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Plan 2
]

= Architectures:
= What roles do they play in software development
= How do they relate to coordination and evolution
= The Coordination dimension
= Externalisation of interactions in connectors
= Semantic modelling primitives for coordinating interactions
= CommUnity
= Formalising components, connectors and configurations
= Refinement vs Composition
m The Distribution dimension
= Externalisation of distribution in connectors
= Semantic modelling primitives for location-aware computing
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What is it? 5
|

= A software architecture for a system is the
structure or structures of the system, which
comprise elements, their externally-visible
behavior, and the relationships among them.

source: L.Bass, P.Clements and R.Kazman.
Software Architecture in Practice. Addison-Wesley, 1998.

= There are many views, as there are many
structures, each with its own purpose and focus in
understanding the organisation of the system.
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A case of “complexity” 7
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What is it for? 6
]

component (n): a constituent part
complex (a): composed of two or more parts

architecture (n):

1 : formation or construction as, or as if, the result
of conscious act;

2 : a unifying or coherent form or structure
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A case of “complexity” 7

in-the-head

mnemonics = "One man and his problem..”

(and his program, and his machine)
result-driven »  The Science of Algorithms and Complexity
= not so much Engineering but more of
symbolic Craftsmanship (one of a kind)
information = acase for virtuosi

elementary
control flow
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A case of “"complexity” 7 A case of “complexity” 8

in-the-head Example in-the-head in-the-small
mnemonics = “One man and his problem..” mnemonics I/0 specs = The need for commercialisation
(and his program, and his machine) = "One man and his problem..”
result-driven : . < result-driven algorithms (and his program, but their
O Tl 4COMO machine)

T%%%? = The Science of Program
symbolic \7/—/ symbolic data structures Analysis and Construction
information ¢i information and types s Commerce, but not yet

Engineering
elementary elementary execute once
control flow Using a pocket calculator to select control flow termination
the next move
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A case of “complexity” 8 10 years ago, the “software crisis” 9
|
SCIENTIFIC "
: . ANMIE oy
in-the-head in-the-small  program Architectures ”_“‘,"“Rl("\N
W sy
mnemonics I/0 specs
result-driven algorithms
symbolic data structures [ [
information and types lw‘wml lom;;;:gl | ot l oo
elementary execute once
control flow termination
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10 years ago, the "software crisis” 9

SCIENTIFIC ==
AMERICAN

Comyuering Lyme disease,

Tha crisis in software.
Wl canses deep earthquakes?

I'RENDS IN COMPUTING

Software's Chronic Crisis
W, By Gikls, staff writer

Ihe (1.5, economy, an<l indeed al sockety, has plunged inte ciberspace. Computers
tumup i1 everythng from “nasters and arcrall-control Sysems o the cash regis
ter at the supermarket checeont. Yet software rermains lavgely the custom product
of acottage industry. Can itever be manulactured so that 1t meets mdustrial stan-
darcs of mass production and reliabdity
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A case of “"complexity” 10
in-the-head in-the-small in-the-large
mnemonics I/0 specs complex specs = “One man
and his
result-driven algorithms system modules problem.:.
(but their
programs)
symbolic data structures  databases, = The Science
information and types persistence of Sqf‘.rwalfe
Specification
elementary execute once continuous and‘Desgn
control flow termination execution = Engineering
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10 years ago, the "software crisis” 9
|

m  The challenge of complexity is not only large but also growing. [...]. To keep
up with such demand, programmers will have to change the way that they
work. "You can't build skyscrapers using carpenters," Curtis quips.

m [...] Musket makers did not get more productive until Eli Whitney figured out
how to manufacture interchangeable parts that could be assembled by any
skilled workman. In like manner, software parts can, if properly standardized,
be reused at many different scales.

m [...]JIn April, NIST announced that it was creating an Advanced Technology
Program to help engender a market for component-based software.

University of
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The case for MILs 1

= Modelling Interconnection Languages for programming-in-
the-large (DeRemer and Kron 75)

= Address the global structure of a system in terms of
= what its modules and resources are
= how they fit together in the system

= Interconnection may be data or control oriented

= Descriptions are concise, precise and verifiable

University of

Leicester
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The case for MILs 1

Architectures of Usage
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The case for new mathematics 12

= Algebraic techniques for structuring specifications
= "Putting Theories together to Make Specifications”
= The theory of Institutions
= The role of Category Theory

X7 University of
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The case for new mathematics 12
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The case for new mathematics 12

= Algebraic techniques for structuring specifications
= "Putting Theories together to Make Specifications”
= The theory of Institutions
= The role of Category Theory

= Temporal logics for continuous/reactive execution
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The case for objects/components 13

m In like manner, software parts
can, if properly standardized,
be reused at many different
scales.

m [...]In April, NIST announced
that it was creating an
Advanced Technology Program
to help engender a market for
component-based software.

X7 University of
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The case for objects/components 13

m In like manner, software parts

can, if properly standardized, = Builds on a powerful

be reused at many different methodological metaphor
scales. - clientship

= [...]JIn April, NIST announced = Inheritance hierarchies
that it was creating an for reuse

Advanced Technology Program
to help engender a market for
component-based software.
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The case for objects/components 13

u In like manner, software parts .
can, if properly standardized, = Buildsona PowerfUI
be reused at many different methodological metaphor
scales. - C“eﬂTShip

m [...JIn April, NIST announced
that it was creating an
Advanced Technology Program
to help engender a market for
component-based software.
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The case for objects/components 13

= Builds on a powerful
methodological metaphor
- clientship

= Inheritance hierarchies
for reuse

= Software construction
becomes like child's play

£ University of
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Yet, in 2003 the crisis was going on 14
|

m Computing has certainly got faster, smarter and cheaper,
but it has also become much more complex.

m Ever since the orderly days of the mainframe, which
allowed tight control of IT, computer systems have
become ever more distributed, more heterogeneous and
harder to manage. [...]

m In the late 1990s, the internet and the emergence of e-
commerce ‘“broke IT’s back”. Integrating incompatible
systems, in particular, has become a big headache. A
measure of this increasing complexity is the rapid growth
in the IT services industry. [...]

FX] University of
VALENCIA 2005 @ Leicester

and the "silver bullet” became... 15
|

m Computing is becoming a utility and software a service.
This will profoundly change the economics of the IT
industry. [...]

m For software truly to become a service, something else
has to happen: there has to be a wide deployment of web
services. [...]

m applications will no longer be a big chunk of software that
runs on a computer but a combination of web services

VALENCIA 2005 ﬁ( : il‘lg;eéztsytoé "
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m Computing has certainly got faster, smarter and cheaper,
but it has also become much more complex.

m Ever since the orderly days of the mainframe, which
allowed tight control of IT, computer systems have
become ever more distributed, more heterogeneous and
harder to manage. [ ...]

m In the late 1990s, the internet and the emergence of e-
commerce “broke IT’s back”. Integrating incompatible
systems, in particular, has become a big headache. A
measure of this increasing complexity is the rapid growth
in the IT services industry. [...]
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and the "silver bullet” became... 15
]

m Computing is becoming a utility and software a service.
This will profoundly change the economics of the IT
industry. [...]

m For software truly to become a service, something else
has to happen: there has to be a wide deployment of web
services. [...]

m applications will no longer be a big chunk of software that
runs on a computer but a combination of web services
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and the "silver bullet” became...
|

15

m Computing is becoming a utility and software a service.
This will profoundly change the economics of the IT
industry. [...]

m For software truly to become a service, something else
has to happen: there has to be a wide deployment of web
services. [...]

m applications will no longer be a big chunk of software that
runs on a computer but a combination of web services

The Economist, May 10, 2003
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Yet a case of “complexity”? 16
in-the-head in-the-small in-the-large
mnemonics I/0 specs complex specs “One man and
his problem...”
result-driven algorithms system modules (but their
programs)
“One man
symbolic data structures  databases, and )
information and types persistence everybody's
problems...
elementary execute once continuous
control flow termination execution

VALENCIA 2005
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Yet a case of “complexity”?
|

in-the-head in-the-small in-the-large
mnemonics I/0 specs complex specs
result-driven algorithms system modules

symbolic
information

elementary
control flow

data structures
and types

execute once
termination

databases,
persistence

continuous
execution

16

= "One man
and his
problem..”
(but their
programs)

s The Science
of Software
Specification
and Design

= Engineering

VALENCIA 2005

A case of “"complexity”
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in-the-head in-the-small in-the-large in-the-world
mnemonics I/0 specs complex specs evolving
result-driven algorithms system modules  sub-systems &

symbolic
information

elementary
control flow

data structures
and types

execute once
termination

databases,
persistence

continuous
execution

interactions

separation data
computation

distribution &
coordination
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Same complexity? 18 Same complexity? 18

= "Physiological” complexity
derives from the need to account for problems/situations
that are “complicated” in the sense that they offer great
difficulty in understanding, solving, or explaining
there is nothing necessarily wrong or faulty in them; they are
Jjust the unavoidable result of a necessary combination of
parts or factors

X7 University of
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Same complexity? 18 Same Science & Engineering? 19
|
= “Physiological” complexity = “Physiological” complexity
derives from the need to account for problems/situations server-to-server, static, linear
that are “complicated” in the sense that they offer great interaction based on identities

difficulty in understanding, solving, or explaining

there is nothing necessarily wrong or faulty in them; they are
Jjust the unavoidable result of a necessary combination of
parts or factors

= "Social” complexity

= derives from the number and “open” nature of interactions
that involve “autonomic” parts of a system;
it is almost impossible to predict what properties can emerge
and how they will evolve as a result of the interactions in place
or the dynamics of the population itself.

= compile or design time integration

architectures of usage
product structure

VALENCIA 2005
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Same Science & Engineering? 19

= “Physiological” complexity
= server-to-server, static, linear
interaction based on identities
= compile or design time integration
= architectures of usage
= product structure

VALENCIA 2005 ﬂ( ‘° il‘lg;eéztsyttz "

Same Science & Engineering? 19

= "“Physiological” complexity
= server-to-server, static, linear
interaction based on identities
= compile or design time integration
= architectures of usage
= product structure

= “"Social” complexity

= dynamic, mobile and unpredictable
interactions based on properties

= “late” or "just-in-time" integration
= contracts of interaction
= evolving structure

£ University of
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Same Science & Engineering?

19

= “Physiological” complexity
= server-to-server, static, linear
interaction based on identities
= compile or design time integration
= architectures of usage
= product structure

= "Social” complexity

= dynamic, mobile and unpredictable
interactions based on properties

= “late” or "just-in-time" integration
= contracts of interaction
= evolving structure
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Same Science & Engineering?
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= “Physiological” complexity
= server-to-server, static, linear
interaction based on identities
= compile or design time integration
= architectures of usage
= product structure

= “Social” complexity

= dynamic, mobile and unpredictable
interactions based on properties

= “late” or "just-in-time" integration
= contracts of interaction
= evolving structure
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Two different relationships

= Implements

20

= a given module is defined in terms of facilities provided

by/to other modules;

= composition mechanisms glue pieces together by
indicating for each use of a facility where its
corresponding definition is provided

= Interacts

= components are treated as independent entities that

may interact with each other along well defined lines of
communication (connectors)

VALENCIA 2005

Module structures
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21

Architectures of Usage

VALENCIA 2005

/= University of
@ Leicester

Module structures 21

= Code/implementation structures

= Address the global structure of a system in
terms of

= what its modules and resources are
= how they fit fogether in the system
= Definition/usage graphs
= Modelling Interconnection Languages for
programming-in-the-large (DeRemer and Kron 75)

VALENCIA 2005
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Module structures 21

—oriil Architectures of Usage
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Module Interconnection Languages 22
|

= Address the task of integrating independently-developed
subsystems, which, in the 1970s, became increasingly
difficult as software systems increased in size and
complexity

= The first MIL, MIL75, was described by DeRemer and Kron
who argued about the differences between programming in
the small and programming in the large, for which a MIL is
required for knitting modules together.

= Another early MIL is MESA developed during 1975 at
Xerox PARC

X7 University of
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Example 23

module ABC

provides a, b, ¢

requires X,y

consists-of
function XA, module YBC

function XA
must-provide a
requires X
has-access-to module Z
real x, integer a

end XA
module YBC

must-provide b, ¢
requires a,y

real y, integer a, b, ¢
end YBC

end ABC

X7 University of
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Example 23

module ABC

provides a, b, ¢

requires X,y

consists-of
function XA, module YBC

function XA
must-provide a
requires x
has-access-to module Z
real x, integer a

end XA

module YBC
must-provide b, ¢
requires a,y
real y, integer a, b, c
end YBC

end ABC
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Example 23

module ABC
provides a, b, ¢
requires X,y

consists-of
function XA, module YBC
function XA
must-provide a
requires x
has-access-to module Z
real x, integer a

end XA
module YBC

must-provide b, ¢
requires a,y

real y, integer a, b, c
end YBC

end ABC
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Run-time Architectures 24

= The Components&Connectors view
» The "Interacts” relationship

= One generation later
Perry and Wolf (92)
Shaw and Garlan (96)
Bass, Clements, Kazman (98)

» Partly inspired by (civil) architects (Alexander)

X7 University of
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Reasoning 26

= Implements
typically proceeds hierarchically;
the correctness of one module depends on the
correctness of the modules that it uses

= Interacts

the correctness of each module is independent of the
correctness of the other modules with which it
interacts;

the behaviour of the aggregate system depends on the
behaviour of its constituent modules and the way they
interact.

X7 University of
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wser
transaction

dalabase architecture architecture ] grand irace
schema program tables l central mansger
i//r \\\‘ expander
pDL type
layers
compller transformers ond wtilities P
and utilities
|| datab
GH PN - 1
legend

D module or A—B Acslla B
program

scheme or
O tables Aw=dB dats path
Figure 3.1 The Configuration of the GENESIS Prototype

Cenesis: A Reconfiguration Database Management System, D S. Batory, J.R. Barnett, J.F. Carza, K.P. Salch,
K. Toukuda, B.C. Twichell, T.E. Wise, Departaent of Computer Sclemces, University of Texas at Austin,

Abstraction 27

= Implements

it is usually sufficient to adopt the primitives of the
underlying programming language (e.g. procedure call
and data sharing);

how a component achieves its computation

s Interacts
often involve abstractions not directly provided by the
underlying programming language: pipes, filters, event
broadcast, client-server protocols, etc;

how the computation achieved by each component is
combined with the others in the overall system

X University of
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Compatibility 28

= Implements

type checking is used to determine if a use of a facility
matches its definition

= Interacts

interest is in whether protocols of communication are
respected (e.g. is the server initialised before a client
makes a request of it)

FX] University of
VALENCIA 2005 @ Leicester

What is it then? 30

= architecture is concerned with the selection of
architectural elements, their interactions, and
the constraints on those elements and their
interactions necessary to provide a framework in
which to satisfy the requirements and serve as a
basis for the design.

source: D.E.Perry and A.L.Wolf.
Foundations for the Study of Software Architectures.
ACM SIGSOFT Software Engineering Notes, October 1992.

VALENCIA 2005 °{ :’l ij.l;‘;:zts)'t% "

What is it then? 29

= the fundamental organization of a system,
embodied in its components, their relationships to
each other and the environment, and the
principles governing its design and evolution.

source: ANSI/IEEE Std 1471-2000, Recommended Practice for
Architectural Description of Software-Intensive Systems

VALENCIA 2005 University of
@ Leicester
What is it then? 31

= A software architecture for a system is the
structure or structures of the system, which
comprise elements, their externally-visible
behavior, and the relationships among them.

source: L.Bass, P.Clements and R.Kazman.
Software Architecture in Practice. Addison-Wesley, 1998.

X University of
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What is it then? 32

|
= visit
www.sei.cmu.edu/architecture/definitions.html

you can add your own definition
if you don't like any of the 100 (or so...)

FX] University of
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The key architectural concepts 34

Connectors

= architectural elements that model
interactions among components
rules that govern those interactions

= simple interactions

procedure calls
shared variable access

= complex and semantically-rich interactions
client-server or database access protocols

asynchronous event multi-cast
piped data streams

VALENCIA 2005 § il‘lg;eéztsy{?ér

The key architectural concepts 33

Components
= units of computation or data stores
what Perry&Wolf call processing and data elements
= define the locus of computation and state
filters, databases, objects, ADTs, clients, servers, ...
= may be simple or composite
composite components describe a (sub)system;

architectures consisting of composite components
describe systems of systems

University of
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The key architectural concepts 35

Properties

= specify information for construction & analysis
signatures,
pre/post conditions,
RT specs,
protocols,
performance attributes

X University of

VALENCIA 2005 @ Leicester




The key architectural concepts 36

Configurations or topologies

= connected graphs of components and connectors
that describe architectural structures

= composite components are configurations

|

5 =

X7 University of
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A taxonomy (Shaw&Garlan) 38

= Data Flow = Data-oriented repository

Batch sequential Transactional databases
Dataflow network Blackboard
(pipesé&filters)

Closed loop control Modern compiler

= Call-and-return = Data-sharing
Main program/subroutines Compound documents
Information hiding Hypertext

= Interacting processes Fortran COMMON
Communicating processes LW processes

Event systems = Hierarchical

Layered

X7 University of
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and... 37

An architectural style is defined by:
= Component/connector types - the vocabulary of
architectural building blocks
= Constraints on how the building blocks can be
used, including
topological rules

interface standards
required properties

A style defines a family of architecture instances

University of

@ Leicester

VALENCIA 2005

The challenge of evolution 39

s Reflect on the (run-time) architecture of the
system the different levels of change that can
take place in the application domain.

= Support evolution through dynamic
reconfiguration, without interruption of service,
minimising impact on the global system.
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Coping with change 40
|

m In Business Systems today,
change is the rule of the game...

X7 University of
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Coping with change 40
|

m In Business Systems today,
change is the rule of the game...

'Xﬁ’MA’H)‘/’ideas on how to incorporate
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Coping with change 40
|

m In Business Systems today,
change is the rule of the game...

"... the ability to change is now more important than
the ability to create [e-commerce] systems in the
first place. Change becomes a first-class desigh goal
and requires business and technology architecture
whose components can be added, modified, replaced
and reconfigured".

P.Finger, "Component-Based Frameworks for E-
Commerce", Communications of the ACM 43(10), 2000,

61-66.
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Coping with change 40

m In Business Systems today,
change is the rule of the game...

m The Web is only fuelling the rate of change...
(B2¢, B2B, P2P,..)

We must .

{ goon-line.. How is

the IS going to
cope?
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Coping with change 40
-
m In Business Systems today,
change is the rule of the game...

m The Web is only fuelling the rate of change...
(B2C, B2B, P2P,...)

m Critical infrastructures depend on the ability to react to
failure by reconfiguring themselves (self-healing)...

5
VALENCIA 2005 F¥] University of
@ Leicester
Architectures in Software Design 41
A
[ Requirements high-level

domain

- s s s s D s -[ Ar‘Ch“’eCfo‘e } -

machine

[ Eode low-level
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Coping with change 40
|

m In Business Systems today,
change is the rule of the game...

m The Web is only fuelling the rate of change...
(B2C, B2B, P2P,..)

m Critical infrastructures depend on the ability to react to
failure by reconfiguring themselves (self-healing)...

m The real-time economy...

Complexity is now on evolution...

£X] University of
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Summary 1

Architecture-based approaches
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Architecture-based approaches
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Summary 1

Architecture-based approaches
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Computation

Compositionality wrt refinement
wrt evolution
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Some FAQs... 43
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An example from Banking 44

Consider the typical situation of bank
accounts that keep a balance and
from which customers can make
withdrawals.

£ University of
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Some FAQs... 43

Or with
components?

Can't we do it
with objects?

Where is
the catch?

£X] University of

@ Leicester
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An example from Banking 44

Balance:money Account
Withdrawal (Amount)

e

e Consider the typical situation of bank
accounts that keep a balance and
from which customers can make
withdrawals.
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An example from Banking 44
.

Balance:money

Withdrawal (Amount)

Account

Customer

In a typical classroom exercise, the
method withdrawal will be specified
with a precondition that prevents the
account from being overdrawn.

VALENCIA 2005
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An example from Banking 44
.
= Solution 1:

New Operation on Account

VIP_Withdrawal (Amount)

Account

Withdrawal (Amount)

Customer

How can we evolve this model to
accommodate VIP-customers that are
allowed to overdraw their account up
to an agreed limit?

VALENCIA 2005
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.

Balance:money

Withdrawal (Amount)

Account

Customer

How can we evolve this model to
accommodate VIP-customers that are
allowed to overdraw their account up
to an agreed limit?
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An example from Banking 44
.
m Solution 1:

New Operation on Account

VIP_Withdrawal (Amount)

! Balance+C.Credit2A

i precondition on VIP_Withdrawal(A): i

Account

Withdrawal (Amount)

Customer

How can we evolve this model to
accommodate VIP-customers that are
allowed to overdraw their account up
to an agreed limit?
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An example from Banking 44
|

m Solution 1:

New Operation on Account

VIP_Withdrawal (Amount)

Account

Withdrawal (Amount)

! Balance2A
o This solution is intrusive on:
VALENCIA 2005 ’u’ ij_l;::ztsyt%r
An example from Banking 44

m Solution 1:

New Operation on Account

VIP_Withdrawal (Amount)

E precondition on VIP_Withdrawal(A):

' Balance+C.Credit2A
L

Account

! Withdrawal (Amount)

Customer

This solution is intrusive on:

Customer — VIPs have to change calls

my account.withdrawal(n) {0
my_account.VIP_withdrawal (n)

VALENCIA 2005
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An example from Banking 44
|
m Solution 1:

New Operation on Account

VIP_Withdrawal (Amount)

Account

! Withdrawal (Amount)

Customer

This solution is intrusive on:

Account - its interface and
implementation needs to be extended
with the new operation

VALENCIA 2005
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An example from Banking 44
|
m Solution 1:

New Operation on Account

VIP_Withdrawal (Amount)

i precondition on VIP_Withdrawal(A):

' Balance+C.Credit2A
L

Account

! Withdrawal (Amount)

Customer

Typically, a different solution would
have been chosen...

VALENCIA 2005
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An example from Banking 44

m Solution 2:
Subclassing Account

VIP_Withdrawal (Amount)

Account

. ~~ Withdrawal

Customer VIP_ Account

X University of

VALENCIA 2005 @ Leicester

An example from Banking 44

m Solution 2:
Subclassing Account

Account

This solution is still
intrusive on customer... ,
(for the same reasons) _~Withdrawal

Customer VIP Account

VIP Withdrawal

X3 University of
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An example from Banking 44
m Solution 2:
Subclassing Account Account
Withdrawal
Customer VIP Account
VIP_Withdrawal
VALENCIA 2005 i‘;‘;eézgt‘{!r
An example from Banking 44
m Solution 2:
Subclassing Account Account
... and on the business
logic: the customers are ,
VIPs, not the accounts! _“Withdrawal
Customer VIP Account

VIP Withdrawal

£X] University of

< Leicester
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An example from Banking 45
I EEEEEEEEEEEE———

m Problems with Solutions 1,2

FX] University of
VALENCIA 2005 < Leicester

A better solution 46
|

Withdrawal (Customer,Amount)

Customer Account

VALENCIA 2005 ﬂ( ‘0 il‘lg;eéztsytoé "

An example from Banking 45
I EEEEEEEE———

m Problems with Solutions 1,2

* They are intrusive on the code...
=..and on the interconnections

=..and on the business logic

m This is because, through clientship, business rules
get encoded in the methods, and the methods
reside in the server side.

£X] University of

@ Leicester
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A better solution 46

|
Model the relationship between customers and accounts as an
association class...

Withdrawal (Customer,Amount)

Customer Account

Owner

£X] University of

< Leicester
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A better solution 46
1

... on which the “business rule” can be placed

A better solution 46

... and specialise it to evolve the business rule

Customer

Withdrawal (Customer,Amount)

Account

Owner

VALENCIA 2005

But still some problems
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46

If the association is implemented through attributes and direct
calls, we get the same problems as before...

Customer

Withdrawal (Customer,Amount)

Account

Credit:money

Owner

T

VIP Owner

i preconditions on
I A.Withdrawal(C,X):

owner (C,A) &&
A.Balance+Credit2X

VALENCIA 2005
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Customer

Withdrawal (Customer,Amount)

Account

Credit:money

Owner

T

VIP Owner

| preconditions on
! A.Withdrawal(C X):
owner (C,A) &&

VALENCIA 2005

But still some problems
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46

A better way is to use a mediator through which the calls can
be redirected and managed...

Customer

Withdrawal (Customer,Amount)

Account

Credit:money

™~

Owner

T

VIP Owner

preconditions on
A.Withdrawal(C.X):

i owner (C,A) &&
A.Balance+Credit2X

VALENCIA 2005
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Mediator 47
|

m Problems with the mediator

FX] University of
VALENCIA 2005 < Leicester

OO is identity-based 48
|

m What is infrinsically "wrong” with OO:

VALENCIA 2005 ﬂ( ’t il‘lg;eéztsytoé "

Mediator 47
|
m Problems with the mediator
= Each mediation is infrusive on the code...
= ..because it is managed explicitly by the objects involved
= This also means that it can be interrupted
=..and even by-passed

= On the other hand, additional business rules means
additional mediators and mediation between them...

£X] University of

@ Leicester
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OO is identity-based 48

m What is intrinsically "wrong” with OO:

 Feature calling, the basic mechanism through which object
can interact, is identity-based: objects call specific
features of specific objects (clientship):

« Asaresult, any change on the interactions is intrusive on
the code of the object.

£X] University of

< Leicester
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OO is identity-based 48
|

m What is intrinsically “wrong” with OO:

* Feature calling, the basic mechanism through which object
can interact, is identity-based: objects call specific
features of specific objects (clientship):

* Asaresult, any change on the interactions is intrusive on
the code of the object.

m We propose a way for interactions to be externalis:
and handled as first-class citizens.

FX] University of
VALENCIA 2005 @ Leicester

Contracts for Change 49

|
m A solution inspired on Architectural Connectors

The customer still calls the account but the call is intercepted
by the contract, without any of the parties being aware...

Customer Account

! when C calls A.withdrawal(
E with A.BalancezX
i do A.withdrawal(X)

T e

1 )
= )

. ! when C calls A.withdrawal(
Credit:money VIP_Owner E with A.Balance+C.creditzX

i do A.withdrawal(X)

Owner

VALENCIA 2005 °{ :’l ij.l;‘;:zts)'t% "

Contracts for Change 49

|
m A solution inspired on Architectural Connectors

Customer | Account

1

1

1
)

Owner
1 )
Credit:money VIP Owner

3 Uni\{ersity of
VALENCIA 2005 @ Leicester

Contracts for Change 49

m A solution inspired on Architectural Connectors

The customer still calls the account but the call is intercepted
by the contract, without any of the parties being aware...

1
The contract reacts to the trigger by — Account

1 performing a transaction

O}ez\i when C calls A.withdrawal(
\with A.BalancezX

1l
Ji do A.withdrawal(X)

T

1 )

Ewhen C calls A.withdrawal(
E with A.Balance+C.creditzx
E do A.withdrawal(X)

Credit:money VIP Owner

X University of
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Contracts for Change 49

m A solution inspired on Architectural Connectors

The customer still calls the account but the call is intercepted
by the contract, without any of the parties being aware...

[ —
The contract reacts to the trigger by —| Account

| performing a transaction

e S

The gontract maly-refuse the call when P

certain pre-conditions are not met ||} with a.Balance+c.credit=x
aL i do A.withdrawal(X)

FX] University of
VALENCIA 2005 @ Leicester
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The Coordination Dimension

The CCC approach 3

m The Strategy

X7 University of

VALENCIA 2005 @ Leicester

The CCC approach 2

s A confluence of contributions from

= Coordination Languages and Models
Separation between “computation” and “coordination”

= Software Architectures
Connectors as first-class citizens

= Parallel Program Design
Superposition

= An Academia/Industry partnership

Ak &

SOFTWARE

(¥ University of

v Leicester

£ University of

@ Leicester
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The CCC approach 3

m The Strategy

* Recognize that change in the application domain occurs at
different levels;

£X] University of

< Leicester
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The CCC approach 4

= Distinguish Computation Resources...

A | ‘,
A |
4
VALENCIA 2005 & ;J-nen;eéztsyttzr
The CCC approach 5

m ..from Coordination Resources

X7 University of

VALENCIA 2005 7 Leicester

The CCC approach 4

= Distinguish Computation Resources...

= Units that model core
business/domain entities and
provide services through

A - 4 computations performed locally
L
A » These tend to be stable
components, for which
N 4 modifications imply major re-
engineering
VALENCIA 2005 '&& irg\;tgztsytoér
The CCC approach 5

= ..from Coordination Resources

Units that model volatile
"business"” rules and processes
and can be superposed, at run
time, on the core units to...

-..coordinate their interactions

i ’ -..regulate their behaviour
6 «..adapt their behaviour

-..monitor their behaviour

£X University of
VALENCIA 2005 %’ Leicester



The CCC approach 6

m The Strategy

* Recognize that change in the application domain occurs at
different levels;

VALENCIA 2005 3 f il‘lg;eéztsytaé "

The CCC approach 7

= Change-oriented layered architecture

£ University of
VALENCIA 2005 » Leicester

The CCC approach 6

m The Strategy

* Recognize that change in the application domain occurs at
different levels;

+ Reflect these levels in the architecture of the system;

£X] University of

VALENCIA 2005 < Leicester

The CCC approach 7

= Change-oriented layered architecture

o Coordination -
Layer containing Contract Strict-layering:
coordination units . Components are not

controlling the / aware of the
interactions and " | contracts in place.

behavior of basic $s
=g
components g3
o
< Contract
Layer containing D A 3 r:?aT gln psa;1 nt
the stable 8 I p
independent
components
Comp‘onent |
VALENCIA 2005 £X] University of
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The CCC approach 8
|

m The Strategy

* Recognize that change in the application domain occurs at
different levels;

* Reflect these levels in the architecture of the system;

VALENCIA 2005 ﬁ il‘nen;eéztsytoé "

The CCC approach 9
|

= The Configuration Layer

Coordination

Resources

The running system

X7 University of
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The CCC approach 8
|

m The Strategy

* Recognize that change in the application domain occurs at
different levels;

* Reflect these levels in the architecture of the system;

* Manage evolution according to the architecture.

FX] University of
VALENCIA 2005 W Leicester

The CCC approach 9

= The Configuration Layer

Services that model business activities and through which the
system can be configured, at run-time, to provide the required

response.
Coordination
Configuration Layer Resources

igs

The running system

£ University of
VALENCIA 2005 @ Leicester



The CCC approach 9

= The Configuration Layer

These services can be either invoked by authorized users or
triggered by events (self-adaptation).

Coordination
Configuration Layer Resources

gt

The running system

X7 University of
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The CCC approach 9

= The Configuration Layer

These services can be either invoked by authorized users or
triggered by events (self-adaptation).

Coordination
Configuration Layer Resources

4L

—my XN | e

=
Ay
The running system -
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The CCC approach 9

= The Configuration Layer

These services can be either invoked by authorized users or
triggered by events (self-adaptation).

Coordination
Configuration Layer Resources

The running system

F¥ University of
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The CCC approach 10
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The CCC approach 10

m Semantic primitives for Coordination

m Semantic primitives for Configuration

Full mathematical semantics - CommUnity

A micro-architecture for deployment over
platforms for component-based development

An instantiation of this micro-architecture for
Java components - the Coordination Development
Environment (CDE)

X7 University of

VALENGIA 2005 @ Leicester

Overview 12

coordination law standard-withdrawal
partners
a:account-debit;
c:customer-withdrawal

rules
when c.withdrawal(n,a)
with a.balance()2n & c.owns(a)
do a.debit(n);

end law

X7 University of

VALENCIA 2005 @ Leicester

Semantic primitives for coordination 1

® Coordination laws that provide abstract models of services
in ferms of reactions to be performed upon detection of
triggers.

" Coordination interfaces that identify the types of
components that can instantiate the service as a law.

F¥ University of
Leicester

VALENCIA 2005
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Overview 12

coordination law standard-withdrawal
partners
azaccount-debit;
c:customer-withdrawal

rules
when c.withdrawal(n,a)
with a.balance()2n & c.owns(a)
do a.debit(n);
end law
coordination interface coordination interface
account-debit customer-withdrawal

import types

import types money, account;

money;

O services
services owns (a:account) :Boolean
balance( ) :money; events
debit(a:money): post balance() withdrawal (n:money;a:account

= old balance()-a end interface
end interface

£X] University of

< Leicester
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Just-in-time integration

13

——— | coordination law standard-withdrawal

account-debit

coordination interface ‘

coordination interface
customer-withdrawal

VALENCIA 2005

Instantiation

Coordnation laws modeling busiess  [*,
s

FX] University of
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14

Coordination R

Coordination Interface:

Business architecture

Unis  fittig  components  and |,

interconections to the model

Unis contoling the  itecactions and

betavior of basic components

Gore stable comporents

Computalion,

Cdbrdination

run-time configuration

Bindng Contrat

Coordiation Contract

VALENCIA 2005
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Just-in-time integration 13

Aggggggf‘coordination law standard-withdrawal

coordination interface ‘

coordination interface

account-debit customer-withdrawal

Object class account Object class customer

Binding may require adaptation...

University of

VALENCIA 2005 Leicester

Coordination interfaces 15
]

® Coordination interfaces correspond to the roles of
architectural connectors.

® They identify types of components according to services and
events:

" services identify operations that components that are instances
of the interface need to provide for a contract to operate
according to the law;

" events identify situations produced during the execution of the
components that are required to be detected as triggers for the
contract to react and activate a coordination rule as discussed
below.

University of

VALENCIA 2005 Leicester




Coordination interfaces 16
|

coordination interface customer-withdrawal
import types money, account

services owns (a:account) :Boolean

events withdrawal (n:money;a:account)

end interface

® We require to detect as triggers events that consist of customers
performing withdrawals, and be provided with services that query
about the account ownership relation

® 1In traditional object-oriented modelling, typical events are feature
calls: a withdrawal would normally be modelled as a direct call to the
debit operation of the corresponding account - a.debit(n).

FX] University of
VALENCIA 2005 < Leicester

Coordination laws 18

coordination law standard-withdrawal
partners a:account-debit; c:customer-withdrawal
rules when c.withdrawal(n,a)
with a.balance()2n and c.owns(a)
do a.debit(n)
end law

® A coordination law corresponds to a connector (type).

® The partners are logical parameters typed by coordination interfaces
and correspond to the connector's roles.

® The coordination rules provide the glue of the connector.

VALENCIA 2005 ﬂ( ’t il‘lg;eéztsytoé "

Coordination interfaces 17

coordination interface account-debit
import types money
services
balance () :money
debit (n:money) post balance()= old balance - a
end interface

" The inclusion of properties, e.g. pre and post-conditions on services,
provide means for requirements to be specified on the components
that can be bound to the interface.

® A special section properties may be used for other kinds of
requirements.

University of
Leicester

VALENCIA 2005

Coordination rules 19

coordination law standard-withdrawal
partners a:account-debit; c:customer-withdrawal
rules when c¢c.withdrawal(n,a)
with a.balance()2n and c.owns (a)
do a.debit(n)
end law

" Each coordination rule identifies, under when, a trigger to which the
contracts that instantiate the law will react - a request by the
customer for a withdrawal in the case at hand.

® The trigger can be just an event observed directly over one of the
partners or a more complex condition built from one or more events.

X University of

Leicester
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Coordination rules 20

coordination law standard-withdrawal
partners a:account-debit; c:customer-withdrawal
rules when c.withdrawal(n,a)
with a.balance()2n and c.owns(a)
do a.debit(n)
end law

® Under with we include conditions (guards) that should be observed
for the reaction to be performed.

® TIf any of the conditions fails, the reaction is not performed and the
occurrence of the trigger fails.

" Failure is handled through whatever mechanisms are provided by the
language used for deployment.

X7 University of

VALENGIA 2005 o Leicester

Example: VIP-withdrawal 22

coordination law VIP-withdrawal
partners a:account-debit; c:customer-withdrawal
operation credit () :money
rules when c.withdrawal(n,a)
with a.balance()+credit()2n and c.owns(a)
do a.debit (n)
end law

" The credit-limit is assigned to the law itself rather than the
customer or the account. This is because we may want to be able to
assign different credit limits fo the same customer but for different
accounts, or for the same account but for different owners.

® Would it make sense to have a separate partner of the law providing
the credit?

Coordination rules 21

coordination law standard-withdrawal
partners a:account-debit; c:customer-withdrawal
rules when c.withdrawal(n,a)
with a.balance()2n and c.owns (a)
do a.debit(n)
end law

" The reaction to be performed to occurrences of the trigger is
identified under do as a set of operations - a debit for the amount
and on the account identified in the trigger.

® This set may include services provided by one or more of the partners
as well as operations that are proper to the law itself.

" The whole interaction is handled as a single transaction.

F¥ University of
Leicester
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Interfacing with external events 23

® Coordination interfaces can also act as useful abstractions for
either events or services that lie outside the system, or global
phenomena that cannot be localised in specific components.

® In the case of events, this allows for the definition of
reactions that the system should be able to perform to
triggers that are either global (e.g. a deadline) or are detected
outside the system.

® Tn the case of reactions, this allows us to identify services
that should be procured externally. This is particularly useful
for B2B operations and the modelling of Web-services.

VALENCIA 2005 °{ ’0 il‘lg;eéztsytoé "
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Example: interfaces for transfers 24

coordination interface external-transfer )
import types money, account, transfer-id
events transfer (n:money;a:account;t: transfer-id)
end interface
J
i . . : )
coordination interface account-credit
import types money
Services credit (n:money)
end interface
J
VALENCIA 2005 0( )° ;J‘lgieéztsytzg "
Monitoring behaviour 26

® Assume that new legislation is passed that requires
credits over a certain amount to be reported to the
central bank - e.g. as a means of detecting money
laundering.

® Rather than revise the implementation of credits o
take care of this new requirement, it is better to
superpose a contract over every account to perform
the required monitoring activity.

VALENCIA 2005 ﬂ( ‘0 il‘lg;eéztsytoé "

Example: law for transfers 25
(:;ordination law external-transfer-handler ﬂ\\
partners a:account-credit; t:external-transfer

operation ackn (t:transfer-id)
rules when transfer(n,a,t)
with a.exists
do n21000:a.credit (n-100)
and n<1000:a.credit (n*0.9)
and ackn(t)

\\i?d law A//

£X] University of

VALENCIA 2005
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Example: monitoring big credits 27
coordination law report-big-credits A‘\
partners ataccount-credit-event
operation big() :money;

report (n:money) ;
set-big(n:money) post big()=n
rules when a.credit(n) and n2big()
do report (n)

end law 44/

coordination interface account-credit-event
import types money

events credit (n:money)

end interface

= < .
VALENCIA 2005 X University of
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Regulating behaviour 28
_________________________________________________________________________|

® Contracts can also be used for superposing
regulators over certain components of the system.

® For instance, consider the situation in which the
bank decides to penalise customers who fail to keep
a given minimum average balance by charging a
monthly commission.

¥ Uni .
VALENCIA 2005 University of

@ Leicester

Example: openplan 30
coordination law flexible-package ‘\\\
partners c,s:account-debité&credit
operation minimum() , maximum() :money
rules

when c.balance ()<minimum/()

do let N=min (s.balance() ,maximum()-c.balance())

in s.debit(N)and c.credit (N)

when c.balance ()>maximum/()
do let N=c.balance () -maximum/()
in s.credit(N)and c.debit(N)

N J

X7 University of

@ Leicester
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Example: commission on balances 29
|

coordination law commission-on-low-balance

partners a:average-balance
operation minimum() , charge () :money
rules
when end-of-month
do minimum () >a.average () :a.debit (charge())
end law

coordination interface average-balance
import types money

services debit(n:money); average () :money
end interface

£X] University of

@ Leicester
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Example: openplan 31

/i;ordination interface account-debité&credit ‘\\
import types money
events balance () :money
services debit (a:money) ;
credit (a:money) ;
balance () :money
properties
balance() after debit(a) is balance()-a;
balance() after credit(a) is balance()+a

Q\d interface

£X] University of

< Leicester
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Recall 32

Coordination Rue

1

I
rL-” -
5 Coordration Interface
i ’J

Business architecture

Coordnation laws modeling busivess  [*,
ks

Business Modelling

. run-time configuration
Unes  fiting  components  and [*,
intercomections to the model

Bindng Contract
Units controling the interactions and %
behavior of basic components £ Coordination Contract
(o stable comporents X [t
g
38
X3 i i
VALENCIA 2005 ? ij‘l;‘iecrz(sytlz r
.
Notation 34

coordination contract standard-withdrawal
partners x : Account; y : Customer;

coordination
when y ->> x.withdrawal (z)
with x.balance()>z and y.owns (x)
do call x.withdrawal (z)

end contract

£ University of
VALENCIA 2005 @ Leicester

Design primitives for coordination 33
|

® Coordination contracts instantiate coordination laws for
particular kinds of components.

® For instance, in the case of OO programming environments,
" services are provided through methods of the classes that
instantiate the partners (coordination interfaces)
" events are provided by object(instance) method calls or
system/class method calls

University of
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Notation 35
]

coordination contract VIP package
partners x : Account; y : Customer;
attributes Credit: Integer;
coordination
when y ->> x.withdrawal (z)
with x.balance () +Credit () >z and y.owns (x)
do x.withdrawal (z)
end contract

University of
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Intuitive semantics 36 Special reactions 37

= Instead of interacting with a mediator that . ) ) .
delegates execution on the supplier, the client When the trigger is a rnefhod call -->0bj.x (), the
calls directly the supplier (the partners in the do may be structured in ferms of:
contract are ot aware that they are being Before: operations to be performed when the call is

. . intercepted and before it is delegated;
coordinated by a third party); : .
" Replace: operation to be performed instead of the call;
= The contract "intercepts" the call and superposes After: operations to be performed after the call is

whatever forms of behaviour are prescribed; forwarded or its replacement executed
= This means that it is not possible to bypass the
coordination being imposed through the contract.

VALENCIA 2005 1: i.l‘lg;eéztsyttzr VALENCIA 2005 i‘;‘;eéggtoér
Coordination Semantics 38 Controlling a sluice-gate 39
|
The transactio L. . . . L. .
o Dehavior for the operat A rising and falling gate is used in an irrigation system. A
Xunder coordination computer system is needed to raise and lower the sluice gate
bebre ﬁﬂl bebre in response to the commands of an operator.
*->> 0bj.x () The gate is opened and closed by rotating vertical screws
— rplace —  petons defined controlled by a motor that accepts clockwise and anticlockwise
/ pulses only when stopped.
The trigger e i e ‘ There are sensors at the top and bottom of the gate travel
indicating when the gate is fully opened and fully shut.
Cl::rulel C2::rule2
L A The operator commands are to raise, lower, or stop the gate.

The Rules of the several contacts involving object Obj that satisfy the
trigger and additional conditions

VALENCIA 2005 § ij_l;‘;:zts)'t%r
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Requirements modelling 40
|

Customer's
Requirements

requirements
|
I
|
|
domains P :
The Machine The Problem
Domain Domain
VALENCIA 2005 & il‘nen;eéztsy;ér
The Problem Frame 41

raise and
lower gate

A raise lower stop € N up,down
requirements 4 \

/
\
Z \
i \
domains Operator .
raise,lower stop \\
AY
Gate_ Gate&Motor
Controller onClockw,onAnti,of f

£ University of
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Requirements modelling 40
|

Jackson's Problem Frames %

Customer's
Requirements

requirements

|
|
-_— -_— _— _— -_— _— _— -_— —_— _— _— - I _— _—

|

|
domains . :

The Machine The Problem
Domain Domain
VALENCIA 2005 ir;\;eéztsytoér
Requirements & coordination 42
Customer's
Requirements
requirements I
— — = L —_— — -
M { D
descriptions A \
domains y y
The Machine N The Problem
Domain Domain
VALENCIA 2005 “’ i‘gecrzgtoér



The Cooordinated Problem Frame 43

raise and
lower gate

. raise lower stop 7N up,down
requirements P v
\
N I IS S S . . - // \ == - . .
Z \
i \
domains Operator \
raise,lower,stop \\
A
Gate_ Gate&Motor
Controller onClockw,onAnti,of f
VALENCIA 2005 ij_lg;eéztsytaé -
The Cooordinated Problem Frame 43

coordination interface operator
events raise, lower, stop

end interface
(coordination interface gate&motor

services onClockw, onAnti, off
properties onClockw v onAnti DO

—(onClockw v onAnti) before o:

requirements | end interface

Z \
i \
domains Operator \
raise,lower stop \\
\
Gate_ Gate&Motor
Controller onClockw,onAnti,of f

X7 University of
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The Cooordinated Problem Frame 43

coordination interface operator
events raise, lower, stop
end interface

aise and
lower gate

q raise lower,stop 7N up,down
requirements ST v
\
NN I S S S S . - /, \ == - = .
Z \
i \
domains Operator g
raise, lower stop \\
AN
Gate_ Gate&Motor
Controller onClockw,onAnti,of f
The Cooordinated Problem Frame 43

coordination interface operator

events raise, lower, stop

end interface 7/~ - - - -
coordination interface gate&motor

services onClockw, onAnti, off

properties onClockw v onAnti DO
—(onClockw v onAnti) before o:

req coordination law uncontrolled-remote
— partners op:operator; mt:gate&motor

rules when op.raise do mt.onClockw
when op.lower do mt.onAnti
when op.stop do mt.off

end law

Gate_ r Gate&Motor

Controller onClockw onAnti,off

University of
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The Cooordinated Problem Frame x
|

op operator
Uncontrolled
_Remote

- w

descriptions fOp
_— _— _— - _— _— _— _— L —-— _— —_— _— L} _— -_—

domains

fe_C \ 4
Operator fe&M

raise lower stop
4
Gate_ y
Controller Gate&Motor

onClockw,onAnti,of f

VALENCIA 2005 ﬁ il‘lg;eéztsytaé "

The Cooordinated Problem Frame 2z

operator

Uncontrolled
_Remote

onClockw v onAnti D
—(onClockw v onAnti) before off
descriptions 7

domains

f6_C \ 4
raise,lower,stop Operator fGam

Gate_
Controller GatedMotor

onClockw,onAnti,of f

£ University of
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The Cooordinated Problem Frame 24
]

operator

Uncontrolled
_Remote

onClockw v onAnti D
—(onClockw v onAnti) before off

descriptions ¥
—_— _— —_— - _— _— —_— —_— —_— _— _— _— —_— = —_— -_—
domains f G_ c &
raise,lower stop Operator Tesm
Gate_ v
Controller Gate&Motor

onClockw,onAnti,of f
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A new requirement 45
|

Because the operator commands the sluice machine directly
with no external control, and the motor accepts clockwise and
anticlockwise pulses when in operation, there is nothing to
prevent undesirable sequences of commands and the motor can
get broken.

As a result, we now want to control the operator in such a way
that:
- issuing a lower command is only accepted when the motor is
stopped and the gate has not reached the bottom
+ issuing a raise command is only accepted when the motor is
stopped and the gate has not reached the top
+ issuing a stop command is only accepted when the motor is
in operation.
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A new problem frame 46
operate
sensibly
raise,lower stop , /N up,down
/ \\
Z \
\
. Operator \
raise, lower stop \
\
A}
Operator_ Gate&Motor
Controller up, down
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A new problem frame 46
~
coordination interface operator
events raise, lower, stop
end in{ ., dination interface sensor }e
events up, down ly
end interface
raise lower stop , /N up,down
7/ \\
Z \
\
. Operator \
raise, lower stop \
\
A\
Operator_ Gate&Motor
Controller up, down
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A new problem frame 46

coordination interface operator
events raise, lower, stop
end interface

operate
sensibly

raise lower stop s /N up,down
, \

\
N S S S S S S - // \ == - . -
Z \
o t b
raise lower stop perdier \\
\
A\
Operator_ Gate&Motor
Controller up, down
A new problem frame 46

coordination interface operator
events raise, lower, stop
end in

coordination interface sensor e
events up, down ly

end interfaf
coordination law operate-sensibly

partners op:operator; sr:sensor
operations stopped, open, shut
rules
EEEE N S . -
when sr.up do shut:=false

when sr.down do open:=false
when op.raise with stopped A shut

raise lowerstop do stopped:=false A open:=true
/ when op.lower with stopped A open
do stopped:=false A shut:=true
Operator_ when op.stop with -stopped
Controller do  stopped:=true
—
VALENCIA 2005 X University of
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The Cooordinated Problem Frame 47

operator

Uncontrolled

_Remote | \
mt N
f6_c [ fo_c

descriptions —

sensor Sensibly

Operator ||

T~ raise lower stop

" raise lower stop N r

Gate_ Gate&Motor Operator_
Controller onClockw, up, Controller

onAnti,off down
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The Cooordinated Problem Frame 47
when op.raise
when op.raise oper] with  stopped A shut
do mt.onClockw do stopped:=false A open:=tru
Uncontrolled- — Sensibly

_Remotd when op.raise
with stopped A shut

f6] do stopped:=false fo_C
descriptions A open:=true
— A gt.onClockw _———_————
A 4

Operator ||

T~ raise lower stop

. / raise lower stop <& y

III Gate_ Gate&Motor Operator_

Controller onClockw, up, Controller
onAnti,off down

X7 University of
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The Cooordinated Problem Frame 47
(" !
when op.raise
when op.raise oper] with  stopped A shut
do mt.onClockw kdo stopped:=false A open:=tru
Unc;n;‘r‘oflled ‘71\ fop sensor-j ~ Sensibly
_Remote = sr
m,r\ . d
f6_c = fmotor fo_c
descriptions ]
e L — _— L —_— — L L _— — L] —_— —_— _— —_—
domains v fG&M fS&M

Operator
[~
T~ raise lower stop

i " raise lower stop | "\

Gate_ Gate&Motor Operator_
Controller onClockw, up, Controller

onAnti,off down
VALENCIA 2005 il;\;eéztsy{ér
A Micro-Architecture 48

= None of the standards for component-based
software development - CORBA, JavaBeans, COM
- can support superposition as a first-class
mechanism.

m Because of this, ATX proposed a micro-
architecture that exploits polymorphism and
subtyping, and is based on well known design
patterns, such as the Chain of Responsibility, and
the Proxy or Surrogate.
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Coordination micro-architecture (1) 49

Component Pattern

Client =y | Component

'Request

bjectInterface
<<abstract>>

Coordination Pattern

operation ()

of
ibili
_operation()
()7
ISubjectrPartner

Subject

_operation ()

<«
ct_1_subject ct_n_subject Request
Connector Connector operation ()
[ [
I Contract-1 T I Contract-n T
VALENCIA 2005 ‘,’ i)‘ne“iecrztsytoér
Classes defining the pattern 51

m  SubjectInterface - an abstract class that defines the operations
of the Subject under potential coordination.

m  SubjectToProxyAdapter - a concrete class that defines the ability
to alternatively use a proxy or internal methods for the
implementation of a given Subject interface. Allows, at run time
and using the polymorphic entity proxy, for delegeting requests to
ISubjectPartner that links the Subject to the contracts that
coordinate it. If no contract is involved it forwards requests
directly to Subject.

X7 University of
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Coordination micro-architecture (2) 50

Component Pattern

SubjectInterface
<<abstract>>
Component AF,
1
| SubjectToProxyAdapter
ISubjectProxy
operation()
R t &

edques <<abstract>> <_ _operation()

Client Subject i
+—

| _operation0

Request

operation()

£X] University of
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Classes defining the pattern 52

m ISubjectProxy - it represents an object with the capability
implementing the Subject interface. It is an abstract class that defini
the common interface of Subject and ISubjectPartner. The interfa
is inherited from SubjectInterface to guarantee that all these class:
offer the same interface as Subject with which real subject clien
have fo interact.

m  Subject - the concrete domain class, candidate for coordination, whi
provides the concrete implementation of the various services at
inherits from Subject ToProxyAdapter.

X University of
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Classes defining the 53

_

m ISubjectPartner - defines the general abilities of a concept to t
under coordination. Maintains the connection between contracts ar
the real object (Subject). The class is responsible for delegatir
received requests to CtSubjectConnectors according to a chain ¢
responsibility.

m Ct-i-SubjectConnector - a partner that represents the specificities ¢
Subject coordination for a given contract in which Subject s
participant.

m Contract - a coordination object that defines the rules that will t
superimposed on Subject.

X7 University of
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Account coordination (4) 55

= If there are no contracts coordinating a real
subject, the contract pattern can be simplified.

= In this scenario, the only overhead imposed by
the pattern is an extra call from
Subject ToProxyAdapter to Subject.

= The following diagrams shows how the contracts,
VIP and Flexible Package, superposes nhew
behaviour when requests withdrawal() are invoked
on a real object of type Account.

X7 University of
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Account coordination (3) 54

[ AccountInterface |
Client Account

Coordination Pattern ,#‘

chain of o AccountToProxyAdapter

delegation
<+
I o ' <<abstract>> withdrawal ()

_withdrawal ()

Account

AN
Request for
_withdrawal() withdrawal ()
VIP Ce 't Flexible Pack:
Acoountcoanastor “contrace Account Pattern
|
vIip Flexible
Package
d
¥ Universi
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Account coordination (5) 56
MY i thrawal

Account

Client —>
_withdrawal ()

Coordination Pattern ¢

G & FIex:LEIe PECES e
delegation = g <—
AccountConnector. dapter
proxy
VIP Contract withdrawal ()
AccountConnector _withdrawal ()
Account Pattern
Flexible
Package
VIip
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Operational view 57
|

m Before the subject gives rights to the real object to
execute the request, it intercepts the request and gives
right to the contract to decide if the request is valid and
perform other actions.

= This allows us to impose other contractual obligations on the
interaction between the caller and the callee.

= Moreover, it allows the contract to perform other actions
before or after the real object executes the request.

= Only if the contract authorises can the connector ask the

involved objects to execute and commit, or undo execution
because of violation of post-conditions established by the

contfract.
VALENCIA 2005 .: ij_';‘;:zts)'t%r
Resources 59
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Summary 58
|

s Having this form of coordination available as a primitive
construction when specifying components and their interactions
avoids the burden of having to code such a micro-architecture
each time.

= In the meanwhile, tools which provide automatic code generation
from high level specifications, can hide the implementation
complexity of coordination, allowing the developer just to specify
the contract itself.

m Even if the design solution that was proposed is not adopted, there
are many advantages in using the coordination primitives at the
more abstract modelling levels.

University of
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Resources 59
]

m Software Designh in Java 2
K.Lano, J.Fiadeiro and L.Andrade
Palgrave Macmillan

m http://www.fiadeiro.org/jose/CommUnity/publications.html
for publications in general (section on coordination
contracts)

m www.atxsoftware.com/CDE for the Coordination
Development Environment
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CommUnity:
The Mathematics of Architecture

Formalise what? 3
|

= Architecture of specific systems
+ what will the system do? what properties will it have?
= what will happen if we replace this component/connector by this other
one?
m Architectural styles
= what does it mean to conform to an architectural style?
= what system properties can be inferred from its style?
= Architectural notions in general
= what does composition/interconnection/refinement mean?
= what degree of heterogeneity to they support?

X7 University of
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Need for formality 2
]
s Architectures = Box & Lines ?

= is there a shared understanding of what they mean?
= how easy is it to communicate details ("up” and “down")?

what degree of analytic leverage are we given?

how informed are we for selecting among alternatives?

= We need a formal approach supporting
abstraction: capturing the essential

precision: knowing what exactly is being addressed

analysis: predicting what properties will emerge

refinement: coding according to standard reference models

automation: ool support

University of
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To infer what? 4
]

= Structure
= How is the system organised? How can it evolve?
= Compatibility
= Is the system well composed?
= Function
= What behaviour will the system exhibit?
= Resource
= How fast and how big?
= Invariants

= What evolution-independent properties are guaranteed?

= Interoperability

= How is system structure constraining usage in more general contexts?

X University of
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How? 5
|

= Architecture description languages (ADLs) have been proposed as a
possible answer
» Several prototype ADLs and supporting tools have been proposed

Rapide events with simulation and animation

UniCon emphasizing heterogeneity and compilation
Wright formal specification of connector interactions
Aesop style-specific arch design languages

Darwin service-oriented architectures

SADL SRI language emphasizing refinement

Meta-H arch description for avionics domain

c-2 arch style using implicit invocation

ACME open-ended approach (*XML for architectures”)

CommUnity 7

= Not a full-fledged ADL

its purpose is not to support large-scale, industrial architectural design

but to serve as a test bed for formalising architectural notions and
techniques

and a prototype for extensions (e.g. mobility)
but has found its way into industrial practice

= Full mathematical semantics
the semantics is largely “language independent”

supports reasoning and prototyping
supports heterogeneity (based on General Systems Theory)

VALENCIA 2005 °{ ’0 il‘lg;eéztsytoé "

Purpose of ADLs 6

= An ADL is a language that provides features for modelling a
software system's conceptual architecture, at least:
components
connectors
configurations

= The purpose of an ADL is to
provide models, notations, and tools to describe components and their
interactions
support large-scale, high-level designs
support principled selection and application of architectural paradigms

F¥ University of
Leicester

@
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Origins 8
|

A confluence of contributions from

(Re)Configurable Distributed Systems
exoskeletal software

Parallel Program Design

superposition

m Coordination Models and Languages
separation of concerns (Computation / Coordination)
The categorical imperative
Goguen's approach to General Systems Theory

University of
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Architectural elements 9
1

= Components

model entities/devices/machines (software or “real world"), that keep
an internal state, perform computations, and are able to synchronise
with their environment and exchange information through channels

“designs” given in terms of communication channels and actions

= Connectors
model entities whose purpose is to coordinate interactions between
components
“structured designs” given in terms of a “glue” and collection of “roles”
(as in Wright)
can be superposed at run-time over given components

= Configurations
diagrams in a category of designs as objects and superposition as
morphisms;
composition (emergent behaviour) given by colimit construction

X7 University of

VALENCIA 2005 ? Leicester
Designing components 10
.

An example

The design of a "naive" bank account

design n-account is
out num:nat, bal:int
in wv: nat
do dep: true — bal:=v+bal
[l wit: bal2v — bal:=bal-v

vV n-account
bal num

VALENCIA 2005 ﬁ( : il‘lg;eéztsytoé "

Designing components 10
|

An example

The design of a "ndive” bank account

design n-account is
out num:nat, bal:int
in wv: nat
do dep: true — bal:=vtbal
[]  wit: bal2v — bal:=bal-v

University of
Leicester

VALENCIA 2005

Channels 11
]

= Provide for interchange of data
actions do not have I/0 parameters!
reading from a channel does not consume the datal

s Output channels out (V)

allow the environment to observe the state of the component, and for
the component to transmit data o the environment

the component controls the data that is made available; the
environment can only read the data

= Input channels in (V)
allow the environment to make data available to the component
the environment controls the data that is made available; the
component can only read the data
s Private channels prv (V)
model communication inside (different parts of) the component;
the environment can neither read from nor write into private channels

X University of
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Actions 12

|
= Provide for synchronisation with the environment (e.g. to transmit
or receive new data made available through the channels)
m Provide for the computations that make available or consume data

do g[D(g)] : L(g), U(g) — R(g)

= Werite frame D (g)
the local channels (out, prv) into which the action can write data
= Computation R (g)

how the execution of the action uses the data read on the input
channels and changes the data made available on the local channels

= Guards L(g), U(g)
set of states in which the action may be enabled L (g)
set of states in which the action must be enabled U (g)

U(g)D L(g)
VALENCIA 2005 F¥] University of
v Leicester
Operational Semantics 14

= A design is called a program if, for every action g,
L(g) and U(g) coincide
R(g) defines a conditional multiple assignment.

= Execution of a program on a given state:

any of the actions whose enabling condition holds can be
selected by the environment, in which case its
assignments are executed atomically

private actions [prv] are internally selected ina fair
way: every private action that is infinitely often
enabled is selected an infinite number of times

X7 University of
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Designing components 13

Another example

The design of a VIP-account that may accept a withdrawal when the
balance together with a given credit amount is greater than the
requested amount, and will accept any withdrawal for which there are
funds available to match the requested amount:

design vip-account[CRE:nat] is
out num: nat, bal:int
in wv: nat
do dep[bal]: true — bal’=v+bal
0 wit[bal]: bal+CRE2v, bal2v — bal’<bal-v

University of
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Superposition 15

= A structuring mechanism for the design of
systems that allows to build on already designed
components by "augmenting” them while
"preserving” their properties.

= Typically, the additional behaviour results from
the introduction of new channels and
corresponding assignments (that may use the
values of the channels of the base design).

X University of
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Applying Superposition 16

An example

Extending the design of n-account to control how many days the
balance has exceeded a given amount since it was last reseft.

design e-account[MAX:int] is

out num:nat, bal:int, count:int
in v,day:nat
prv d:int
do dep[bal,d,count]: true —

bal:=v+bal

d:=day

if bal2MAX then count:=count+ (day-d)
[ wit[bal,d,count]:

bal2v — bal:=bal-v

H d:=day

if bal2MAX then count:=count+ (day-d)
0 reset [d,count]:

true, false — count:=0|d:=day

X7 University of
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Superposition Morphisms 18

A superposition morphism o:P,—P, consists of

e atotal function o,,:V;—V, s.t.

o Sorts, privacy and
availability of channels are
preserved

o Input channels may become
output channels

* apartial mapping o,.:T,—T; s.t.

o Privacy/availability of
actions is preserved

o Domains of channels are
preserved

X7 University of
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Characterising Superposition 17

The relationship between a design P, and a design P,
obtained from P, through the superposition of
additional behaviour, can be modelled as a mapping
between the channels and actions of the two designs

o:P,—P,

subject to some constraints.
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Superposition Morphisms 18

A superposition morphism o:P,—P, consists of
¢ atotal function o,,:V;—V, s.t.

ssort,(0,,(v))= sort(v) o Sorts, privacy and
«a(out(V,)) C out(V,) GVOIIObIIILy of channels are
. . preserve
Oer(in(V)) < out(Vo) Uin(P) o Input channels may become
*0en(Prv(V)) € prv(Ve) output channels

* a partial mapping o, :T,—T; s.t.
“Oae(Sh(T2)) Ssh(T) o Privacy/availability of
*0a(Prv(I2)) Cprv(Iy) actions is preserved
*0,(D1(0,( 9))) €D(9) o Domains of channels are
*0,(D (0,4, ( v))) CD4(v) preserved

£X] University of
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Superposition Morphisms 19
|

and, moreover, for every g in T, s.t. o,.(g) is defined

o Effects of actions must be
preserved or made more
deterministic

o The bounds for enabling conditions
of actions can be strengthened but
not weakened

¥ Uni .
VALENCIA 2005 University of
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Superposition Morphisms: Examples 20
design n-account is
out num:nat, bal:int & 5
P inclusion
do dep[bal]: true — bal:=v+bal
[1 wit[bal]: bal2v — bal:=bal-v
design e-account[MAX:int] is
out num:nat, bal:int, count:int
in v,day:nat
prv d:int
do dep[bal,d,count]: true —
bal:=v+bal
d:=day
if bal2MAX then count:=count+ (day-d)
] wit[bal,d,count]:
bal2v — bal:=bal-v
H d:=day
if bal2MAX then count:=count+ (day-d)
1 reset [d,count]:

true, false — count:=0|d:=day

X3 University of
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Superposition Morphisms 19
|

and, moreover, for every g in T, s.t. o,.(g) is defined

* R,(9) D o(Ry(0,:(9))) o Effects of actions must be
preserved or made more
+ L,(9) D o(Ly(o.(9))) deterministic

o The bounds for enabling conditions
of actions can be strengthened but
not weakened

* U,(9) 2 0(Uy(0.:(9)))

University of
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Superposition Morphisms: Examples 21

Another example

design account is
out num:nat, bal:int
in v: nat
do dep: true — bal:=v+bal inclusion
[1 wit: true — bal:=bal-v

design n-account is
out num:nat, bal:int
in v: nat
do dep: true — bal:=v+bal
M wit: bal2v — bal:=bal-v

University of
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Externalising superposed behaviour 22

= These examples represent two typical kinds of
superposition
monitoring
regulation
= The superposed behaviour can be captured by a
component
monitor Support reuse
regulator
= and the new design is obtained by interconnecting
the underlying design with this component.

Externalising the counter 23

A design of a counter that counts how many days a value has
exceed a given value, since the last time it was reset

design counter[LIM:int] is

in wval,day:nat
out count:int
prv d:int
do chg[d,count]: true —

d:=day

|| if val2LIM then count:=count+ (day-d)

[l reset[d,count]: true, false — count:=0|[d:=day

FX] University of
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Externalising the counter 24

To identify which channels and actions of the account are involved in
the monitoring by the counter, we use the diagram

design channel is
23 < in x: int ~
v 2 i 12
-~ do a: true—skip LRy Q7
ge® , 2 cp
e o

n-account counter

This diagram captures the configuration of a system with two
components — n-account and counter — that are interconnected
through a third design (a communication channel)

University of
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Configurations 25

® Using diagrams whose nodes are labelled by
designs and whose arcs are labelled by
superposition morphisms, it is possible to design
large systems from simpler components.

¢ Interactions between components are made
explicit through the corresponding name
bindings.

® Name bindings are represented as additional
nodes labelled with designs and edges labelled by
morphisms.

VALENCIA 2005 °{ :’l ij.l;‘;zzts)'t% "
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Semantics of Configurations 26

What's the relationship between e-account and the
configuration?

% design channel is
v “« > in x: int o
[ do a: true—>skip @ ey
3e® 2 o
e g
n-account counter
15 o
dug .
&2 s'lo
e-account
FX] University of
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Semantics of Configurations 28

The semantics of configurations is given by the
"amalgamated sum” (colimit) of the diagram.

/ channel \

P2
7 91 = 95 921

/\

defines synchronisation sets
{911, 9213 {912, 921} -

P1||P2

Semantics of Configurations 27

design channel is x
% in x: int S
3 g Va
v2- RS do a: true — LI 2
a® o Chg
th
w

design counter[LIM:int] is
in val,day:nat

design n-account is o
out count:int

out num:nat, bal:int

in v:nat grv :hl?:; t1: A
q S o g[d,count]: true — d:=day
iy CLplEiE BE = il if 'valZLIM then count:=count+ (day-c

] 3 S Bal =bal= I
] wit[bal]: bal2v bal:=bal-v 0 T T o] 4

true, false — count:=0|d:=day

s
'elus N
> s3>
09

design e-account[MAX:int] is 63?/'5 S
out num:nat, bal:int, count:int ‘v/‘a\
in v,day:nat w
prv d:int
do dep[bal,d,count]: true — bal:=v+bal | d:=day

I if bal>MAX then count: =count+ (day-d)
0 wit[bal,d,count]: bal2v — bal:=bal-v | d:=day

I if bal>MAX then count: =count+ (day-d)
[1 reset[d,count]: true, false — count:=0|d:=day

VALENCIA 2005 Lelcester

Semantics of Configurations 28

The semantics of configurations is given by the
"amalgamated sum” (colimit) of the diagram.

channel
/ i <—x—>o\

2
P2
i 911 = 921

defines an I/0 connection
defines synchronisation sets

{911, 921} {912, 921}

P1||P2

£ University of
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Semantics of Configurations 29

The colimit of such design diagrams
= Amalgamates channels involved in each i/o interconnection and the
result is an output channel of the system design
= Represents every synchronisation set {g,,9,} by a single action g,|g,
with
= safety bound: conjunction of the safety bounds of g; and g,
= progress bound: conjunction of the progress bounds of g; and g,
= conditions on next state: conjunction of conditions of g; and g,

X7 University of

Configurations 30

= Not every diagram represents a meaningful configuration.

m Restrictions on diagrams that make them well-formed
configurations:
= An output channel of a component cannot be connected (directly or
indirectly through input channels) with output channels of the same or
other components.

= Private channels and private actions cannot be involved in the
connections.
= These restrictions cannot be captured by the notion of
superposition because they involve the whole diagram.

University of
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Externalising the regulator 31

*

o
voh
< gl
LR

«

design account is
in wv:nat
out bal,num:int
do dep: true — bal:
[ wit: true — bal:

design channel’ is
in x:int, y:nat iq
do a:true — \

design reg is
in x:int, y: nat
do a: x2y —
=bal+v

=bal-v /

\ design n-account is
in v:nat

out bal,num:int
do dep: true — bal:=bal+v
[1 wit: bal2v — bal:=bal-v

VALENCIA 2005
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Externalising the regulator 31

*

«
baﬁ/ !
< gl 2
R

W

design account is
in v:nat
out bal,num:int
do dep: true — bal:
| wit: true — bal

design channel’ is
in x:int, y:nat iq
do a:true — \

design reg is
in x:int, y: nat
do a: x2y —
=bal+v

:=bal-v /

\ design n-account is
in wv:nat

out bal,num:int
do dep: true — bal:=bal+v
[ wit: bal2v — bal:=bal-v

VALENCIA 2005
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vip-account 32

% design channel’ is
InEExtntiRvenat

_&/
2> 4 R
t:, - 2 do a:true — q

w T

design vip-reg[C:nat] is
in x:int,y:nat
do a: x+Cy, x2y —

design account is
in wv:nat
out bal,num:int

do dep: true — bal:=bal+v
[1 wit: true — bal:=bal-v /
\ design vip-account[C:nat] is
in v:nat

out bal,num:int
do dep: true — bal:=bal+v
[ wit: bal+C2v, bal2v — bal:=bal-v

FX] University of
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From simple to complex interactions 34
|

= The configuration diagrams presented so far
express simple and static interactions between

components

action synchronisation

the interconnection of input channels of a component
with output channels of other components

= More complex interaction protocols can also be
described by configurations...

Recall: architectural elements 33

= Components
model entities/devices/machines (software or “real world"), that keep
an internal state, perform computations, and are able to synchronise
with their environment and exchange information through channels

"designs” given in terms of communication channels and actions

= Connectors
model entities whose purpose is to coordinate interactions between
components
“structured designs” given in terms of a “glue” and collection of “roles”
(as in Wright)
can be superposed at run-time over given components

= Configurations
diagrams in a category of designs as objects and superposition as
morphisms;
composition (emergent behaviour) given by colimit construction

F¥ University of
Leicester
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Bounded asynchronous interaction 35

A generic sender and receiver communicating
asynchronously, through a bounded buffer

val receiver[t]

p

»e buffer[t+K] ,

Y

sender[t]

val

VALENCIA 2005 ﬂ( 70 il‘lg;eéztsytoé "
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Bounded asynchronous interaction 35

A generic sender and receiver communicating
asynchronously, through a bounded buffer

sender[t] yql i buffer[t+K] , val receiver{t]

Y

design sender[t] is

out val:t

prv rd:bool

do prod[val,rd]:-rd, false—>rd’
1 send[rd] :rd,false — -rd’

X7 University of

VALENCIA 2005 @ Leicester

Bounded asynchronous interaction 36

od send put mc

der[t] val i buffer[t+K] o val receiver[t]

design buffer[t; K:nat] is

in L84

out o:t

prv g:queue (K,t) ; rd:bool

do put:-£full (q) »>q:=enqueue (i, q)

[lprv next:-empty(q)A-rd —o:=head(q)|q:=tail(q)|[rd:=true
| get:rd — rd:=false

X7 University of

VALENCIA 2005 @ Leicester

Bounded asynchronous interaction 35

A generic sender and receiver communicating
asynchronously, through a bounded buffer

DJOd sm‘r QK\WLC

sender[t] yq| »e buffer[t+K] ,

val receiver[t]

design sender[t] is
out val:t [design receiver[t] is

prv rd:bool in wval:t
do prod[val,rd]:-rd, false—rd’ do rec:true,false—

[ send[rd] :xrd, false — -rd’

University of

@ Leicester

VALENCIA 2005

psender([t] o »$ scl pipe[t,K] eof »8 cof preceiver[t]
val e dl o val cle

y

£X] University of
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Communicating through a pipe 37
|

psender[t] 2 »pscl pipe[t,K] eof eof preceiver(t]
val iadl [} »® val cle

design psender([t] is

out val:t, cl:bool

prv rd:bool

do prod[val,rd] :-rdA-cl, false—>rd’

[]prv close[cl]:-rda-cl, false—>cl’
send[rd] :xrd, false—»>-rd’

X7 University of

VALENCIA 2005 @ Leicester
Communicating through a pipe 38
od send t + rec
psender[t] cl »pscl pipe[t,K] eof eof preceiver[t]
val iadl 0 >® val cle

(design pipe[t,K:nat] is
in i:t, scl:bool
out o:t, eof:bool
prv q:queue(K,t);rd:bool
do put: -full(q)—>g:=enqueue(i,q)
[Iprv next: -empty(q)A-rd—o:=head(q)|q:=tail(q)|rd:=true
[1 get: rd—rd:=false

\[] prv signal: sclaempty(q)A-rd—eof:=true

/

£ University of
VALENCIA 2005 @ Leicester

Communicating through a pipe 37

psender[t] ¢ *?5cl pipelt,k] eof »$ eof preceiver[t]
val odl o val cle

b 4

design psender[t] is

out val:t, cl:bool

prv rd:bool

do prod[val,rd] :-rdAa-cl, false—>rd’

[[prv close[cl]:-rda-cl,false—>cl’
send[rd] :xrd, false—»>-rd’

Ve
design preceiver[t] is

in val:t, eof:bool
out cl:bool
do rec:-eofa-cl,false—

[ prv close:-cl,-~claeof—cl’

University of
Leicester

VALENCIA 2005

Connectors 39

u A connector is a well-formed configuration of the form

i ! |
R, R, R,

G is the glue and R's are the roles

n Its semantics is given by the colimit of the diagram

University of
Leicester

VALENCIA 2005



Refinement 40
|

Connectors can be applied (instantiated) to
components that refine (are instances of) their roles
A refinement mapping

supports the identification of a way in which the
design P, is refined by P,.

X7 University of

VALENCIA 2005 @ Leicester

Refinement morphisms 41
|

A refinement morphism o:P;—P, consists of
* atotal function o,:V;—Term(V,) s.t.

Sorts are preserved as well as
the border between the
component and its environment

* apartial mapping o,.:T,—T; s.t.
Domains of channels are
preserved
Every action that models
interaction has to be implementec

X7 University of

VALENCIA 2005 @ Leicester

Refinement morphisms 41
|

A refinement morphism o:P;—P, consists of
e atotal function o,:V;—=Term(V,) s.t.

e a partial mapping o, :T,—T; s.t.

£X] University of

@ Leicester
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Refinement morphisms 41
|

A refinement morphism o:P;—P, consists of
¢ atotal function o,:V;—Term(V,) s.t.

*sort,(o,,(v))= sort(v)
«a(out(V,)) C out(V,) Sorts are preserved as well as
v, (in(V,)) C in(V,) the border between the

component and its environment
*o.(prv(Vy)) C Term(loc(V,))

a partial mapping o,.:T,—T; s.t.

L]

*0,.(sh(I';)) Csh(Ty) Domains of channels are
*0ac(prv(I2)) Sprv(Ty) preserved

*0,.(9)2 D, gEsh(Iy) Every action that models
*0.n(D1(04( 9))) ED2(9) interaction has to be implementec
#0(D2(0,6:(V))) ED;(V), vEloc(Vy)

£X] University of

< Leicester
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Refinement morphisms 42

and, moreover, for every g in T, s.t. o,.( g) is defined

Effects of actions must be
preserved or made more
deterministic.

and for every g in T, The interval defined by the
safety and progress bounds of
each action must be preserved

or reduced
VALENCIA 2005 9‘1- ij_lg;eéztsytaél‘
worduser - a refinement of sender 43

design sender (ps+pdf) is

out val:ps+pdf

prv rd:bool

do prod[val,rd]:-rd, false—>rd’
[ send[rd] :xd,false — -rd’

design user is

out p:ps+pdf

prv free:bool, w:MSWord

do save[w]: true,bfalse —

[l pr_pslp,free]l: free — p:=ps(w)|free:=false
[l pr_pdflp,free]: free — p:=pdf (w)|free:=false
[l  print[free]: -free — free:=true

X7 University of

VALENCIA 2005 7 Leicester

Refinement morphisms 42

and, moreover, for every g in T, s.t. o,( g) is defined

*R Do(R
2(9) 2 o(Ry(0uc( 9 Effects of actions must be
preserved or made more
* L,(9) D alLi(o,(9)) deterministic.
and for every g, in T, The interval defined by the
safety and progress bounds of
* o(Us(g,)) D V(gz;n(QZ):gn U,(g,) each action must be preserved
N or reduced
VALENCIA 2005 & i‘;‘;eézgtoér
printer: a refinement of receiver 44

design receiver (ps+pdf) is
in val:ps+pdf
do rec[]:true,false—

design printer is

out rdoc:ps+pdf

prv busy:bool, pdoc:ps+pdf

do rec:-busy—pdoc:=rdoc|busy:=true

[l end print:busy,false—busy:= false

X University of

Leicester
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Structuring systems vs Refinement 45

It is essential that

the gross modularisation of a system
in terms of
components and their interconnections

be "respected” when component designs are refined into more
concrete ones

Compositionality

X7 University of

VALENCIA 2005 @ Leicester

Structuring systems vs Refinement 46

If the descriptions of the components of a system
are refined into more concrete ones

L 1
L, 1, ]
e

|
I*I \*I
1. It is possible to propagate the interactions previously defined

X7 University of

VALENCIA 2005 @ Leicester

Structuring systems vs Refinement 46

If the descriptions of the components of a system
are refined into more concrete ones

|m|‘

I
-

|
\*I I*I

£X] University of
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Structuring systems vs Refinement 46

If the descriptions of the components of a system
are refined into more concrete ones

L 1
H—’H

1. TItis possible to propagate the interactions previously defined

X University of

@ Leicester
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Structuring systems vs Refinement 46 Connector instantiation 47

If the descriptions of the components of a system Example
are refined into more concrete ones

‘ | (\ | | | |/\\ | ° »¢ val Neceiver
H | »
1. Itis possible to propagate the interactions previously defined sove e pspL-"df l"im e et pr
user p o ®rdoc Printer
2. The resulting description of the system refines the previous one

X7 University of

ve £X] University of
@ Leicester

@ Leicester
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Connector instantiation & Connector instantiation 47
| |

Example Example

pJod smt K\Plc prod sm? qr\f‘lc

d val »e buffer 0 »¢ va| receiver >\ndgr val »¢; buffer 0 »$ val feceiver
i
réc eJ\d _pr rec eJ’Ad |_pr
®rdoc Printer rdoc  Printer

X7 University of

@ Leicester
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Propagation of the interconnections 48

Example
»e buffer ®
sqve pr_ps df \print réec erd_pr
user p o &rdoc Prinfer
VALENCIA 2005 0( )° ;J‘lgieéztsytzg "
Compositionality 49

i

> i buffer o »e rdoc Printer

Compositionality ensures that properties inferred from the more
abstract description hold also for the more concrete (refined) one

X7 University of

VALENCIA 2005 @ Leicester

Compositionality 49

save mf K\FLC ¢+d_Pf‘

rdoc Printer

Y

user P i buffer o

£X] University of

@ Leicester
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Compositionality 49

save J)rinf pL . ps pL pdf put r\rlc erd_pr

rdoc Pprinter

user P »e buffer o

Y

Compositionality ensures that properties inferred from the more
abstract description hold also for the more concrete (refined) one

Eg: in order message delivery does not depend on the speed at which
messages are produced and consumed

£X] University of

VALENCIA 2005 < Leicester




Connectors - Instantiation 50

= An instantiation of a connector consists of, for each of its
roles R, a design P together with a refinement morphism ¢:R—P

/\

- ®

R
P+
'D<_:n <_:ld>

©
-
o

The semantics of a connector instantiation is the colimit of
the diagram

X7 University of

VALENGIA 2005 @ Leicester

Systematising Configurations 51
|

We have seen that

= Complex interaction protocols can be described by configurations,
independently of the concrete components they will be applied to; they
can be used in different contexts

s The use of such interaction protocols in a given configuration
corresponds to defining the way in which the generic participating
components are refined by the concrete components

VALENCIA 2005 ﬁ( : il‘lg;eéztsytoé "

Connectors - Instantiation 50

= An instantiation of a connector consists of, for each of its
roles R, a design P together with a refinement morphism ¢:R—P

[==)

s

v
R, R,
v
P

'U<_=ﬂ “—

s

The semantics of a connector instantiation is the colimit of
the diagram

University of

@ Leicester
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Systematising Configurations 51

We have seen that

m  Complex interaction protocols can be described by configurations,
independently of the concrete components they will be applied to; they
can be used in different contexts

m  The use of such interaction protocols in a given configurati
corresponds to defining the way in which the H?ﬁl ciﬁ;YiR&S
components are refined by the concrete components

Instantiation of Connectors

X University of

@ Leicester
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Systematising Configurations 52

sender »e buffer o »e val receiver
[
slve J)r-_pspl- _pdf Lrinf r-ic eJ’-d |_pr
int
L p ®rdoc Printer

X7 University of

VALENCIA 2005 7 Leicester

Systematising Configurations 53

ric eJ\d |_pr

int
printer
1 K(sender) T](receiver). =5

... and define them in terms of computational components and
connectors

X7 University of

VALENCIA 2005 7 Leicester

Systematising Configurations 52

We may elevate the abstractions used to describe configurations...

£X] University of

VALENCIA 2005 Leicester

The Distribution Dimension



However 1
|

m Mobility

A new factor of complexity in the development of software
systems (Web, mobile communication) that cannot be relegated to
lower level design.

As components move across a hetwork, the connectors in place
may no longer ensure the required interactions.

a & Uni\:ersity of
VALENCIA 2005 @ Leicester

Motivation 3
___________________________________________________________________________|
Approaches to deal with the Dynamics of Environment

* Traditional approach: based on Exceptions.

Systems are developed for being executed in particular conditions;
at runtime, different conditions are unexpected and are
considered exceptions.

* Context-aware Paradigm: based on a notion of Context.

Systems have means to observe the surrounding environment and
are developed faking into account different conditions in which
they can be executed.

2% University of
VALENCIA 2005 %’ Leicester

Motivation 2
|
m Software systems have to deal with Highly Dynamic
Environments
Network connectivity = CPU
Bandwidth Memory Printers
Battery Power Screen size

Directory Information

m Change of environment due to
— Mobility of components
— Mobility of hosts
— Variety of devices

University of
Leicester

VALENCIA 2005 0,

Context-awareness in the Design of Mobile 4

Systems

Formalisms for designing mobile systems should support context-
awareness and
e consider contexts as first-class entities
e support the explicit design of individualized contexts
o support the separation between
context sensing and deliver to the system and using contexts

and this requires to identify

o Essential features of contexts

o Design Primitives for defining contexts

o Proper abstractions for modelling context-awareness

University of
Leicester

VALENCIA 2005 0,



Key ideas for Mobility 5

m New forms of coordination that have emerged in mobile
computing sa transient interaction and remote
evaluation can be modelled through connectors

m Distribution can be separated from Coordination and
Computation

m Distribution connectors can be offered as architectural
primitives
m Location-aware architectural models can be developed

incrementally through the refinement of higher-level
descriptions that abstract from mobility

o & Univ{ersity of
VALENCIA 2005 %’ Leicester

Motivation

Architecture-based approaches

i B

aglﬁﬁ

Computation

Compositionality wrt refinement

o & Univ{ersity of
VALENCIA 2005 %’ Leicester

Motivation

Architecture-based approaches

aglﬁﬁ

Computation

£X] University of
@ Leicester
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Motivation

Architecture-based approaches

#
|

lal[s]Cle]
Computation

Compositionality wrt refinement

X University of
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Motivation

6
Architecture-based approaches
X
—— C i
LallB] Cle
Computation

Compositionality wrt refinement

o & Univ{ersity of
VALENCIA 2005 %’ Leicester

Motivation .
Architecture-based approaches
—Xi—
—m— C W
[al[s] Cle
Computation

Compositionality wrt refinement, evolution

Reconfigurability / Adaptability

oo univ{ersity of
VALENCIA 2005 %’ Leicester

Motivation .
Architecture-based approaches
X
—— C W
Lalle]Cle]
Computation
Compositionality wrt refinement, evolution
£ University of
YALENCIA'2003 @ Leicester
Motivation :Goal .
Architectural Approach to Mobility
X
—— C W
=3 Condoatin
|
G .
Lalle]Cle]
Computation
F
Compositionality wrt refinement, evolution
Reconfigurability / Adaptability Distribution
X University of
VALENCIA 2005 @ Leicester




The Key Ingredients of Contexts 7

>

(8]

Computation

4
(

Distribution

22| University of

VALENGA:2005 @ Leicester
The Key Ingredients of Contexts 7

* Computations, as performed by individual

>

components, are constrained by the resources
and services available at the positions where
the components are located Computation

o Communication among components can only take
place when they are located in positions that
are in touch with each other

the physical links that support comm between
the positions of the space of mobility may be
subject to failures or interruptions, making
communication temporarily impossible

5
(

Distribution

X univ{ersity of
VALENCIA 2005 %’ Leicester

The Key Ingredients of Contexts 7

¢ Computations, as performed by individual

>

components, are constrained by the resources
and services available at the positions where
the components are located Computation

a piece of mobile code that relies on
numerical operations with high-precision will
fail to compute when executing in locations
where memory is scarce either because the
available memory is not enough or because
the operation is not even available at that

5
(

location
Distribution
X7 University of
YALENCIA'2003 @ Leicester
The Key Ingredients of Contexts 7

* Computations, as performed by individual

>

components, are constrained by the resources
and services available at the positions where
the components are located Computation

e Communication among components can only take X
place when they are located in positions that [y ]
are in touch with each other _

e Movement of components from one position to

another is constrained by reachability
typically the space has some structure given by
walls and doors or barriers erected in Distribution

communication networks by system administrators
VALENCIA 2005
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Active Observables 8

|
We require that Cxt includes
® rssv: ->nat, x29

to represent the resources and services that are available for
computation

® bt: ->2Llec

to represent the set of locations that can be reached through
communication

B reach: ->2lec

to represent the set of locations that can be reached through

movement
—
Adaptive and Embedded Systems? 9
Example. Designing an airport luggage handling system
Private channel

design cart is

prv busy:bool

do move[]: —-busy, false — true

[] dock[busy]: -busy, false — busy’

[] undock[busy]: busy, false — -busy’
VALENCIA 2005 &5; E;‘i?:g,t%r

Adaptive and Embedded Systems? 9

Example. Designing an airport luggage handling system

design cart is

prv busy:bool

do move[]: —busy, false — true

[] dock[busy]: -busy, false — busy’
[l undock[busy]: busy, false — -busy’

University of
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Adaptive and Embedded Systems? 9

Example. Designing an airport luggage handling system

Private channel

design cart is
prv busy:bool
do move[]: —busy, false — true

[] dock[busy]: -busy, false — bu

[l undock[busy]: busy, false — -busy’

move is
underspecified

University of
Leicester
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Adaptive and Embedded Systems? 9

Example. Designing an airport luggage handling system

Private channel

design cart is
prv busy:bool
do move[]: —-busy, false — true

[] dock[busy]: -busy, false — bu

[] undock[busy]: busy, fal\sie —busy’

move is
underspecified

dock is still open
for refinement

a & Univ{ersity of
VALENCIA 2005 %’ Leicester

Location-awareness 10

Example. How the behaviour of a cart can be made location-dependent

6esign located cart is \

inloc pos:Loc

in next:Loc

prv busylpos:bool, destf@pos:Loc

do move(@pos[]: —busyApos#dest — true

[] dock@pos[busy]: -busyApos=dest — busy’
[l undocktpos[busy]:

\ busyApos=dest — ﬂbusy’”dest’:next/

o & Univ{ersity of
VALENCIA 2005 %’ Leicester

Adaptive and Embedded Systems? 9

Example. Designing an airport luggage handling system

Private channel

design cart is
prv busy:bool
do move[]: —busy, false — true

[] dock[busy]: -busy, false — bu

[] undock[busy]: busy/fal — —busy’

move is
underspecified

dock is still open
—busyé&danger for refinement

University of
Leicester

o
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Location-awareness 10

Example. How the behaviour of a cart can be made location-dependent

Position controlled

Gesign 1ocatedM by the environment
inloc pos:Loc

in next:Loc

prv busylpos:bool, destlpos:Loc
do movelpos[]: —busyApos#dest — true
[] dock@pos[busy]: -busyApos=dest — busy’

[1 wundock@pos[busy]:
busyAapos=dest — —1busy’[|dest’=next/

University of
Leicester

o
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On the move... ”

Designs are defined in tferms of extended signatures

—channels x@wames a@{l,.l,,...}

| Position where the value is available

—location variables (input, output) typed over Loc with a distinguished .
and located actions

g@l : L(g).U(g) = R(9)

Position where code is execu‘ted|

a & Univ{ersity of
VALENCIA 2005 %’ Leicester

Semantics 13
|
The semantics of CommUnity designs is defined in terms of
m Analgebra U for the data types
® An infinite sequence of pairs of binary relations over U,
(bt;,reach))icn
—n bt m: nand m are positions “in touch” with each other

Coordination among components takes place only when
they are in fouch with each other

—n reach m: position n is reachable from m
Movement of a component to a new position is possible
only when this position is reachable from the current one

o & Univ{ersity of
VALENCIA 2005 %’ Leicester

The Space of Mobility 12

m Explicit but not fixed representation of the space of
mobility; can be modelled to fit the application domain:

— Location variables have sort Loc, a special data type
— The space consists of the set of possible values of Loc

m Mobility is associated with the movement of channels
and actions (unit of mobility)

unl\ierslty of
@ Leicester

VALENCIA 2005

Example 14

Example. Controlling how a cart moves

@sign controlled located cart is \

outloc pos:Loc
inloc cpoint:Loc
in next:Loc
prv busy@pos:bool, dest@pos:Loc,
in@cpoint:bool, mode@pos: [slow, fast]
do move@pos: —busyApos#dest — c(pos,pos’  mode)
[] dock@pos: —busyAapos=dest — busy’
[l undock@pos: busyapos=dest — —busy’|dest’=next
[l prv enter @pos: true — mode’=slow
@cpoint: =in — in’
[1 prv leave @pos: true — mode’=fast

k @cpoint: in — =in’ /

X3 unl\ierslty of

@ Leicester
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Example 14

Example. Controlling how a cart moves

@sign controlled located cart is
outloc pos:Loc
inloc cpoint:Loc reach
in next:Loc
prv busy@pos:bool, dest@pos:Loc,
in@cpoint:bool, mode@pos: [slow, fast]

do move@pos: -busyApos#dest — c(pos,pos’ ,mode)
[] dock@pos: —busyApos=dest — busy’
[l undock@pos: busyapos=dest — —busy’|dest’=next
[1 prv enter @pos: true — mode’=slow

@cpoint: =in — in’

[1 prv leave @pos: true — mode’=fast
\ @cpoint: in — =in’ j

& Umvers-ty of

VALENGA 2205 Leicester
Externalisation of the distribution aspects 15
design controlled located cart is \

outloc pos:Loc
inloc cpoint:Loc
in next:Loc
prv busy@pos:bool, dest@pos:Loc,
in@cpoint:bool, mode@pos: [slow, fast]

do move@pos: —busyApos#dest — c(pos,pos’ ,mode)
[1 dock@pos: —-busyapos=dest — busy’
[l undock@pos: busyApos=dest — —busy’|dest’=next
[ prv enter @pos: true — mode’=slow

@cpoint: =in — in’

[l prv leave @pos: true — mode’=fast
K @cpoint: in — =in’ /

& Umvers-ty of
Leicester
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Example 14

Example. Controlling how a cart moves

design controlled located cart is
outloc pos:Loc
inloc cpoint:Loc reach
in next:Loc
prv busy@pos:bool, dest@pos:Loc,
in@cpoint:bool, mode@pos: [slow, fast]

do move@pos: —busyApos#dest — c(pos,pos’ ,mode)
[] dock@pos: —busyapos=dest — busy’
[l undock@pos: busyapos=dest — —busy’|dest’=next
[l prv enter @pos: true — mode’=slow

@cpoint: =in — in’

@pos: true — mode’=fast

legie
\ @cpoint: in — =in’ /

& unlverslty of
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Externalisation of the distribution aspects 15

design controlled located cart is
outloc pos:Loc

inloc cpoint:Loc

in next:Loc

prv busy@pos:bool, dest@pos:Loc,

in@cpoint:bool, mode@pos:[slow, fast]
do move(@ . : §
[] dockqd design mode controller is
[ undod outloc theirs:Loc

[ prv « inloc mine:Loc
prv in@mine:bool, mode@theirs:[slow, fast]

[l prv I do control@theirs: true — c(theirs,theirs’  mode)

[ prv enter @theirs: true — mode’=slow
@mine: —in — in’

[1 prv leave @theirs : true — mode’=fast

\ @mine: in — =in’

VALENCIA 2005



Architectural design 16

dock (,;;dock

N

Located cart

next 4—

pos
G

a & Uni\:ersity of
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Architectural design 16

dock (,;;dock

N
Mode
Located cart controller
next mine
pos theirs

control
N

< =]

» O
b1
0]

O

o & Uni\:ersity of
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Architectural design 16

dock (,;Bdock

N
Mode
Located cart controller
next @< mine

theirs

control

pos
&

@ 8 Unl\(erslty of
VALENCIA 2005 @ Leicester

Categorical semantics 17

dock (f;hdock

N
Mode
Located cart controller
next mine
pos theirs

control
N

(s
o]
<
o

0

X3 Unl\(erslty of
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Categorical semantics 17

cable

pos<e—theirs
move—>e¢<—controlf

g dock (’;h

design located cart is ] design mode controller is

next

4‘_

mine
pos

theirs

control

1% N—
o
Categorical semantics 17
cable
pos<«e¢—> tm
move—>e<control

design located cart is design mode controller is

design controlled located cart is R
outloc pos:Loc

inloc cpoint:Loc

in next:Loc

prv busy@pos:bool, dest@pos:Loc, in@cpoint:bool, modelpos: [slow, fast]
move@pos: -busyApos#dest — c(pos,pos’  mode)

dock@pos: -busyApos=dest — busy’

undock@pos: busyApos=dest — —busy’|dest’=next

prv enter @pos: true — mode’=slow
prv leave @pos: true — mode’=fast

@cpoint: -in — in’
@cpoint: in — =in’

Categorical semantics 17

cable

pos<e—theirs
move—>e<control

design located cart is

design mode controller is

X University o)
VALENCIA 2005 v

Leicester

Reconfigurability / adaptativity 18

cable

pos<e—theirs
move—>e<control

[design located cart is ] design mode controller is

X University o)
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Reconfigurability / adaptativity 18

cable

"’,/’;::::<»;;:;:;\\\\\k
move—>e<—control

design located cart is ] design step controller is
= outloc theirs:Loc
do control@theirs:
true — theirs’=theirs+l

a & Univ{ersity of
VALENCIA 2005 %’ Leicester

Separation of concerns 19

undock

Located cart
next

pos

move

design counter is

inloc where:Loc

out count@where:nat

do inc@where: true — count’=count+l
[] reset@where: true — count’=0

o & Univ{ersity of
VALENCIA 2005 %’ Leicester

Reconfigurability / adaptativity 18

cable

‘r/,/?;::ia;;;::\\\\‘
move—>e<—control

[deSign located cart is ] design step controller is
o outloc theirs:Loc
do control@theirs:

\\\\\\\\‘ true — theirs’=theirs+l
V'e

design step located cart is

outloc pos:Loc

in next:Loc

prv busy@pos:bool, dest@pos:Loc

do move@pos: —busyApos#dest — pos’=pos+l

[] dock@pos: -busyAapos=dest — busy’

[l undock@pos: busyapos=dest —> —busy’|dest’=next

of
VALENCIA ster

Separation of concerns 19

Counter” Located cart

count e

where pos

design counter is

inloc where:Loc

out count@where:nat

do inc@where: true — count’=count+l
[ reset@where: true — count’=0

University of
Leicester

o
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Separation of concerns 19

undock

Fixed Counter” Located cart

stay where count DXt

pos

move

design fixed is

outloc stay:Loc
s
Another example 20

* A sender-receiver system in which the sender
produces, in one go, words of N bits that are then
transmitted, one by one, to the receiver through

synchronous message passing.

® The sender is fixed and the receiver is a mobile
component: once a word defining a location is
received, the component should move its execution
to that location; if this is not possible, it discards
that word and starts the reception of another one.

o & Uni\:ersity of
VALENCIA 2005 %’ Leicester

Separation of concerns 19

undock

Fixed Counter” Located cart

stay where count next
pos

control

theirs

Step
controller

VALENCIA 2005 Leicester

Another example 20

® A sender-receiver system in which the sender
produces, in one go, words of N bits that are then
transmitted, one by one, to the receiver through
synchronous message passing.

* The sender is fixed and the receiver is a mobile
component: once a word defining a location is

received, the component should move its execution

L s - T Computation
to that location; if this is not possible, it discards
that word and starts the reception of another one.
X University of
VALENCIA 2005 e Leicester



Another example 20

* A sender-receiver system in which the sender

produces, in one go, words of N bits that are then ——
transmitted, one by one, to the receiver through
synchronous message passing. Coordination

* The sender is fixed and the receiver is a mobile

component: once a word defining a location is
received, the component should move its execution

< o s s . . . Computation
to that location; if this is not possible, it discards
that word and starts the reception of another one.
e Peicester

Another example 20

* A sender-receiver system in which the sender
produces, in one go, words of N bits that are then
transmitted, one by one, to the receiver through

synchronous message passing.
* The sender is fixed and the receiver is a mobile N
component: once a word defining a location is
received, the component should move its execution
to that location; if this is not possible, it discards
that word and starts the reception of another one.

breceivar

Computation

bsender _-— breceiver Distribution

l
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Another example 20

® A sender-receiver system in which the sender

produces, in one go, words of N bits that are then ——
transmitted, one by one, to the receiver through
synchronous message passing. Coordination.

® The sender is fixed and the receiver is a mobile

component: once a word defining a location is
received, the component should move its execution
to that location; if this is not possible, it discards
that word and starts the reception of another one.

bsender —-— breceiver

Computation
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Another example 20

® A sender-receiver system in which the sender
produces, in ohe go, words of N bits that are then
transmitted, one by one, to the receiver through
synchronous message passing.

¢ The sender is fixed and the receiver is a mobile bsender
component: once a word defining a location is
received, the component should move its execution
to that location; if this is not possible, it discards
that word and starts the reception of another one.

"

breceuver

Computation

bsender _-— breceiver Distribution

VALENGA2005 & Leicester




Coordination concerns 21

Example. A simple sender-receiver system

bsender i breceiver

o & Univ{ersity of
VALENCIA 2005 %’ Leicester

Coordination concerns 21

Example. A simple sender-receiver system

design bsender( design breceiver is
out ob:bit in ib:bit
prv w:array(N,} out w:array(N,bit), k:nat
do neww:k=N—>W prv recw:array(N,bit), rd:bool
[1 newb:-rdak] do rec:k<N—recw[k]:=ib |k:=k+1l|rd:=false
[1 send:rd—rd [] savew:-rdrk=N—rd:=true|w:=recw

[1 neww:rdak=N—>rd:=false|k:=0

o
22| University of
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Coordination concerns 21

Example. A simple sender-receiver system

breceiver

design bsender is

out ob:bit

prv w:array(N,bit), k:nat, rd:bool

do neww:k=N—>w:Earray (N,bit)|k:=0

[1 newb:-rdAk<N—>rd:=true|job:=word[k]| k:=k+1
[1] send:rd—rd:=false

X3

University of
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Coordination concerns 21

Example. A simple sender-receiver system

design bsender( design breceiver is

out ob:bit in ib:bit

prv w:array(N,} out w:array(N,bit), k:nat

do neww:k=N—>W prv recw:array(N,bit), rd:bool

[1 newb:-rdak] do rec:k<N—recw[k]:=ib |k:=k+1|rd:=false
[1 send:rd—rd [] savew:-rdAk=N—rd:=true|w:=recw

\J] neww: rdAk=N—>rd:=false|k:=0

breceiver

X3 unl\ierslty of

VALENGA 2005 @ Leicester



The configuration 22

Example. A simple sender-receiver system

cable cable
ob<—e—i i<-e—ib
send—>e<ac ac—>e<rec
bsender breceiver
22| University of
VALENCIA 2005 @ Leicester
Making designs location-aware 24

Example. A mobile bit receiver that once a word defining a location is
received, moves to that location

design mobreceiver is

outloc 1

in ib:bit

out wll:array(N,bit), k@l:nat

prv recwll:array(N,bit), rdfl:bool

do recll:k<N—>recw[k]:=ib |k:=k+l||rd:=false

[1 savew(l:-rdak=N—rd:=true|lw:=recw

[1 neww@l:rdak=N—rd:=false|k:=0|1:=if (loc? (w),loc(w) ,61)

o & Univ{ersity of
VALENCIA 2005 %’ Leicester

Colimit semantics 23

ﬁesign sync-send-rec is \
out b:bit, w.:array(N,bit), k::nat
prv rd; rds: bool, recw. ws:array(N,bit), ks:nat

do | sendrec:rd;Ak.<N —rd,:=false| word,[k.] :=b [k :=k.+1[[rd.:=false |

[1 savew:-rd.Ak,=N—rd,:=true|w,:=word
[1] rneww:rd.Ak,=N—rd.: =false| k. :=0

[1 sneww:k.=N—w.:Earray (N,bit)|ks:=0

[1 newb:-rd.Aks<N—>rd,:=true|b:=ws[ks]| ks:=ks+1

J

X7 University o)
VALENCIA 2005 S v

@ Leicester
Making designs location-aware 25
|
Example. A fixed sender i.e. placed at a fixed position
design mobsender is
outloc 1
out ob(l:bit
prv wll:array(N,bit), k@l:nat, rdfl:bool
do neww@l:k=N—w:Earray (N,bit)|k:=0
[1 newb@l:-rdAk<N—>rd:=truel|lob:=w[k]| k:=k+1
[1] send(l:rd—srd:=true
- X3 University of
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Making architectures location-aware 26 Making architectures location-aware 27

Example. A location-aware version of the sender-receiver system with
the previous mobile receiver and a fixed sender

@sign mobsys is \

outloc 1;, 1:

out b@ls:bit, w:@Ql.:array(N,bit), k.@l::nat
cable cable

prv rd:@l; rds;@ls: bool, recw:@l: ws@ls:array(N,bit), ks@ls:nat
obe—es—>i jee—ib do sendrec(l.:rds—>rds:=true
send—s<ac ac—>s<rec @1.:k,<N—>word;[k:] :=b |kr: =k +1|rd;:=false

mobsender []

s vew(dl,:~rd Ak, =N—rd,:=tr W, :=wor
mobreceiver savew(l.:-rd:Ak; d,:=true|w.:=word

[1 rneww@l::rd:Ak.=N—>rd.:=falselk.:=0|[1;:=if (loc? (w:) ,loc (w:),1:)

/

[1 sneww(l.:ks=N—w.:Earray(N,bit)|ks:=0
Q newb(@1.: ~rdsAks<N—>rd,:=true|b:=ws [ks]| ks:=ks+1

X3 University of
VALENCIA 2005 & v
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Making architectures location-aware 28 Externalisation of distribution 29

By making use of distribution connectors

breceiver*®

. I P beender® I

m Finer-grain model obtained in an intrusive way - mobility

requirements taken into account by rewriting the components m bsender™ and breceiver®: extensions of bsender and breceiver with an input
(superposition of behaviour)

location variable assigned to every constituent
m Distribution and mobility aspects of the system are not explicitely

- / ! m Move_to: connector with two roles a glue defining the movement of the
represented in the architecture; they cannot be refined or evolved subject_of_move to the destination provided by the dest_provider
independently of the architectural elements

m Fixed: connector with one role subject and a glue defining that subject is a
non mobile component

VALENCA 2005 &i;g i‘;‘ie‘;:tsytoér VALENCIA 2005
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___________________________________________________________________________|

VALENCA 2005

design mobsender is

outloc 1

out obll:bit

prv wll:array(N,bit), k@l:nat, rd@l:bool

do neww(l:k=N—>w:Earray (N,bit)|k:=0

[1 newb@l:-rdAk<N—>rd:=true|lob:=w[k]| k:=k+1
[1] send@l:rd—rd:=true Y,

Making designs location-aware 30
___________________________________________________________________________|

design bsender is

out ob:bit

prv w:array(N,bit), k:nat, rd:bool outloc 1
do neww:k=N—w:Earray (N,bit)|k:=0

design fixed is

[] newb:-rdAk<N—
rd:=true|ob:=word[k]| k:=k+1
[] send:rd—srd:=false

VALENCA 2005

design mobsender is

outloc 1

out obll:bit

prv will:array(N,bit), k@l:nat, rd@l:bool

do neww(@l:k=N—>w:Earray (N,bit)|k:=0

[1 newb@l:-rdAk<N—>rd:=true|lob:=w[k]| k:=k+1
[1] send@l:rd—rd:=true Y,
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______________________________________________________________________|

design bsender is

out ob:bit

prv w:array(N,bit), k:nat, rd:bool

do neww:k=N—w:Earray (N,bit)|k:=0

[] newb:-rdAk<N—
rd:=true|ob:=word[k]| k:=k+1

[] send:rd—>rd:=false

design mobsender is

outloc 1

out obll:bit

prv wll:array(N,bit), k€l:nat, rd@l:bool

do neww@l:k=N—w:Earray (N,bit)|k:=0

[1 newb@l:-rdAk<N—>rd:=truel|job:=w[k]| k:=k+1
[1] send(l:rd—rd:=true Y,
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Making designs location-aware 30

design bsender is
out ob:bit
prv w:array (N,
do neww:k=N—w:Earr
[] newb:-rdAk<N—

rd:=true|ob:=word[k]| k:
[] send:rd—>rd:=false

design fixed is
outloc 1

k:nat, rd:bool
bit)|k:=0

cable2

X University of
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Making designs location-aware 31

Gesign mobreceiver is

outloc 1

in ib:bit

out w@l:array(N,bit), kll:nat

prv recwll:array(N,bit), rdll:bool

do rec(@l:k<N—>recw[k]:=ib |k:=k+1|rd:=false
[1 savew(l:-rdak=N—rd:=true|jw:=recw

mg\[] neww@1:rdak=N—>rd:=false|k:=0[|1:=if (loc? (w) ,loc(w) 1)

-

Making designs location-aware 31

design move_to is

outloc 1

in w:array(bit,N)

do move@l: 1:=if (loc?(w) ,loc(w) ,1)

design breceiver is

in ib:bit

out w:array(N,bit), k:nat

prv recw:array (N,bit), rd:bool
do rec:k<N—recw[k]:=ib |k:=k+l|rd:=false
[1 savew:-rdAk=N—rd:=true|w:=recw

[1 neww:rdak=N—>rd:=false|k:=0

Gesign mobreceiver is

outloc 1

in ib:bit

out w@l:array(N,bit), kll:nat

prv recwll:array(N,bit), rd€l:bool

do rec(@l:k<N—>recw[k] :=ib |k:=k+1|rd:=false
[1 savew(l:-rdak=N—rd:=true|lw:=recw

mg\[] neww@1:rdak=N—>rd:=false|k:=0[|1:=if (loc? (w) ,loc(w) 1)

-

Making designs location-aware 31

design breceiver is

in

ib:bit

out w:array(N,bit), k:nat
prv recw:array(N,bit), rd:bool

do

[1
[1

rec:k<N—recw[k] :=ib ||k:=k+1||rd:=false
savew: ~rdAk=N—>rd:=true|w:=recw
neww: rdAk=N—>rd:=false|k:=0

mb\[] neww@1:rdAk=N—>rd:=false|k:=0[|1:=if (loc? (w) ,loc(w) 1)

[clesign mobreceiver is

outlocH i

in ib:bit

out wll:array(N,bit), kfl:nat

prv recw(l:array(N,bit), rdll:bool

do recll:k<N—>recw[k]:=ib |k:=k+1|rd:=false
[1 savew(l:-rdAk=N—rd:=true|lw:=recw

-

Making designs location-aware 31

design breceiver is

in

out w:array(N,bit), k:nat
prv recw:array (N,bit), rd:bool

design move_to is
FAMNEEE outloc 1

Librrhat in w:array(bit,N)

do move@l: 1:=if (loc? (w) ,loc (w),1)

do rec:k<N—recw[k]:=ib |k:=k+1l|rd:=false
[1 savew:-rdak=N—>rd:=true|w:=recw
[1 neww:rdak=N—>rd:=false|k:=0
move—>e*<—neww

leeo—1

We oW

cable3

University of
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Externalisation of distribution 32

cable cable
b _\ ‘A e—>ibit
send—>e<ac ac—>e<rec

design move_to is
outloc 1
design fixed is in w:array(bit,N)
outloc 1 do move@l: 1:=if (loc?(w) ,loc(w) ,1)
move—>*<—neww
leo— leeo—1
We—o—w

cable2 cable3
22| University of
VALENGA 2205 @ Leicester
Supporting Incremental Development 34

Example. Extensions of mob(breceiver)

cbreceiver™- extension with one input location variable assigned to
every channel and action; this form of extension implies that the
component can only be moved as a whole

®x.breceiver# -extension with one input location variable for each action
and for each channel; in this way we have means for them to be
controlled independently

A

o & Univ{ersity of
VALENCIA 2005 %’ Leicester

Supporting Incremental Development 33

Diagram in DSGN

bsender* I breceiver™

Diagram in MDSGN

unl\ierslty of
@ Leicester

VALENCIA 2005

Supporting Incremental Development 35
|
These extensions can be achieved through location connectors

— Purpose: to locate individual channels or actions

— Represent standard solutions that can be used across different
components and connectors glues

X3

University of
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35

These extensions can be achieved through location connectors

— Purpose: to locate individual channels or actions

— Represent standard solutions that can be used across different
components and connectors glues

cable

/ xeemx S

ac—>e<-ac

design comp is
out x:s
do ac:true,false—>x:Es

inloc 1
out x@l:s
do ac:true—>x:ECs

VALENCA 2005

design loc_channel is

Location laws

a & Uni\:ersity of
@ Leicester

37

locations

rules when
with
do

when

let
with
do
mv

\\iié law

//z:;ation law ATM-withdrawal

atm:ATMW-LI; bank:BANKW-LI

atm.withdrawal (n) and BT (atm,bank)

n<bank.maxatm() and n<atm.cash()

atm.give (n)

atm.withdrawal (n) and not BT (atm,bank)
and REACH (atm,bank)

N=min (atm.default(),n) in

N<atm.cash()

atm.give (N)

bank.internal (N,atn.acco())

J

VALENCA 2005

F¥] University of

@ Leicester

However 36
|

m Business

Many businesses are selling the same services through different
channels, each of which has specific features.

For instance, withdrawing money is subject to location-specific
rules in addition to the coordination-related ones. It is different
to withdraw money at your local branch, another branch, an ATM...

The system should self-adapt to changes of location without
interfering with the coordination business rules.

@ 8 Unl\(erslty of
VALENCIA 2005 @ Leicester

Be in touch 38
|

rules when atm.withdrawal (n) and BT (atm,bank)
with n<bank.maxatm() and n<atm.cash ()
do atm.give (n)

m BT indicates whether the two locations are “in touch” meaning that
they can communicate and synchronise actions at both locations;

m If they are, coordination laws apply to the partners that are located
there. The guards (with conditions) of coordination and location
rules apply, and the reactions of both are performed atomically.

University of
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Reach 39

when atm.withdrawal (n) and not BT (atm,bank)
and REACH (atm,bank)
let N=min (atm.default() ,n) in
with N<atm.cash()
do atm.give (N)
mv bank.internal (N,atm.acco())

m REACH indicates that one location can be “reached” from the other,
meaning that services can move across;

® mv indicates that the service is sent for execution at the other

location.
University of
b Leicester
Instantiation 41

University of
VMENGN:Z005 Leicester

Location interfaces 40

location interface BANKW-LI \
location type BANK
services internal (n:money,a:ACCOUNT)
maxatm() :money
end interface )
location interface ATMW-LI \
location type ATM
services default() ,cash() :money,acco () : ACCOUNT
give (n:money) post cash()=oldcash()-n
events withdraw (n:money)
end interface )
University of
VALEHOA;2005 Leicester
Instantiation 4

standard |

withdrawal
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Instantiation 41 Instantiation 41

@) @‘Q’ | W kf

o eeeeeeeeeeee——
standard VIP
withdrawal . withdrawal .

BANK $ BANK
withdrawal i, 4 withdrawal

University of University of
VALENGA 2005 Leicester YALENAN 0 Leicester
Instantiation 4 Other Work 4

&\ { ' m Operational semantics in KLAIM
O

m Reconfiguration with Hypergraph Rewriting

v m Refinement in Tile Logic
withdrawal . " .r .
m Domain specific extensions

(embedded, collaborative, event-based, ..)

BANK
withdrawal

University of University of
VALENGAiZ905 Leicester NALERGR 2005 Leicester
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