Software Architecture:
Evolution and Mobility

J.L.Fiadeiro

] University of

<t

» Leicester

Contributions 3

= ATX Software R K

BOFTWARE

= Antdnia Lopes @ University of Lisbon

s The AGILE consortium

» Univ. Munich .
« Univ. Pisa rr\/’
« Univ. Florence 'AGlLE

« Univ. Warsaw

* Univ. Lisbon IST-2001-32747
= ATX Software Architectures for Mobility
» ISTI - CNR Jan 02 - Apr 05

Plan 2

= Motivation:

= why Evolution and Mobility matter

« Social vs physiological complexity
= Software Architectures

= Usage vs interaction

= Components, connectors and configurations
= Coordination primitives for evolution

= Externalisation of interaction in connectors
= Location primitives for mobility

= Externalisation of distribution in connectors

University of

SERROM Leicester

Coping with change ’
1

m In Business Systems today,
change is the rule of the game...

University of

e Leicester

Coping with change 4
|

m InBusiness Systems today,
change is the rule of the game...

".. the ability to change is now more important than
the ability to create [e-commerce] systems in the
first place. Change becomes a first-class design goal
and requires business and technology architecture
whose components can be added, modified, replaced
and reconfigured".

P.Finger, "Component-Based Frameworks for E-
Commerce", Communications of the ACM 43(10), 2000,

61-66.
r— University of
Leicester
Coping with change 4

m InBusiness Systems today,
change is the rule of the game...

m The Web is only fuelling the rate of change...
(B2¢C, B2B, P2P,..)

er——

We must

{ goon-line.. How is

the IS going to
cope?

University of

i Leicester

Coping with change 4
1

m InBusiness Systems today,
change is the rule of the game...

-~ At last, our routes can T~
_ merge. How soon can our ISs J
S~ letusdoit?

r—

e Any ideas on how to incorporate ~

~~——_______ this new requirement? ____—

SERW'O4 University of
Leicester
Coping with change ’

|
m In Business Systems today,
change is the rule of the game...

m The Web is only fuelling the rate of change...
(B2C, B2B, P2P,..)

m Critical infrastructures depend on the ability to react to
failure by reconfiguring themselves (self-healing)...

University of

s Leicester

Coping with change 4
|

m InBusiness Systems today,
change is the rule of the game...

m The Web is only fuelling the rate of change...
(B2C, B2B, P2P,..)

m Critical infrastructures depend on the ability to react to
failure by reconfiguring themselves (self-healing)...

® The real-fime economy...

Complexity is now on evolution...

University of

SEmrOs Leicester

What is it? 6

= A software architecture for a system is the
structure or structures of the system, which
comprise elements, their externally-visible
behavior, and the relationships among them.

source: L.Bass, P.Clements and R.Kazman.
Software Architecture in Practice. Addison-Wesley, 1998,

= There are many views, as there are many
structures, each with its own purpose and focus in
understanding the organisation of the system.

University of

i Leicester

Architectures in Software Design 5

[Requirements high-level

domain

S — [Architecture] —

machine
[Code low-level
SERW'O4 University of
Leicester
Module structures 7

= Code/implementation structures

m Address the global structure of a system in
terms of
= what its modules and resources are
n how they fit together in the system
= Definition/usage graphs
= Modelling Interconnection Languages for
programming-in-the-large (DeRemer and Kron 75)

University of

s Leicester

Module structures 7

v Architectures of Usage

University of

SEmrOs Leicester

Two different relationships 8

= Implements
= a given module is defined in terms of facilities provided
by/to other modules;
= composition mechanisms glue pieces together by

indicating for each use of a facility where its
corresponding definition is provided

= Interacts

= components are treated as independent entities that
may interact with each other along well defined lines of
communication (connectors)

University of

SEREDS Leicester

Module structures 7
ey Architectures of Usage

v o .
- = Evolution: maintenance

University of

SRS Leicester

Two different notions of complexity 9

= “Physiological” complexity
= static, linear interaction based on
identities '

= compile or design time integration

= contracts of usage

= "Social” complexity

= dynamic, mobile and unpredictable
interactions based on properties

n “late” or "just-in-time" integration
= quality and trust

University of

SERPOA Leicester

Run-time Architectures 10
E.E.Ee---

= The Components&Connectors view
= The "Interacts” relationship

= One generation later
= Perry and Wolf (92)
« Shaw and Garlan (96)
« Bass, Clements, Kazman (98)

= Partly inspired by (civil) architects (Alexander)

University of

SEmrOs Leicester

The challenge of evolution 12

= Reflect on the (run-time) architecture of the
system the different levels of change that can
take place in the application domain.

= Support evolution through dynamic
reconfiguration, without inferruption of service,
minimising impact on the global system.

University of

i Leicester

wer
transaction

dalabdase architecture ofcll!u!or01 grend trace
schems program tables ' cenlral mansger

POL type expander
compiler transformers legers s
and utilities 0 wHiNiee

JUPITER '1| databare |

legend
module or A—3B Acella B
pregram
schema or
tabdles Am=dB dats path

Figure 3.1 The Configuration of the GENESIS Prototype

Cenesis: A Reconfiguration Database Management System, D. S. Batory, J.R. Barmett, J.F. Carza, K.P. Salch,
K. Toukeda, B.C. Twichell, T.E. Wise, Department of Computer Sclences, University of Texas at Austis,

Summary 13

Architecture-based approaches

B WA

o
I

Computation

University of

SERPOA Leicester

Summary 13

Computation
Compositionality wrt refinement
— University of
Leicester
Summary 13
Architecture-based approaches
——
—NE— C
AllB|CLE
Computation
Compositionality wrt refinement
University of

e Leicester

Summary

13

Architecture-based approaches

B BE{aA

Compositionality wrt refinement

o
I

Computation

SERM'04

Summary

University of
Leicester

13

Architecture-based approaches

Compositionality wrt refinement
wrt evolution

7
g

>
)
M
w

Computation

SERM'04

University of
Leicester

Some FAQs... 14

o University of
S Leicester

An example from Banking 15

Consider the typical situation of bank
accounts that keep a balance and
from which customers can make
withdrawals.

) University of
ks Leicester

Some FAQs... 14

Can't we do it
with objects?

Or with
_. components?

s

What about

design patterns?
‘ s
“//

Where is
the catch?

SERM'04 University of
Leicester
An example from Banking 15

Balance:money Account
Withdrawal (Amount)
Cuntonar Consider the typical situation of bank

accounts that keep a balance and
from which customers can make
withdrawals.

) University of
e Leicester

An example from Banking 15
L ___|

Balance:money Account

Withdrawal (Amount)

E precondition on Withdrawal(A):

i Balance2A
R sttt
ChRtomar In a typical classroom exercise, the
method withdrawal will be specified
with a precondition that prevents the
account from being overdrawn.
r— Unl\:erslty of
Leicester
An example from Banking 15
|
m Solution 1:
New Operation on Account AeroanE

VIP_Withdrawal (Amount

! Withdrawal (Amount)

! precondition on Withdrawal(A):

! Balance2A

How can we evolve this model to
accommodate VIP-customers that are
allowed to overdraw their account up
to an agreed limit?

Customer

. University of
i Leicester

An example from Banking 15
L __|

Balance:money Account
Withdrawal (Amount)

E precondition on Withdrawal(A):

! Balance2A

How can we evolve this model to
accommodate VIP-customers that are
allowed to overdraw their account up
to an agreed limit?

Customer

. University of
SERROM Leicester

An example from Banking 15

m Solution 1:
New Operation on Account Aot
VIP_Withdrawal (Amount

! precondition on VIP_Withdrawal(A): i

! Balance+C.Credit>A

brTTmmmssssmommeeeeeesosoooooee ! precondition on Withdrawal(A):

! Balance2A

! Withdrawal (Amount)

How can we evolve this model to
accommodate VIP-customers that are
allowed to overdraw their account up
to an agreed limit?

Customer

’ (X3 University of
s “ Leicester

An example from Banking 15

m Solution 1:

New Operation on Account Rerank
VIP_Withdrawal (Amount
i precondition on VIP_Withdrawal(A): i ; Withdrawal (Amount)

Balance+C.Credit2A

E precondition on Withdrawal(A):

'
'
'
[

! Balance2A
P b !
Customar This solution is intrusive on:
SERM'04 University of
Leicester
An example from Banking 15
I
m Solution 1:
New Operation on Account AcehInE

VIP_Withdrawal (Amount

! precondition on VIP_Withdrawal(A): i

: ! Withdrawal (Amount)
' Balance+C.Credit>A '

! precondition on Withdrawal(A):

! Balance2A

A This solution is intrusive on:

Customer - VIPs have to change calls

my_account.withdrawal (n) {0
my_account.VIP_withdrawal (n)

SERN'04 University of

Leicester

An example from Banking 15
|
m Solution 1:
New Operation on Account

VIP_Withdrawal (Amount

Account

! precondition on VIP_Withdrawal(A): !

! Withdrawal (Amount)

! Balance+C.Credit>A | 7 2
ST T : precondition on Withdrawal(A):
é Balance2A
CuEtomer This solution is intrusive on:
Account - its interface and
implementation needs to be extended
with the new operation
SERW'O4 University of
Leicester
An example from Banking 15

m Solution 1:
New Operation on Account

VIP_Withdrawal (Amount

Account

! precondition on VIP_Withdrawal(A): i

; ! Withdrawal (Amount)
' Balance+C.Credit2a '

! precondition on Withdrawal(A):

! Balance2A

Customer

Typically, a different solution would
have been chosen...

SER'O4 University of

Leicester

An example from Banking 15

m Solution 2:
Subclassing Account

VIP_Withdrawal (Amount

Account

! precondition on VIP_Withdrawal(A): |

! Balance+C.Credit2a |]
L Withdrawal

Customer VIP_Account

University of

s Leicester

An example from Banking 15

m Solution 2:
Subclassing Account

Account

This solution is still
intrusive on customer...
(for the same reasons) Withdrawal

Customer VIP Account
VIP Withdrawal

University of

b Leicester

An example from Banking 15
m Solution 2:
Subclassing Account ReroanE
Withdrawal
Customer VIP_Account
VIP_Withdrawal
SERN'O4 University of
Leicester
An example from Banking 15
m Solution 2:
Subclassing Account AeeoinE
... and on the business
logic: the customers are
VIPs, not the accounts! Withdrawal
Customer VIP Account
VIP Withdrawal
SERM'04 University of
Leicester

An example from Banking 16

m Problems with Solutions 1,2

o University of
SEmrOs Leicester

A better solution 17

Withdrawal (Customer ,Amount)

Customer Account

. University of
i Leicester

An example from Banking 16
L __|

m Problems with Solutions 1,2

* They are intrusive on the code...
=..and on the interconnections

=..and on the business logic

m This is because, through clientship, business rules
get encoded in the methods, and the methods
reside in the server side.

. University of
SERROM Leicester

A better solution 17

Model the relationship between customers and accounts as an
association class...

Withdrawal (Customer ,Amount)

Customer Account

Owner

’ University of
e Leicester

A better solution

17

... on which the “business rule” can be placed

Customer

Withdrawal (Customer,Amount)

Account

Owner

i preconditions on A.Withdrawal(C,X):

| owner (C,A) && A.Balance2X

SERM'04

But still some problems

University of
Leicester

17

If the association is implemented through attributes and direct
calls, we get the same problems as before...

Withdrawal (Customer ,Amount)

Customer

Account

Credit:money

Owner

T

VIP Owner

preconditions on A.Withdrawal(C,X):
owner (C,A) && A.Balance2X

[

1 preconditions on '
i A.Withdrawal(C X): '
| owner (C,A) && :
i A.Balance+Credit2X :

SERM'04

University of
Leicester

A better solution

17

... and specialise it to evolve the business rule

Withdrawal (Customer,Amount)

Customer

Account

Owner

T

Credit:money

VIP Owner

i preconditions on A.Withdrawal(C.X):

| owner (C,A) && A.BalanceX

SERM'04

But still some problems

University of
Leicester

17

be redirected and managed...

A better way is to use a mediator through which the calls can

Withdrawal (Customer ,Amount)

Account

Customer .
1
\ : /
Owner
Credit:money VIP Owner

1 preconditions on A.Withdrawal(C,X):
owner (C,A) && A.Balance2X

i preconditions on

! A.Withdrawal(C X):

| owner (C,A) &&

i A.Balance+Credit2X

University of
Leicester

Mediator 18
E.E.Ee---

m Problems with the mediator

r— University of
Leicester
OO is identity-based 19

m What is intrinsically "wrong” with OO:

. University of
i Leicester

Mediator 18
_
m Problems with the mediator
» Each mediation is infrusive on the code...
= ..because it is managed explicitly by the objects involved
* This also means that it can be interrupted
»..and even by-passed

= On the other hand, additional business rules means
additional mediators and mediation between them...

. University of
SERROM Leicester

OO is identity-based 19

® What is intrinsically "wrong” with OO:

* Feature calling, the basic mechanism through which objects
can interact, is identity-based: objects call specific
features of specific objects (clientship):

* As aresult, any change on the interactions is intrusive on
the code of the object.

’ (X3 University of
s “ Leicester

OO is identity-based 19

® What is intrinsically "wrong” with OO:

* Feature calling, the basic mechanism through which objects
can interact, is identity-based: objects call specific
features of specific objects (clientship);

* Asaresult, any change on the interactions is intrusive on
the code of the object.

m We propose a way for inferactions to be externalised
and handled as first-class citizens.

SERM'04 University of
Leicester
Contracts for Change 20

"""
m A solution inspired on Architectural Connectors

The customer still calls the account but the call is intercepted
by the contract, without any of the parties being aware...

Customer Account

Eﬂhgn C calls A.withdrawal(X)
' with A.BalancezX
! do A.withdrawal(X)

Owner

' when C calls A.withdrawal(X)
i with A.Balance+C.creditzX
' d A.withdrawal (X)

Credit:money VIP Owner

. University of
i Leicester

Contracts for Change 20

L __|
m A solution inspired on Architectural Connectors

Customer " Account
i
-)
Owner
[=) A!l »}
Credit:money VIP Owner
SERM'04 University of
Leicester

Contracts for Change 20

m A solution inspired on Architectural Connectors

The customer still calls the account but the call is intercepted
by the contract, without any of the parties being aware...

[
. =
The contract reacts to the trigger by —{ Account
— performing a transaction
J)
o { when C calls A.withdrawal(X)
"' with A.BalancezX
Jido a.withdraval(x)
@ lll D
A ! when C calls A.withdrawal(X)
Credit:money VIP—Owner i with A.Balance+C.creditzX
| do A.vithdrawal(x)
SERM'04 &ﬁ:gtoér

Contracts for Change 20

® A solution inspired on Architectural Connectors

The customer still calls the account but the call is intercepted
by the contract, without any of the parties being aware...

[1]
The contract reacts to the trigger by —{ Account
—| performing a transaction

do A.withdrawal(X)

E with A.Balance+C.creditzX

. e ! when C calls A.withdrawal(X)
certain pre-conditions are not met

The contract may refuse the call when] ---------------------------------------

E do A.withdrawal(X)

A—— 90 A.withdrawal(X)
r— University of
Leicester
The CCC approach 22

_
m The Strategy

. University of
i Leicester

owne \llim C calls A.withdrawal(X)
with A.BalancezX

The CCC approach 21
1

= A confluence of contributions from

» Coordination Languages and Models
Separation between "computation” and "coordination”

« Software Architectures
Connectors as first-class citizens

« Parallel Program Design
Superposition

= An Academia/Industry partnership

5 CX] University of
RFK <::-'> / < Leicester

SOFTWAT

University of

SERROM Leicester

The CCC approach 22

m The Strategy

> Recognize that change in the application domain occurs at
different levels;

’ University of
e Leicester

The CCC approach 23

= Distinguish Computation Resources...

G leicester
The CCC approach 24

s ..from Coordination Resources

University of

SERPDS @ Leicester

The CCC approach 23

= Distinguish Computation Resources...

* Units that model core
business/domain entities and
provide services through
computations performed locally

° These tend to be stable
components, for which
modifications imply major re-

engineering
s Pleicester
The CCC approach 24

e |
s ..from Coordination Resources

Units that model volatile
"business” rules and processes
and can be superposed, at run
time, on the core units to...

o..coordinate their interactions
-..regulate their behaviour
-..adapt their behaviour

»...monitor their behaviour

i University of
Semros OLeicester

The CCC approach 25
|

m The Strategy

» Recognize that change in the application domain occurs at
different levels;

o (X7 University of
SEmrOs Leicester

The CCC approach 26
|

m Change-oriented layered architecture

The CCC approach 25
1

m The Strategy

» Recognize that change in the application domain occurs at
different levels;

° Reflect these levels in the architecture of the system;

. X7 University of
SRS W Leicester

The CCC approach 26

m Change-oriented layered architecture

. (] University of
SEREDS @ Leicester

— Coordination
Layer containing Contract Strict-layering:
coordination units | Components are not
controlling the /1 aware of the
interactions and = /| contracts in place.
behavior of basic | By ‘
components ‘§ L
o
5 Contract
Layer containing : 5 Pan_lclpar_at
the clobla g-' relationship
independent
components]
Component
) X7 University of
SERTOL Leicester

The CCC approach 27

m The Strategy

» Recognize that change in the application domain occurs at
different levels;

» Reflect these levels in the architecture of the system;

) (X7 University of
s “ Leicester

The CCC approach 28

= The Configuration Layer

Coordination

Resources

The running system

. University of
SEREDS Leicester

The CCC approach 27

m The Strategy

» Recognize that change in the application domain occurs at
different levels;

+ Reflect these levels in the architecture of the system;

* Manage evolution according to the architecture.

SERN'D4 {:ﬁzgloél'
The CCC approach 28

= The Configuration Layer

Services that model business activities and through which the system
can be configured, at run-time, to provide the required response.

Coordination

Configuration Layer Resources

The running system

’ University of
SERPOA Leicester

The CCC approach 28

= The Configuration Layer

These services can be either invoked by authorized users or
triggered by events (self-adaptation).

Coordination

Configuration Layer Resources

The running system

University of

SEmrOs Leicester

The CCC approach 28

= The Configuration Layer

These services can be either invoked by authorized users or
triggered by events (self-adaptation).

Coordination

Configuration Layer Resources

A
P

4

A
<5 o

The running system

University of

SEREDS Leicester

The CCC approach 28

= The Configuration Layer

These services can be either invoked by authorized users or
triggered by events (self-adaptation).

Coordination

Resources

Configuration Layer

11
-

P —

The running system

University of

SRS Leicester

The CCC approach 29

University of

SERPOA Leicester

The CCC approach 29 Semantic primitives for coordination 30
| 1

m Semantic primitives for Coordination ® Coordination laws that provide abstract models of services

in terms of reactions to be performed upon detection of

m Semantic primitives for Configuration :
triggers.

Full mathematical semantics - CommUnity

® Coordination interfaces that identify the types of
m A micro-architecture for deployment over components that can instantiate the service as a law.

platforms for component-based development

m An instantiation of this micro-architecture for
Java components - the Coordination Development
Environment (CDE)

University of University of

SERM'04

s Leicester Leicester
Overview 31 Overview 31
| |
coordination law standard-withdrawal coordination law standard-withdrawal
partners partners
a:account-debit; a:account-debit;
c:customer-withdrawal c:customer-withdrawal
rules rules
when c.withdrawal(n,a) when c.withdrawal(n,a)
with a.balance()2n & c.owns(a) with a.balance()2n & c.owns(a)
do a.debit(n); do a.debit(n);
end law end law
coordination interface coordination interface
account-debit customer-withdrawal
i import types
import t¥pes money, account;
money; services
services owns (a:account) :Boolean
balance() :money; events
debit(a:money): post balance() withdrawal (n:money;a:account)
= old balance()-a end interface
end interface
. University of ’ University of
Serpros Leicester Semeos Leicester

Just-in-time integration 32

—_— Lcoordination law standard-withdrawal

coordination interface

account-debit customer-withdrawal

coordination interface

o University of
SERWO4 Leicester
Instantiation 33
Pl T
Coordiuton bws modeling Banens | rF e L)
g i I |
o~k 1 -
i: E 1 Coordnaton Interface
i— J | ,(J
i . I :
1 : 1 .
1 inews architecton
1 ! -
T 4 i o i
1
g § : fey Gereract
'
'
Uty o= st .| § ey
Core state comparerts ? | Compener
:é
3
— University of

Leicester

Just-in-time integration 32
1

Lcoordination law standard-withdrawal}

coordination interface

account-debit customer-withdrawal

coordination interface [

Object class account Object class customer

Binding may require adaptation...

pr— University of
Leicester
Coordination interfaces 34

® Coordination interfaces correspond to the roles of
architectural connectors.

" They identify types of components according fo services and
events:

" services identify operations that components that are instances
of the interface need to provide for a contract o operate
according to the law;

" events identify situations produced during the execution of the
components that are required to be detected as triggers for the
contract to react and activate a coordination rule as discussed
below.

University of

SERPOA Leicester

Coordination interfaces 35

coordination interface customer-withdrawal
import types money, account

services owns (a:account) :Boolean

events withdrawal (n:money;a:account)

end interface

" We require to detect as triggers events that consist of customers
performing withdrawals, and be provided with services that query
about the account ownership relation

® In traditional object-oriented modelling, typical events are feature
calls: a withdrawal would normally be modelled as a direct call to the
debit operation of the corresponding account - a.debit(n).

University of

SEmrOs Leicester

Coordination laws 37

coordination law standard-withdrawal
partners a:account-debit; c:customer-withdrawal
rules when c.withdrawal(n,a)
with a.balance()2n and c.owns(a)
do a.debit (n)
end law

® A coordination law corresponds to a connector (type).

® The partners are logical parameters typed by coordination interfaces
and correspond to the connector’s roles.

® The coordination rules provide the glue of the connector.

University of

SEREDS Leicester

Coordination interfaces 36

coordination interface account-debit
import types money
services
balance () :money
debit(n:money) post balance()= old balance - a
end interface

® The inclusion of properties, e.g. pre and post-conditions on services,
provide means for requirements to be specified on the components
that can be bound to the interface.

® A special section properties may be used for other kinds of
requirements.

University of

SERROM Leicester

Coordination rules 38

coordination law standard-withdrawal
partners a:account-debit; c:customer-withdrawal
rules when c.withdrawal(n,a)
with a.balance()2n and c.owns(a)
do a.debit (n)
end law

® Each coordination rule identifies, under when, a trigger to which the
contracts that instantiate the law will react - a request by the
customer for a withdrawal in the case at hand.

® The trigger can be just an event observed directly over one of the
partners or a more complex condition built from one or more events.

University of

SERPOA Leicester

Coordination rules 39

coordination law standard-withdrawal
partners a:account-debit; c:customer-withdrawal
rules when c.withdrawal(n,a)
with a.balance()2n and c.owns(a)
do a.debit (n)
end law

® Under with we include conditions (guards) that should be observed
for the reaction to be performed.

" If any of the conditions fails, the reaction is not performed and the
occurrence of the trigger fails.

® Failure is handled through whatever mechanisms are provided by the
language used for deployment.

University of

SEmrOs Leicester

Example: VIP-withdrawal 4

coordination law VIP-withdrawal
partners a:account-debit; c:customer-withdrawal
operation credit () :money
rules when c.withdrawal(n,a)
with a.balance()+credit()2n and c.owns(a)
do a.debit(n)
end law

® The credit-limit is assigned to the law itself rather than the
customer or the account. This is because we may want to be able to
assign different credit limits to the same customer but for different
accounts, or for the same account but for different owners.

® Would it make sense to have a separate partner of the law providing
the credit?

University of

i Leicester

Coordination rules 40

coordination law standard-withdrawal
partners a:account-debit; c:customer-withdrawal
rules when c.withdrawal(n,a)

with a.balance()2n and c.owns(a)

do a.debit(n)

end law

® The reaction to be performed to occurrences of the trigger is
identified under do as a set of operations - a debit for the amount
and on the account identified in the trigger.

® This set may include services provided by one or more of the partners
as well as operations that are proper to the law itself.

® The whole interaction is handled as a single transaction.

University of

SERROM Leicester

Interfacing with external events 42
|

® Coordination interfaces can also act as useful abstractions for
either events or services that lie outside the system, or global
phenomena that cannot be localised in specific components.

® 1Inthe case of events, this allows for the definition of
reactions that the system should be able to perform to
triggers that are either global (e.g. a deadline) or are detected
outside the system.

® In the case of reactions, this allows us to identify services
that should be procured externally. This is particularly useful
for B2B operations and the modelling of Web-services.

University of

e Leicester

Example: interfaces for transfers 43

coordination interface external-transfer R
import types money, account, transfer-id
events transfer (n:money;a:account;t:transfer-id)
end interface
J
(et . N
coordination interface account-credit
import types money
Services credit (n:money)
end interface
>
o University of
b Leicester
Monitoring behaviour 45

® Assume that new legislation is passed that requires
credits over a certain amount to be reported to the
central bank - e.g. as a means of detecting money
laundering.

® Rather than revise the implementation of credits to
take care of this new requirement, it is better to
superpose a contract over every account to perform
the required monitoring activity.

. University of
SEREDS Leicester

Example: law for transfers 44
(,:oordination law external-transfer-handler ‘\\
partners a:account-credit; t:external-transfer

operation ackn (t:transfer-id)
rules when transfer(n,a,t)
with a.exists
do n21000:a.credit (n-100)
and n<1000:a.credit(n*0.9)
and ackn(t)

\\i?d law A//

SERW'O4 University of

Leicester
Example: monitoring big credits 46
(’;oordination law report-big-credits <‘\
partners a:account-credit-event
operation big() :money;

report (n:money) ;
set-big(n:money) post big()=n
rules when a.credit(n) and n2big()
do report(n)

\Snd law 4/

coordination interface account-credit-event
import types money

events credit (n:money)

end interface

’ University of
SERPOA Leicester

Regulating behaviour 47

® Contracts can also be used for superposing
regulators over certain components of the system.

® For instance, consider the situation in which the
bank decides to penalise customers who fail to keep
a given minimum average balance by charging a
monthly commission.

o University of
SEmrOs Leicester

Example: openplan 49

//:;;rdination law flexible-package Aﬁ\\\

partners c,s:account-debité&credit
operation minimum() , maximum () :money
rules

when c.balance()<minimum/()
do let N=min(s.balance () ,maximum()-c.balance())
in s.debit(N)and c.credit (N)

when c.balance()>maximum/()
do let N=c.balance()-maximum ()
in s.credit (N)and c.debit (N)

" 4

. University of
SEREDS Leicester

Example: commission on balances 48

coordination law commission-on-low-balance

partners a:average-balance
operation minimum() , charge () :money
rules
when end-of-month
do minimum()>a.average () :a.debit (charge())
end law

coordination interface average-balance
import types money

services debit(n:money); average () :money
end interface

. University of
SERROM Leicester
Example: openplan 50
/,:;ordination interface account-debité&credit ‘\\

import types money

events balance () :money

services debit (a:money) ;

credit (a:money) ;
balance () :money
properties
balance() after debit(a) is balance()-a;
balance() after credit(a) is balance()+a

\\i?d interface ‘//

’ University of
SERPOA Leicester

Instantiation 51
—_— Lcoordination law standard-withdrawal

coordination interface coordination interface
account-debit customer-withdrawal

University of

S @ Leicester
Design primitives for coordination 52
|

Coordination rule

Coordination contract =
Rule: when <trigger>

Coordination unit with <condition>
do <transaction>

Coordination Contract

Contracts may have
operations and attributes
like a normal class, but
these are not public

Coordinatio

Contract Partner binding
(class-instance
relationship)

Component

Comp‘onem

Instantiation 51

—_— Lcoordination law standard-withdrawal

coordination interface coordination interface
account-debit customer-withdrawal

Object class account Object class customer

The result of the instantiation is a coordination contract

. University of
SEREDS Leicester

’ X7 University of
SRS Leicester

Coordination contracts 53

® Coordination contracts instantiate coordination laws for
particular kinds of components.

® For instance, in the case of OO programming environments,
" services are provided through methods of the classes that
instantiate the partners (coordination interfaces)
" events are provided by object(instance) method calls or
system/class method calls

’ University of
SERPOA Leicester

Notation 54
-

coordination contract standard-withdrawal
partners x : Account; y : Customer;

coordination
when y ->> x.withdrawal (z)
with x.balance () >z and y.owns (x)
do call x.withdrawal(z)

end contract

University of

SEmrOs Leicester

Intuitive semantics 56
|

= Instead of interacting with a mediator that delegates
execution on the supplier, the client calls directly the
supplier (the partners in the contract are not aware that
they are being coordinated by a third party):

= The contract "intercepts" the call and superposes whatever
forms of behaviour are prescribed;

= This means that it is not possible to bypass the coordination
being imposed through the contract.

University of

SEREDS Leicester

Notation 55
=---- -

coordination contract VIP package
partners x : Account; y : Customer;
attributes Credit: Integer;
coordination
when y ->> x.withdrawal (z)
with x.balance () +Credit()>z and y.owns (x)
do x.withdrawal (z)
end contract

University of

SRS Leicester

Another FAQ... 57

“Why use Coordination
Contracts ?

I can do the same thing
using Design Patterns!...

”

University of

SERPOA Leicester

The answer to the FAQ AN

Coordination Contracts reduce dependencies between
objects

Coordination Contracts place relationships together with
associated interaction behavior.

Coordination Contracts provide much more runtime
flexibility

Coordination Contracts are a simple, abstract and intuitive
specification primitive

Coordination Contracts avoid some complexity in models
resulting from using design patterns and design pattern
composition

SERN'04 University of
Leicester
Coordination runs in Java... 59
The
Coordination
Development
. : Environment
Sign Uw can be downloaded from
(- www.atxsoftware.com/CDE
Kevin Lano, J;;é Luiz Fiadeiro
& Luis Andrade
4
SERM'04 University of
Leicester

Coordination runs in Java... 59

University of

SERROM Leicester

However 60

= Mobility

A new factor of complexity in the development of
software systems (Web, mobile communication) that
cannot be relegated fo lower level design.

As components move across a network, the connectors in
place may no longer ensure the required interactions.

University of

SERPOA Leicester

However 61
e EEE———————

s Business

Many businesses are selling the same services through
different channels, each of which has specific features.

For instance, withdrawing money is subject to location-
specific rules in addition to the coordination-related
ones. It is different to withdraw money at your local
branch, another branch, an ATM...

The system should self-adapt to changes of location
without interfering with the coordination business rules.

Jr— University of
Leicester
Architectures for Mobility 62

Distribution

. University of
SEREDS Leicester

Architectures for Mobility 62

Distribution
SER'O4 University of
Leicester
Location laws 63

//I:cation law ATM-withdrawal <‘\\\

locations atm:ATMW-LI; bank:BANKW-LI

rules when atm.withdrawal (n) and BT (atm,bank)
with n<bank.maxatm() and n<atm.cash()
do atm.give (n)

when atm.withdrawal (n) and not BT (atm,bank)
and REACH (atm,bank)

let N=min (atm.default() ,n) in

with N<atm.cash()

do atm.give (N)

mv bank.internal (N,atn.acco())
\o /

’ University of
SERPOA Leicester

Be in touch 64

rules when atm.withdrawal(n) and BT (atm,bank)
with n<bank.maxatm() and n<atm.cash()
do atm.give (n)

s BT indicates whether the two locations are “in touch”
meaning that they can communicate and synchronise actions
at both locations;

= If they are, coordination laws apply to the partners that
are located there. The guards (with conditions) of
coordination and location rules apply, and the reactions of
both are performed atomically.

o University of
SEmrOs Leicester
Location interfaces 66
location interface BANKW-LI kK
location type BANK
services internal (n:money, a:ACCOUNT)

maxatm () :money
end interface

location interface ATMW-LI ‘\
location type ATM

services default () ,cash() :money,acco () : ACCOUNT
give (n:money) post cash()=oldcash()-n

events withdraw (n:money)

end interface)

University of

i Leicester

Reach 65

when atm.withdrawal (n) and not BT (atm,bank)
and REACH (atm,bank)
let N=min (atm.default(),n) in
with N<atm.cash()
do atm.give (N)
mv bank.internal (N,atm.acco())

s REACH indicates that one location can be “reached” from
the other, meaning that services can move across;

= mv indicates that the service is sent for execution at the
other location.

SERW'O4 University of
Leicester
Instantiation 67

University of

s Leicester

Instantiation 67 Instantiation 67

ATM
withdrawal

senwos @ Leicester
Instantiation 67 Instantiation 67

VIP
withdrawal .

SERM'04 _ g U 9 - SERM'04 _ _ g U o

Other Work 68

= Semantic primitives for location/mobility in the UML
= Operational semantics in KLAIM

= Reconfiguration with Hypergraph Rewriting

= Refinement in Tile Logic

= Model-checking

= Architectures in CASL

Jr— University of

Leicester
Other Work 69
= Mathematical semantics in 4)\
= Requirements with Problem Frames
= Domain specific extensions (embedded,

collaborative, ...)

= Context-awareness

University of

SEREDS Leicester

Other Work 68

= Semantic primitives for location/mobility in the UML
= Operational semantics in KLAIM

= Reconfiguration with Hypergraph Rewriting

= Refinement in Tile Logic
= Model-checking

= Architectures in CASL

E

>

AGI

SER'O4 University of

Leicester

Join us... 70

www.cs.le.ac.uk/SoftSD Postgraduate (MSc,PhD)

Postdoc
t Sabbatical leaves
SO f {'D Research visits
!
)

SERM'04 University of

Leicester

Join us...

70

www.cs.le.ac.uk/SoftSD
ol
f
S.fiD

WEE-NET

Network of E. e in Web Engi ing

olfa

Latin America-Academic training

Postgraduate (MSc,PhD)

Postdoc

Sabbatical leaves

Research visits

IST-2001-32747
Architectures for

Mobility

RELEASE

Scientific Network
on Software Evolution

N

ez

Ad-hoc
Web Applications

Nuffield Foundation

SERM'04

University of
Leicester

