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Abstract

A structure is said to be computable if its domain can be rep-
resented by a set which is accepted by a Turing machine and if its
relations can then be checked using Turing machines. Restricting the
Turing machines in this definition to finite automata gives us a class of
structures with a particularly simple computational structure; these
structures are said to have automatic presentations. Given their nice
algorithmic properties, these have been of interest in a wide variety of
areas.

An area of particular interest has been the classification of auto-
matic structures. One of the prime examples has been the class of
groups. We give a complete characterization in the case of finitely
generated groups and show that such a group has an automatic pre-
sentation if and only if it is virtually abelian.
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1 Introduction

In this report we will be concerned with structures; we first explain what this
means. A structure A = (A, R1, . . . Rn) consists of:

• a set A, called the domain (or universe) of A;

• for each i with 1 6 i 6 n, there exists ri > 1 such that Ri is a subset
of Ari ; ri is called the arity of Ri.

For example, a group can be viewed as a structure (G, ◦, e, −1), where ◦
has arity 3, e has arity 1, and −1 has arity 2. A natural area of research is to
consider which structures are computable. Taking the Turing machine as our
computational paradigm, a computable structure is one for which there exist
Turing machines which ‘check’ the relations in the structure. More formally,
a structure A = (A, R1, . . . Rn) is said to be computable if:

• the domain A of A is recognized by a Turing machine;

• for each relation Ri in A, there is a decision-making Turing machine
that, on input (a1, . . . , ari

), outputs true if (a1, . . . , ari
) ∈ Ri and false

otherwise.

When we say that A is recognized by a Turing machine, we mean that there
is a set of symbols I such that A is a recursively enumerable subset of I∗.
In fact, when we consider automatic presentations (see Section 2), we allow
a mapping from a subset of I∗ onto A; in this case we will also need an
automaton to check when two words in I∗ represent the same element of A. In
general, the way that elements of A are represented in I∗ is clearly important.

Examples of computable structures include rational vector spaces and
free groups (as well as many others). A restriction of this idea has also
been introduced, that of p-time structures. These are computable structures
for which the time complexity of each of the associated Turing machines is
polynomial; as an example take any recursive Boolean algebra. For more
information see [4] for example.

Khoussainov and Nerode have introduced [11] a very interesting restric-
tion of this general idea, to automatic structures, i.e. those structures whose
domain and relations can be checked by finite automata as opposed to Turing
machines. A structure isomorphic to an automatic structure is said to have
an automatic presentation. Given their nice algorithmic properties and the
diversity of natural examples of such structures, these have been of interest
in a variety of research areas.
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The general idea of using finite automata to read structures is not entirely
new; for example, in group theory, a group is said to be automatic if, when
we code elements of the group as strings of generators, there is a regular
subset L of the set of all strings of generators such that there are finite
automata to check multiplication of words in L by generators. This concept
was introduced in [6], motivated by work in hyperbolic manifolds as well as
a general interest in computing on groups. The considerable success of the
theory of automatic groups gives one motivation to have a general notion of
automatic structures.

However, there are other motivations for a general study of automatic
structures, most importantly, perhaps, the decidability properties that come
with finite automata. In particular, the first-order theory of an automatic
structure is decidable. Another motivation for the study of automatic pre-
sentations is that of extending some of the techniques of finite model theory
to infinite structures that have finite presentations; see [2, 3] for example.

One interesting result presented in [11] is that all finitely generated ab-
elian groups have automatic presentations. Some natural and important
questions follow from this:

• How far can this be extended - are there other groups with automatic
presentations?

• What are the necessary or sufficient conditions for a group to have an
automatic presentation?

• How does the class of groups with automatic presentations compare
with that of automatic groups?

These questions are the main incentive for the work presented here. We note
that, whilst an automatic group is finitely generated (this is essentially part of
the definition) a group with an automatic presentation need not be; however,
we will only be concerned with finitely generated groups in this paper and
we give a complete answer to these questions in that case (see Theorems 6.3
and 7.1 below). In particular, we show that a finitely generated group has
an automatic presentation if and only if it is virtually abelian, and hence
that a finitely generated group with an automatic presentation is necessarily
automatic (but the converse is false).
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2 Automatic Presentations

Intuitively, a structure has an automatic presentation if finite automata can
be constructed that read its domain and each of its relations, that is, a
structure has an automatic presentation if its domain can be represented by
a regular language such that each of its relations is also a regular language.

Before we present the formal definition, we need to introduce the idea of
a “convolution” (see, for example, [11]). Finite automata read words over an
alphabet; we need a systematic way of using finite automata to read tuples of
words of different lengths. Suppose, for example, we have the triple (bronze,
silver, gold); how are we going to make this into a form which can be read
by a finite automaton? It would seem somewhat unbalanced to represent
these linearly (say bronze silver gold), and, in fact, [2] shows this would
be overly restrictive. A better option is to arrange things so that the nth

letters of each word are read together (for each n). We begin by aligning the
letters vertically, filling the gaps in length with a padding symbol not in the
original alphabet; we use � here for this new symbol. In our example, we
have:

b r o n z e

s i l v e r

g o l d � �
We then associate together the nth letters of the words, that is, we make
new triples of the first, second, third letters, and so on. Our example then
becomes:

(b, s, g)(r, i, o)(o, l, l)(n, v, d)(z, e, �)(e, r, �). (1)

We now form the new alphabet

E3
� = ((E ∪ {�})× (E ∪ {�})× (E ∪ {�})) \ {(�, �, �)}.

Clearly the new form of the example in (1) is a word over the alphabet
E3

�. We shall say that a language of words such as (bronze, silver, gold)
is accepted by a finite automaton if the set of new forms of the words is
accepted by a finite automaton over E3

�.
Let I be an arbitary alphabet. Formally, we define the convolution of

(x1, x2, . . . , xn) ∈ (I∗)n, where xi = x1
i x

2
i . . . xpi

i (xj
i ∈ I), to be

conv(x1, . . . , xn) = (x̄1
1, x̄1

2, . . . , x̄1
n)(x̄2

1, x̄2
2, . . . , x̄2

n) . . . (x̄p
1, x̄p

2, . . . , x̄p
n),

where p = max{pi : 1 6 i 6 n} and, for some � /∈ I,

x̄j
i =

{
xj

i 1 6 j 6 pi

� pi < j 6 p
.
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We now have our definition of an automatic presentation:

Definition 2.1. A structure A = (A, R1, . . . Rn) has an automatic presenta-
tion (over an alphabet I) if

1. there is a language L over I and a map c : L → A such that c is
surjective;

2. L is accepted by a finite automaton over I;

3. L= = {conv(x, y) : c(x) = c(y), x, y ∈ L} is accepted by a finite
automaton over I2

�;

4. for each relation Ri in A, the language

LRi
= {conv(x1, . . . , xri

) : (c(x1), . . . , c(xri
)) ∈ Ri}

is accepted by a finite automaton over Iri

� .

The tuple (I, L, c, L=, (LRi
)16i6n) is called an automatic presentation

for A. The presentation is called injective if c is injective, and binary if
|I| = 2. At one extreme, it is clear that all structures with a finite domain
have an automatic presentation (as finite languages are regular); at the other,
we see that the domain of such a structure must be countable. These facts
will be implicitly assumed throughout.

An easy example of a structure with an automatic presentation is the
semigroup (N, +). The elements of N are coded over {0, 1} using their binary
notation, but in reverse order; we can allow extra 0’s for ease of exposition
(but see part 2 of Proposition 3.1 below). The standard method of adding
binary numbers then gives an automaton for checking addition in the semi-
group. The machine has two main states; it is in one state when nothing is
being carried in the calculation and the other state when 1 is being carried.

Other examples include:

• (Q, 6), the rational numbers under their natural order [11];

• ωn (n ∈ N) [11] (see also [5]);

• structures with only unary relations [11];

• vector spaces over finite fields [11].
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3 Properties

In this section we list some properties of structures with automatic presen-
tations. We start with two useful facts from [2] and [11]:

Proposition 3.1. Let A be a structure with an automatic presentation; then:

1. A has a binary automatic presentation.

2. A has an injective automatic presentation.

Remark 3.2. The proof that, if we have an automatic presentation

(I, L, c, L=, (LRi
)16i6n),

then we have an injective automatic presentation (J, K, c′, K=, (KRi
)16i6n),

uses the same alphabet and constructs a subset K of L; so we may put the
two parts of Proposition 3.1 together and say that every structure with an
automatic presentation has an injective binary automatic presentation.

A common (and useful) way of working with finite automata is to use predi-
cate calculus. This arises from the closure of regular languages under (finite)
union and intersection, complementation, and the definability of the existen-
tial and universal quantifiers. As such, if R1 and R2 are relations recognised
by finite automata, then R1 ∧ R2, R1 ∨ R2, ¬R1, ∃x(R1) and ∀x(R1) are
also all recognised by finite automata; see [6] for details. The proofs are all
constructive, which gives the following results from [11]:

Theorem 3.3. Let A be a structure with an automatic presentation; then:

1. if P is a first-order definable relation on A then P is decidable;

2. the first-order theory of A is decidable.

Remark 3.4. For future reference we note that the point about the proof of
Theorem 3.3 is that, if A = (A, R1, . . . Rn) is a structure with an automatic
presentation, then any relation S built from the Ri using first order constructs
is also recognizable by a finite automaton; as a result, we would also have an
automatic presentation for the structure B = (A, R1, . . . Rn, S).

Theorem 3.3 has been extended further. Let ∃∞ be the quantifier “there
exist infinitely many” and let FO denote first-order logic; we then have [2, 3]:

Theorem 3.5. Let A be a structure with an automatic presentation; then
the FO(∃∞) theory of A is decidable.

6



For more information about decidability results (and model-theoretic results
in general) see [2].

We now come to “interpretations”. Let A and B be structures; then an
(n-dimensional) interpretation I of B in A consists of:

• a formula δI(x1, . . . , xn) in A; this is called the domain formula of I;

• for each unnested atomic formula φ(y1, . . . , ym) of B, a formula

φI(x̄1, . . . , x̄m)

of A, where the x̄i are disjoint n-tuples of distinct variables; these are
called the defining formulae of I;

• a surjective map fI : δI(A
n) → B; this is called the coordinate map

of I.

In addition we insist that, for all unnested atomic formulae of A and all
āi ∈ δI(A

n), we have:

B |= φ(fI(ā1), . . . , fI(ām)) ⇔ A |= φI(ā1, . . . , ām).

If there is an interpretation of B in A then we will say that B is interpretable
in A and that B is a subinterpretation of A. If we fix a particular logic L,
then we get L-interpretations. See [10] for more details.

The following model-theoretic result [2, 3], as well as being useful in its
own right, has many interesting consequences:

Proposition 3.6. Let A be a structure and B be a structure with an auto-
matic presentation; if A is FO(∃ω)-interpretable in B, then A has an auto-
matic presentation.

Finally we note that it is demonstrated in [2] that a structure has an
automatic presentation if and only if it is interpretable in the structure

M(Σ) = (Σ∗,�, (Ra)a∈Σ, el)

where:

• Ra(x, y) if xa = y;

• x � y if x is a prefix of y;

• el(x, y) if |x| = |y|.
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4 Results on Groups

Before presenting our results on groups with automatic presentations, it is
worth commenting on the form of the structure for groups.

We asserted above that groups could be considered as having structure
(G, ◦, e, −1). However, it is common to view groups just as having a single
binary operation, and so we would have a structure (G, ◦). Which is correct?

In a sense, the answer depends on how you are considering the structures.
As noted in [10], the main difference is that of substructures: the substruc-
tures of groups as structures (G, ◦) need only be subsemigroups, whereas,
with (G, ◦, e, −1), they must be subgroups. For our purposes, we needn’t
be too worried by this distinction. It is clear that, for the structure (G, ◦),
the properties of having an identity and having inverses are both first-order
definable; so, if a group as a structure (G, ◦) has an automatic presentation,
then (as in Remark 3.4) this same presentation may be expanded to one for
the structure (G, ◦, e, −1). With this in mind, we need only concentrate on
(G, ◦) in what follows.

The following result from [11] sums up much of what is already known
concerning finitely generated groups with automatic presentations:

Proposition 4.1. All finitely generated abelian groups have automatic pre-
sentations.

We now need another definition. Let χ be a group property (such as being
abelian); then a group G is said to be virtually (or almost) χ if G contains a
subgroup of finite index with the property χ. We then have:

Theorem 4.2. All finitely generated virtually abelian groups have an auto-
matic presentation.

Proof. Let G be a finitely generated group with an abelian subgroup A of
finite index; then G is FO-interpretable in A (see [1] for example). The result
follows from Propositions 3.6 and 4.1.

Remark 4.3. We make a note before continuing. Suppose that G is a
finitely generated virtually abelian group, so that G has an abelian subgroup
A of finite index. Then A is finitely generated and hence is a direct product
C1×C2×. . . Ck of cyclic groups. If we consider the subgroup B of A generated
by the infinite groups Ci (i.e. ignore the Ci which are finite cyclic groups),
then B has finite index in A, and hence has finite index in G.

Now B is a free abelian group isomorphic to Zn = Z × Z × . . . × Z for
some n; so every finitely generated virtually abelian group has a free abelian
subgroup of finite index. Moreover, if H is a subgroup of finite index in a
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group G, then there is a normal subgroup N of G contained in H with N
also of finite index in G; as a subgroup of a free abelian group is free abelian,
we have that every finitely generated virtually abelian group has a normal
free abelian subgroup of finite index.

Remark 4.4. It is possible to prove Theorem 4.2 from first principles by
constructing appropriate automata. We give an outline of the proof here.

Let G be a finitely generated virtually abelian group. As in Remark 4.3,
let A = 〈x1, x2, . . . , xn〉 be a normal subgroup of G of finite index isomorphic
to Zn and then let T = {t1, t2, . . . , tk} be a set of coset representatives for
A in G. The coding of the elements of G is fairly straightforward: we have
a symbol tj for the coset representative, a symbol for an n-tuple of +’s and
−’s, and then symbols for n-tuples of 1’s and 0’s.

The point is that any element g of G can be expressed in the form tja
with a ∈ A, and then a can be written in the form xε1m1

1 xε2m2
2 . . . xεnmn

n with
εi ∈ {1,−1} and mi ∈ N (if mi = 0 we take εi = 1). We then represent g
as tj (ε1, ε2, . . . , εn) conv(m1, m2, . . . ,mn), where mi is the representation of
mi in reverse order binary notation. Since A is normal in G, each xitj is of
the form tjx

u1,i,j

1 x
u2,i,j

2 . . . x
un,i,j
n for some uh,i,j ∈ Z; so multiplication in G is

given by

tix
a1
1 . . . xan

n .tjx
b1
1 . . . xbn

n = titjx
a′
1

1 . . . xa′
n

n xb1
1 . . . xbn

n

= titjx
a′
1+b1

1 . . . xa′
n+bn

n

where

a′i =
n∑

k=1

akui,k,j.

Now let tk and c1, c2, . . . , cn be such that titj = tkx
c1
1 . . . xcn

n ; then

titjx
a′
1+b1

1 . . . xa′
n+bn

n = (tkx
c1
1 . . . xcn

n )x
a′
1+b1

1 . . . xa′
n+bn

n

= tkx
a′
1+b1+c1

1 . . . xa′
n+bn+cn

n

Given all this, we first create different transitions in our automaton for
each possible pair of ti’s, and then, from these different transitions, for each
possible combination of + and −s. Then, based on the binary addition of
n-tuples and taking into account the u1,i,j and ci, we construct the rest of the
automaton. The states, roughly, represent the current value of the carry in
the addition. As the total amount carried at each stage is bounded by n− 1
we have a finite automaton.
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5 Growth

Currently there are not many techniques for showing that a structure does
not have an automatic presentation. One such method follows from decid-
ability: if a structure has undecidable FO(∃ω) theory then it doesn’t have an
automatic presentation; for further conditions see [12, 14, 17] for example.

Another important method involves “growth”. Let A be a structure
with domain A and an injective automatic presentation, and fix one such
presentation; then, for x ∈ A, let l(x) denote the length of the coding of x in
this presentation. We have the following result from [2]:

Theorem 5.1. Let f : An → A be a first-order definable function on A; then
there exists a constant N such that

∀a ∈ An, l(f(a)) 6 max{l(a0), . . . , l(an−1)}+ N.

In particular, this result has the following consequence for groups:

Corollary 5.2. Let G be a group with an injective automatic presentation;
then there is a constant N such that

g0g1 = g2 ⇒ l(g2) 6 max{l(g0), l(g1)}+ N

for all g0, g1, g2 ∈ G.

There is a corresponding notion of growth in group theory. Let G be
a group with a finite generating set ∆, and assume that ∆ is closed under
taking inverses. Now let δ(g) be the minimum n ∈ N such that

g = a1a2 . . . an, ai ∈ ∆.

The growth function of G is then defined to be

γ(n) = |{g ∈ G : δ(g) 6 n}|.

The nature of this function (in the sense of its being bounded above by a
polynomial function, below by an exponential function, or neither of these),
is independent of which particular finite generating set we choose. As such,
the nature of the growth function (in this sense) is a property solely of the
group (as opposed to the group together with a generating set). In the three
cases we have mentioned, the group is said to have (respectively) polynomial
growth, exponential growth or intermediate growth; see [8] for a survey on
growth in groups. We now prove the following result:

10



Theorem 5.3. If a group G has an automatic presentation then G has poly-
nomial growth.

Before we do this, we first prove a useful proposition:

Proposition 5.4. With notation as above, let R = max{l(a) : a ∈ ∆}; then
there is a constant N such that, for all m > 1, we have

max{l(a1 . . . am) : ai ∈ ∆} 6 R + dlog2 meN.

Proof. Let N be the constant of Corollary 5.2. We proceed by induction
on m.

We first consider the case m = 1. Here we clearly have

max{l(a1) : a1 ∈ ∆} = R = R + dlog2 1eN.

Now assume the result holds for 1 6 m 6 k. We split our consideration into
two cases.

Case one: k is odd, say k = 2r − 1. Then, using Corollary 5.2, we have

max{l(a1 . . . ak+1) : ai ∈ ∆} = max{l(a1 . . . a2r) : ai ∈ ∆}
6 max{l(a1 . . . ar), l(ar+1 . . . a2r) : ai ∈ ∆}+ N

6 max{R + dlog2 reN, R + dlog2 reN}+ N

= R + dlog2 reN + N

= R + (dlog2 r + 1e)N
= R + dlog2 r + log2 2eN
= R + dlog2 2reN
= R + dlog2(k + 1)eN

as required.

Case two: k is even, say k = 2r. This time we have

max{l(a1 . . . ak+1) : ai ∈ ∆} = max{l(a1 . . . a2r+1) : ai ∈ ∆}
6 max{l(a1 . . . ar), l(ar+1 . . . a2r+1) : ai ∈ ∆}+ N

6 max{R + dlog2 reN, R + dlog2(r + 1)eN}+ N

= R + dlog2(r + 1)eN + N.

Now, we can’t proceed quite as easily as before, as we will only reach k + 2;
we split our consideration of this cases into two subcases.
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Subcase one: r is not of the form 2x with x > 1.

The function dlog2 ye on {y ∈ N : y > 0} takes the same value on y and y+1
except when y is of the form 2x; so, if r 6= 2x, then dlog2(r + 1)e = dlog2 re.
This gives

R + dlog2(r + 1)eN + N = R + dlog2 reN + N
= R + dlog2 r + 1eN
= R + dlog2 r + log2 2eN
= R + dlog2 2reN
= R + dlog2(2r + 1)eN
= R + dlog2(k + 1)eN.

Subcase two: r = 2x (x > 1).

Note first that

dlog2(k + 1)e = dlog2(2r + 1)e
= dlog2(2.2

x + 1)e
= dlog2(2

x+1 + 1)e
= x + 2

Now

R + dlog2(r + 1)eN + N = R + dlog2(r + 1) + 1eN
= R + dlog2(r + 1) + log2 2eN
= R + dlog2 2(r + 1)eN
= R + dlog2 2(2x + 1)eN
= R + dlog2(2

x+1 + 2)eN
= R + (x + 2)N

= R + dlog2(k + 1)eN

as required.

Given Proposition 5.4, we can now prove Theorem 5.3:

Proof. By Remark 3.2 we may assume that the presentation for G is injective
and binary. Then, as

max{l(a1 . . . am) : ai ∈ ∆} 6 R + dlog2 meN
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by Proposition 5.4, the number of possible codes for words of the form
a1 . . . am is

2R+dlog2 meN = 2R(2dlog2 me)N

6 2R(2log2 m+1)N

= 2R2N(2log2 m)N

= kmN , where k = 2R2N is a constant.

So we have at most kmN possible elements g in G with δ(g) = m; as a result,
we have

γ(n) = |{g ∈ G : δ(g) 6 n}|
6 k.1N + k.2N + . . . + k.nN

6 k.nN+1.

So G has polynomial growth as required.
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6 Classification

We now quote two substantial known theorems which enable us to give a
complete classification as to which finitely generated groups have an auto-
matic presentation (to some extent solving a problem of [13]). We first need
some more definitions.

If G is a group and if H and K are subsets of G, then we let [H, K] denote
the set of all elements of G of the form h−1k−1hk with h ∈ H and k ∈ K.
If H and K are subgroups of G, then [H, K] is a subgroup of G and if, in
addition, H and K are normal in G, then [H, K] is a normal subgroup of G.
We now define the following chains of normal subgroups of G:

G(0) = G; G(1) = [G, G]; G(2) = [G(1), G(1)];
G(3) = [G(2), G(2)]; . . . . . .

γ0(G) = G; γ1(G) = [γ0(G), G]; γ2(G) = [γ1(G), G];
γ3(G) = [γ2(G), G]; . . . . . .

Note that G > G(1) > G(2) > . . . and that G > γ1(G) > γ2(G) > . . ..
A group G is said to be solvable if G(r) = {e} for some r ∈ N and nilpotent if
γr(G) = {e} for some r ∈ N; in the first case we call r the derived length of G
and, in the second case, r is called the nilpotency class of G. Any nilpotent
group is necessarily solvable but the converse is false.

Given this, we can now state Gromov’s classification [9] of groups with
polynomial growth:

Theorem 6.1. If a finitely generated group has polynomial growth then it is
virtually nilpotent.

Eršov showed [7] that a nilpotent group has decidable first order theory if
and only if it is virtually abelian. This was generalized by Romanovskii [16]
to virtually polyclic groups and then by Noskov [15], who showed that a
virtually solvable group has decidable first order theory if and only if it is
virtually abelian. The fact we need here is the following intermediate result:

Theorem 6.2. Let G be a finitely generated virtually nilpotent group with
decidable first order theory; then G is virtually abelian.

These two results enable us to prove:

Theorem 6.3 (Classification). Let G be a finitely generated group; then
G has an automatic presentation if and only if G is virtually abelian.
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Proof. Assume that G has an automatic presentation. By Theorem 5.3,
G has polynomial growth, and so, by Theorem 6.1, G is virtually nilpotent.
By Theorem 3.3, G has decidable first-order theory, and so, by Theorem 6.2,
G is virtually abelian.

The converse follows from Theorem 4.2.
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7 Automatic Groups

The theory of automatic groups (see [6] for example) was mentioned in the
introduction as one of the motivations for studying structures with automatic
presentations. Naturally the connections between the two notions have been
remarked upon elsewhere; see [3] for example. We make some further com-
ments on the relationship between these concepts here.

Given a finitely generated group (G, ◦) with generators a1, . . . , an, we
form a new structure (G, R1, . . . , Rn) where Ri(g, h) if and only if g ◦ai = h;
this new structure is called the Cayley graph of G.

It is remarked in [11] that [6], in effect, proves that, if G is a finitely
generated abelian group, then the Cayley graph of G has an automatic pre-
sentation. Proposition 4.1 is somewhat stronger, taking (as it does) full
multiplication rather than just multiplication by generators.

The results described earlier bear this out, although it is not as clear cut
as this. In fact, [6] proves more than the fact that the Cayley graph of G has
an automatic presentation: it proves that it has an automatic presentation
with a predetermined language. The point is that, in [6], we don’t have the
freedom to choose any appropriate coding but we must use a set of semigroup
generators for G (i.e. a subset of G that generates G as a semigroup) and
then represent the elements of G as words in these generators.

This distinction is significant. Let H be the Heisenberg group, i.e. the
group of matrices 

 1 x z
0 1 y
0 0 1

 : x, y, z ∈ Z

 .

It is noted in [3] that the Cayley graph of H has an automatic presentation,
but that it is not an automatic group. As H is not virtually abelian, it also
does not have an automatic presentation (as a group) by Theorem 6.3.

Considering only finitely generated groups, let AutoPres represent the
class of groups with automatic presentations, Automatic represent the class
of automatic groups, and CayleyAutoPres represent the class of groups
whose Cayley graphs have automatic presentations. We have

Theorem 7.1. AutoPres ( Automatic ( CayleyAutoPres.

Proof. All virtually abelian groups are automatic, but there are plenty of
groups (such as free groups) that are automatic but do not have automatic
presentations; this gives the first (proper) inclusion. The automata required
for automatic groups give automatic presentations for the Cayley graphs of
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these groups; however, the Cayley graph of the Heisenberg group has an
automatic presentation, but the Heisenberg group is not automatic. This
gives the second (proper) inclusion.
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