Semantic Web Services Composition via
Planning as Model Checking

Hong Qing Yu and Stephan Reiff-Marganiec
{hqy1,srm13}@le.ac.uk

Department of Computer Science, University of Leicester, UK

Abstract. The ability to automatically compose services is one essen-
tial aspect of service oriented architecture. It can reduce time and cost
in development and maintenance of complex services and software sys-
tems. We are developing a technique to realize this aim by combining the
“planning as model checking” approach with Semantic Web Service con-
cepts. We have modified a current planning as model checking algorithm
by using a bounded on-the-fly depth-first search algorithm. The result
allows for service execution plans to be generated on the fly. One of the
challenges is to model a web service as a state transition system. The
approach will be suitable in the context of ontologies, but for now we are
simply using dictionaries for mapping operations and parameters. The
planning as model checking approach forms part of a larger framework
to automatically compose services, which addresses several drawbacks of
current composition approaches.

1 Introduction

Since service oriented architecture (SoA) was introduced in the 1990s, it be-
came an important solution to realize distributed application via standard web
protocols. An implementation of SoA is Web Services (WS). WS are widely
adopted; they are based on XML standards that include WSDL, SOAP and
UDDI. However, current WS technologies still have some problems, notably a
lack of understanding of the purpose of service (i.e. its semantics) by machines,
difficulties in describing workflow structures and difficulties in composition of
Web Services to achieve a task which cannot be handled by a single WS. Under
this background, on the one hand, researchers developed some new standards.
BPEL is an example allowing developers to tackle some of these problems. On
the other hand, WS description were enriched with semantics leading to Seman-
tic Web Service (SWS). SWS are intended to enable the information regarding
the purpose of the service to be understood by machines. At the same time dif-
ferent WS ontology languages have been developed, such as OWL-S, WSMO,
and IRS. However, automatic composition is still a main issue of SWS research.

To achieve this aspect, many techniques have been proposed recently. Usually
they are based on Al planning techniques. In this paper, we are going to illustrate
a technique called planning as model checking to deal with this challenge.

The rest of this paper is organized as follows. In section 2, we give a real
world composition scenario which will be used as case study throughout the
paper. The third section will list 9 requirements for designing a high quality
composition framework. The forth section introduces our process of modelling
semantic web services in a way suitable for planning as model checking. In the
fifth section, we explain the planning as model checking technique and illustrate
the adapted planning algorithm. In the sixth section, we provide an overview of
the composition framework. Then we discuss some related research work. Finally,
we present a conclusion and our future work plan.

2 Case study

Our real world scenario consists of 6 services representing parts of an online
TV shopping case study. Figure 1 shows the 6 services used in the case study:
computer location service (WS1), TV information (WS2), TV shops (WS3),
delivery (WS4), insurance (WS5) and TV licence (WS6). WSI is the service
which can locate the city of an IP address. WS2 helps people to enquire about
all kinds of information regarding TV sets. WS3 is a TV shop chain with local
branches that handle requests based on customer locations. WS4 is a delivery
service. WS5 shows an online insurance company. WS6 is the TV licence service.

Figure 1 tells that a user (my mum) wants to buy a TV from the Internet.
Her goal is to get the TV delivered and obtain insurance for it. In addition some
information is known: Mum knows the address of her home and the computer
knows its [P address. Figure 2 shows a smart portal application to find a solution
for the goal of obtaining the TV and insurance.

Using current technologies, to achieve this goal is a big challenge: the services
to be used need already be composed or a BPEL specification for the composition
is required. We will use this example in the rest of this paper to illustrate our
technique for tackling the automatic SWS composition.

3 Web Services Composition Quality

Web service composition approaches need to satisfy certain requirements in order
to provide guarantees for the quality of the compositions that they produce.
We consider the following 9 aspects paramount. Majithia et al. [MWGO03] have
identified some requirements that partly overlap with ours; we will comment on
the differences later.

Automation: Semantic Web Services composition needs to be fully automatic.
The complete composition framework should not require manual activities,
apart from specifying the goal and providing some initial data.

Correctness: Users can (and will) not tolerate unsuitable composite solution,
hence guarantees need to be provided that the composite service does indeed
achieve the user’s goal and works within the user’s constraints.

Input information

s~OMm ~ D

Goal

Services

WS 1=Computer Location i}": E

WS2=TV Information

WS3= TV Shop (S)
WS4 = Item delivery (D)
WS5= Insurance (l)

WS6= TV License

Fig. 1. TV shopping case study : the parts

WS1=Locate
wWs2= Information
WS6= TV License

WS3= TV set sell

wWsS4= |tem delivery

.®2 WS 5= Insurance

s~OM ~ D

Fig. 2. TV shopping case study : architecture

Fault handling: The composition process should produce fault tolerant solu-
tions, as there are no guarantees that every single registered service is always
available. If faults appear at any point during execution, there should be ways
to use other equivalent services to fix the problem or at least ensure that no
cost has occurred.

Reusability: Reuse is one of the main motivations behind SoA, so compos-
ite services should be made available for reuse. This requires producing an
abstract composite service description to be provided.

Composition mechanism: This mechanism needs to be able to find an as
simple as possible solution in an efficient manner.

Scalability: The composition approach should be scalable to a large number of
services.

Low level of skill required for users: There should be no assumptions about
the technical knowledge of users; it should be assumed that this is targeted
at lay end users.

User-specified optimization: The framework should allow users to specify
optimization criteria. For example, a user wants to find the cheapest solution
or one that only uses services in their own country.

System provided optimization: The framework should have abilities to se-
lect services based on reputation, or trust if such information is available.

As said, these are the basic requirements that we believe a complete auto-
matic services composition framework in semantic environment needs to satisfy.

[MWGO03] specifies similar requirements. However, we like to point out some
key differences. Firstly, [MWGO3] requires workflow granularity supporting
mechanisms to allow users to generate workflows of varying levels of granu-
larity. We believe this is not a dynamic way of composing web services. In our
opinion, the workflow should be decided at run time by the planning algorithm.
Secondly, we suggest correctness and high level of automation as the two most
important points, no such qualification has been provided. Finally, we believe
reusability to be essential, as we suggested that this is one of the core ideas from
SoA; [MWGO3] does not mention this aspect.

4 Modelling process

Planning as Model Checking technology is based on transition system model
checking, which models systems behaviours as a set of states. WS on the other
hand specify their behaviours by exchanging messages and usually the state of a
service is unknown. In order to use model checking techniques we have to convert
from a message based paradigm to a state oriented one. This can be achieved by
letting every single operation in the Web Service imply a state which essentially
encapsulates the change after executing the operation. However, for composition
purposes Web Services are more than just states: we also need to consider the
message flow, business role, service domain and quality requirements. Figure 3
is an overview model of a operation.

(Type, Role)

Input message (Parameters)

Communications

Output message (Parameters)

Fig.3. A WS Operation

In the following we will lay down basic definitions that finally allow us to
define the concepts of a “service”, “requirement” and “plan”; the former two
being input to the planning as model checking algorithms, the latter being the
result of the planning process.

We use precondition and postcondition with their usual meaning. Precondi-
tion is the condition that has to be satisfied before the invocation of the opera-
tion. The postcondition is the final condition that should be achieved after the
operation completes.

Model checking is based on ensuring that conditions hold for states; in the
planning context we want to ensure that certain conditions are achieved by a
service.

Definition 1 (State). A state o is a set of post conditions.

Ezxample 1. Locate web service’s state is "located’, TV set information web ser-
vice’s state is ’informed’, and delivery service’s state is ’delivered’: gjocation =
{located}, Tinformation = {informed} and ogelivery = {delivered}.

Note: start is a special state representing the empty set of preconditions.

Services interact by message exchange, the information carried by the mes-
sage is either the output of one service or the input for another. Information
carried is identified by parameter names, but also by the type and the domain
role that the parameters play. Hence we defined a message as follows:

Definition 2 (Message). A message is a tuple (P, Ts, Rs) with P being a set
of parameter names, Ts being a set of functions that map types T to parameters:
Ts = {t|Vp € P : t(p) — T} and Rs being a set of functions that map domain
roles R to parameters: Rs = {r|Vp € P : t(p) — R}

Ezample 2. The delivery service’s input message has one parameter which as-
signs string as type, and IP address as bussiness role . The output message also
has one parameter and its role is the location name and again the type is string:
(address, string, [PAddress) and (address, string, Location N ame)

An operation is the smallest observable unit of work that can occur in a
service. As we will see, operations form the cornerstone of plans.

Definition 3 (Operation). An operation is defined by a tuple (Pre, M, Moz,
St, Com, P, D and Q) where Pre is a (possibly empty) set of preconditions, M,
and My are the input and output message respectively. St is the state reached
after the operation has completed. Com describes the kinds of communication that
will appear during execution of the operation, P describes the business function
offered by the operation, which should be seen in the context of the Domain D.
Finally, Q gives the operation’s qualitative properties (non-functional attributes).

Services consist of operations and some internal logic which describes their
interaction protocols. However, for the purpose of this paper we work with a
simple definition of service, that ignores the interaction protocol.

Definition 4 (Service). A service S is a set of operations.

Having defined the concept of service, we can now place our attention on
defining the concept of requirement. The idea behind requirement is that it
models the information that the end-user provides.

Definition 5 (Initial State). The initial state is a tuple (D, P) with D being
a set of user data elements and P a set of pre conditions.

A Goal expresses what the user desires to achieve. In addition to simple goals,
we allow for conjunction and eventually to be used as combination operators in
a goal.

Definition 6 (Goal). A goal G is a combination of post conditions.

Definition 7 (Requirement). A Requirement R is a tuple (G, IS, D, Q) with
G being a goal and IS being the intital state. D and @ are the domain information
and quality requirements.

Ezxample 3. In our case, the goal is to obtain a TV set and get insurance for it,
the IS is start (i.e. no precondition), the domain is e-shopping, and Q could be
{English language, high security}, hence the requirement is:

({delivered, insured}, {start}, e—shopping, { Englishlanguage, highsecurity}).

Finally we define the concepts of plan and transition as a step in a plan.
Recall that the plan is the desired results of the planning step in the framework.

Definition 8 (Transition). A transition is a function: St x Os — St with St
being a set of states and Og an operation from a specific service: s.

Definition 9 (Plan). A plan is a labelled transition system, the labels are the
operations, nodes are states. Also, transitions can have a weights associated and
the transition system can be non-deterministic.

We also use quality, domain, purpose and communication to describe other
aspects of operations; here we only give informal definitions:

Quality describes the operation’s quality and it may include amongst others,
charge, security, privacy, time, rate, language and locations. In general, it is
seen as the mechanism to capture non-functional requirements.

Domain is the operation’s area of interest defined within a given taxonomy.

Purpose describes the operation’s aims, again within a given taxonomy.

Communication describes a message exchange protocol with service’s client
and other services.

We have used examples from our case study services to illustrate the defi-
nitions. For completeness we now provide models for all 6 services in our case
study using the graphical notation (Fig. 4).

Some of the definitions above might at a first glance look similar to those in
[MBEO3]; they are different and we will discuss this in more detail in section 7.3.

in (string Brand, double
S_size, siring Type, string
Location, string TV._license)

Min (string IP_address)

Confirm

Request
Mout (string Location) Mout (string Brand, string
Type, double S_size,

review, Colo_type)

Mout (string S_adress,
double value, double
TV_size)

Min (double value, string
C_address, string
Goods_type)

Min (string S_address
string Location, double
ize)

Confirm

Min (string C_address, string
Colo_type)

Confirm

Mout (date delivery_time,
double cost)

Mout (string reference) Mout (string

TV_license)

Fig. 4. Modelling 6 services in our case study

5 Planning as Model Checking

In general, model checking allows to validate a formal model of a system against a
logical specification. The model checking problem is described as given a Kripke
structure M = (S, R, L) that represents a finite-state concurrent system and a
temporal logic formula ¢ expressing some desired specification, find the set of all
s in S that satisfy ¢ : {s € S| M, s = ¢}. Traditionally, this technique is used
to verify the correctness of hardware circuits and network protocols, for further
details we refer the reader to literature on model checking, e.g. [CGP99,HOL99.

More recently, this idea has been used to deal with planning problems [FG99].
The key idea underlying this work is that planning problems should be solved

model-theoretically and planning domains are formalized as semantic models.
Properties of planning domains are formalized as temporal formulas. Planning
is done by verifying whether temporal formulas are true in a semantic model.
Meanwhile, [CRT98,DTV99] introduced three planning as model checking algo-
rithms addressing different level: ’the strong cyclic planning’, ’strong planning’
and 'weak planning’. The attribute refers to the solution: for a weak solution
there is at least one path in the plan reaching the goal, for strong solutions all
paths reach the goal; the strong cyclic plans allow all fair executions to reach a
solution, which allows for stepping back to (a) previous state(s).

However, the strong cyclic planning solution is not suitable in the web ser-
vices domain, due to allowing stepping back: in services we normally have created
some effect when a step is executed, some of which are world changing. In these
cases, we can only cancel the action which is usually achieved by a special cancel-
lation action that the service might offer. We decided to use the strong planning
algorithm as the basis for this work, as it seemed best to use the strongest so-
lution possible in the context. We modified the algorithm by changing the plan
direction from goal state to initial state and adding the semantics of operation
into the algorithm.

We discuss the modified algorithm in the following. P1 is the set of all op-
erations we encountered in the modelling services (we will show more detail in
section 6, when discussing the framework), P2 and K are empty at the start of
the algorithm. They will be used to store the relevant operations (i.e. those are
in the interesting domain) and all plans respectively.

Set P1, P2, K

Stack D = {}

int Depth=0, Bound = MAXDEPTH

Operation Oi=initial Operation

Goal Sgoal = Specification.goal

List condition = initial condition knowledge list
List parameter = initial parameter list

The start procedure fills the set of operations so that the planning algorithm
can search only those that are meaningful in the domain of the problem. It then
starts the model checking algorithm.

PROCEDURE start () {
D.push(0i);
FOR EACH Operation Op in P1 space{
IF Op.domain includes Spcification.domain THEN
P2.add (0p)
END IF
}
search ()

}

PROCEDURE search () {

IF (Depth >= bound) THEN
return
END IF
//We limit our searching depth to one that is requested
by the client or meaningful for the domain.
Depth++
Operation 0=D.top()
IF(D.S satisfy Sgoal) THEN
K=K+D
//1f we found stack D’S is equal to the goal, we
//will save this stack as a plan and continue to
//search another plans.
D.pop(Q)
Depth--
continue
END IF

Every operation that passes the transition test will be collected as a starting
point for the next search. Then, this operation’s states and output messages
will be added or removed or take the place of the original in the condition and
parameter lists (it is removed if the operation ”consumes” the state, added if it
is introduced and updated if it is changed but not consumed).

Operation M[]

M=TransitionTest (D)

int i=0

WHILE(M[i] '=EOF) DO
IF (D.includes(M[il)) THEN

continue

END IF
D.push(M[i])
condition.update(M[i].S)
Parameter.update (M[i] .Mout)
search()

0D

D.pop()

Depth--

The transition tests essentially establishes whether the operation can be exe-

cuted in the current state. We expect this test to become more complicated once
we add communication protocols to the services.

FUNCTION transitionTest (Operation 0){

int i=0
int j=0

Operation[] M
FOR EACH Operation Op in P2 {
Boolean f=true
IF (NOT condition.includes(0Op.Pre) THEN

f=false
END IF
IF (NOT Parameter.satisfy(Op.Message)) THEN
f=false
END IF
IF (f==true) THEN
M[§]1=P2[i]
j++
END IF
i++
}
return M

Old refer to a state that we have encountered before

Fig. 5. Results of running our Planning as Model Checking algorithm

In our case study, we obtain the result shown in Fig. 5. There are two plans
that can achieve our defined goal, namely: S - 1 —-2 -3 -4 —5and S —
1—-2—-3—-5—4.

6 Overview of composition framework

6.1 SWSC framework

The algorithm forms a small part of the overall framework for WS composition.
While this paper concentrates on the modelling and the algorithm, we want to
use this section to place these in their context. This framework has four phases
as shown in Fig. 6.

Phase 1 specifies the planning goal (the domain of interest, the goal and the
bound for the search depth) and describes initial knowledge about the client (ini-
tial input message and initial states) as input for the next phase. The condition
list and parameter list are initialized.

Phase 2 is the model extraction step. We automatically select web services
to build our plan search space from our repository. The repository stores web
services’ domain, ontology type and web addresses. We can then capture the web
services information through their published ontology and map the concepts to
a common ontology (that is, our framework is not dependant on a particular
ontology). The details about a web service are extracted automatically and cast
into our model. The well modelled web services are prepared for phase 3.

Phase 3 now can run our core algorithm to search for plans. At this step, we
might get a set of suitable plans.

Phase 4 is the physical composition step. Firstly, we allow clients to choose
the best plan (future work will use non-functional properties to identify this
automatically). We then generate an executable plan (e.g.in BPEL), but we
will monitor the execution and in case of failure will automatically revise the
executable plan based on alternatives available from the planning in step 3. Note
that we might encounter situation where no suitable plan can be found: this is
reported to the users.

6.2 Evaluation

With respect to the contents mentioned in section 3, this framework achieves
the following requirements.

1. High degree of automation: the user only needs to provide an initial specifi-
cation, the rest of the work is performed automatically.

2. High degree of correctness: the possible plans all stem from a process that
guarantees correctness by construction. Further, execution is monitored and
hence allows for correcting solutions when services become unavailable by
drawing on alternative plans.

3. Reusability is high: after obtaining the plans, these are modelled as compos-
ite services and added to the repositories. This enables plans to be reused in
the future, either as they stand or as part of further compositions.

4. Low level of skill required for users: our requirement specification language
is very simple to use, it only requires basic knowledge of composition goal,
initial parameters, numbers of services and quality.

5. User-specified optimization criteria: This framework allows users to specify
priorities and express their desired criteria through non-functional attributes.

Phase 1 : Specification
\ Specify the Planning Goal |

[Provide the initial situation |

!

Phase 2 : Model extraction S Repositor:
|Se|ect WS which in the plan domain r/

[Extract WS models |-\

l Ontologies

1

| Phase 3 : Planning

!

Phase 4 : Physical Composition & Execution

\ Selection |

[Generation |

\ Execution |

!

Fig. 6. Our overview framework

7 Related work

In 2003, a preliminary composition framework was introduced by Sycata [SPAS03],
which built on AI planning technology. However, it is a basic result stemming
from early research on combining Al planning with Semantic Web Services to
solve automatic composition problems. It includes two components: The DAML-

S Matchmaker that is in charge of registering services and selecting the proper
services and the DAML-S Virtual Machine to find the workflow solution. Since
the composition mechanism is based on classical Al planning theories, the plan-
ning is focussed on determining web services states. There is no mechanism for
handling faults. Also, operations step in the background, despite being the really
observable entity in service orieneted computing.

Since, some related work has been done by different groups using different
markup languages, logical languages, planning systems and algorithms. However,
the basic idea is to introduce AI planning to address the problem of automatic
web services composition. There are three typical directions and these research
works as we will show next.

7.1 Backward STRIPS-style planner based on DAML-S

This framework was developed by Sheshagiri in 2003 [SF03]. It uses STRIPS-
style services to compose a plan, which gives the goal and a set of basic services.
The backward-chaining algorithm is used. The process starts from converting the
DAML-S ServiceModel descriptions of services into Verb-Subject-Object (VSO)
triples. Then, they write a set of rules and queries that transform services en-
coded as VSO triples into a set of facts that form the planning operator. The
planner applies two steps repeatedly until none of the services satisfy any of the

goals. The first step is to find services that satisfy the existing goal and add
them to the plan. The second step is to store all the operators’ inputs and pre-
conditions into step 1’s set of goals. If all outstanding goals are external inputs,
then composition is successful. As a result, a simple graphical workflow can be
generated.

The weakness is that it assumes there always exists a service which can satisfy
a given goal. Moreover, all the output artifacts produced during execution are
desired by developers, hence it addresses low level aspects. This framework also
suffers when dealing with a large number of web service for composition, because
there is no method to adjust to different domains.

7.2 Integrating SHOP2 HTN planning system with OWL-S

Another framework [SP04] integrates OWL-S with the SHOP2 HTN planning
system. The core process is to encode the OWL-S Process Models as SHOP2
domain. After encoding, the SHOP2 HTN planning system will perform the
planning tasks. Comparing SHOP2 HTN planner to our requirements, on the
one hand, we can see that it is better than the first two planning systems. First,
SHOP2 includes the problem the domain in the planning problem definition.
Secondly, it provides some rules of automatically translating OWL-S to SHOP2
domain. Finally, the HTN planning provides natural places for human interven-
tion at plan time. On the other hand, it still has some shortcomings. Firstly, the
algorithm does not allow for complicated preconditions, which naturally might
arise in web services: one service might depend on the output of several others.
Secondly, it is assumed that all services will be available at anytime. Finally,
user-specified optimization criteria are not considered.

7.3 The WebDG framework

[MBEO3] presents another approach for composing web services technology
based on the semantic web. The WebDG web services composition framework
proposes an approach for automatic Services Composition based on nodes on-
tology.

The WebDG defines composability rules such as Mode Composability, Mes-
sage Composability, Operation semantic Composability, Qualitative Compos-
ability and Composition soundness. There are four phases in this framework.
Firstly, CSSL (Composite Service Specification Language) describes the specifi-
cation of a composite service scope. The CSSL is a WSDL-like language defined
by WebDG framework. Secondly, the Matchmaker is finding the composition
plan based on Composability Rules. Thirdly, the Selection phase decides on
a users desired plan dependent on QoC (Quality of Composition) parameters
which are defined in the clients’ CSSL. Finally, an optional detailed description
of a composite service will be generated. The three important features of this
generation are that it can be customized, extended and reused. In addition, it
gives every single message, operation and Web Service a purpose and a category
definition. Thus, the scalability is dramatically increased.

However, the obvious weakness is that the user should have rich knowledge
about XML, specification and low-level programming. Furthermore, the degree
of fault-tolerance is still low because there is no chance to replace unavailable
services.

Also, their definitions rely on their nodes ontology language, that is there
work is bound to a specific ontology language — our approach does not rely on a
specific ontology language.

More crucially, WebDG use CSSL language as specification language; hence
they actually express the workflow in a BPEL like language. The matchmaker is
then used to find services whose semantic definitions satisfy this CSSL specifica-
tion. This is fundamentally different to our work, which tries not to find services
for a specific task, but rather to establish the workflow automatically.

8 Future work and conclusion

In this paper, we use a real world example to propose an overview basic frame-
work structure and we focused on modelling services and presenting our core
planning as model checking algorithm. It uses a bounded On-The-Fly Depth-
First Search technique which has advantages including being independent of
semantic ontology languages, simple goal specification, generation of executable
plans, high scalability and reusability. However, in our first version of the algo-
rithm implementation stage, we only deal with simple goal specifications.

In the future work, on the one hand we will continue to complete and enhance
our framework. On the other hand we will make our goal specification language
more flexible to specify client’s side goal request.

References

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking.
The MIT Press, Cambridge, Massachusetts, London, England, 1999.

[CRT98] A. Cimatti, M. Roveri, and P. Traverso. Strong planning in non-deterministic
domains via model checking. In Proc. of AIPS98, 1998.

[DTV99] Marco Daniele, Paolo Traverso, and Moshe Y. Vardi. Strong cyclic planning
revisited. In Proc. 5th European Conference on Planning (ECP ’99), 1999.

[FG99] P. Traverso F. Giunchiglia. Planning as model checking. In Proc. 5th Furo-
pean Conference on Planning (ECP ’99), 1999.

[HOL99] Gerard J. HOLZMANN. Software model checking. Engineering Theories of
Software Construction, 1999.

[MBE03] Brahim Medjahed, Athman Bouguettaya, and Ahmed K. Elmagarmid. Com-
posing web services on the semantic web. Springer-Verlag, September 2003.

[MWGO03] Shalil Majithia, David W. Walker, and W.A. Gray. A framework for auto-
mated service composition in service-oriented architectures. Cardiff School
of Computer Science, Cardiff University, UK, 2003.

[SF03] Sheshangiri and T. Finin. A planner for composing service described in
daml-s. International Conference on Automated Planning and Scheduling,
2003.

[SP04] Evren Sirin and Bijan Parsia. Planning for semantic web services. University
of Maryland, 2004.

[SPAS03] Katia P. Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen Srini-
vasan. Automated discovery, interaction and composition of semantic web
services. Web Semantics, December 2003.

