(limit)  (ty)y<a is a strong reduction if for all B<A the reduction (ty)y<p is strong
and lim d = oo, that is Vd>0 IP<A Vy (B<y<h — dp>d).

B<a
3.1.4. DEFINITION. A strongly converging reduction is a strong reduction that is a everywhere
converging sequence.

We will use the following notation exhibiting our preference for strongly converging reductions.

3.1.5. NOTATION. (i) We will denote a strongly converging reduction (tp)<a bY 10 —a to,

(i) We will denote a converging reduction (1p)p<a by to —>; to,

(iii) By t—<qa s we denote the existence of a strong reduction of length less or equal to ¢
converging towards limit s,

(i) By t—)‘;a s we denote the existence of a reduction of length less or equal to o converging
towards limit s.

3.2. Counting steps in strongly convergent reductions

Convergent reductions exist of any length. Consider for example the TRS with the single rule A —
A. Reductions of the form A --)Z A are converging for any ordinal .. However these sequences are
not strongly convergent. The example A —>; A shows also that in a converging reduction any
number of reduction steps may be performed below some depth. For strongly converging reductions
this is different:

3.2.1. THEOREM. Iftp = t is strongly convergent, then the number of steps in tp—, t, reducing a
redex at depth < n is finite.

PROOF. Assume tg — ty, is strongly convergent. As this reduction is strong there is a last step to, —
La+1 at which a redex is contracted at depth < n. Consider the initial segment to —¢ to, and repeat the
argument. By the well-ordering of the ordinals (no infinite descending chains of ordinals) this
process stops in finitcly many steps. O

We have the following informative corollary:
3.2.2. COROLLARY. A strongly converging infinitary reduction has countable length.

PROOF. By the previous Theorem 3.2.1 a strongly convergent infinitary reduction can only perform
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finitely many reductions at any given depthd € N. ]

For any countable ordinal ¢ it is possible to construct a strongly converging reduction of length o.
Exercise: construct such reductions in the Binary Tree TRS: C — B(C,C).

In the setting of left-linear TRSs we have a similar thcorem for the number of reduction steps that
somehow have been relevant or have contributed to a particular occurrence in the final term of a
reduction sequence. To this end we gencralize Huet’s and Lévy’s notion [Hue79] of preservation of
occurrences of a term to infinite strong converging reductions in left-lincar TRSs. First we need a
lemma. Here, our assumption that left-hand sides of rules have to be finite plays a crucial role.

3.2.3. LEMMA. For some limit ordinal A, let \g =) 1), be a strongly convergent reduction in a left
linear TRS. For any redex R at occurrence v present in 1), it holds that there is a last step 15 — tp}
where a redex Ry is reduced at occurrence vg < v and at v in 14} occurs a redex.

PROOF. In aleft-linear TRS a redex is delermined by a finite prefix. In a strong converging reduction
lo = ty this finite prefix is alrcady prescnt at some carlicr moment 3 <A. 0O

Left linearity is necessary as the following example taken from [Der90b] shows. Take the non-left-
linear TRS with rules F(x,x) — C and G(x) = H(G(x)), then F(G(A),H(G(B)) —¢ F(G®,G®) —
C. There is no redex for rule F(x,x) — A present in any predecessor of F(G9,G®). Note that the term
F(G(A),H(G(A)) has a unique normal form C, which can be not be reached in finitely many steps.

The following definition is based on the Lemma 3.2.3.

3.2.4. DEFINITION. Let tg —¢ l be a strongly convergent reduction in a lefi-linear TRS.
@i A strongly converging reduction tg —¢ te preserves an occurrence u in tg if no reduction step
of the reduction is performed at an occurrence which is a proper prefix of u.
(ii) Letu be an occurrence of ty. The sct C(u,tg —¢ o) Of steps of tg —¢ to Which contribute to u
is defined thus:

a

\J (Clvpw.to »p 1p) | we OUB)}  if there is a last B with vg < u

C(U,lo _)(1 ta) = @

otherwise

where vg is the occurrence of redex Rp contracted in step tg — tg,1 and O(lp) is the set of
occurrences of function symbols in the corresponding LHS of Rg.

(iii) The set of steps of to —¢ te Which contribute to a set of occurrences U of tg is the set of steps
which contribute to any member of U.

In words: if no step of tp —« L is performed at an occurrence which is a prefix of u, then no step
of tp = to contributes to u. Otherwise, since lp —¢ ly is strongly convergent, there must be a last
step tg — tp+1 reducing Rg at an occurrence v that is a prefix of u. Then tg — tg4+) contributes to u,
and every step of to —p tp which contributes 1o v or to any nede of tg pattern-matched by Rp (the
variable free part of the left-hand side of the rule for which Rp is a redex) contributes to u. (Cf. also
the link with needed redexes explained after corollary 3.2.6.)

3.2.5. THEOREM. Let tg —q o be a strongly convergent reduction in a left-linear TRS. For every
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finite prefix of \q, there are only finitely many steps in ty —q to contributing to all occurrences of the
prefix.

PROOF. A variation on the proof of Theorem 3.2.1 works. Let s be a finite prefix of to. The crucial
step in repeating the proof of 3.2.1 is the insight that there is a last step g — tp4) contributing to the
prefix s. We prove this step as follows.

Suppose there is no such last step. Then consider the supremum A of the ordinals B of these
contributing steps. This supremum itself does not correspond to a contributing step, otherwise it
would have been the last step itself. Clearly A < ¢, Obscrve that after each ordinal less than A there is
a step contributing to the prefix and reducing at height less than the height of the prefix s < tg.
Otherwise from a certain point on they no longer contribute to the prefix s. Hence the depth of the
contracted redexes of the contributing steps also docs not go to infinity,

On the other hand the shorter sequence 1p =3 t, is also strongly convergent. Thus the depth of the
contracted redex of the contributing steps also goes to infinity.

Contradiction. O

In the present infinitary context it is natural 1o define that a term is a normal form if it contains no
redexes, just like in the finitary context.

3.2.6. COROLLARY. For orthogonal TRSs, if a term (even an infinite one) strongly converges to a
finite normal form, then it can be reduced to normal form in finitely many steps.

PROOF. Instcad of using Huet and Lévy's theory of nceded redexes form which implies this theorem
(cf. [Hue79]), we usc the previous counting theorem. In Theorem 4.3.7 we will show that any
reduction to normal form in an orthogonal TRS is strongly converging. Then the corollary follows
from the previous Theorem 3.2.4 and the obscrvation that the finitely many contributing steps given
by Theorem 3.2.4 form a reduction on their own. O

Another way of thinking of those steps in a reduction to finite normal form that actually contribute
to that normal form can be given with help of Huet and Lévy's notion of nceded redex. Recall that a
redex in a term is needed if any reduction from that term to normal form contracts a descendant of the
redex. The steps in an infinite reduction to finitc normal form that contribute to the normal form are
exactly the steps in which a needed redex gets contracted. We owe this remark to Yoshihito Toyama.

4. THE FUNDAMENTALS OF INFINITARY TERM REWRITING

In this chapter we prove some fundamental facts of infinitary term rewriting.

In 4.1 we will show that the Parallcl Moves Lemma generalizes to infinitary strongly converging
reductions in infinitary orthogonal TRSs. We also present a counterexample against the construction
emboedied in Infinitary Parallel Moves Lemma for converging reductions.

In 4.2 we prove a sligthly stronger version of the Compression Lemma (Theorem 1 in [Der90b]):
in a left-linear TRS any strongly convergent reduction to —>¢, te for & > @ can be compressed to a
shorter reduction tg =< la-
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Recall that a term is a normal form if it contains no redexes, and that a term is an ®-normal form
when, if this term can reduce, it reduces in one step to itself. In 4.4 we will show for infinitary
orthogonal TRSs that each term has at most one normal form. The limit of a fair, strongly converging
reduction will be proved to be a normal form in 4.5. The unique ®w-normal form property does not
hold in general. Yet, there is a parallel between normal forms and w-normal forms: the limit of a fair
converging reduction will be an w-normal form.

To obtain the results in 4.4 and 4.5 we introduce the notion of a stable reduction. Informally, an
infinite reduction will be called stable if the sequence of stable prefixes of its terms converges 10 its
limit: a stable prefix of a term t is a prefix of t such that no occurrence of that prefix can become an
occurrence of a redex in any reduction sequence starting from t. In 4.3 we introduce stable reductions
and prove the important theorem that in a orthogonal TRS any converging reduction to normal form is
strongly converging and stable.

4.1. The Infinitary Parallel Moves Lemma

In this section we will prove a generalisation of the Parallel Moves Lemma—well-known in the
setting of finitary orthogonal term rewriting—to infinitary orthogonal term rewriting with infinite
reductions and rules in which the right-hand sidcs may be infinite. It may come as a surprise that this
Infinitary Parallel Moves Lemma will only be provable for strongly converging reductions: we
present a counterexample for arbitary converging reductions. For the statement of the lemma and for
its proof the notion of descendant has to be extended to transfinite reductions.

Int— s let s be obtained by contraction of the redex S in t. Recall the notation u\S of the set

descendants of a redex occurrence u of t in the contraction of S (cf. [Hue79]). We extend
descendance to transfinite reductions:

4.1.1. DEFINITION. Let 1o —¢ 1o be a strongly converging reduction such that for all B<o. tg reduces
to tp+1 by contraction of the redex Rg. By induction on the ordinal o we define the set of descendants
u\x in tg that descend from the redex occurrcnce u in tg:
@ W= {u)
(i) u\p+1)="U{WRg | veu\B}
@(if) wN\A = {v13IP<A Yy (BSy<h = veuvy)}

4.1.2. INFINITARY PARALLEL MOVES LEMMA. Let 19 =¢ to be a strongly converging reduction
sequence of o with limit 1o and let to — so be a reduction of a redex S of tp. Then for each B< . a
term sg can be constructed by outermost reduction of all descendants of S in tg such that Sp —<e Sp+1
via outermost reduction of all descendants of Rg in s for each P < o and all these reductions together

form a strongly converging reduction from s 0 sq. Moreover, if to, is @ normal form, then sq and 1o
are equal.
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R

Sg —> S| —— ... S —> Spy e s

<w <0
(Figure4.1)

PROOF. First note that outermost reduction of a finite or an infinitc number of disjoint redexes in
some term gives a strongly converging reduction. hence all vertical reductions in Figure 4.1 are
strongly converging.

We prove the lemma by induction on the ordinal o. The case with zero is easy.

Next, let o be of the form B+1. Assume as induction hypothesis that we have the Infinitary
Parallel Moves Lemma for y < B. It suffices to show that in the following Figure (4.2) the rightmost
square can be constructed and indeced is commutative. As in the traditional proof of the finitary
Paralle] Moves Lemma this can be proved by an casy analysis of the position of Rg with the positions
of the disjoint (this is where orthogonality comces in) descendants of S in tg. If the reduction from sp
to sp is strong converging then composition with the strong convergent reduction from sg 10 sp+1
gives a strong converging reduction from sg 10 Sg+1.

R R
by — ] — 3 ... tB__l; L.

Vo Ve Ve Ve

S59 —>» S —» ... SB —_— sﬁ+l
< <0 <0
(Figure4.2)

Finally, let o be a limit ordinal A. Assume as induction hypothesis that we have the Infinitary Parallel
Moves Lemma for B < A. There arc (wo possibilities: there exists a B < A such that the actual length
of the reduction sequence tg —<e Sp is zcro, that is there are no descendants of S in tg, or there is no
such B. The first possibility is easy: we find that ty= sy for all y with B < y < A. It follows that so
strongly converges to Sj.

So let us pursue the second possibility and suppose there is no such B.
Let (vp)p<p be the reduction of the bottom line of Figure 4.1 obtained by refining the sequence
(sp)psa with reductions s —r<q Sp+1 for cach B < o That such a jt exists follows by an exercise on
well-orderings: refining a well-ordering with well-orderings gives again a well-ordering. In order to
conclude sp = vo —y v = sa wc have 1o show: (i) the reduction (vp)Bsy is strong, (ii) the reduction
(vB)ps<u is converging.

PROOF OF (i): By induction clausc in the definition of strong sequence we only have to show Vd>0
IP<p Vy (B<y<p — dv>d) to conclude that (vp)psy is strong.
Observe that the depth of the redexes contracted in sp = <e Sp+1 (the descendants of redex Rp
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under tg —< p) is at lcast dig—h, where dig is the depth of R in tg and h is the maximal distance in
the left-hand side of the rule applicd to R from its root to any variable. As the depth of the redexes Rp
tends to infinity with B tending to u we get Vd>0 Ip<p vy (B<y<p — dvy>d).

PROOF OF (ii): By induction hypothesis it suffices to show that Ve>0 IB<p Vy (B<y<p — d(vy,si) <
¢). So, let £ > 0. Let 2% < € for some natural number k.

Letty=ro— rp = ... =ge Sp be a (possible finite) reduction obtained by outermost contraction
of the descendants of R in ty. Consider the rule 1 = r of which R is a redex. Let h be the maximum of
the differences of the depth of a variablc in r and the depth of the same variable in 1.

For some N large enough wc have d(ry,s)) € 2k for n = N. For some § large enough all the
descendants of S in t) contracted in the reduction up 10 rN4 are present in all ty for y 2 €. For some {
large enough the redexes reduced in ty for y 2 € arc at depth larger than k. Hence for y2 max(L,E) the
initial part of tyand t), up to level k+1 arc cqual.

If we now contract the (disjoint!) descendants of R in tyand in (), and compare the result sy and
sx, then we see that up to level (k+1)-h the tcrms sy and sy, are equal. By (ii) we find that for n large
enough the depth of the redexes contracted in vy — vy for Y21 is at least k. So finally if we take 8
= max({,Em) then up to level (k+1)-h the terms v, and s, are identical fory2 .

Hence for any € > 0 there is a 8 such that for f <y < pthe distance of vyand s, is smaller than €.

END PROOF OF (ii) O

It seems natural to ask whether an infinitary parallel moves lemma exists for the larger class of
converging reductions. The following example shows that the construction embodied in the Infinitary
Parallel Moves Lemma for strongly converging reductions does not generalize.

4.1.3. COUNTEREXAMPLE.

Rules: Axy) > Alyx),C->D
Sequences: A(C,C)—> A(CC)—» ACO)» ACO - .. -—)‘; A(C,O
d l \: { 4
ACD)—» AMDC) - ACD)—» ADC)—» ... NOLMIT
The bottom infinite reduction obtaincd by standard projection over the one step reduction C — D docs
not converge to any limit. O

Note that this example is a counterexample not to the Parallel Moves Lemma, but to a method of
proving it. It might be possible that by altering the construction, perhaps by considering a more
liberal notion of descendant, the parallel moves lemma holds for transfinite converging reductions.
After all, every term occurring in the counterexample can reduce to A(D,D).

For the sake of the next section we now state a special instance of the infinitary parallel moves
lemma which is valid for left-linear TRSs.

4.1.2. SPECIAL INFINITARY PARALLEL MOVES LEMMA. For left-linear TRSs, let tg = ¢ tobe a
strongly converging reduction sequence of \ with limit (o and let (g = so be a reduction of a redex S
of W. If the set of descendants of S in 1g contains at most one element then the construction of the
Infinitary Parallel Moves Lemma can be performed. ' O
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4.2. The Compression Lemma

In this section we will prove the Compression Lemma for infinitary left-linear TRSs: if t —¢ s is
strongly converging, then t ¢, s. That is: any strongly converging reduction from t into s of length
o can be compressed in a closed reduction of length less or equal than ®. Dershowitz, Kaplan and
Plaisted were the first to conjecture and partially prove compressing lemmas. In their final paper
[Der90bj they prove using an clegant topological argument that in a left-linear topterminating rewrite
system the Compression Lemma holds. It is not difficult to sce that their result and argument remain
true under the weaker assumption that converging reductions are strong. (That this is indeed a weaker
assumption we will explain in scction 5.3.) However, it is more apt and general to state and prove the
Compression Lemma for strongly converging reductions. We will present a different proof for this
lemma, explicitly based on the strong convergence propertics of the reduction.

The following Table (4.1) collects counterexamples against some other conditions for the
Compression Lemma:

Validi ression L wnder various conditions:

converging strongly converging

. overlapping: [Far89], (4.2.1.i)
left-linear NO hon-overlapping: (.2.1.1) YES ¢4.2.5)
non-left-linear NO (Der89aj, (4.2.1.i) NO [Der89a]

[Der89a] is presented in (4.2.1.ii)

(Table 4.1)

4.2.1. COUNTEREXAMPLES.
(i) Example against a compressing lemma for converging reductions in orthogonal TRSs.
Rules: A(x) = A(B(x)), B(x) = E(x).
Sequence: A(C) -, A(B(B®)) = A(E(B®)).
Note: A(C) cannot reduce 1o A(E(B®)) in < o steps. The reduction is converging but not strong.
(i) Example of [Der89a] against a compressing lemma for strongly converging reductions in non-
left-linear TRSs.
Rules: A = S(A), B - S(B), H(x,x) = C.
Sequence: H(A,B) —* H(S(A),S(B)) —* H(S(S(A)),S(S(B))) =, H(S®,S®) — C.
Note: The term H(A,B) of Dershowitz and Kaplan (cf. [Der89a)) can reduce via the limit H(S®,S®) to
C. But not H(A,B)—<,C. The scquence is sirongly converging.

The proof of the Compression Lemma gocs in two steps. First we compress the closed reduction
up to the last limit ordinal to a closed reduction of length < w. Then, if necessary, we apply the
Compression Lemma for w+1. The Compression Lemma for w+1 is simple to prove:
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4.2.2. COMPRESSING LEMMA for w+1. If t =4 S is strongly converging, thent —¢, S.

PROOF. Suppose g —¢ U, is strongly converging and t, — s. Let the redex Ry contracted in ty, — s
have depth S. By strongness there exists an N such that for n=N the depth of the redex R, contracted
in t, = tn4 is larger than S+h, where h is the height of the non-variable part of the redex R,. The set
of descendants in ty, of the copy of R; in tN is a singleton for all m>N. We will now construct a
strongly converging reduction tg —<, S. For the first N steps we take to — t; — ... = tn. Then we
reduce ty — sy by contracting R in ty. By the Special Infinitary Parallel Moves Lemma 4.1.2 applied
to ty — sy and ty >, L, We obtain a strongly converging reduction t =<, S. O

The proof of the Compression Lemma for limit ordinals is more involved and needs some
preliminary theory.

4.2.3. LEMMA. Let g = to be a strongly convergent reduction. Let s be a finite prefix of tq. Then
the reduction to >t can be factorized in a strongly convergent reduction to —* ty —y to such that
all steps in tg =" ty contribute to the prefix s and there are no steps contributing to s inty —yq.

PROOF. By Theorem 3.2.5 there arc finitcly many steps that contribute to the prefix s. We will
handle them one by one. Let Rg be the contracted redex of the first of these finitely many steps, say in
step tg — tg+1. If Rpis not a redex in t, then somewhere in the reduction Rg has been constructed.

But then the reduction step using Rg was not the first reduction step contributing to the finite prefix s.
Hence Ry is a redex of tg. In to =g+ 1p+1 there are no terms containing multiple copies of Ry in tp:
otherwise tg — tg,; would not have been the first step contributing to the finite s of t,. Also no
terms contain no copy of Rg, for the same rcason. So we can apply the Special Infinitary parallel
Moves Lemma to get a strongly converging reduction ro —* ry —=* r2 = ... rg, where each ry is

obtained from t, (0 £ o < ) by reduction of the unique occurrence of the descendant of the redex Ro,
By construction rg equals tg,;. Hence we have factorized tg = 12 in tp — fg 25 13 =y ta. Clearly the

remaining n-1 steps contributing to the prefix s are performed beyond tg, so that sufficient repetition
of the construction yields the desired factorization. 0

4.2.4. COMPRESSING LEMMA for limit ordinals. If tg =3 ty, is strongly convergent, then there exists
a strongly convergent reduction tp =<, .

PROOF. Choose some depth n. Apply Theorem 3.2.5 to find the finitely many steps of to — ta
contributing to occurrences of t), at depth < n. With an appeal to Lemma 4.2.3 perform the finitely
many contributing steps first to find a strongly converging reduction tp —* t; =ty where all steps in
1o —* 1; contribute to occurrences of t), at depth < n and no steps contribute to occurrences of t), at
depth<nint —yt.

Now choose a bigger n and repeat the argument for t; — 4 ta, getting a sequence t; —*
t2 —p t, for some P < a. Repeat ad infinitum: we obtain the sequence g —* t; =" t »* ... which
by construction is a strongly converging reduction 10 1), O
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4.2.5. COMPRESSING LEMMA. For any ordinal o., if t = to is strongly convergent, then there
exists a strongly convergent reduction \ =< ty.

PROOF. Together 4.2.2 and 4.2.4 establish the Compression Lemma. Every infinite ordinal has the
form A+n, for a limit ordinal A and a finite n. For any strongly convergent sequence t —j4q to, We
apply Theorem 4.2.4 to the first A steps, to obtain a sequence t —¢ gen o, then apply 4.2.2 n times
10 obtain { —¢, tg. O

4.3. Stable reductions and normal forms

In this section we will show that in orthogonal TRSs reductions to normal form are stable reductions.
Our proof will depend on the Infinitary Parallel Moves Lemma.

Recall that a term is a normal form if it contains no redex. We will say that a term t has a normal
form s if there is a strongly converging reduction starting at t 1o some normal form s. This will only
be an apparent restriction: any reduction from t to a normal form s has to be strongly converging (see
4.3.6).

Dershowitz, Kaplan and Plaisted [Der90b] consider a weaker notion of normal form: the w-normal
forms. An w-normal form is a term such that if this tcrm can reduce, then it reduces in one step to
itself. In orthogonal TRS’s we will show that the unique normal form property holds (Theorem
4.4.10), and contrastingly that one term can have different w-normal forms: cf. 5.1.1.

Note that already restricted to finitc terms normal forms and w-normal forms are different
concepts. For example, take the TRS consisting of onc rule A — A. The term A is an @-normal form
but not a normal form.

Informally, an infinite reduction will be called stable if the sequence of stable prefixes of its terms
converges to its limit: a stable prefix of a tcrm t is a prefix of t such that no occurrence of that prefix
can become an occurrence of a redex in any strongly converging reduction sequence starting from t.
Stable reductions will be strongly converging, but not conversely. In fact stability can be defined
more general for a reduction relation extending —.

The formal definition of stability requircs some preliminaries.

4.3.1, DEFINITION. (i) A prefix s < tis called stable with respect to a strongly converging reduction
starting from t if no proper occurrence of s becomes an occurrence of a redex during that reduction.
(i) A prefix s <tis called stable if s is stable for all strongly converging reductions starting from t.

4.3.2. PROPOSITION. In an orthogonal TRS: If a prefix t of ty is stable with respect to a strong
reduction from to which converges to normal form, then it is stable.

PROOF. Without loss of generality consider the prefix F(Q,...,Q) consisting only of the top symbol
of tp = F(t1,...,tn). Assume F(£,...,Q) is stablc with respect to a strong, closed reduction B, which
converges to normal form, say s, and not stable for some other strongly converging B'. By the
Compression Lemma we may assume that the length of B is at most ®. Then at some finite position
in B the symbol F is reducible for the first time. Let B* be the finite reduction up to this point. By
applying the Infinitary Parallel Moves Lemma repeatedly to Band B* we obtain a strongly convergent
reduction of tg to the same normal form s, which does not reduce F, and in which the terms after B*
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all have the prefix F(Q,...,Q2). By orthogonality, the redex at the root of g cannot be destroyed, the
redex at F is still present in the normal form s of tp. Contradiction. Hence such a B does not exist.
a

4.3.3. DEFINITION. Let Z(t) denote the maximal stable prefix of t. A converging reduction tp =< te
is stable if VAANVK2N |Z(tk)| > d.

Stability is a very strong condition on reductions. The limit of a stable reduction sequence of length
o is already in normal form, as there is no redex in any finite prefix of the limit of the stable
sequence, there is no redex in the limit at all. Hence, stable reductions don’t exist of length greater
than . We also conclude that stable reductions have the infinitary Church-Rosser property.

The proof of the following lemma is routine and therefore omitted.

4.34. LEMMA. (i) Ift — s then Z(1) < Z(s).
(i) For reductions: stable = strongly convergent = convergent. But not conversely.
(i) The limit of a stable reduction sequence is a normal form. O

4.3.5. COROLLARY. The infinite Church-Rosser property holds for stable reductions. O

4.3.6. THEOREM. The following are equivalent:
(i) t o<y sisaconverging reduction to normal form,
(i) t o<y s is a strongly converging reduction to normal form,
(iii) t —< $ is a stable reduction

PROOF. It is trivial to see that (ii1) = (ii) = (@i).

() = (ii): Let t o<, s be converging to normal form. Suppose it is not strongly converging to normal
form. Then there must be some depth d such that from some t; onwards, every term has a redex at
depth d. Since arities are finite, this implies that at some cccurrence u, infinitely many reductions are
performed. But then convergence implics that u is also an occurrence of a redex in the limit, contrary
to hypothesis. (In fact, the implication is still true when operators of infinite arity are allowed.)

(il) = (iii): Let t —¢ 5 be a strongly converging reduction normal form. Let p; be the largest prefix
of the i’th term t; which is stable with respect to the remainder of the sequence. Then by Proposition
4.3.2, p; is equal to the largest stable prefix Z(t;) of t;. Since the sequence is strongly convergent, the
depths of the prefixes p; grow without bound, hence the sequence t —¢, S is stable. a

The equivalence of (i) and (ii) of the previous theorem extends to reductions whose length can be
measured by a limit ordinal.

We end this section with a more gencral definition of stable reduction. Some of its instances will

be stronger than the just defined notion. This part of the section may be skipped, as it is not used in
the sequel.

4.3.9. DEFINITION. Let R denote some reduction relation on a set of terms. Zg(t) denotes the
maximal stable prefix of t with respect to R-reductions.

4.3.10. DEFINITION. A reduction (i) w.r.t. a reduction relation R is called R-stable if YAINVKSN
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| Zr(D| > d.
The proof of the following lemma is routine and therefore omitted.

4.3.11. LEMMA. Let R be a reduction relation on a set of terms.
@ t—ogrs= ZIr() < ZRES).
Let S be a reduction relation on the same set of terms.
(i) ifR DS then ZR(t) < Zs(t)and if also (1j) is R-stable then (1) is S-stable. O

4.3.12. DEFINITION. (i) The reduction relation — (arbitrary reduction) is defined as C[s] —9 C[t]
for every context C[ ], redex s and arbitrary tcrm t,

(i) The reduction relation —! (less arbitrary reduction) is defined by C[s] =1 Clr(t;,....tn)]
for every context C[ ], redex s and arbitrary terms ty, ..., t, substituted for variables in the right-hand
side r(x;,...,Xp) of the rule for which s is a redex.

The proof of the following lemma is routinc and therefore omitted.

4.3.13. LEMMA,
) s>c-ogc-y
(i) —»-stable = —1-stable = —-stable = strongly convergent = convergent . ]

We have called —-stability just stability. The stronger notions based on —- and —;-reduction
arise naturally from the studies of sequentiality by Huet and Lévy [Hue79], for —:, and Oyamaguchi
[Oya87], for —+. We introduce them only to show that they are in fact strictly stronger than stability,
as is demonstratcd by the following examples. One might initially expect that for strongly sequential
systems, the three would coincide, and that for sufficiently sequential systems (defined by [Oya87]),
stablility and —+-stability would be thc same. However, the following examples contradict that
expectation: each uses an orthogonal, strongly sequential TRS.

43,14, EXAMPLES.
(1) convergence 5 strong convergence
Rule: A->A
Sequence: A A-A-> ..,
Note: The reduction is convergent, but the depth of cach reduction step is 0.
(ii) strong convergence # stabilily
Rules: A—->B(A),Cx)->D
Sequence: C(A) - C(B(A)) — C(B(B(A))) » C(B(B(B(A)) — ...
Note: This is strongly convergent, but the stable prefix of each term in the reduction is just Q (since
each term is a redex).
(iii) Stability 7 —-stability
Rules: A(D(E),x) = x, C(x) = AKX, C(X))
Sequence: C(D(F)) = A(D(F),C(D(F))) = A(D(F),A(D(F),C(D(F)))) —-..
Note: The stable prefixes of the terms in the reduction are Q, A(D(F),2), A(D(F),A(D(F),Q)), ...,
but the —+-stable prefixes of the terms are all Q.
(iv) —-stability s —-stability
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Rules: AB)—-D,C - AC)

Sequence: C — A(C) = AA(C)) = AAAC)) — ...
Note: The —9-stable prefixes of the terms in the reduction are Q, A(Q), A(A(£2)), ..., but the —-
stable prefixes of the terms are all 2.

4.4. Unique normal form property

We are now ready to prove the unique normal form property for infinitary orthogonal TRSs. By way
of contrast one should observe that in the orthogonal TRS given by the rules A(x) = x, B(X) = x
and C - A(B(C)) the term C has two different w-normal forms: A® and B® (see for more details
5.1.1).

4.4.1. UNIQUE NORMAL FORM PROPERTY. Normal forms are unique in infinitary orthogonal
TRSs.

PROOF. Suppose a term t admits two converging reductionst = s; = s2 = ... —>°Sw sandt—r -
1 -—>°S ., I to normal form. By Theorem 4.3.6 these reductions are stable. By the finite Church-
Rosser property, for cach n there exists uy such that s, =* u, and r, —* up. Hence we get a reduction

t—=%u; »*up »*.... Using Lemma 4.3.4 (i) the newly constructed reduction (up)ne N inherits its

stability from the stable reductions (Sp)ne iy and (Tn)ne . Thus we see by Theorem 4.3.6 that the limit

u of (up) is a normal form. Once more applying Lemma 4.3.5 (i) we see that Z(sp) < Z(up) and Z(rp)
<€ X(upy). Hence s = lim Z(sp) € lim Z(u,) = u 2 lim X(ry) =r. Since normal forms are maximal in
the prefix ordering ('i';:omrast lg_u’:nonnal fonns;;;nd r are equal. m]

We obtain the following useful theorem as a corollary:

4.4.2. THEOREM. Any strongly convergent reduction starting from a term having normal form can
be extended to a strongly convergent reduction ending in that normal form.

PROOF. Lett —_ s be a stable reduction of t to normal form. By the compressing Lemma it suffices
to consider a strongly convergent reduction t - r of length lesser than or equal to ®. Apply the
Parallel Moves Lemma 10 t —<¢ r and each step of t <, s in order to construct an infinitary
reduction r — , u. This reduction must be strongly converging, because t —<o s is stable. Let its
limit be u. This u has to be a normal form. Apply the Compression Lemma to r — <2 U 10 Obtain a
strong convergent reduction r —so u. Now t =so r —<w u is also strongly convergent. By the
unique normal form property we sce that s and u must be equal. a

4.5. Fair reductions

Theorem 4.3.6 implies that for orthogonal TRSs stable converging infinite reductions result in
normal forms. If we add a faimess condition 10 strongly converging reductions, then their limits will
also be normal forms. Similarly, the same faimess condition added to converging reductions results
in converging reductions to ®-normal form [Der89b). Fairness of a reduction will express that,
whenever a redex occurs in a term during this reduction, the redex itself or a term containing the
redex will be reduced within a finitc number of steps.
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4.5.1. DEFINITION. (i) Let r be a redex of t at occurrence u. A reduction t —¢,, t' preserves r if no
step of this performs a contraction at an occurrence < u,

(1) A reduction t —¢, t' is fair if for cvery term t” in the reduction, and every redex r of t* some
finite part of the reduction starting at 1" does not prescrve r.

Note that a finite sequence is fair if and only if it ends in a normal form, and fair reductions don’t
need to be converging (for example, think of the reduction A - B — A = B — ...). Note also that

orthogonality guarantees that if the reduction t —¢,, U preserves a redex in t of a certain rule, then t
contains a redex of the same rule.

4.5.2. THEOREM. (i) [Der89b] The limit of a fair, converging reduction is an w-normal form.
(i) The limit of a fair, strongly converging reduction is a normal form.

PROOF. By the previous remark we only have to consider scquences of length ®.

(i) Consider the limit of a fair, converging reduction, If it contains no redexes then the limit is a
normal form and a fortiori an ®w-normal form. So let us suppose the limit contains a redex. Assume
that contraction of the redex results in a term that differs at depth n with the limit. By convergence
there is a point in the reduction such that all later terms in the sequence have the same initial part up to
depth n+1. By faimess, it follows that there will be a later point in the reduction where the redex is
contracted. At that point k we sce that the initial part of the k-th term up to level n+1 is equal to the
similar initial parts of further terms. Hence in the limit there can be no difference at depth n.
Contradiction. Therefore contraction of the redex in the limit results in the limit itself,

(ii) Use (i): strong convergence and faimess rule out that the limit reduces toitself. O

4.5.3. COROLLARY. (i) If a reduction sequence is fair and convergent then it is w-stable.
(i) A reduction sequence is fair and strongly convergent if and only if it is stable.

PROOF. The proof of (i) is similar to “only if"” part in the proof of (ii):

(i) “If": by Theorem 4.3.6, stable reductions end in normal form; hence by an casy reductio ad
absurdum stable reductions are fair, “Only if”": by Thcorem 4.5.2, any fair and strongly convergent
rcduction ends in normal form; hence by Theorem 4.3.6 the reduction is stable. a

The converse of 4.5.3.i docs not hold: consider for cxample the TRS with two rules: A(x) = A(x)

and B — B. Then A(B) =°

<o A(B) via just B reductions. This reduction is w-stable but not fair.

5. THE INFINITE CHURCH-ROSSER PROPERTY

The finite Church-Rosser property holds for infinitary orthogonal TRSs as it holds for finitary
orthogonal TRSs. One might check that the usual proofs go through verbatim. Or one might realize
that we have proved the Parallcl Moves Lemma for strongly converging reductions of any ordinal
length, in particular of finite length. Finite reductions are strongly converging. Repeated application
of the Parallel Moves Lemma then gives the finitc Church-Rosser property for infinitary orthogonal
TRSs.
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Perhaps the reader would have expected a treatment of the infinite Church-Rosser Property,
o> C o <o,
in the previous section on fundamental facts of infinitary rewriting. The reason for this omission is
that in arbitrary orthogonal TRSs the infinite Church-Rosser property fails for strongly converging
reductions as well as for converging reductions. Only for stable reductions the infinite Church-Rosser
property holds because of the unique normal form property.

In the present section we investigate to what cxtent the infinite Church-Rosser property is valid for
strongly converging reductions. For strongly converging reductions we will prove the infinite
Church-Rosser property for depth-preserving OTRSs directly. Then using a technique based on
Park’s notion of hiaton and requiring Konig's Lemma we generalize this result to those OTRSs with
no collapsing rules other than possibly 1(x) — x. With respect to strongly converging reductions this
result is optimal.

In non-unifiable OTRSs any converging reduction is strongly converging. With help of this
observation we will show the infinite Church-Rosser property for converging reductions in non-
unifiable OTRSs. This improves and cxplains the infinite Church-Rosser property implicit in
[Der90b).

The infinitary Church-Rosser property for converging reductions in OTRSs with no collapsing
rules other than possibly I(x) — x is a widc open problem, even already in the situation of one ® long
converging reduction versus a one step reduction. However this problem is in our view not in the
main stream of what we perceive as the “canonical development” of infinitary term rewriting.

We will finish the section with an analysis o’f stablc [orms, Béhm trees and BShm reduction. We
will prove for arbitrary OTRSs that any term has a convergent reduction to stable form, and that the
infinite Church-Rosser property holds for (in-)finitc B6hm reductions. This can be interpreted as
another solution in the quest for a general Church-Rosser property. The possibility of identifying
subterms that cause "bad" bchavior, ic. subterms without head normal form, during a reduction by
replacing them by a new symbol L circumvents the counterexamples to the Church-Rosser property.

5.1. Failure of the infinite Church-Rosser Property for orthogonal TRSs

The following counterexamples show that the infinite Church Rosser property does not hold even for
strongly converging reductions of length .

5.1.1. COUNTEREXAMPLES.
(i) Rules:

A(X) & x,
B(x) — x,
C > AB(X))

Sequences:
C = AB(C)) = A(C) = A(A(B(O))) = AA((C)) o AP
C = A(B(C)) — B(C) - B(A(B(C))) = B(B(C)) =, B®

Hence C —<¢u A® as well as C —¢, B2,

But there is no term t such that A® —¢, | <<, B®be it converging or strongly converging.

@ii) Rules: D(x,y) = x, C = D(A,D(B,C))
Sequences:
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C - D(A,D(B,C)) — D(A,C) »* D(A,D(A,C)) =* D(A,D(A,D(A,C))) —...
C — D(A,D(B,C)) = D(B,C) -* D(B,D(B,C)) —* D(B,D(B,D(B,C))) —...
It is not possible to join the limits of these two sequences.

5.2. Depth preserving orthogonal term rewriting systems

What to do about this failure of the infinitc Church-Rosser property? We can think of some prima
vista solutions. For instance, using the uniquc normal form property, it is not difficult to see that the
infinite Church-Rosser property holds for (strongly) converging reductions starting with a term that
has a normal form. Or another rather weak way out is the restriction to stable reductions: the infinite
Church-Rosser property clearly holds for stable reductions by, again, courtesy of the unique normal
form property. These solutions are however rather restricted.

In the present section and the next we will consider two natural classes of orthogonal TRSs for
which the infinite Church-Rosscr property holds for strongly convergent sequences without extra
conditions.

5.2.1. DEFINITION. A depth preserving TRS is a left lincar TRS such that for all rules the depth of
any variable in a right-hand side is greater than or equal to the depth of the same variable in the
corresponding left-hand side.

For example, the rules A(x) — x and B(A(2),C(y,A(x))) = D(A(x),x) are not depth preserving.

5.2.2. LEMMA. Depth preserving TRSs are distance preserving in the following sense: Let1 = r be
a depth-preserving rule. Then for all contexts C[ 1, all 4y,....tq and s1,...,Sn it holds that
d(Cl1(t1,....tn)), CU(S1,--..50)]) 2 d(Clr(1y,...,tn)], CIK(S1,...,Sn)]). a

We recall a useful lemma by Farmer and Watro (cf. [Far89]):

5.2.3. LEMMA OF FARMER AND WATRO [Far89]. Let tn,0 9<a tn,0 = tn+1,0 be strongly
converging for all ne N. Let dn x denote the depth of the contracted redex Rk in thk = tnk+1. If for
all n there is a dn such that for all k it holds that dpx > dp, and lim dx = o, then there exists a term
Loy, SUch that 100 —ww Lo, Via the strongly converging reduction 19,0 = <e 0,0=1.0"<0tl,0=
12,0 —2<o ... oo lo,o

O

5.2.4. THEOREM. Any depth preserving orthogonal TRS has the infinite Church Rosser Property for
strongly converging sequences.

PROOF. Lettgg— tg,1 = ... < 10,0 and Loy — 0= ... 2<o lw,0 be strongly convergent.

(i) Using the infinite Parallcl Moves Lemma for strongly convergent reductions we construct the
horizontal strongly converging sequences tp0 —* tn,1] =* ... 9<e th,e as depicted in Figure 5.1.
The vertical reductions are constructed similarly.
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(figure 5.1)

(ii) The construction of the infinitc Parallel Moves Lemma also implies that the reduction
th,e —><o tn+1w 1S strongly converging.

(iii) By the depth preserving property it holds for all m,ne Nu{w)} the depth of the reduced redexes
in thm =>* tn.m+1, Which are all descendants of the redex Rom in to,m = to,m+1. iS at least the depth
of Ro,m itself. Because top — to,1 = ... =< 10, IS Strongly convergent we find by Farmer’s and
Watro’s Lemma 5.2.3 that ty 0 = <o lo,1 <o lo,2 --- 1S strongly converging. Let us call its limit
1,0

(iv) In the same way the terms ty,q are part of a strongly converging sequence. The limit of this
sequence is also equal 10 ty, ¢, as can be scen with the following argument.

Let €> 0. There is Nj such that for all m 2 Ny we have d(te,m.to,e) < %s.

Because of the strong convergence of tgg — t;,0 = ... =< le,0 there is an N2 such that for n 2
N3 we have that 2-9n < %e where dj, is the depth of the redex Ry reduced at step tp 0 = ths1,0. Since
the depth of the descendants of this redex Ry, occur at least at the same depth, and since the TRS is the
depth preserving we get d(to,mln,m) < % ¢ for all me NuU{w} and all n 2 N3,

For similar reasons there is N3 such that for all ne NU{®} and all m 2 N3 we have that
d(tn,rtnm) < 3 &

Let N be the maximum of N1, N3 and Nj3. Then forn2 N we find

d(tn,ovte,e) < dtn,@.in,N)+d(n Nole,e) foranym 2N
s (lj(tn.;mtn,%\l)"‘d(tn.N,lm,N)‘*'d(lm,NJm,m)

< L
38+§£+§€

<e. O

5.2.5. REMARK. Obscrve that in this proof there arc two places where it is essential that the
reductions are strong convergent. The first is the appeal to the infinite Parallel Moves Lemma. The
sccond is in the argument that the scquences (1) and (ty o) have the same limit.

5.3. Non-collapsing orthogonal term rewriting systems

5.3.1. DEFINITION. A TRS R is non-collapsing if there is no rewrite rule in R whose right-hand side
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is a single variable.

We will show that any non-collapsing ornhogonal TRS satisfies the infinitary Church-Rosser
property with respect to strong convergence. The proofs will usc a variant of Parks notion of hiaton.
The idea is to replace a depth-reducing rule like A(x,B(y)) — B(x) by a depth-preserving variant
A(x,B(y)) — B(&(x)). In order 1o kecp the rewrite rules applicable to terms involving hiatons, we
also have 10 add many more variants: A(x,M(B(y))) =¢ B(em+!(y)) for all m > 0. We will call the
new TRS the e-completion of the old onc.

5.3.2. CONSTRUCTION. Let R be a left-lincar TRS. The e-completion R is defined as the TRS
(Zu{e}.Re). The symbol ¢ is a fresh unary symbol with respect to R. The TRS Rg consists of all
rewrite rules Iz = rg, described as follows. The new left-hand side 1 is obtained from the left-hand
sidc of a rewrite rulc 1 — rin R by substituting any proper subterm t (i.e., not a variable, nor 1 itself)
in 1 by en(t) for some ne N. The ncw right-hand side re is obtained from the corresponding right-hand
side r by replacing cach occurrence of a variablc, say x, by €M(x), where m is the minimum of 0 and
the depth of x in Ig minus the depth of this occurrencc of x in r.

The proof of the following proposition is siraightforward and omitted.

5.3.3. PROPOSITION. The e-completion of an orthogonal TRS is orthogonal and depth preserving.
O

5.3.4. LEMMA. Let R be an orthogonal TRS with no collapsing rules other than possibly I(x) = X.
Let t - w s be an infinite, strongly converging reduction of length ® in R. Let t—-)i) £(s) be the
corresponding reduction sequence in Re. Then
(i) there are no branches ending in an infinite string of €'s in the tree representation of €(s),

(ii) l—)i €(s) is strongly converging.
Let t be a term without infinite strings of €’ s, and let L > s be a strongly converging reduction in Re.
Let t/e >, sfe be the reduction obtained from —)::0 s by erasing all finite strings of €'s.

(iii) Ift does not contain an infinite string of €' s then neither does s.

(iv) te > S/E is strongly converging

V) ift>gs is strongly convergmg m R, then there exists a strongly converging reduction t -—) r
in Rg such that erasure of all €'s in | -) r results again in the sequence t = S.

PROOF. (i) In the limit term of a strongly converging Re-reduction starting with an €-free term one
casily sees that an infinite string of €'s can only be produced by infinite applications of rules
containing no function symbols in the right-hand side. Suppose there is such an infinite string: in the
original sequence the collapsing contractions necessary (0 compute this infinite string must have been
applicd all at the same occurrence, hence, the reduction is not strongly convergent. Contradiction.
Note that this argument remains valid if the initial term t contains finite strings of €'s.

(ii) Trivial, by construction.

(iii) See (i).

(iv) Suppose t =, s is a strongly convergent sequence Re. Let pe N.

Let q be the minimal natural number below which depth at any branch of s a function symbol F can
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be found for which there are p function symbols not cqual to € on the branch in between F and the
root. Such a number q has to exist, since all infinite branches contain infinitely many function
symbols unequal to €. The construction of q actually involves Konig's Lemma. If we cut all infinite
branches at the point where we count the pth function symbol from the root, we end up with a finitely
branching tree with finite branchcs. Then by the contraposition of Kénig's Lemma there is an
upperbound on the length of the branches in the truncated trec. For q we take this upperbound.
Because t —>: s is strongly converging we can find an Ne N such that dn > q for all n 2 N, where

dn is the depth of the redex contracted in the n't step. Clearly, after deleting all € in t, and s we get as
remaining depth dpse < 2°P. Hence t —>fo s/e is strongly convergent.

(v) Lett — s be strongly converging in R. By imitaﬁng the steps of R with corresponding steps
inRg we can construct a strongly converging reduction t —) rin Re. If we now crase all finite strings
ofg'sint —> 1, we obtain again the sequence t = S. ]

The results in [Der90a] imply that top-terminating OTRSs, that is OTRSs such that there are no
derivations of length ® with infinitely many rewrites at topmost position, satisfy the infinite Church-
Rosser property for Cauchy converging reductions: combine Theorem 1, Proposition 2, Theorem 10
(which is true under the condition of top-termination) with Theorem 9 in [Der90a). We will
strengthen this in the next Theorem 5.3.5 to: non-collapsing OTRSs satisfy the infinite Church-
Rosser property for strongly converging reductions. This is stronger than the result implicit in
[Der90a] because (i) under the assumption of top-termination every Cauchy converging reduction is
strongly converging, (ii) any top-terminating infinitary TRS is non-collapsing, as one easily sees.
Actually it will follow from our construction that the Church-Rosser property holds for OTRSs with
no collapsing rules other than possibly I(x) = x, i.c., a collapsing rule that contains only one variable
in its left-hand side (cf. the counterexample in 5.1.1).

5.3.5. THEOREM. Any orthogonal TRS with no collapsing rules other than possibly 1(x) = x
satisfies the infinite Church-Rosser Property for strongly converging reductions.

PROOF. Let R be an OTRS. Construct its e-completion Re. By Theorem 5.2.4 the depth-preserving
OTRS Rg satisfies the infinite Church-Rosser property. So if we start with two strongly convergent
reductions t —¢¢ §1 and t -—)<m §2, then by Lcmma 5.3.4 (ii) we can lift these to strongly converging
reductions in R, let us say t —> rpandt —) o T2 By Theorem 5.2.4 we find a join u for the two
lifted reductions such that r; LU s well as n —> o Both reduction are strongly convergent.
Hence, erasing all finite strings of €'s we see by Lemma 5.3.4 (iv) and (v) that in R the term u/e is the
join of the strongly convergent reductions t —><g 81 and t =g, S3. O

5.4. Non-unifiable orthogonal TRSs

From the work of Dershowitz, Plaisted and Kaplan on convergent reductions it follows that any lefi-

lincar, top-terminating and semi-w-confluent (tecrminology to be explained next) TRS satisfics the
infinitc Church-Rosser property:
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(cf. [Der90b]: combine Theorem 1, Proposition 2 with Theorem 9). A TRS is top-terminating if there
are no top-terminating reductions of length «, that is reductions with infinitely many rewrites at the
root of the initial term of the reduction. Semi-w-confluence, that is

c

c ¢
<0< GE ¢ ‘<o

—

holds if the Infinitary Parallel Moves Lemma holds for converging reductions. On the assumption that
we arc in an orthogonal TRS in which all convergent reductions are strong the infinite Church-Rosser
Property holds for this TRS. Top-termination implics this assumption.

Hence in top-terminating orthogonal TRSs the infinite Church-Rosser Property holds. We can

prove this result by proving a slightly stronger version using the following syntactic equivalent of the
previous assumption.

5.4.1. DEFINITION. A TRS is called unifiable if the TRS contains a unifiable rulc, thatisarulel > r
such that for some substitution ¢ with finite and infinitc terms for variables we have 16 = 1.

Note that unifiability in the space of finile and infinite terms mcans unifiability *without the occurs
check”: the terms I(x) and x are unifiable in this sctting, and their most general unifier is the infinite
term I®, Collapsing rules, i.e. rules whose right-hand side is a variable arc unifiable.

5.4.2. LEMMA. The following are equivalent for an orthogonal TRS:
(i) the TRS is non-unifiable,
(ii) all convergent reductions of the TRS are strong,
(iii) all convergent reductions are top-terminating.

PROOF. (1) =» (ii): If a convergent scquence were nol strongly convergent, then there would be some
redex in its limit which reduces to itsclf. But condition (i) rules this out.

(ii) = (iii): By easy contraposition.

(iii) = (i): If an orthogonal TRS is non-unifiable, then one can construct the infinite, convergent
and not top-terminating reduction1° -5 1€ =19 19— ... ()

5.4.3. THEOREM. Any non-unifiable orthogonal TRS has the infinite Church-Rosser Property for
converging reductions.

PROOF. Trivial; since in a non-unifiable OTRS any converging reduction is strongly converging, and
a non-unifiable OTRS does not contain collapsing rulcs we can apply Theorem 5.3.5. O

5.4.4. COROLLARY. A non-unifiable orthogonal TRS has the unique ®-normal form property.
(]

5.4.5. OPEN PROBLEM. Is it possiblc to wcaken the condition non-unifiable to non-collapsing with
the usual exception of allowing a single collapsing rule I(x) — x?

The problem is related to 5.6.13. But as pointed out in the introduction to this chapter the relevance
of the problem for the general theory of infinitary tcrm rewriting is not clear.
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5.5. Head normal forms, top-termination and stable prefixes

As in Lambda Calculus (cf. [Bar84)) it is possible to introduce a notion of head normal form in
term rewriting. We study head normal forms as stepping stone to B6hm reduction.

5.5.1. DEFINITION. (i) A term t is a head normal form if it has a stable root.
(i) A term t has a head normal form if there is a finite reduction from t to a head normal form.

The restriction to finite reductions in part (ii) of this definition is technically convenient. In fact it
can be weakened to converging reductions:

5.5.2. LEMMA. If there is a converging reduction from a term t to a term s in head normal form, then
there exist a finite reduction from t to some term s’ with the same root as s.

PROOF. Suppose to —9; te, for some ordinal o 2 . Then o = A+n. Suppose tq is a head normal
form. By working backwards from the root prefix sj+n Of th+n we will construct a prefix s) of t,
such that any term with prefix s reduccs in less than n+1 steps to head normal form.

Supposc we have constructed Sj+n-j. Then we construct sa+n-(i+1) as follows. Consider the
reduction step t+n-(i+1) = t+n-i. If the rule applied in this step is a collapsing rule, say for example
A(x,y) = X, then we take Sj+n-(i+1) = A(Sr+n-i,S2). If the applied rule was not a collapsing rule, then
we proceed as follows. If sy4n.i shares symbols with the non-variable part of the right-hand side of
the applied rule, then we replace the {ragment of the right-hand side with the whole pattern of the left-
hand side. Otherwise we take Sy +n.(i+1) = Sa+n-i- It is clear that any term with prefix s;, can reduce in
less than n+1 steps to head normal form.

By convergence the constructed prefix s of ty, is prefix of some tg with < A. So from g it is
possible to reach head normal form in less then n steps. Hence we can reach head normal form in less
then o steps, say o'. We repeat this argument as long as o' 2 @. By well-foundedness of the
ordinals, we can not repeat this argument ad infinitum. Hence by repeating the argument as long as
possible we eventually find a finitc reduction from ¢ to head normal form., O

5.5.3. LEMMA. If a term has a head normal form, then all its head normal forms have the same root
symbol.

PROOF. By the previous Lemma 5.5.2 and the [inite Church-Rosser property. a

5.5.4. COROLLARY. Iftstrongly converges to V', then t has a head normal form iff  has a head
normal form.

PROOF. “Only if": Suppose t reduces to t', and t reduces in finitcly many steps to head normal form
t". Then by the infinite Church-Rosser property for strongly convergent reductions, there is a
strongly converging reduction from (" 10 a common reduct of t' and t". Clearly this common reduct is
a head normal form. By Lemma 5.5.2 therc is also a finite reduction from t" to head normal form.
“If”: Suppose t reduces to ' and ' reduccs in finitcly many steps to head normal form t". The

combined reduction from t via (' to t" is strongly convergent. Hence by Lemma 5.5.2 there is a finite
reduction to head normal from t. a
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The concept "having a head normal form" is cquivalent to the concept "being top-terminating” of
Dershowitz, Kaplan and Plaisted.

5.5.5. DEFINITION. (i) A converging reduction is top-terminating (cf. [Der90a)) if it contains at most
finitely many rcot-reductions (reductions which take place at the root).

(ii) A temm is top-terminating (cf. [Der90a)) if any reduction t = tg — tj > t2 —... not longer than
 reduces only finitely often at root Ievel.

5.5.6. LEMMA. Ift =, U, and U is top-terminating, then t is top-terminating.

PROOF. It suffices to prove: if t reduces in one step to t', and (' is top-terminating, then t is top-
terminating.

Consider a non-top-terminating reduction &; t =, t". We shall construct a non-top-terminating
reduction from t'. Apply the Infinitary Parallcl Moves Lemma to X and an one step reduction S: t —
t'. There are four elementary one-one step Church Rosser situations, as in the figure:

— e el

Y

The dashed arrows are root contractions.

It follows by an easy argument that /S has at least as many root contractions as R, Hence if Ris
non-top-terminating so is R/S. O

5.5.7. THEOREM. The following are equivalent for any term (.
@) t has finite reduction to head normal formn.
(ii) tistop-terminating.

PROOF. (i) = (ii) (We will need this in the scquel.) Suppose t reduces in finitely many steps to head
normal form t'. Being a hcad normal [orm ' is top-terminating. By the previous Lemma 5.5.6 we
find that t itself is top-terminating.

(ii) = (i) Trivial, by contradiction. g

Let us recall the definition of stable prefix as presented in 4.3.1. Some of the results for head
normal forms generalize (o a context with stable prefixes.

5.5.8. DEFINITION. (i) A prefix s < t is called stable for a reduction starting from t if no proper
occurrence of s becomes an occurrence of a redex during that reduction.
(i) A prefix s <tis called stable if's is stable for all strongly converging reductions starting from t.
(i) A prefix s < tis maximally stable if r<s for any stable prefixr<t.

The next lemma establishes the link with hcad normal forms. Its proof is obvious.

5.5.9. LEMMA. A prefix s < tis stable if and only if all the subterms with root in s are in head normal



30

form. a
The restriction of stability to strongly converging reductions is no real restriction:

5.5.10. COROLLARY. A prefix s £t is stable if and only if s is stable for any infinite reduction
starting fromt.

PROOF. (=>) Suppose s is unstablc for some non-strongly converging reduction. Then there is a
lowest occurrence of s that becomes reducible. Hence the subterm of t at this occurrence is not a head
normal form. Contradiction, via Lemma 5.5.9. ]}

5.5.11. LEMMA. If a term t strongly converges to a term with a finite stable prefix, then there exist a
finite reduction from t to some term with the same stable prefix s.

PROOF. We combine the Transfinite Parallcl Moves Lemma and 5.5.2. Using both we obtain a finite
reduction from t to t' such that t' converges strongly to a term with stable prefix s and the root of t' is

stable. Now we can repeat the construction with t, creating stable roots in the subterms at depth 1 of
1'. Etc. (]

5.5.12. LEMMA. Let s; be a finite stable prefix of \; for i = 1, 2. Assume t converges to both ty and

t2. Then there exist a term 13 with a finite stable prefix s3 such that both s\ and s3 are prefixes of s3
and t converges to t3.

PROOF. Apply Lemma 5.5.12 and the finite Church-Rosser property. a
5.6. Béhm reduction

From Lambda Calculus (cf. [Bar84]) we will borrow the idea for Bshm reduction — 1 which
extends the rewite relation — of a given TRS with an extra possibility: we allow ourselves to replace
a subterm t which has no head normal form by a fresh symbol L, that we have added to the signature
of the TRS. As in Lambda Calculus normal forms with respect to — 1 will be called Bohm trees. We
will call the reduction — -Béhm reduction.

Each term has a unique B8hm trce. This implies that Bshm reduction in a OTRS satisfies the
infinitary Church-Rosser property, both for strong converging B6hm reduction and converging
Béhm reduction.

Before defining B6hm reduction and strict Bshm reduction we define an auxiliary reduction +—

on the terms of the signature of the given TRS extended with the fresh symbol L. The idea is to
replace a subterm by L when the subterm has no head normal form.

5.6.1. DEFINITION. (i) Let us denotc by +— the rewrite relation {<CIt],C[1]> ! t has no head normal
form for —, C[ ] is a one-place context}.

@) Let the rewrite relation underlying Bohm-reduction (notation — Dbe o> uls,

(iii) A term t has a Bohm tree il there cxists a strongly converging Bhm-reduction from t to —, -
normal form,

First we give a argument for the finitc Church-Rosser property of B6hm-reduction combining the
finite Church-Rosser Property of the given OTRS and 1— with help of the Hindley-Rosen Lemma
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[Bar84).

5.6.2. LEMMA. The reduction relation *— has the finite Church-Rosser property

PROOF. We give a direct proof. First we show WCR by a casc analysis. Suppose tg - 1) and tg
1— 1. The reduced redexcs are either disjoint, identical or one is inside the other. WCR is trivial for
the first two cases. For the third case it suffices to prove that C[1]1— L assuming that C[t] 1—
C[1] as well as C[t] +— L. That is, we must prove that C[.L] has no head normal form from the
assumption that both C[t] and t have no head normal form, Well, suppose C[.L] —¢, s for some ¢t and
s. Now s is a term that may or may nol contain L, say s = E(L). Then clearly C[t] = E(t). As C[t]
has no head normal form, we see that E(t) cannot reduce to a redex. Hence E(L) cannot reduce to
redex (by contraposition).
We have cstablished WCR in the following form:

1 iL
l Y st
@ recsaces » @

As the dashed arrows stand for at most onc reduction step, the full finite Church-Rosser property
follows by an easy diagram chase. D

5.6.3. COROLLARY. — has the finite Church-Rosser property.

PROOF. The reduction relation — | is generated by the two relations — and +—. These relations —
and L— satisfy the following diagrams (to be understood as saying that when the solid arrows exist,
so do the shaded arrows):

s> o ——P ) .
L L L 1
* » * %* » »
@ eesneenes het W0 . ° TN, 2, ' . ° ST 8 .
1

The first two diagrams state the finitc Church-Rosser propertics for the separate relations.

The third is true because the only conflict among — and — arises when a —-redex is contained in
a =, -redex. But in that case, the —-redex still has a unique residual by the —-redex, whose
contraction gives the same result as contracting the original — ;-redex. The finite Church-Rosser
Property follows from these facts by the Hindley-Rosen Lemma [Bar84). O

5.6.4. LEMMA. Each finite part of a Béhm tree of can be found in finitely many — | -steps.

PROOF. Lelt — |« t be a strongly converging Béhm-reduction of length o from t to a B6hm tree t'.
If we delete all the 1— steps, then we obtain a strongly converging —-reduction to say t". The finite
parts of the Béhm tree correspond 10 finite stable prefixes of the maximal stable prefix of t". By
Lemma 5.5.11 there exist finite reductions from t to the finite stable prefixes of t". If we now apply
L steps up to sufficient depth, we obtain finite — | -reductions to finite prefixes of the Bshm tree
for t. 0
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5.6.5. THEOREM. A term of an orthogonal TRS has at most one Béhm tree.

PROOF. By a similar argument as in the previous lemma; this time by an appeal to Lemma 5.5.12.
0

Next we want to prove the existence of a strongly converging reduction to Béhm tree from any
term. First we focus on a strict version of Bohm-reduction which gives priority over usual reduction
to replacement by L of subterms that have no head normal forms. This strict Bohm-reduction has
some pleasant properties.

5.6.6. DEFINITION. Strict Béhm-reduction (notation —p1)) is the rewrite relation included in — v
15 in which a L—-step have priority over ordinary —-steps: a —-step is allowed only if no 1—-
steps are possible.

5.6.7. LEMMA. (i) Bohm reduction —, and strict Béhm reduction — have the same normal forms.
(i) Infinite —(1)-reductions are strongly convergent and of lenght at most ©.
(i) Every term has a normal form with respect to =43,

PROOF. (i) Trivial: both reductions have the same redexes.

(i) If an infinite —[)-reduction is not strongly convergent, there is be an occurrence u which is
contracted infinitely often in the reduction. Hence the subterm at such an occurrence is not be top-
terminating, and hence by Lemma 5.5.6 has no head normal form. But the only thing which such a
subterm can be reduced to by —y; is L, contradiction.

(iii) Any outermost — 1)-reduction is strongly converging to Bbhm normal form. 0

5.6.8. THEOREM. Any term of an orthogonal TRS admits a strongly converging reduction to Bohm
tree.

PROOF. Apply the previous lemma on strict Bshm reduction. O

5.6.9. COROLLARY. (i) Bohm reduction — | satisfies the infinite Church-Rosser Property for
strongly converging — | -reductions.

(i) Bohm reduction — satisfies the infinite Church-Rosser Property for converging — -
reductions.

PROOF. (i) Suppose we have two strongly convergent reductions t — 4 t; and t — 1p t2. Using the
previous Lemma 5.6.7 we construct strongly converging —>(4)-reductions to B6hm tree starting from

t; and tp. By the unique Bhm tree property for t these reductions have the same reduct, the unique
Bohm tree of't.

@) As (). o

6. NEEDED REDEXES

The concept of a needed redex has been studied by Huet and Lévy [Hue79] for orthogonal TRSs.
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In this section we shall recall some facts about needed redexes for finite rewriting first, and then
generalise them to the infinitary setting.

6.1. Recollection of some results of Huet and Lévy

6.1.1. DEFINITION (Hue79]. A rcdex s of a term U is finitely needed if in every reduction of t to finite
normal form a residual of s is rewritten.

6.1.2. FACTS [Hue79). In any orthogonal TRS, neededness has the following properties, where
only finite terms, reductions and normal forms are considered.
(i) If a term contains redexes, then it contains a finitely needed redex.
(ii) If a term has a finite normal form, then repeated rewriting of finitely needed redexes leads to
that normal form, even if diluted by finite strings of non-needed reductions.

In general, neededness of redexes is undccidable for orthogonal TRSs: so the needed strategy (i.e.
repeated rewriting of finitely nceded redexes) is not effective. For this reason Huet and Lévy restrict
themselves to strongly sequential orthogonal TRSs.

6.2. Neededness and infinitary reduction

We now extend the above ideas to infinitc reductions and infinitary normal forms of orthogonal
TRSs. The theorems conceming the existence of needed redexes and the sufficiency of needed
reduction for computing normal forms will in this section be extended, with certain modifications, to
the case of infinite reductions. Of course, generalization to the infinitary setting has no effect on the
undecidability of neededness of redexes.

6.2.1. DEFINITION. A redex s of a term t is needed if in every strongly converging reduction of t to
normal form a residual of s is rewritten.

6.2.2. THEOREM. For orthogonal TRSs, in every term having a normal form but not in normal
form, there is at least one needed redex.

PROOF. Huet and Lévy prove this for finitc terms. A study of their proof reveals that it applies
equally to infinite terms and strongly convergent reductions to normal form. We only note the few
points where the infinitary aspects need some care.

Lemma 3.11 of [Hue79], proving that cvery reduction A has, in Huet and Lévy's terminology, an
external redex, is proved by induction on the length of A. To apply the proof to an infinite reduction,
we note that we nced only consider the initial segment of A which is terminated by the last step of A
which reduces for the first time some residual of a member of R(A).

Lemma 3.16 of [Hue79], proving that cvery lerm having a normal form but not in normal form has
an external redex, proceeds by induction on the size of the term, applying the inductive hypothesis to
the immediate subterms of the given tem. For infinite terms, such an induction would not be well-
founded. However, it is clear that the induction can be recast as an induction on the stable depth of
the term. The only terms that such an induction would miss arc the infinite terms in normal form, for
which the lemma is trivial. a
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Needed reduction is normalising for orthogonal TRSs and finite normal forms [Hue79]. This is
not true when infinite normal forms arc considered. A simple cxample is provided by the orthogonal
TRS consiting of the single rule: A — B(A,A). The term A can be reduced using this rule to the
infinite binary tree with a B at cach node. At every finite stage in a reduction starting from A, every
redex is needed. However, it is casy to exhibit infinite reductions from A which do not compute the
infinite normal form. For example, if we take the leftmost redex at each step, we generate the
reduction

A = B(A,A) = B(B(A,A),A) = B(B(B(A,A),A),A) — ...
Clearly, some notion of faimess with respect to necded redexes is required to ensure that every part
of the infinite normal form is generated.

6.2.3. THEOREM. Lett be a term which has a normal form.
(i) Any needed reduction starting from t is strongly converging.
(1) Any hyper-needed reduction starting from t is strongly converging, where a hyper-needed
reduction is a reduction such that in between any two subsequent needed reductionsteps at most
finitely many non-needed redexes are contracted.

PROOF. (i) If it were not strongly converging, then there would be an occurrence in some term of the
reduction sequence where infinitely often a reduction is performed. This means that the subterm at
that occurrence does not have a head normal form. Hence subterms at that occurrence can never
completc a redex pattem in at a higher occurrence. For (ii) the same proof applies! 0

6.2.4. DEFINITION. A converging reduction t =g, t' is needed-fair if for every term t" in the

reduction, and every needed redex r of 1", there exists some finite part of the remaining reduction
starting at t" that does not preserve r.

6.2.5. THEOREM. A needed-fair reduction, starting from a term having a normal form, is stable.

PROOF. Let R be an needed-fair reduction from a term t. If R were not top-terminating, then t would
not be top-terminating and t would not have a hcad normal form by Theorem 5.5.7. Contradiction.
Hence R is top-terminating. So, Kiis of the form R;-R!;, where R, is finite and &, contains no root
reductions. X, is an interleaving of independent reductions, cach reduction occurring wholly within a
different immediate subterm of . Because R is nceded-fair, each of those subreductions must be
needed-fair. Each such subreduction must also be top-terminating (with respect to its respective
subterm). Since there is a finite number of immediate subterms of t, and once more by nceded-

faimess we can split X', into Ry-R’,, where K, performs no reduction at a depth of O or 1.
Repeatition of the argument ad infinitum shows that & is stable. O

We will describe a strategy DI that presented with a term always generates a needed-fair reduction
whenever the given term has a normal form. Let us first be clarify this terminology.

6.2.6. DEFINITION. (i) A reduction strategy for a TRS is a function that maps every term t of the
TRS 10 a set of finite reduction starting from t.

(i) For any strategy S, the strategy syper-S maps cach term to to the set of reductions of the form
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10 =n tn =m n+m, Where ty =y them € S(ly).

(iii) A sequence (tB)<o. is generated by a reduction strategy S on a term tif to = t and tB+1 € S(tp)
forall p<c.

6.2.7. DEFINITION. (i) A reduction strategy is transfinitely normalising, whenever it generates a
strongly converging reduction to normal form for any term which has a normal form.

(i) A reduction strategy is normalising, whencver it generates a stable reduction to normal form
for any term which has a normal form.

(iii) A reduction strategy S is (transfinitcly) hyper-normalising, whenever hyper(S) is (transfinitely)
normalising.

An example of a reduction strategy is the stratcgy of needed reduction, where S(t) is the set of one-
step reductions starting from t which reduce a necded redex of 1. We can paraphrase Theorem 6.2.3
bty saying that nceded reduction is transfinitcly normalising.

6.2.8. COROLLARY. Parallel-outermost reduction is transfinitely hypernormalising.

PROOF. Consider a reduction R starting from a term in normal form. If ® always eventually
performs a parallel-outermost reduction, then X is needed-fair, and converging to normal from.
Hence parallel-outermost is a transfinitely hypernormalising strategy. (It may not be simply
hypemormalising, since a single parallc] outermost part of the sequence may itself be infinitely long.)

6.2.9. DEFINITION. Depth-increasing reduction is the following strategy DI. Given a term tg, for
each n20 let t, .y be derived from t, by complcte development of all redexes at occurrences of depth
no more than n. Then D(ty) is the set whose only member is the sequence tg & t; =%t ™ ...

6.2.10. COROLLARY. Depth-increasing reduction is hypernormalising.

PROOF. Clearly, DI(t) is no longer than w. For DI to be normalising, it is sufficient to prove that
DRt) converges to the normal form of t, whenever t has one. But clearly, if there is a needed redex R
in t at some depth n, then at the nth stage or carlicr in the construction of D1(t), either some residual
of R or some redex containing some residual of R will be reduced. Thus DI(t) is needed-fair, hence
by Theorem 6.2.5 normalising. O

The notions of neededness and normalisation extend o the B6hm reduction —; we introduced to
compute Béhm trees.

6.2.11. COROLLARY. (i) Needed — | -reduction is transfinitely normalizing.
(i) Parallel-outermost — \-reduction is transfinitely normalising.
(iii) Depth-increasing — -reduction is normalising. 0

7. APPLICATIONS TO GRAPH REWRITING

Graph rewriting is a common mcthod of implecmenting term rewrite languages [Pey87]. It relies on
the basic insight, that when a variable occurs many times on the right-hand side of a rule, one need
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only copy pointers to the corresponding parts of the term being evaluated, instead of making copies
of the whole subterm. However, the precise relation between term and graph rewriting has some
subtleties [Bar87, Far89, Hof88, Sta80). This is also true when we consider infinite terms.

Infinite graphs will represent infinite terms, but some finite graphs — the cyclic ones — also
represent infinite terms. A single reduction in a cyclic graph can correspond to an infinite reduction of
reductions in the corresponding term. For example, applying the rule A — B to the graph x:F(A x)
(the notation is explained in 7.1) corresponds to applying it to infinitely many redexes in the term
F(AF(AF(A,...))).

The correspondence between acyclic graphs and terms has been studied in [Bar87). We will extend
this correspondence and its constitucnt notions of lifting and unravelling to cyclic graphs and infinite
terms.

7.1. Graphs and graph rewriting

First we define graphs and graph morphisms in a gencral way.

7.1.1. DEFINITION. A graph g over a signature X = (%,9) is a quadruple (nodes(g), lab(g), succ(g),
roots(g)), where nodes(g) is a (finite or infinite) set of nodes, lab(g) is a function from a subset of the
nodes of g to &, succ(g) is a function from the same subset to tuples of nodes of g, and roots(g) is a
tuple of (not necessarily distinct) nodes of g. Furthermore, every node of g must be accessible

(defined below) from at least one root. Nodes of g outside the common domain of lab(g) and succ(g)
are called empty.

7.1.2. DEFINITION. A pathin a graph g is a finitc or infinite sequence a,i,b,j,... of altemating nodes
and integers, beginning and (if finite) ending with a node of g, such that for each m,i,n in the
reduction, where m and n are nodes, n is the i'th successor of m. The length of the path is the number
of integers in it. If the path starts from a node m and ends at a node n, it is said to be a path from m to
n. If there is a path from m to n, then n is said to be accessible from m. When this is so, the distance
of n from m is the length of the shortest path from m ton.

We may write n:F(ny,...,ng) to indicate that lab(g)(n) = F and succ(g)(n) = (ny,...,ny). A finite
graph may then be presented as a list of such node definitions.

F
X:F(y,z), / \G
2:G(y,w,w), A )
w:H(w) o @
In such pictures, we may omit the names x, y, z, etc., as their only function in the textual
representation is to identify the nodes. In particular, x, y, z, etc. do not represent variables — these
are represented by empty nodes. Differcnt empty nodes need only be distinguished by the fact that

they are different nodes; we do not nced any scparate alphabet of variable names. Multiple references
to the same variable in a term arc represented in a graph by multiple references to the same empty
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node.

The tabular description demonstrated above may be condensed, by nesting the definitions; for
cxample, another way of writing the same graph is F(y,z:G(y,w,w:H(w))).

In general a graph may have more than onc root. We will only use graphs with cither one root
(which represent terms) and graphs with two roots (which represent term rewrite rules).

7.1.3. DEFINITION. A graph homomorphism from a graph g to a graph h is a function f from the
nodes of g to the nodes of h, such that for all nodes n in the domain of lab(g), lab(h)(f(n)) =
lab(g)(n), and succ(h)(f(n)) = succ(g)(n).

Note that a graph homomorphism is not required to map the roots of its domain to the roots of its
codomain. The following proposition has a straightforward proof:

7.1.4. PROPOSITION. A graph homomorphism is determined by its action on the roots of its domain.
a

On graphs one can define gencral graph rewrite mechanisms. For our purposes it suffices to study
tcrm graph rewriting.

7.1.5. DEFINITION. A term graph is a graph with onc root.

Our definition of graphs includes infinitc graphs. We can also define infinite graphs by the
completion of an ultramctric spacc, as we did for tcrms.

7.1.6. DEFINITION. Given a term graph g = (N,1,s,r) and an integer n, ®,(g) is the truncation of g to
depth n. It is the term graph (N',I',s",r') defined by:
(i) N'is the set of nodes of g whose minimum distance from any member of r is not more than n.
G r=r.
(iiiy For pe N', I'(p) and s'(p) arc the samc as they are for g, if the minimum distance of p from
any member of r is less than n. If this distance is equal to n, then I'(p) = Q and s'(p) = ().

From this notion of truncation, we can define an ultrametric on term graphs in the same way as for
terms.

7.1.7. DEFINITION. For tcrm graphs g and h, d(g,h) = inf{ 20| 1ty(g) = Ra(h) ).

Note that for graphs in which nodes may be inaccessible from the root, this is not a metric, as it is
independent of the existence of such nodcs. Thus there would be distinct graphs at zero distance from
cach other.

The Cauchy completion of this ultramctric space gives an alternative, but equivalent, definition of
infinite term graphs, which then allows us o carry over to graphs the definitions of convergent
reduction and strong reduction.

From now on we will consider term graphs and term graph rewriting only, and often we will
simply call them graphs.

7.1.8. DEFINITION. A term graph rewrite rule is a graph with two, not necessarily distinct, roots
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(called the left and right roots), in which cvery empty node is accessible from the left root, and the
subgraph containing those nodes accessible from the left root is a finite tree. The left (resp. right)
hand side of a term graph rewrite rule is the subgraph consisting of all nodes and edges accessible
from the left (resp. right) root.

7.1.9. DEFINITION, A redex of a term graph rewrite rule rin a graph g is a homomorphism from the
left-hand side of r to g. The occurrence of the redex is the minimal occurrence of the node of g to
which the left root is mapped. The depth of a redex is the length of the occurrence.

The result of reducing a redex of the rule rin a graph g at occurrence u is the graph obtained by the
following construction — with one possible exception, which we shall come to later.

7.1.10. CONSTRUCTION. (i) Construct a graph h by adding to g a copy of all nodes and edges of r

not in left(r). Where an added edge has onc endpoint in lefi(r), in h that edge is connected to the
corresponding node of h.

(i) Let n be the node of h corresponding to the left root of r, and n, the node corresponding to the
right root of r. (These are not necessarily distinct.) In h, replace every cdge whose target is n) by an
edge with the same sources and targel n,, obtaining a graph k. The root of k is the root of h, unless
this is n;, otherwise it is n,. ‘

(iii) Remove all nodes which are not accessible from the root of k. The resulting graph is the result
of the rewrite.

We have now the ingredients to give the general definition of a Term Graph Rewrite System.

7.1.11. DEFINITION. Let Z be a signature. A Term Graph Rewrite System (GRS for short) is a pair

(G(Z),R) where G(T) is the sct of graphs for the signature £, and R a set of term graph rewrite rules
for the signature X,

Having defined term graph rewriting and the notion of depth on term graphs, the concepts of
normal form, infinitary rewriting, orthogonality, etc. carry over to term graphs.

7.2. Circular redexes

We now consider the exception of which we forewamned the reader in 7.1.9. Consider the
following rule, given in both textual and pictorial forms:

I(x) = x left root: 1

right root: e

and the graph

a:l(a) O

It is clear that the graph is a redex of the rule. We call this redex “circular I”, What should it be
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reduced to?

According to the definitions above, it reduces 10 itself. Other treatments of term graph rewriting
differ. According to [Far88], it reduces to a node with no function symbol, but with an edge pointing
from itself to itself. According 1o [Ken90a), it reduces 1o an cmpty node. Most other references (e.g.
[Sta80, Rao84, Ken87, Bar87]) avoid the problem by excluding cyclic graphs. If one ignores these
cxclusions, and trics 1o apply their definitions to circular I, we find that e.g. [Sta80] produces a non-
well-formed graph, and [Rao84] and [Ken87] find a match of the rule to the graph, but cannot reduce
it.

Circular I is one instance of a class of redexes having the same behaviour, the circular redexes.
Circular redexes come into cxistence via collapsing rules.

7.2.1. DEFINITION. (i) A rcdex of a rule ris circular if the homomorphism from lefi(r) to g maps
both roots of r (o the same node. (This can only happen if the right root of r is accessible from the left
root.)

(i) A ruleis self-embeddable if thcre exists a circular occurrence of the rule.

Note that the subgraph matched by a circular redex is cyclic, but not conversely. A counterexample
is the rule F(G(x)) — x and a graph F(y:G(y)). Such a redex is unproblematic.

7.2.2. PROPOSITION. Every circular redex reduces to itself. O

7.2.3. DEFINITION. A collapsing term graph rule (sometimes called a selector rule) is a term graph
rule whose right-hand side is a variable. A collapsing redex is a redex of a collapsing (term or graph)
rule.

7.2.4. PROPOSITION. In an orthogonal term graph rewrite system, a rule is self-embeddable iff it is a
collapsing rule. O

An example of a non-collapsing, sclf-cmbeddable rule is x:F(y:F(z)) — y. Note that this rule
conflicts with itself: it has two overlapping redexes in the graph F(F(F(G))).

Every rule for extracting a componenl of a structure is sclf-embeddable, such as the usual rules for
breaking up a list: head(cons(x,y)) — x. tail(cons(x,y)) — y. Clearly, these are an essential part of
any functional language, and must be properly dealt with by any formal description of term graph
rewriting. -

We have scen that there is uncertainty in the literature over what a circular redex should reduce to.
The choice of definition makes a diffcrence, for the following reasons.

(@) The Church-Rosser property may fail, even for finite graphs and finite rewrite sequences.

(b) The correspondence between term rewriting and graph rewriting is complicated by circular
redexes.

As an example of (a), we can adapt cxample 5.1.1.

Rules: AX) > x

B(x) = x

C - x:AB®X))
Initial graph: C
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Sequences: C - x:A(B(x)) = x:B(x) = x:B(x) = x:B(x) = ...

C = xABX) = X:AX) = X AX) = x:AX) — ...
Notice that all the graphs are finitc, the first two rules could be found in any functional program, and
the third rule is a reasonable optimisation of the term rule C = A(B(C)).

If instead we stipulate that circular redexcs reduce to a new symbol L, not occurring elsewhere in
the rule set, then the Church-Rosser property for finitary reduction to hold for termgraph rewriting,
just as well as the Church-Rosser and Parallel Moves results we proved for infinitary term rewriting.
We will show this in a forth-coming paper on graph rewriting.

Note that the restriction to one collapsing rule bears a similarity to the technique of indirection
nodes ({(Wad71]). When a rule of the form C[x] — x (where C is a context) is applied to a subgraph
of the form C[g], then it is implemented as if it were the non-collapsing rule C[x] — 1(x). 1 is a new
symbol, the indirection symbol, and is considered to be invisible to pattern-matching: Plus(1(1),2) is
the same redex as Plus(1,2) (of thc obvious rules for Plus).

Finally in this section, we note with respect to (b) that reducing circular redexes to themselves
corresponds reasonably well to term rewriting with respect to the obvious concept of “unravelling” a
graph, although there are certain rough edges in the relationship — several of our proofs have to treat
circular redexes as a special case. Alternatively, reducing circular redexes to L is related to the B6hm

reduction of section 6, since circular redexes unravel to infinite terms which have no head normal
form.

7.3. From graphs to terms

Unravelling is the standard technique to go from graphs to tcrms.

7.3.1. DEFINITION. The unravelling U(g) of a graph g is the forest defined as follows. The nodes of
U(g) are the paths of g which start from any of its roots. Given a node a,i,b,j,...y of U(g), if yis a
nonempty node of g, then this node of U(g) is labclled with the function symbol lab(g)(y), and its
successors are all paths of the form a,i,b,j,...y.n,z, where z is the n’th successor of y in g. If y is
empty, then it is labelled with a variable symbol, a different symbol being chosen for every empty
nede of g.

For a node n of g, we definc U(n,g) to be the set of nodes of U(g) of the form a,i,b,j,...n.

Note that a cyclic graph will have an infinite unravelling. For example, the unravelling of the graph
shown in the next diagram is the term F(y,G(y,H®,H®)).

i
@)

The following simple lemma will be useful when lifting result concerning continuity and strong
convergence from terms to graphs.
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7.3.2. LEMMA. Every member of U(n,g) is at a depth in U(g) at least equal to the depth of nin g,
and at least one is at equal depth.

It is easy to see that for a term graph g, U(g) is a term, and for a graph rewrite rule r, U(r) is a term
rewrite rule. We can also apply the notion of unravelling to a whole rewrite system.

7.3.3. DEFINITION. The unravelling of a GRS (G(Z),R) is the TRS (Ter=(Z),U(R))whose rules

U(R) are the unravellings of the rules in R. This TRS is also denoted by U(G(Z),R); its set of terms
is U(G).

So, given a signature X the operator U transforms GRS'’s over I into TRS’s over I.

7.3.4. PROPOSITION. U is uniformly continuous on term graphs.

PROOF. If two graphs havc the same truncation to depth n, then it is clear that their respective
unravellings will also have the same truncation to depth n. Thereforc when g#g', the ratio
d(U(g),U(g')/d(g.g") is always less than or cqual to 1. Thus U is uniformly continuous. {J

7.3.5. PROPOSITION. There is a homomorphism from U(g) to g which takes the root of U(g) to the
rootof g. O

The homomorphism is obtained by mapping each node of U(g) (which is a finite path of g) to its
final element. If g is acyclic, this is clcarly the only homomorphism from U(g) to g, but if g is cyclic
there can be more than one: for example, if g = x:A(A(x)), there are two.

The following proposition is not hard 10 prove:

7.3.6. PROPOSITION. A graph g in the GRS (G(Z),R) is a normal form iff its unravelling U(g)is a
normal form in (Ter*(Z),U(R)). a
The following altemnative representation of graphs is useful.

7.3.7. PROPOSITION. A graph g is determined by the set of those of its maximal paths which begin
at any of its roots, together with the following equivalence relation on paths: P=P' < P=P or P
and P' can be written as Py-Q and P'{-Q, where Py and P'y are finite and end at the same node.

PROOF. Recall that by definition, cvery node of a graph is accessible from at least one of its roots.
In addition, a path records not just a reduction of nodes, but the edges by which one gets from one
node to another. The proposition is then obvious. a

In terms of this representation of a graph as a set of paths and an equivalence relation, the
unravelling of a graph is obtained simply by dropping the equivalence relation.

7.3.8. PROPOSITION. Let g = g in a GRS. Then U(g) > <, U(g) in the corresponding TRS.
Moreover, the depth of every redex reduced in the term sequence is at least equal to the depth of the
redex reduced in g.

PROOF. Let r be the rule that was applicd 10 reduce g to g', and u the occurrence at which it was
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applied. We need to distinguish two cases.

If the redex is circular, then it reduces to itself, and g'=g. Clearly, U(g) reduces to U(g’) by the
empty reduction sequence. The condition on depths is trivially satisfied.

Otherwise, we shall show that there is a redex of U(r) at every occurrence in U(g,u), that all these
redexes can be reduced by a strongly convergent reduction, and that the limit of this reduction is
U(g")-

It is clear that there is a redex of U(r) at every occurrence in U(g,u). If U(g,u) is finite, then the
theorem holds as shown in [Bar87]. Otherwise, suppose U(g,u) is infinite.

Let the members of U(g,u), ordered by depth, be uy, u,, ..., with depths dy, d,, ... Consider the
effect of reducing the redex at u;.

Those redexes at occurrences incomparable with u; will still be present afterwards, and at the same
occurrences. In particular, all redexcs previously at the same depth as u; will be at the same depth
afterwards.

Redexes at occurrences which extend u; must be at greater depth. We shall show that after
reducing the redex at u,, the depths of the residuals of such redexes are still greater than d;.

Suppose this were not the case. If a redex is at u; < uy, then after reduction at u, its residuals must
still be within the subterm at u,. If the redex formerly at y; has a residual at depth d,, that residual
must therefore be at u;. But this is only possible if the right-hand side of the rule is a variable, and the
subterm matched to that variable by the redex at u; is the subterm at u;. But both redexes originate
from the same redex of the original graph. Therefore the graph redex was a cyclic collapsing redex, a
case we have already eliminated.

Therefore, after reduction at uy, for every redex at depth greater than d,, all its residuals by u, are
still at depth greater than d,. Since there can only be finite many redexes at depth d;, reduction of all
of them leaves redexes only at depths greater than d;. Repeating the argument for the newly
shallowest redexes constructs a strongly convergent reduction.

It is immediate from the description of graphs in terms of paths (proposition 7.3.7), that when all
the remaining redexes are at depths greater than some depth d, then the term t4 at that point agrecs
with U(g") down to depth d. Thus the distance between tg and U(g') is less than 2-9. Therefore the
limit of the reduction of terms t4 as d tends 10 infinity is U(g").

Finally, the condition on the depths of the term reduction steps is immediate from lemma 7.3.2. O

A similar proof establishes the following generalisation.

7.3.9. PROPOSITION. If g reduces to g' by complete development of a set S of disjoint redexes, then

U(g) reduces to U(g') by complete development of the set of redexes U(S'), where S’ is the set of
non-circular members of S. a

Note that these two propositions show that the term rewrite reduction corresponding to a finite
graph rewrite reduction can be chosen to be strongly convergent, not just convergent.

7.3.10. PROPOSITION. Let g =, g in a GRS. Then for some B=c., U(g) —pg U(g) in the
corresponding TRS.

PRCOF. By applying proposition 7.3.8 to cach step in the reduction g —,, g'. This gives a reduction
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sequence composed of subsequences of the form U(gy) = <o U(gy:1), each of which is strongly
convergent. That the concatenation of these is also strongly convergent follows from Lemma 7.3.2.

O

Note that a single reduction of the GRS can correspond to an infinite reduction in the TRS, and
that a reduction of two or more steps in the GRS can correspond 10 a transfinite reduction of the TRS.

7.4. From terms to graphs

A lifting of a TRS (Ter(Z),R) is a GRS (G(Z),R) whose rules unravei :> rules in R.

7.4.1. DEFINITION. The lifting L(Ter(Z),R) of the TRS (Ter(Z),R) is defined as the GRS
(G(Z).R) where the clements of R are minimally shared, bi-rooted graphs, corresponding with the
rules in R: reading the lefi- and right-hand sides of a term rule T — T as trees, and then for each
variable identify all leaves of the two trees which bear that variable. The roots of the two trecs become
the roots of the graph.

Our definition of the lifting of a TRS picks out one of possibly many GRSs which unravel to the
given TRS. We have choosen a version compatible with [Bar87]. We shall bricfly consider some
other possible liftings, which might result from a certain optimisation in the representation of term
rules as graph rules,

Consider the term rule Penultimate(Cons(x,Cons(y,z))) — Penultimate(Cons(y,z)). The graph rule
obtained by lifting according to definition 7.4.1 will, when it is applied, create two new nodes.
However, we can see that the node Cons(y,z) which it creates has the same contents as a node which
was matched by the lefi-hand side. We can therelore reuse the existing node instead. This amounts to
representing the term rule by the graph rule Penultimate(Cons(x,w:Cons(y,2))) — Penultimate(w). In
general, we may choose 1o represent the term rule by any bi-rooted graph which unravels to the term
rule, and whose left-hand side is a tree. (Notice the suggestive similarity with the where-definitions
of Miranda and the as-declarations of ML.)

We can go even further. Consider the term rule for the Y combinator: Apply(Y.f) =
Apply(f,Apply(Y.f)). The simple lifting to a graph rule is

Apply  Apply

Y . Apply

Y

Notice that again, the rule creates a new node Apply(Y.f) which has the same contents as an existing
node. We can again identify the two nodcs, likc this:

Y e

But now the left root of this rule is accessible from the right root. By following the details of the



44

definition of graph rewriting, we can sec that when this rule is applied, the created edge
corresponding to the edge from the right root to the left root of the rule will in fact go from the node
to which the rule is applied, to itself. This is as if the rule were in fact:

RO

Y )

This is the rule for “knot-tying” Y — written in textual form, it is Apply(Y.f) = x:Apply(f,x). The
unravelling of this rule is not the original term rule, but the rule obtained by repeatedly applying the
term rule (o the Apply(Y,f) subterm contained in its right-hand side. The graph rule in effect perfoms
all those reductions simultancously. This is an instance of what Farmer and Watro [Far89] call “redex
capturing”, which they have shown is a sound implementation of the term rewrite rules where the
possibility occurs.

Thus to minimise the number of created nodes in a graph rewriting implementation of a TRS, we
should take the “smallest” ravelling of the term rules. Any two nodes of the lifting of the rule which
are isomorphic may be identified, provided they are not both in the left-hand side. Whenever this
results in edges which point to the left root, such edges should be made to point at the right root
instead.

Such a minimal lifting is not always unique, because of the condition that the left-hand side of the
rule must always be a tree. Consider the rule A(B(x),B(x)) = C(B(x)). There are two minimal
liftings of this rule: A(y:B(x),B(x)) = C(y) and A(B(x),y:B(x)) = C(y). We cannot lift it to
A(y:B(x),y) = C(y), as the left-hand side is no longer a tree. While the graph rewriting behaviour of
such rules is worth studying in its own right, it appears not to correspond to anything in the term
rewrite world, and is outside the scope of this paper.

7.5. Neededness and graphs

We now consider the graphical counterpart of needed redexes and necessary sets. The latter is a
generalisation by Sekar and Ramakrishnan [Sek90] of the concept of needed redex:

7.5.1. DEFINITION [Sek90)]. A sect of redexes S of t is necessary if in every reduction of t to a finite
normal form, a residual of some member of S is rewritien.

1.5.2. THEOREM. Let g be a graph and let t be its unravelling. Let r be a redex of g, and let R be the
corresponding set of redexes of \. Then r is needed in t iff R is necessary in g.

PROOF. A reduction of t to normal form not reducing any residual of any member of R can be lifted

lo a reduction of g to normal form not reducing any residual of r. Therefore if r is needed, R is
necessary.

A reduction of g to normal form not reducing any residual of r unravels to a reduction of t to
normal form not reducing any residual of any member of R. Therefore if R is necessary, r is needed.

a
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7.5.3. THEOREM. Let g be a graph and let t be its unravelling. Let R be a set of redexes of €. Then R
is necessary iff UR) is necessary.

PROOF. R is necessary <> 3JreR.ris nceded [Sek90], mutatis mutandis for graphs
< 3Jre R.U(1) is necessary Theorem 7.5.2
<> U(R) is nccessary [Sek90] |

7.5.4. COROLLARY. To find a needed redex in a graph in a strongly sequential orthogonal term
graph rewrite system, apply the Huet-Lévy algorithm to choose a redex in the unravelled term, and
take the corresponding redex of the graph. 0

7.5.5. THEOREM. Let g be a graph with a normal form. Any needed reduction starting from g is
strongly convergent..

PROOF. Suppose there exist a non-strongly convergent needed reduction from a graph which has a
normal form. If we unravel this reduction, we get a hyper-needed reduction which is not strongly
converging. This contradicts 6.2.3. O

7.6. Graph rewriting versus term rewriting

7.6.1. DEFINITION. (i) A TRS (T,R) is graph reducible in a lifting (G,R) of (T,R) if for every graph
g in (G,R) it holds that if t is a normal form of U(g), then there is a normal form g' of g in (G,R)
such that U(g) = t.

() A GRS (G,R)is tree reducible if there is a TRS (T,R) such that (T,R) = U(G,R), and such
that if g' is a normal form of g in (G,R), then U(g') is a normal form of U(g) in (T,R).

Note that although this definition is not quite the same as that stated in [Bar87], it is equivalent to
the one used there. [Bar87] proves that every acyclic orthogonal GRS is tree reducible, and every
weakly orthogonal TRS is graph reducible. These are still true in the presence of infinite terms,
graphs and reductions. In fact, the first of these can be strengthened: when we have infinite terms and
reductions, every GRS is tree reducible.

The following two theorems extend the results of [Bar87] to the case of cyclic and/or infinite
graphs.

7.6.2. THEOREM. Every GRS is tree reducible.

PROOF. Immediate from the facts shown in Scction 7.3 that the unravelling U preserves reductions
and normal forms. O

7.6.3. LEMMA. A circular redex of a graph having a normal form is not needed.

PROOF. Let g have a normal form, and let r be a circular redex of g. Consider the sequence g — g —
g — ... of infinitcly many reductions of r (which by Proposition 7.2.2 reduces to itself). This is not
strongly convergent, but needed reduction of graphs having a normal form is strongly convergent
(7.5.5). Therefore at least one step in this sequence is not needed. But all steps are reductions of r in
g, therefore ris not needed. u
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7.6.4. THEOREM. Every orthogonal TRS is graph reducible in its lifting via L.

PROOF. The argument is similar to that used in [Bar87] for the finite case. Given a graph g of
L(T,R) such that U(g) has a normal form, consider the parallel-outermost reduction originating from

g.
g o0 g 0 g O

Since the system is orthogonal, each parallel-outcrmost stage performs a complete development ofa
set of disjoint redexes. We apply proposition 7.3.9 to each stage, obtaining a reduction

U(g) -P9 Ug) -0 Ugy -FO

where cach —PO' step is a strongly convergent complete development of a set of redexes which
includes at least all the non-circular outermost redexes of the term. Since parallel-outermost-needed
reduction is hypernormalising for orthogonal TRSs (corollary 6.2.9), and circular redexes are never
needed in terms having a normal form (lemma 7.5.3), the lower reduction must strongly converge to
a normal form t. Hence the upper reduction must do likewise, and its limit must be a graph which
unravels to t. Therefore the TRS is graph reducible. O

8. RELATIONS WITH OTHER WORK

Infinite terms naturally arise in computing. The ultrametric space of finite and infinite trees is a natural
structure to interpret such terms in (cf. [Arn80], [Cou79], [Bak82], [Ber84], (Ber89)). Infinite
reductions in contexts of recursive program schemes and recursive processes (cf. [Cou79]) or Prolog
(cf. [Col82]) however seem to be unwanted: preferably onc works with terminating programs. This
hesitance to consider infinite reductions is also seen in the fact that infinite reductions are hardly
treated in the standard works on Lambda Calculus and Term Rewriting Systems, except for some
observations in the context of Bshm trees (cf. [Bar84], [Klo801).

The work of Dershowitz, Kaplan and Plaisted [Der89a,b, Der90] secms to be the first place where
an attempt is made of a theory of infinite reductions. Considering the metric space of the finite and
infinitc terms of a TRS they introduce the notion of converging reductions. Concentrating on
convergence, Dershowitz ¢.s. introduce ®-normal forms: terms that reduce in one step to themselves
if they contain a redex. They show, for example, that fair converging derivations result in w-normal
forms.

Farmer and Watro [Far89] rcalize that it nceds strong convergence to compress certain infinitary
reductions into strongly converging reductions of length at most ®. In the latest paper [Der90]
Dershowitz c.s. focus on top-lerminating TRSs to force convergent reductions to be strongly
convergent, €.g. to prove the compressing lemma for infinitary converging reductions.

Dershowitz c.s. [Der89a,b, Der90] also consider algebraic semantics for infinite theories and study
constructor TRSs and hierarchical TRSs.

Farmer and Watro [Far89] point out the importance of infinite rewriting for a sound understanding
of the graph rewriting on which implementations of functional programming languages are based.
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They show that term graph rewriting with arbitrary structure sharing and redex capturing is sound for
left linear TRSs.

Chen and O’Donnell {Che90] consider finitc cyclic term graphs as finite representations of infinite
terms, and accordingly TRSs are extended with those infinite terms (so-called “rational trees™) that
can be represented by finite term graphs. They define a notion of infinite reduction unrelated to ours,
for which they prove results in the line of Dershowitz, Kaplan and Plaisted.
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