
A Reversible Process Calculus and the Modelling

of the ERK Signalling Pathway

Iain Phillips Irek Ulidowski Shoji Yuen

Abstract

We introduce a reversible process calculus with a new feature of exe-

cution control that allows us to change the direction and pattern of com-

putation. This feature allows us to model a variety of modes of reverse

computation, ranging from strict backtracking to reversing which respects

causal ordering of events, and even reversing which violates causal order-

ing. The SOS rules that define the operators of the new calculus employ

communication keys to handle communication correctly and key identi-

fiers to control execution.

As an application of our calculus, we model the ERK signalling path-

way which delivers mitogenic and differentiation signals from the mem-

brane of a cell to its nucleus. The proteins participating in the pathway

are represented by reversible processes in such a way that the pathway’s

bio-chemical reactions are simply interactions between the processes.

1 Introduction

Reversing computation of a concurrent system poses a number of conceptual
and technical questions. How is the forward and reverse computation performed
and controlled? When reversing, in what order are computation steps undone?
We answer the last question first. Consider a computation where the event a
causes the event b, written a < b, and the event c occurs at another location
independently of a and b. The three traces of this computation that preserve
causality are abc, acb and cab: note that a always precedes b. There are several
conceptually different ways of undoing these events. Backtracking is undoing in
precisely the reverse order in which they happened. So, undo b undo c undo a
is a backtrack of acb.

Reversing is a more general form of undoing: here events can be undone
in any order as long as causality is preserved, meaning that causes cannot be
undone before effects. For example, undo c undo b undo a is a reversal of
acb for a, b and c as defined above. However, and quite surprisingly, there
are situations where events happen, or are undone, out of causal order. The
creation and breaking of molecular bonds between the proteins involved in the
ERK signalling pathway described in Section 3 is a good example. Simplifying,
let us assume that the creation of molecular bonds is represented by events a, b, c

1

where, as above, a < b and c is independent of a and b. In the ERK pathway,
the molecular bonds are broken in the following order: undo a undo b undo c,
which seems to undo the cause a before the effect b. Similarly, an execution of
multi-threaded programs under weak memory models or under the out-of-order
regime may result in traces which contradict program (thread) order; this is
a result of well-known hardware or compiler optimisations. In this paper we
propose a reversible process calculus in which we can model reversibility and
out-of-order computation. To the best of our knowledge this is the first such
calculus.

We return to the question of how to control the direction of computation.
Reversible process calculi RCCS [7] and CCS with communication Keys (CCSK)
[15, 16] use a memory with a history of past computation and communication
keys, respectively, to reverse computation so that causality is preserved. Re-
versible systems modelled in RCCS and CCSK choose the direction of compu-
tation spontaneously. When an execution of a fault-tolerant system encounters
an error, the system recovers by undoing execution to a state where the error
can be eliminated. The instruction when and how far to reverse is a part of
the system’s software and such reversibility control mechanism can be modelled
by the rollback construct of the higher-order π-calculus [10]. In this paper we
propose a different and more expressive mechanism for controlling reversibil-
ity. Its operational formulation and usefulness compares favourably with that
of the rollback construct, and it allows us to model additionally out-of-order
forward and reverse computation which we believe has not been done before in
the process calculi setting.

Our calculus is an extension of CCSK [15, 16], a reversible process calculus
based on Milner’s CCS [13], with prefixing by multisets of actions and with
an execution control mechanism (controllers). The generalised prefixing gives
us the ability to represent a loose relationship between events of out-of-order
computation and, more specifically, it allows us to model more faithfully the
structure and reactions of bio-chemical molecules. This form of prefixing was
previously employed in [9]. Controllers permit us to manage the pattern and
the direction of computation and together with the multiset prefixing they are
able to model out-of-order computation (note that weaker forms of prefixing are
not sufficient). It is a different form of the rollback construct of the higher-order
π calculus [10].

Processes and controllers are quite strongly contrasted: processes (without
controllers) can compute freely either forwards or in reverse, whereas controllers
can only compute forwards (even when the process under control is reversing).
We envisage a wide variety of uses for controllers, ranging from handling error
recovery to providing the main focus of the computation, as in the bio-chemical
example we present later.

We give SOS rules for the operators of our calculus in Section 2. The rules
for reversing computation are simply symmetric versions of the forward rules. In
order to manage correctly both communication and the reversing of communica-
tion we employ communication keys [15, 16]. The new notion of key identifiers is
introduced to mark the actions of processes that are to be performed or undone,

thus giving us the ability not only to reverse specific past actions, as achieved
by the rollback [10], but also to specify which forward action to compute and
when to compute them. In this way, we achieve a more general mechanism for
controlling computation. To illustrate this, consider a process that can perform
actions a and b in parallel. We can define a controller that forces b to execute al-
ways after a, effectively setting a as the cause of b. In the standard setting, this
means that reversing a must be proceeded by undoing b. However, our control
mechanism gives the ability to reverse a and b ‘out of order’: first a and then
b. Such patterns of computation, seemingly breaking the causal relationships
between actions, are common in the bio-chemical setting as can be seen in our
model of the ERK signalling pathway.

The usefulness of the execution control mechanism in exhibited in several
examples. In Section 2.2 we consider the modelling of long-running transactions
with compensations and we re-work the example from [10] of a system with
complex causal dependencies between executing and reversing communications.
The first example shows the need for the new key identifiers, whereas in the
second example communication keys alone suffice. The second part of the paper
(Section 3) is devoted solely to the modelling of the ERK signalling pathway [5,
20], which delivers mitogenic and differentiation signals from the membrane of
a cell to its nucleus, and how it is regulated by RKIP proteins. There, the
execution control mechanism and prefixing with multisets of actions play a vital
rôle.

The research on reversing process calculi can be traced back perhaps to
the work by Berry and Boudol on the Chemical Abstract Machine [1]. We
were inspired to look at reversible computation by, among others, the paper
of Danos and Krivine on reversing CCS [9] and the subsequent [7, 8]. We
then proposed an alternative, more algebraic method for reversing CCS in [15,
16], and recently provided both bisimulation and modal logic semantics for
reversible concurrency [17, 18]. Lanese, Mezzina, Schmitt and Stefani proposed
a reversible version of a higher-order π calculus and equipped it with a rollback
construct [11, 10]. They also studied other forms of reversibility for defining
programming abstractions for dependable distributed systems, and discussed
the need for compensations [12]. Finally, reversible structures that compute
forwards and backwards in an asynchronous manner were proposed by Cardelli
and Laneve [4].

2 A reversible process calculus with execution

control

In this section we extend CCSK with an execution control mechanism which
allows us to control the direction and the pattern of computation. The extended
calculus is given an operational semantics and its usefulness is illustrated in
several examples including long-running transactions with compensations.

std(X)

α[v].X
α[n,v]
→ α[n, v].X

X
µ[n,v]
→ X ′

α[m,u].X
µ[n,v]
→ α[m,u].X ′

m 6= n

X
µ[n,v]
→ X ′ fsh[n](Y)

X |Y
µ[n,v]
→ X ′ |Y

X
α[n,v]
→ X ′ Y

α[n,u]
→ Y ′

X |Y
τ [n]
→ X ′ |Y ′

X
µ[n,v]
→ X ′ std(Y)

X + Y
µ[n,v]
→ X ′ + Y

X
µ[n,v]
→ X ′

X\A
µ[n,v]
→ X ′\A

µ, µ /∈ A
X

µ[n,v]
→ X ′

X [f]
f(µ)[n,v]
→ X ′[f]

std(X)

α[n, v].X
α[n,v]
 α[v].X

X
µ[n,v]
 X ′

α[m,u].X
µ[n,v]
 α[m,u].X ′

m 6= n

X
µ[n,v]
 X ′ fsh[n](Y)

X |Y
µ[n,v]
 X ′ |Y

X
α[n,v]
 X ′ Y

α[n,u]
 Y ′

X,Y
τ [n]
 X ′ |Y ′

X
µ[n,v]
 X ′ std(Y)

X + Y
µ[n,v]
 X ′ + Y

X
µ[n,v]
 X ′

X\A
µ[n,v]
 X ′\A

µ, µ /∈ A
X

µ[n,v]
 X ′

X [f]
f(µ)[n,v]
 X ′[f]

Figure 1: Forward and reverse SOS rules.

2.1 CCSK

We define the (forward) actions of CCS as usual: let A be a set of actions a,
let a be the complement of a, and let A = {a : a ∈ A}. Also, let a = a for
a ∈ A. We assume that α, β range over A ∪A, and µ, ν range over all actions,
namely Act = A ∪ A ∪ {τ}, where τ /∈ A is the silent action and τ = τ . Let K
be an infinite set of communication keys (or just keys for short), ranged over by
k,m, n. And, let I be an infinite set of key identifiers, ranged over by v, u, w.
We also have a set of process identifiers PI , with typical elements S, T , and a
set of variables, ranged over by X,Y . PI contains the deadlocked process 0.

The syntax of CCSK is given below, where A ⊆ Act \ {τ} and f : Act→ Act

with f(τ) = τ . The set of CCSK closed terms is P , and we shall refer to closed
terms as processes. We let P,Q to range over processes.

P ::= X | S | α[v].P | α[n, v].P | P +Q | P |Q | P \A | P [f]

The prefixing with forward actions operator is α[v].X where v is a key identifier
and is optional. Each {α, α} (and {α, α, α, α} in Section 2.2) has a set of key
identifiers associated with it, and we assume that all such sets are disjoint.
Prefixing with past actions has the form α[n, v].X where n is the specific key
for performing this α and v is drawn from the set of key identifiers for α, and
may be omitted if it plays no rôle (but the key n must occur). There is no

prefixing with τ . We often omit trailing 0s so, for example, a.0 is written as a.
X |Y represents two systems X and Y that can perform actions or reverse

actions on their own or they can interact with each other on complementary
actions, for example a and a. The choice, restriction and relabelling operators,
namely ‘· + ·’, ‘·\A’ and ‘·[f]’, are as in CCS except that + is now static in

process terms. Each process identifier S has a defining equation S
df
= P .

The SOS forward and reverse SOS rules for CCSK are given in Figure 1.
Note that the reverse rules are simply the reversals of the forward rules. We
associate with each term X the set of its keys, written as keys(X). A term X
is standard, written std(X), if it contains no prefixing with past actions. A key
n is fresh in Y , written fsh[n](Y), if n is not used in Y .

Structural congruence ≡ on terms is defined by X |Y ≡ Y |X , X | (Y |Z) ≡
(X |Y) |Z and X |0 ≡ X . Also, X + Y ≡ Y +X , X + (Y + Z) ≡ X + (Y + Z)

and X + 0 = X . And S ≡ P for all S and P such that S
df
= P . We also have

the Structural Congruence Rule:

X ≡ Y Y
µ[n,v]
→ Y ′ Y ′ ≡ X ′

X
µ[n,v]
→ X ′

Example 2.1 In CCSK we keep track of the identities of actions that com-
municate so that when we reverse we undo the correct past actions. Consider

P
df
= (a |a.c |a |a.e)\a. Here the restriction of a prevents a and a being performed

except as part of a communication. Suppose that a communicates with a and
then a.c with a.e. In CCSK we write this as follows:

P ≡
τ [m]
→ (a[m] |a.c |a[m] |a.e)\a

τ [n]
→ (a[m] |a[n].c |a[m] |a[n].e)\a

Note that the process a[m] |a.c |a[m] |a.e cannot regress by reversing a[m] alone
because key m is not fresh in a.c | a[m] | a.e. The fact that m appears in a.c |
a[m] |a.e which is in parallel with a[m] proves that the processes communicated
with a and a rather than performed them independently.

Our notation does not allow us to backtrack by undoing a different pair of
actions, but clearly we can change the order of reversing τ [m] and τ [n]:

(a[m] |a[n].c |a[m] |a[n].e)\a
τ [m]
 (a |a[n].c |a |a[n].e)\a

τ [n]
 ≡ P

CCSK processes are fully reversible because the reverse SOS rules in Figure 1
are obtained by simply reversing the forward SOS rules in Figure 1 [15, 16]. We

have P
µ[n,v]
→ Q iff Q

µ[n,v]
 P for all processes P,Q and all µ ∈ Act, n ∈ K, v ∈ I.

Moreover, CCSK is a conservative extension of CCS [15, 16].

2.2 Execution control operator

We add a new operator ‘·〈·〉’ to CCSK for controlling the execution of processes.
We shall need new actions that control the reversing of the forward actions: a

(cf1)
X

α[n,v]
→ X ′ Y

α[n,v]
→ Y ′

X〈Y 〉
α[n,v]
→ X ′〈Y ′{n, v/v}〉

> (cf2)
X

β[m,u]
→ X ′ Y

α′[k,w]
→ Y ′

X〈Y 〉
β[m,u]
→ X ′〈Y {m,u/u}〉

(cr1)
X

α[n,v]
 X ′ Y

α[n,v]
→ Y ′

X〈Y 〉
α[n,v]
 X ′〈Y ′{v/n, v}〉

> (cr2)
X

β[m,u]
 X ′ Y

α′[k,w]
→ Y ′

X〈Y 〉
β[m,u]
 X ′〈Y {u/m, u}〉

Figure 2: SOS rules for the control operator.

and a prompt reversing of the past versions of a and a respectively. Thus, we
have two further sets A and A. We let α, β range over A ∪ A, κ range over

A ∪ A ∪ A ∪ A and, from now on, we let µ, ν range over all actions, namely
Act = A∪A ∪A ∪A ∪ {τ}.

X〈Y 〉 is the process X controlled by Y . The behaviour of X〈Y 〉 is a subset
of the behaviour of X as prescribed by Y according to the rules in Figure 2
which are in the Ordered SOS format [19, 14]. Before we explain these rules
and how the control operator works, we define control terms and update the
definition of processes. The syntax for control terms is given below. Closed
control terms, or simply control terms or controllers, are ranged over by C,D.

C ::= X | c | κ[v].C | κ[n, v].C | C +D | C |D

Terms c are typical elements of a set of control identifiers. By abuse of notation
we shall often use C,D for control identifiers. Every control identifier has a

defining equation c
df
= C; we extend the definition of ≡ by c ≡ C for all c, C

such that c
df
= C. The SOS rules for the operators of control terms are the

standard SOS rules for CCS, except that we have prefixing with new actions
and prefixing carries keys or key identifiers. Note that the prefixing and +
operators are dynamic operators as in CCS. Thus, controllers compute forwards

only so, for example, κ[v].C
κ[k,v]
→ C, for some k, and κ[v].C +D

κ[k,v]
→ C.

The class of processes is extended to include terms P 〈C〉 for all P and C.
Returning to Figure 2, the notation (cf1) > (cf2) means that (cf2) can be

applied to derive a transition of P 〈C〉 if no rules higher in the ordering > can
be applied, namely the rules (cf1) are not applicable for all α, n, v. So, if C can
perform any forward α′[k, w] and P cannot perform any of the forward actions

α[n, v] of C, then (cf2) can be used to derive P 〈C〉
β[m,u]
→ P ′〈C{m,u/u}〉 if

P ′
β[m,u]
→ P ′. We note that C{m,u/u} means that every occurrence of u in C is

replaced with m,u. The controller keeps track of which actions to reverse or
to perform by recording keys and key identifiers shared with its process.

Actions α of the controller require X to reverse until α is undone. The rules
(cr1) and (cr2) play the dual rôle to (cf1) and (cf2). Here, we replace the key
and the key identifier in the controller with the key identifier alone, thus wiping
out the record of the keys of the reversed transitions.

Terms such as a[v].b[v] are not well formed as different actions cannot share
identifiers. Some well formed terms are not very useful, for example only the
first a can execute in a[v].a[v].

Example 2.2 Consider P
df
= a.a.b.b. If C′

df
= b.a.b then P 〈C′〉 computes until

after the first b of P , then reverses until the second a is undone and finally
it computes until after the first b. If we wish to compute or reverse other
occurrences of actions a and b in P , for example the first a and the second

b, then we use key identifiers. The controller C
df
= b[v].a[u].b[v] achieves this

provided that the appropriate actions a and b in P are marked with u respec-

tively v. Let P
df
= a[u].a.b.b[v]. Then, using rule (cf2), we obtain P 〈C〉

a[1,u]
→

a[1, u].a.b.b[v] 〈b[v].a[1, u].b[v]〉. Note that prefixing with a[u] in the controller
has been updated with the key 1. After another forward a and a b, we use rule
(cf1) to perform b[4, v] (b[v] with the key 4); note that the second b[v] in C is
updated to b[4, v]:

a[2]
→

b[3]
→

b[4,v]
→ a[1, u].a[2].b[3].b[4, v] 〈a[1, u].b[4, v]〉.

Then we reverse until we have undone the a[1, u] using (cr2) and (cr1):

b[4,v]

b[3]

a[2]

a[1,u]
 a[u].a.b.b[v] 〈b[v]〉.

Note that this reversal wipes out all the keys. Finally, we can compute forwards.

The control operator is very expressive. Consider a process P . Process P 〈0〉
behaves as 0. If a is not in the sort of P (the set of actions that P can ever
perform), then P 〈a |a〉 and P 〈a+a〉 behave exactly as P . If we allowed prefixing

with τ in control terms, then C
df
= τ.C would force communications in P thus

acting as the restriction operator of CCS.
The control operator can be used to make the forward actions of processes

irreversible. Consider a.b and C
df
= b.b.C. Then (a.b)〈C〉

a[1]
→ (a[1].b)〈C〉

a[1]

6
since C insists on computing forwards with b. Also we can find examples where

Q
µ[n,v]
 P holds but there is no Q′ such that P

µ[n,v]
→ Q′. Consider (a | b)〈C〉

where C
df
= a.b.a.b.C. We have (a | b)〈C〉

a[1]
→

b[2]
→ (a[1] | b[2])〈a.b.C〉

a[1]
 (a |

b[2])〈b.C〉
b[2]
 (a | b)〈C〉 but not (a | b)〈C〉

b[2]
→ Q′ since C insists on performing a

first. This is an example of a computation that reaches a state after a reversal
that cannot be reached by computing forwards only.

Example 2.3 A long-running transaction consists of many atomic steps which
are represented here by a. A step may succeed, and then it is followed by the
next step (or success s; this action never fails), or fail which results in the
action f . When all steps are successfully completed the transaction succeeds
and is irreversible. When f takes place all steps a performed successfully need
to be undone. The transaction is modelled by T0 as follows:

Ti
df
= a[vi+1].Ti+1 + f [u] for 0 ≤ i < n, Tn

df
= s

The required controller is C
df
= a[v1].(a[vn] + f [u].a[v1].C) + f [u].f [u].C. Let

us see how T0〈C〉 computes. If the transaction fails immediately by performing
f [1, u], then this triggers the outermost action f in the controller:

T0〈C〉
f [1,u]
→ (a[v1].T1 + f [1, u]) 〈f [1, u].C〉

The controller then requires undoing f :
f [1,u]
 (a[v1].T1 + f [u].0)〈C〉 ≡ T0〈C〉.

If the transaction does not fail immediately, then a[1, v1] is performed (and
is matched by the controller):

T0〈C〉
a[1,v1]
→ (a[1, v1].T1 + f [u]) 〈a[vn] + f [u].a[1, v1].C〉

The process then computes until the last step a[vn], or else it fails in the mean-
time by performing f [k, u], for some key k. This is matched by the controller
which becomes a[1, v1].C. Next, the execution is reversed until a[1, v1] is undone,

thus returning to the original configuration: · · ·
a[1,v1]
 T0〈C〉.

In some transactions it may not be necessary to undo all successful steps a
in case of failure. If these steps can be grouped into sequences, then only the
steps of the most recently performed sequence need undoing. Let there be two
such sequences, the first finishing with ak with 2 ≤ k and k + 2 ≤ n. Then the
controller D is defined as follows:

D
df
= a[v1].(a[vk].D

′ + f [u].a[v1].D) + f [u].f [u].D

D′
df
= a[vk+1].(a[vn] + f [u].a[vk+1].D

′) + f [u].f [u].D′

We easily can check that T0〈D〉 works properly.

Example 2.4 Assume a long-running transaction has a compensation K which
is triggered by action c and which completes with s, where both c and s never
fail. We model this by adjusting the definition of T1 from Example 2.3 and

leaving other Tis unchanged: T1
df
= a[v1].T2 + f [u] + c.K. The controller is C

df
=

a[v1].(a[vn] + f [u].a[v1].c.s) + f [u].f [u].c.s. When a failure occurs the controller
reverses all actions a that took place so far (or just the initial f), triggers c and
insists that the compensation K computes forwards by demanding s.

Example 2.5 Consider the following system taken from [10], where (undo a)
forces reversing of computation until a is undone (similarly for (undo b)).

(a |a.d |c.(undo a) | b |b.c |d.(undo b))\{a, d, c, b}

Inspecting the causal dependencies between actions, we note that undoing a is
possible only after c, c have communicated, which requires b, b to communicate
first. And, of course, after a, a have happened. If in the meantime a communi-
cation on d, d takes place, it disables undoing a. This is because a causes d and
the cause a cannot be undone prior to undoing the effect d. Causal dependencies

a τa

τa

τa

τb

τb

τb

b

d

τd

τd

τd

c τc

τc

τc

undo b undo a

M M ′′

M1

M2

Figure 3: Example 2.5.

between these communications are shown in the left-hand diagram in Figure 3,
where b→ c means that a communication involving b must precede a communi-
cation involving c. The dashed line labelled ‘undo a’ indicates that reversing the
communication involving a is possible only after the communications involving
the actions that appear above the line (here a, b, c) have taken place.

In our calculus, the left component is a | (a.d | c)〈(c.a.e) | e〉. Since e cannot
happen, the controller (c.a.e) | e requires that ‘after a forward c reverse a and
keep reversing, or independently compute forward’. Since all actions are distinct
there is no need here for key identifiers. The system is

M
df
= (a | (a.d |c)〈(c.a.e) |e〉 | b | (b.c |d)〈(d.b.e) |e〉)\{a, d, c, b}.

In order to make transitions representing communications more readable we
shall decorate labels τ with action labels: we shall write, for example, τb[1] in-
stead of τ [1] for the communication on b, b with key 1. We shall also omit
restriction. A communication on b, b leads to

M
τb[1]
→ a | (a.d |c)〈(c.a.e) |e〉 | b[1] |(b[1].c |d)〈(d.b[1].e) |e〉 ≡M1

Then we perform communications involving a and then c:

M1
τa[2]
→

τc[3]
→ a[2] | (a[2].d |c[3])〈(a[2].e) |e〉 | b[1] | (b[1].c[3] |d)〈(d.b[1].e) |e〉.

Next, a communication on d, d can take place or we can undo the communication
involving a. Note that although the communication on b took place, it cannot be
undone at this point since the communication on d has not taken place yet.

Consider a communication on d, d:

τd[4]
→ a[2] | (a[2].d[4] |c[3])〈(a[2].e) |e〉 | b[1] | (b[1].c[3] |d[4])〈(b[1].e) |e〉) ≡M ′′

The right-hand diagram in Figure 3 shows other sequences of communications
involving a, b, c, d from M to M ′′. Controllers of M ′′ ask to undo a and undo
b. But, since both d and c have now taken place, a and b can be reversed only
after reversing other actions. Overall, our mechanism for controlling execution
works well with this example and its operational formulation is simpler than the
formulation of the rollback construct [10].

We finish this section with a remark on suitable behavioural equivalences
and modal logics for our reversible calculus. A reverse interleaving bisimulation
[15, 16, 18], which extends the standard bisimulation [13] with reverse transi-
tions, seems a suitable behavioural equivalence. Also, a reverse pomset bisim-
ulation may be very useful [18] as it talks directly about forward and reverse
behaviour in terms of pomsets (partially ordered multisets) of actions. Event
Identifier Logic [17], a modal logic with both forward and reverse modalities, is
the appropriate logic for our calculus since it characterises the mentioned above
equivalences and many safety properties, such as precedence and exception, are
naturally expressible with reverse modalities.

3 The ERK Signalling Pathway

The ERK signalling pathway is a realistic example of computation that com-
prises forward and reverse steps where some of the reverse steps violate the
causal ordering established by the forward steps. We show how the new ex-
ecution control and prefixing with multisets of actions allow us to represent
naturally this form of out-of-order reversible computation. Signalling pathways
were modelled more fully by PEPA [3] and by rule-based languages BioNetGen
[2] and Kappa [6]. We shall comment on the PEPA model below.

We shall now define prefixing with multisets of actions. The actions of a given
multiset of actions can execute in any order, and the computation progresses
to the next multiset of actions only if all of the actions from the first multiset
have taken place. Process terms are extended with (α[v], s).P and (α[n, v], s).P
where s is a sequence of any actions or past actions. s′ is a typical sequence
consisting entirely of past actions. For simplicity, we do not allow prefixing with
multisets of actions in control terms. The SOS rules are as follows:

std(X)

(α[v], s).X
α[n,v]
→ (α[n, v], s).X

X
µ[n,v]
→ X ′ fsh[n](s′)

(s′).X
µ[n,v]
→ (s′).X ′

std(X)

(α[n, v], s).X
α[n,v]
 (α[v], s).X

X
µ[n,v]
 X ′ fsh[n](s′)

(s′).X
µ[n,v]
 (s′).X ′

The Ras/Raf-1/MEK/ERK signalling pathway (ERK pathway for short)
delivers mitogenic and differentiation signals from the membrane of a cell to
its nucleus. This pathway is regulated by the protein RKIP. We borrow the
description of the pathway and its reactions from [5, 20].

The ERK pathway is spatially organised in such a way that a signal that
arrives at the cell’s membrane can be transmitted to the cell’s nucleus via a
cascade of reactions that involve proteins Ras, Raf-1, MEK and ERK. Initially,
a G protein Ras is activated near a receptor on the cell’s membrane. Ras then
activates a kinase Raf-1 which becomes Raf*-1 (represented here by F). We
shall not model Ras and its reactions here. Raf*-1 can then activate the MEK
protein (M here) which gets phosphorylated to become pM . Or, this binding

F |MF |RF |R MF

E

F |pM

E |pM

pE |M

pE

pM

R |pE

F |R |pE

pR

pR |E

R

Figure 4: The ERK pathway.

of Raf*-1 to MEK can be inhibited by RKIP, which binds to Raf*-1; we shall
return to this sequence of reactions below. The phosphorylated MEK (pM)
then activates ERK protein (E here) which, in turn becomes phosphorylated
(represented by pE). Finally, at the end this cascade pE can translocate to
the nucleus and pass the signal. Or, it binds to RKIP thus deactivating it
temporarily (see below).

When RKIP binds Raf*-1 and thus inhibits the activation of MEK, the re-
sulting complex binds to a phosphorylated ERK (pE). Then the complex breaks
releasing F , which can get involved in the cascade, E and a phosphorylated R.

Figure 4 represents the described reactions. A black-headed arrow represents
a reaction that binds two molecules into a complex molecule, an open-headed
arrow represents a reaction that breaks a complex into its component molecules
and a bi-directional arrow represents a pair of forwards/reverse reactions: a
binding and unbinding. A two-headed arrow represents a reaction that involves
phosphorylation/de-phosphorylation of its reactants. The nodes in the diagram
are the molecules or complexes of molecules.

We note that the ERK pathway was previously modelled in the setting of the
stochastic process algebra PEPA in [3]. There, the states of the pathway as in
Figure 4 are represented as indivisible processes so, for example, F |R |pE is rep-
resented by a single process and not as a composition of three separate processes.
These processes perform forward actions that represent creation and breaking
of bonds, and the system evolves from one state to another via multi-way syn-

chronisation of these actions. The transitions are timed and their durations are
expressed as exponentially distributed random variables.

We represent the individual molecules of the ERK pathway as processes, for
example F,M,E and R, and the pathway is modelled by a composition of these
processes. The reactions between the molecules are represented by forward and
reverse synchronisations between processes. We define F,M,E and R as follows
using the new multiset prefixing operator (key identifiers are not necessary here):

F
df
= a.F ′ M

df
= (a, p, c).M ′ E

df
= (c, p, b, n).E′ R

df
= (a, b, p).R′

We also have molecules P
df
= p.P ′ which represent phosphate groups that bind

with M,E and R and phosphorylate them. These phosphorylated molecules are
denoted by pM, pE and pR respectively. The ERK pathway is

(F |M |E |P |R |pE) \ {a, b, c, p}

where we have a single copy of each molecule F,M,E, P,R and pE. Next, we
list those synchronisations between the processes of the pathway that represent
valid reactions; there are many other synchronisations that have no bio-chemical
meaning and we shall see later how controllers can be employed to prune them.

The molecule F can bind with M and start a signal cascade or it can
bind with a copy of inhibitor R. In order to show how F is released from
the control of R we have included a copy of a phosphorylated ERK (pE). (A
more realistic model would be a composition of a large numbers of copies of
F,M,E,R, P, pM, pE and pR). These reactions start two alternative sequences
of reactions, which we shall call the cascade and regulation sequences. We con-
sider the cascade sequence first. For simplicity we omit restriction from now
on. The binding of F and M is reversible; it is represented by blue arrows in
Figure 4. The system evolves to

τa[1]
→ a[1].F ′ |(a[1], p, c).M ′ |E |P |R |pE

where transition τa[1] indicates that a binding between a of F and a of M
took place and a and a were marked with 1. Note that this binding can be
immediately reversed.

τa[1]
 a.F ′ |(a, p, c).M ′ |E |P |R ≡ F |M |E |P |R |pE

M gets phosphorylated and then releases F by reversing the binding on a:

τp[2]
→ a[1].F ′ | (a[1], p[2], c).M ′ |p[2].P ′ |E |R |pE

τa[1]
 a.F ′ | (a, p[2], c).M ′ |p[2].P ′ |E |R |pE ≡ F |(a, p[2], c).M ′ |p[2].P ′ |E |R |pE

Then, pM (which is (a, p[2], c).M ′ |p[2].P ′) binds with E and phosphorylates it;

M is released and pE is ready to convey the signal to the cell’s nucleus:

τc[3]
→ F |(a, p[2], c[3]).M ′ |p[2].P ′ |(c[3], p, b, n).E′ |R |pE

τp[2]
 F |(a, p, c[3]).M ′ |(c[3], p, b, n).E′ |P |R |pE

τp[4]
→ F |(a, p, c[3]).M ′ |(c[3], p[4], b, n).E′ |p[4].P ′ |R |pE

τc[3]
 F |(a, p, c).M ′ |(c, p[4], b, n).E′ |p[4].P ′ |R |pE

The last process is ≡ equivalent to F |M |(c, p[4], b, n).E′ |p[4].P ′ |R |pE which is
≡ equivalent to F |M |pE |R |pE. Now, the newly created pE can communicate
the signal with the nucleus via action n (we do not show this reaction). Note
that there is now an extra copy of pE created out of E and P .

We return to the regulation sequence. We assume the binding in pE has the
key 8. Instead of combining with M , the protein F can be inhibited by binding
with R; this reaction is immediately reversible. Then the R |F complex binds
with pE. The system F |M | E | P |R | pE ≡ R | F | pE |M |E | P evolves as
follows:

τa[5]
→ (a[5], b, p).R′ |a[5].F ′ |pE |M |E |P

τb[6]
→ (a[5], b[6], p).R′ |a[5].F ′ |(c, p[8], b[6], n).E′ |p[8].P ′ |M |E |P

Next, F is released and then pE phosphorylates R:

τa[5]
 ≡ F | (a, b[6], p).R′ |(c, p[8], b[6], n).E′ |p[8].P ′ |M |E |P

τp[8]
 F | (a, b[6], p).R′ |(c, p, b[6], n).E′ |p.P ′ |M |E |P

τp[7]
→ F | (a, b[6], p[7]).R′ |(c, p, b[6], n).E′ |p[7].P ′ |M |E |P

Finally, E and pR are disassociated and R is de-phosphorylated:

≡
τb[6]
→ F |(a, b, p[7]).R′ |p[7].P ′ |(c, p, b, n).E′ |M |E |P

τp[7]
 F |(a, b, p).R′ |p.P ′ |(c, p, b, n).E′ |M |E |P ≡ F |M ||E |P |R |E |P

Note that this segment of the pathway deactivates pE into E and P .
A high level view of the behaviour of the ERK system F |M |E |P |R |pE is

represented abstractly by the cascade and regulation sequences:

F |M ||E |P |R |E |P
← reg←
→ cas→

F |M |E |P |R |pE
→ cas→
← reg←

F |M |pE |R |pE

The cascade produces pE which can signal the nucleus and the regulation se-
quence consumes pE in order to stop R regulating F .

M,E and R exhibit the following patterns of behaviour (putting aside the
undoing of immediately reversible reactions on a and b, and n) which we write

with controller actions: M : a.p.a.c.p.c; E : c.p.c.b.p.b and R : a.b.a.p.b.p. We
note the common pattern (modulo action names) and also behaviours that break
causal dependencies: for example a happens before p in M although a causes p.

Finally, we define controller terms for the proteins M,E and R that will
ensure that reactions follow the order of the cascade and regulation sequences.

CM
df
= a.C′

M C′

M

df
= a.CM + p.a.c.p.c.CM

CE
df
= c.p.c.C′

E C′

E

df
= n.N + b.C′′

E C′′

E

df
= b.C′

E + p.b.CE

CR
df
= a.C′

R C′

R

df
= a.CR + b.C′′

R C′′

R

df
= b.C′

R + a.p.b.p.CR

Claim 3.1 (F | M〈CM 〉 | E〈CE〉 | P | R〈CR〉 | pE〈C
′

E〉) \ {a, b, c, p} exhibits
precisely the cascade and regulation reactions of (F |M |E |P |R |pE)\{a, b, c, p}.

4 Conclusion

We have presented a reversible process calculus with a new execution control
operator and illustrated its usefulness and expressiveness with several examples,
including long-running transactions with simple compensations and the ERK
signalling pathway. The new operator allows us to model a variety of modes
of reverse computation, ranging from strict backtracking to reversing which
respects causal ordering of events, and even reversing which violates causal
ordering. This last form of reversing has not been studied before and in our
view it deserves further investigation. The execution control operator can also be
used to encode irreversible actions, it can act as the restriction operator of CCS
in contexts involving communicating processes, and it allows us to construct
terms that reach a state after a reversal that cannot be reached by computing
forwards only.

Acknowledgements

We are grateful to the Reversible Computation 2012 referees and participants
for their helpful comments and suggestions. The second author acknowledges
partial support by EPSRC grant EP/G039550/1 and the Japan Society for the
Promotion of Science (JSPS) grants S-09053 and FU-019.

References

[1] G. Berry and G. Boudol. The chemical abstract machine. Theoretical
Computer Science, 96(1):217–248, 1992.

[2] M.L. Blinov, J. Yang, J.R. Faeder, and W.S. Hlavacek. Graph theory for
rule-based modeling of biochemical networks. In T. Comp. Sys. Biology,
volume 4230 of Lecture Notes in Computer Science, pages 89–106. Springer,
2006.

[3] M. Calder, S. Gilmore, and J. Hillston. Modelling the influence of RKIP
on the ERK signalling pathway using the stochastic process algebra PEPA.
In Transactions on Computational Systems Biology VII, volume 4230 of
Lecture Notes in Computer Science, pages 1–23. Springer, 2006.

[4] L. Cardelli and C. Laneve. Reversible structures. In 9th International
Conference on Computational Methods in Systems Biology, pages 131–140.
ACM, 2011.

[5] K-H. Cho, S-Y. Shin, H.W. Kim, O. Wolkenhauer, B. McFerran, and
W. Kolch. Mathematical modeling of the influence of RKIP on the ERK
signaling pathway. In CMSB, volume 2602 of Lecture Notes in Computer
Science, pages 127–141. Springer, 2003.

[6] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based
modelling of cellular signalling. In Proceedings of the 18th International
Conference on Concurrency Theory CONCUR 2007, volume 4703 of Lec-
ture Notes in Computer Science, pages 17–41. Springer, 2007.

[7] V. Danos and J. Krivine. Reversible communicating systems. In Proceedings
of the 15th International Conference on Concurrency Theory CONCUR
2004, volume 3170 of Lecture Notes in Computer Science, pages 292–307.
Springer, 2004.

[8] V. Danos and J. Krivine. Transactions in RCCS. In Proceedings of the 16th
International Conference on Concurrency Theory CONCUR 2005, volume
3653 of Lecture Notes in Computer Science, pages 398–412. Springer, 2005.

[9] V. Danos and J. Krivine. Formal molecular biology done in CCS-R. In Pro-
ceedings of the 1st Workshop on Concurrent Models in Molecular Biology
BioConcur 2003, volume 180 of ENTCS, pages 31–49, 2007.

[10] I. Lanese, C.A. Mezzina, A. Schmitt, and J-B. Stefani. Controlling re-
versibility in higher-order pi. In Proceedings of the 22nd International
Conference on Concurrency Theory CONCUR 2011, volume 6901 of Lec-
ture Notes in Computer Science, pages 297–311. Springer, 2011.

[11] I. Lanese, C.A. Mezzina, and J-B. Stefani. Reversing higher-order pi. In
Proceedings of the 21st International Conference on Concurrency Theory
CONCUR 2010, volume 6269 of Lecture Notes in Computer Science, pages
478–493. Springer, 2010.

[12] I. Lanese, C.A. Mezzina, and J-B. Stefani. Controlled reversibility and
compensations. In Proceedings of Reversible Computation 2012, volume
7581 of Lecture Notes in Computer Science. Springer, 2012.

[13] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[14] M. Mousavi, I.C.C. Phillips, M.A. Reniers, and I. Ulidowski. Semantics and
expressiveness of Ordered SOS. Information and Computation, 207(2):85–
119, 2009.

[15] I.C.C. Phillips and I. Ulidowski. Reversing algebraic process calculi. In Pro-
ceedings of 9th International Conference on Foundations of Software Sci-
ence and Computation Structures, FOSSACS 2006, volume 3921 of LNCS,
pages 246–260. Springer, 2006.

[16] I.C.C. Phillips and I. Ulidowski. Reversing algebraic process calculi. Jour-
nal of Logic and Algebraic Programming, 73:70–96, 2007.

[17] I.C.C. Phillips and I. Ulidowski. A logic with reverse modalities for history-
preserving bisimulations. In Proceedings 18th International Workshop on
Expressiveness in Concurrency, volume 64 of EPTCS, pages 104–118, 2011.

[18] I.C.C. Phillips and I. Ulidowski. A hierarchy of reverse bisimulations on
stable configuration structures. Mathematical Structures in Computer Sci-
ence, 22:333–372, 2012.

[19] I. Ulidowski and I.C.C. Phillips. Ordered SOS rules and process languages
for branching and eager bisimulations. Information and Computation,
178(1):180–213, 2002.

[20] J. Vera, O. Rath, E. Balsa-Canto, J.R. Banga, W. Kolch, and O. Wolken-
hauer. Investigating dynamics of inhibitory and feedback loops in ERK
signalling using power-law models. Molecular BioSystems, 6:2174–2191,
2010.

	Introduction
	A reversible process calculus with execution control
	CCSK
	Execution control operator

	The ERK Signalling Pathway
	Conclusion

