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Abstract

We describe a hidden surface removal algorithm for two-dimensional
layered scenes built from arbitrary primitives, particularly suited to
interaction and animation in rich scenes (for example, in illustra-
tion). The method makes use of a set-based raster representation
to implement a front-to-back rendering model which analyses and
dramatically reduces the amount of rasterization and composition
required to render a scene. The method is extended to add frame-to-
frame coherence analysis and caching for interactive or animated
scenes. A powerful system of primitive-combiners called filters is
described, which preserves the efficiencies of the algorithm in highly
complicated scenes. The set representation is extended to solve the
problem of correlated mattes, leading to an efficient solution for high
quality antialiasing. A prototype implementation has been prepared.
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We propose a new software-based method for drawing two-
dimensional layered scenes of the kind used for interactive pic-
ture editing and as the basis of standards such as Adobe’s Portable
Document Format (PDF). This method combines various known
techniques from the 3D and 2D graphics literature with our own
work to produce a feasible algorithm, which has been implemented
in prototype.

Primitive methods are based upon the painter’s model: the objects
are rasterized individually from back-most to front-most. Later
images overwrite part or all of earlier objects where overlap occurs.
When antialiasing or partial transparency are present, each new
object is combined with the previously-rendered composite using
the rules of [Porter and Duff 1984] instead of simple overwriting.

The disadvantage of this scheme is that objects which are partly or
completely obscured by those nearer the front are still calculated
fully. This results in wasted composition and antialiasing operations,
as well as unnecessary rasterization of parts of the object which will
not affect the final composite. Our method reduces the number of
objects rendered, the portion of each which need be rendered, and the
recalculation required when a scene changes. Scenes in illustration
graphics contrast sharply with those in real time three-dimensional
visualization. Since the emphasis in illustration is on interactive
editing, there tend to be many fewer objects, but each may take
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much longer to rasterize—a large polygon or brush stroke with a
high-radius gaussian blur applied to it may take a significant portion
of a second to calculate. Much illustration graphics is destined for
print use, at resolutions of 100,000 pixels or more in each direction.
Even on screen, the work increases rapidly as monitors are available
with much higher resolution than before. The extra analysis required
to minimize the amount of work to draw a scene (and redraw it
when it changes) by calculating only the part of each object which is
visible may therefore become useful. Moreover, scenes in illustration
graphics are often amenable to this kind of optimization since they
tend to contain many overlapping objects. In an interactive editor,
frame-to-frame coherence is high because it is likely that just a few
of the objects will be modified each time the scene changes. Since
the user can only modify something once he has already selected it,
these modifications may be partly predicted.

With more computing power, the ability to edit the document truly
interactively has been implemented in some programs. The scene
updates as the user moves or modifies an object, rather than display-
ing an outline or wire frame and updating only when the change is
certain. Due to the lack of a suitable rendering and caching frame-
work to minimise the work required at each frame, this is often
slower than it ought to be and not implemented for all types of scene
modification. We can not assume there is a limit to the number or
type of objects we might want to be rendered in real time—give
an illustrator a new object, and he will use a dozen on top of one
another for an effect unforeseen by the programmer.

The claimed efficiency of our hidden-surface removal algorithm is
predicated upon the following hunch:

When very high-quality rendering is used or the scene
contains very complicated objects, the cost of calculating
the set of pixels affected by an object is insignificant when
compared with the cost of rendering the object.

Our intuition is that this is likely to be true for more complicated
objects such as brush strokes, or objects with fancy fills or effects
like blurring.

In Section 1 we look at other work in this field. Section 2 is our
major contribution—a new algorithm for rendering two-dimensional
scenes. We describe the data structures and how they apply to simple
objects such as polygons and brush strokes. We exhibit a hidden
surface removal algorithm which ensures that only those pixels of
an object’s rasterization whose values contribute to the final image
will be calculated. In Section 3 we describe how to find the minimal
portion of an image which needs to be redrawn when the scene
changes. We discuss the addition of a caching mechanism to exploit
coherence between successive frames of an animation or interactive
session. In Section 4 we describe antialiasing in our system, and
show how to modify the renderer to address efficiently the problem
of correlated mattes, a characteristic defect in the painter’s model.
In Section 5 we add a system of primitive-combiners called filters
providing both vector and raster effects. We show how the efficiency
of hidden surface removal holds over filters. Finally, we conclude
and suggest further work.



1 Related Work in Computer Graphics

Our method, while it has some novelty, uses work from a wide range
of previous work, both in two- and three-dimensional graphics.

The simplest way to render a two-dimensional scene is to render
each layer, retaining transparency information, and then to compose
the layers one at a time using the methods described in [Porter and
Duff 1984]. A good introduction can be found in [Smith 1995a]
and [Smith 1995b]. Hidden surface removal in two dimensions is a
special case of three-dimensional hidden surface removal where we
already have a complete depth ordering on the objects to be drawn,
but do not yet know whether we need draw all of each object, since
objects may overlap partially or completely.

Traditionally, two-dimensional systems have not considered the prob-
lem of correlated mattes (where multiple partially overlapping or
intersecting objects contributing to a pixel cause wrong results). We
extend our system to handle this in Section 4. Two three-dimensional
systems which deal with this problem properly are Catmull’s Pixel In-
tegrator [Catmull 1978] and Carpenter’s A-buffer [Carpenter 1984].
We reverse the rendering order (as is often done in 3D graphics, and
in 2D in [Froumentin and Willis 1999]), and show how the number
of pixels requiring special attention is thus reduced.

Our system solves the hidden surface problem for two-dimensional
layered scenes allowing for an arbitrary antialiasing filter—not just a
box filter as is common—calculating pixel values for each layer only
when needed (including solving the problem of correlated mattes
exactly, and only, when needed). This improves on current systems
which calculate the whole of each layer even when that layer will be
partially or completely covered by an object further forward in the
scene. We do not discuss the mathematical foundations of antialias-
ing theory, but for a description of the box filter’s insufficiency, see
[Smith 1995c].

The success of our system relies upon the storage of fragments of
rendered content (sprites) and sets of pixel locations (shapes) being
efficient in the presence of plain fills, fancy fills and complicated
antialiased pixels. These concepts are introduced in the context
of the composition of primarily bitmap graphics in [Smith 1995d].
We recast those into the domain of a vector graphics editor, taking
advantage of the preponderance of non-rectangular objects. It also
requires that set-based operations on shapes are fast, and that com-
position of sprites is fast. We use data structures similar to Wallace’s
cartoon cel work [Wallace 1981] and Froumentin & Willis’ IRCS
[Froumentin and Willis 1999].

Our system of primitive combiners called filters is rather like that
developed by [Bier et al. 1993]. Our method of drawing brush
strokes (which we use as one example of a non-polygon primitive)
comes from [Whitted 1983].

A discussion of some of the issues involved in writing an interactive
editor for two-dimensional scenes such as ours is in [Fekete and
Beaudouin-Lafon 1996].

2 Hidden Surface Removal

A scene consists of a number of objects, ordered by depth.We allow
the raster representation of an object to depend upon objects further
to the back of the scene, but it must be independent of those nearer
the front. This allows for our new filter objects (see Section 5). Most
objects (including partially transparent ones) do not depend upon
objects nearer to the back.

In order to be able to calculate the minimum work required to render
a scene, it is necessary to retain the essence of an object’s geom-
etry when it is rasterized. We define a set of data structures lying
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can be represented as

[ V (1, 3, [[H(2, 3)], [H(2, 2)], [H(2, 1)]]),
V (7, 4, [[H(6, 2)], [H(4, 8)],

[H(1, 6), H(10, 2)],
[H(2, 4), H(9, 2)]])]

where [] denotes a list, V (s, l, ls) a vertical
span starting at y-position s and of length l and
H(l, s) a horizontal span starting at s and of
length l.

Fig. 1. From left to right: A polygon and its shape, minshape and maxshape when using an antialiasing filter with square footprint twice the interpixel
spacing. Pixels in a set are black.

Fig. 2. A finite-width spanline and part of a polygon crossing it, together with the calculated shape spanline (marked as circles around pixel centres). The
dotted circles are antialiasing filter footprints, the squares approximations to them for the purposes of intersection tests.

Figure 1: Possible raster set representation for shapes. For a sprite,
the same structure is used, but with pixel data added to each horizon-
tal span, possibly compressed with run length encoding.

Figure 1: From left to right: A polygon and its shape, minshape and maxshape
when using an antialiasing filter with square footprint twice the interpixel spac-
ing. Pixels in a set are black.

Figure 2: A finite-width spanline and part of a polygon crossing it, together
with the calculated shape spanline (marked as circles around pixel centres).
The dotted circles are antialiasing filter footprints, the squares approximations
to them for the purposes of intersection tests.

1

Figure 2: From left to right: A polygon in vector space and its shape,
minshape and maxshape as sets of pixels (filled) when using an
antialiasing filter with square footprint twice the interpixel spacing.

somewhere on the boundary between the geometric and rasterized
planes.

The shape of an object is the set of pixel positions whose mem-
bers are at least those pixels which are expected to be not-wholly-
transparent in its rasterized representation. The efficiency of the
algorithm relies upon this being close to the minimal set, but its
correctness does not. The set is likely to be minimal for objects
with simple geometries (such as polygons) but not for more com-
plicated ones (such as point clouds, implicit geometries or objects
processed in highly non-linear ways). The set is stored in a spa-
tial data structure; the current scanline-based implementation is
described in Figure 1.

The minshape of an object is the set of all coordinates of pixels
where the object influences the pixel completely i.e. for which the
geometry does not alter the value of the function representing the
fill colour of the object; for a polygon this is all pixels for which
the antialiasing footprint is contained entirely within the polygon.
For very complicated geometries (for instance particle clouds) the
minshape is likely to be the empty set. The maxshape of an object
is the set of pixels in its shape but not in its minshape. Clearly only
one of the maxshape and minshape need be stored, the other being
derived when required by set difference. A polygon and its shapes
are shown in Figure 2.

The sprite of an object is its (partial) rasterized representation, pro-
viding a set of colour values corresponding to some or all of the
coordinates in its shape, depending how much has required rendering
to this point.

Calculating sets for Polygons Here we give some detail of the
calculation of shapes and sprites for a primitive such as the polygon—
the process is a little different from traditional polygon rasterization.
The shape of a polygon contains every coordinate which will have a
not-wholly-transparent value under the rasterizing scheme used to
calculate its sprite. This is a simple extension to the standard method
for rasterizing filled polygons ([Foley et al. 1996], p92). Scanlines
are considered to have a finite width equal to the diameter of the
footprint of the antialiasing filter rather than as a zero-width line.
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Figure 3: Composing a line of two partially transparent sprites,
preserving run-length encoded spans.
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where [] denotes a list, V (s, l, ls) a vertical
span starting at y-position s and of length l and
H(l, s) a horizontal span starting at s and of
length l.

Fig. 1. From left to right: A polygon and its shape, minshape and maxshape when using an antialiasing filter with square footprint twice the interpixel
spacing. Pixels in a set are black.

Fig. 2. A finite-width spanline and part of a polygon crossing it, together with the calculated shape spanline (marked as circles around pixel centres). The
dotted circles are antialiasing filter footprints, the squares approximations to them for the purposes of intersection tests.Figure 4: A finite-width scanline and part of a polygon crossing

it (shaded), together with the calculated shape scanline (marked
as small circles around pixel centres for those pixels included in
the shape). The large, dotted overlapping circles are antialiasing
filter footprints, though we approximate them with squares for this
process. If the left-most pixel here is pixel 0, spans(t) is {(1–3, 7–12},
spans(b) is {0–3, 7–12} and covered(e) is {0–4,7–12} so the result is
{0–4, 7–12}.

The edge list techniques in [Foley et al. 1996] generalize simply.

Consider a scanline and the list of edges which intersect it, as illus-
trated in Figure 4. The situation is more complicated than for a zero
width scanline. The spans generated by the top and bottom scanline
edges may be different, and there may be edges lying partially or
wholly within the scanline that must contribute. Let spans(x) be
the sequence of spans derived from the list of edge crossings x. Let
covered(x) be the sequence of spans composed of the coordinates
whose associated footprint is intersected by one or more of the cur-
rent edges x which cross neither the top nor bottom edges. Then, if
the current edge list is e, the list of crossings at the top edge t and
those at the bottom b, the spans are spans(t)∪spans(b)∪covered(e)
where ∪ combines touching or overlapping spans to form the mini-
mal set.

When an object is to be rasterized to a sprite, the required shape
will have been calculated by the renderer by intersecting the object’s
shape with the update shape (the set of pixels in the scene which
have been determined to require rendering). The job of the rasterizer,
then, is to generate a partial sprite of the same shape. Plain fill
types, where the fill colour is constant rather than dependent upon
the coordinates of the pixel are treated differently—a run length
encoded subspan is generated for runs of pixels which all have no
edges intersecting their filter footprint. The antialiased parts around
the edges of the polygon are generated as usual.

Figure 3 shows how run length encoding of polygon scanlines is
preserved over composition in our spatial representation of sprites.
This encoding allows spatial coherence to be preserved when plain
shaded possibly-translucent objects are composited over one another.

Hidden Surface Removal Algorithm A classical painter’s
method renderer operates as follows. Objects are dealt with from
back-most to front-most. If an object intersects the update rectangle,
it is clipped, rendered and composited into a rectangular buffer. In
this method, objects contributing nothing to the final image are still
drawn, and objects which are partly obscured by ones in front are
drawn in their entirety (save for clipping to the update rectangle).

This results in many wasted calculations in polygon rasterization,
antialiasing and compositing. It also rules out the sensible use of
caching techniques for interactive and animation work, since the
rasterized objects are very large. One possible approach is to geo-
metrically clip all the objects against one another, but this breaks
down in the presence of antialiasing and arbitrary primitives—how
can one clip a brush stroke against a point-cloud against a polygon?

To calculate only the parts of an object’s rasterization which will
contribute to the final image, the order of rendering is reversed,
considering the objects front-most to back-most. Front-to-back
rendering is obviously suitable for entirely opaque objects, since
the final pixel depends only upon the front-most object affecting it.
When objects are partially transparent (or, equivalently1, antialiased),
the operands to the compositing function may usually be swapped,
and the composite calculated starting with the front-most object in
the scene. When an object’s rasterization depends upon the objects
behind it (such as an object with fill type ‘magnify whatever is below
by two, convolving it with a gaussian blur of radius five’), extra
work is required—we discuss this in Section 5.

The following description of the rendering process is independent of
the implementation of spatial data structures for sprites and shapes,
the particular primitives in use and their rasterization methods.

It is convenient to describe the rendering process in terms of a num-
ber of fundamental operations on shapes and sprites. An efficient
implementation may not create all the intermediate structures sug-
gested by this description.

• a∧b, the set intersection of two shapes.

• a\b, those pixels in shape a which are not in shape b.

• a∨b, the set union of two shapes.

• a ◦ b, which composes sprite b under sprite a, returning the
composite together with a shape containing those members of
b whose analogous pixels in the composite are opaque (and so
‘finished’).

One stage of this process is illustrated in Figure 5. Call the shape
remaining to be updated at this point (the set of pixels not yet in
their final form) U, the current object O, and the rendered result A
(the accumulator). The function shape(O) calculates the shape of
an object O and rasterize(O,R) calculates a partial sprite of O for
shape R. Proceed as follows:

1. Calculate the intersection between the update shape and the
shape of the current object. Call this the rasterizing shape, R.

R = U∧ shape(O)

2. Rasterize the partial sprite corresponding to R. Call this the
object sprite S.

S = rasterize(O,R)

3. Compose S under the accumulator and find the pixels newly
finished. A finished pixel is one which is entirely opaque and
so cannot be affected by any more objects. Call this shape F.
The new accumulator is A′.

(A′,F) = A◦S

4. The new update shape U′ is U with all the newly finished pixels
removed.

U′ = U\F

1Most methods for antialiasing convert geometry information into a
single coverage value for each pixel, so a half-covered opaque red pixel
is indistinguishable from a fully-covered half-transparent red pixel. See
Section 4 for a fuller discussion.



Accumulator A Update Shape U shape(O) Rasterizing Shape R

Rasterized Sprite S New Accumulator A’ Finished Shape F New Update Shape U’

Vector Object O

Figure 5: One stage of hidden surface removal front to back. The stages illustrated are repeated for each object in the stack or until the update
shape is empty, starting with an update shape which covers the whole update region (a simple rectangle, here).

5. Next object with A = A′,U = U′.

After all objects have been processed, the final accumulator sprite
A′ has a shape which is a subset of the original U. If the output is
to be used for rendering to a device which does not have an alpha
channel (for instance, a screen), the last object in the scene will be
the background (which is everywhere-opaque), so the final result
will have the same shape as the original U.

3 Frame-to-frame Coherence

Finding the Update Shape The rendering model for multiple
frames is stateless; it is the job of the program calling the renderer to
decide the region which needs to be updated when a change occurs.

Call the set of pixels whose values are considered to have changed
the update shape. It depends upon the kind of operation (translation,
rotation, deletion etc.) that is performed, and upon properties of
the object’s rasterization. When an object undergoes a rotation, for
example, the update shape is a∨a′ (where a is the old shape, a′ the
new). If, however, the rasterization of that object is independent of
the operation (for instance, a plain fill is independent of rotation),
the update shape is

(shape(a)\minshape(a′))∨ (shape(a′)\minshape(a)).

The situation is illustrated in Figure 6. Since the shapes are likely
to be in a cache (See Section 3), and in any case may be calculated
quickly, we expect this to be efficient. There are some circumstances
when the update shape is empty even though the scene has changed.
For instance if the changes do not affect the current area of the scene
viewable on screen, or if the operation is known not to affect the
rasterized representation of the scene (for example, ungrouping a
group of objects in an interactive illustration package).

All calculations determining the update shape requiring rasterization
in a particular update cycle are implicitly taken to be in intersection
with the region of interest, for example the viewport of the current
window.

(a)
 

(b) (c)

Figure 6: Finding the update shape. The blue oval has been rotated
between frames (a) and (b). The update shape is shown in (c). The
pixels in the centre of the oval have not changed colour so do not
need to be redrawn.

Caching for Interactive Changes An important side effect of
exact hidden surface removal is that the size in memory of an ob-
ject’s sprite is likely to be smaller due to the use of a spatial data
structure and the fact that many objects will only be partially raster-
ized. This makes caching of part or all of the rasterized data feasible
so that, when the scene changes, parts of sprites which have not
changed need not be recalculated (when needed as part of a changed
composition). The cache can store partial or complete sprites cor-
responding to the rendered portions of each object. We also store
shapes (the sets representing the pixels affected by an object), since
these are small and frequently required for the calculations in the
hidden surface algorithm.

When a new item is added to the cache, or an object’s partial sprite
in the cache extended, one or more cache items may need to be
removed to make space. To decide which to remove, the cache items
are scored according to various metrics (how recently the item was
last used, the time the object took to render, the size in memory of
the item, the type of the item – shape or sprite). Often, it is useful to
keep previous generations of an object in the cache too—a frequent
operation in interactive graphics programs is undo, which should be
fast. This also means that, upon zooming in on a part of the scene to
inspect it and then returning the original scale, the scene should not
have to be recalculated.



It may prove desirable to cache precomposited portions of the image
to prevent having to recompose at every update. This works due to
depth coherence in successive editing operations. That is, when the
user selects an object, it is likely they are about to modify it. One
composite sprite for all the objects below the back-most currently-
selected object can be made so that as it is (interactively) modified,
the re-rendering of the scene is faster.

When the user is interactively, say, rotating an object, the screen
must be updated in as near real-time as possible, but the change is not
committed to the scene until the mouse button is released. Typically
the user can also cancel the interactive operation by pressing the
escape key. This scheme has implications for efficient use of the
cache. Caching each of the dozens of generations of the sprite of
an object which result as the interactive modification is made is
unacceptable. Consider how to react when the user has his chosen
result and wishes to commit the modification, or wishes to abandon
the modification. Upon abandonment, the renderer is called with
the update shape a∨a′ (where a is the old shape, a′ the latest of the
interactive shapes) and the old scene. Upon commit, the situation is
rather more complicated. The new shape and sprite have just been
calculated so it is important to avoid recalculating them. This is done
by keeping the latest rendered object(s) in the interactive change in
a private single-entry cache, moving them into the main cache upon
commit.

One of the most common operations when editing a scene is trans-
lating an object. Since this operation is often done with the mouse,
in a large proportion of cases the translations in x and y will be
integers at the current viewing transform. This means the rasterized
representation does not change. The geometry of the object changes,
but its shape and sprite can just be translated. This does not apply
to all objects—filters (see Section 5), for example, can change their
rasterized representation based upon their position.

4 Antialiasing and the Problem of
Correlated Mattes

Antialiasing in our system is achieved by integrating over a filter. In
our particular implementation, we use a gaussian with a filter foot-
print width equal to twice the interpixel spacing. Quickly calculating
this integration is discussed in [Feibush et al. 1980], [Catmull 1984]
and [Duff 1989].

The coverage calculation can be done from the same edge lists which
were used to calculate the polygon’s shape. In the simplest case
there is just one edge crossing the filter footprint and the volume
under the filter may be looked up in a simple table mapping the
triple (start point, end point, whether top left corner of footprint is
inside or outside) to a value. For reasonable subpixel granularity,
this lookup table is small—especially if the fourfold symmetry of
the filter is exploited to reduce its size. In our system, the table is just
a few hundred bytes for a 16x16 subpixel arrangement. When there
are multiple edges, the set of subpixels representing the rasterized
edge within the filter footprint is calculated using almost the same
system as for calculating shapes given earlier, scaled up so there are
multiple spans per pixel. Each subspan can then be looked up in a
table mapping (start x, start y, length) to integrated values, which
are then summed to find the total contribution. Figure 7 shows an
example.

When a shape is rasterized using antialiasing, geometry is exchanged
for a single coverage value, and information is lost. This manifests
itself when such images are composited with one another, since it is
not known how much of the top object obscures the bottom object in
each pixel. Porter and Duff [1984] cite one of the worst cases, where
the same object is used twice in a compositing expression—it covers
itself exactly, but the algorithm blends the colours nonetheless.

One Edge Multiple Edges

Figure 7: The calculation of antialiasing for polygons using an
arbitrary filter. When there is just one edge crossing the filter, a
lookup table for filter values based on the two endpoints and inside-
outside nature of the top left point is sufficient. When there are
multiple edges, we must do the integration in sections, by calculating
the shape spans and looking these (start x, start y, length) spans up
in another pre-calculated table.

Figure 8: The problem of correlated mattes. A red circle placed
exactly over a blue one. The left pair composited as usual; the right
pair with proper treatment of correlated mattes.

Consider Figure 8. Since the red entirely covers the blue, no blue
should show through. However, rasterization exchanged geometry
for coverage, so the renderer has no information to decide if the blue
object is a partially transparent one covering the whole of the pixel,
or an opaque one covering part of it. It has no choice but to assume
the colours blend. This is known as the problem of correlated mattes.
Two other manifestations of this problem are visually disturbing:
When a thin line appears to darken as it crosses other lines or itself,
and when two abutting polygons appear to have a thin line separating
them. Commercial illustration graphics programs have traditionally
ignored this problem.

Any method to solve the problem of correlated mattes will involve a
hidden surface algorithm of some kind at certain pixels. Two classic
solutions are Carpenter’s A-buffer [Carpenter 1984] and Catmull’s
Pixel Integrator [Catmull 1978]. The A-buffer keeps a bitmapped
buffer for each pixel affected by polygon edges. The Pixel Integrator
analytically clips each polygon to a square surrounding the pixel,
and computes each polygon’s visibility exactly.

We should only perform hidden surface removal within individual
pixels when it would make a difference to the final composite. It is
quite simple to extend our current system with an optional subpixel
analysis at the cost of slower rendering: pixels forming part of
the maxshape of an object are initially represented by a square
matrix of subpixels, covering the footprint of the antialiasing filter
in use and stored as a sprite (so space-efficient). When compositing
into the accumulator, subpixels are composited with one another
in the usual manner. A pixel is finished when all its subpixels are
finished. At this stage, the antialiasing filter is applied and the
representation of that pixel reverts to normal. This ensures that
no more work is done than is required. When all objects have
been rendered, any remaining subpixel-represented pixels in the
accumulator are normalized. Figure 9 shows an example single pixel



Figure 9: Solution to the problem of correlated mattes by using
our usual front-to-back hidden surface removal process within the
antialiasing filter footprint of a single pixel. The results are then
weighted by the filter to produce a single result, once the pixel is
finished.

accumulator under this system. Note that the shapes are rendered
in this subpixel system without antialiasing, so that in the case two
identical polygons on top of one another, none of the one beneath
would show, as required.

5 Filters

Sometimes it is useful for the object’s sprite to depend upon the
rasterized composite of the objects below it, or for the object to
be able to remove objects or change their geometry whilst they lie
under it. We call this kind of object a filter. The concept is not new
(see, for example, [Bier et al. 1993]), but our system is more gen-
eral than previous efforts: filters can read from directly underneath
themselves, or from other parts of the scene, modifying the result
either geometrically or using raster effects. Filters can be made from
any type of primitive. For instance, the filter ‘blur the scene below’
requires rendering the scene below normally, and then blurring it
to form the sprite of the filter object. The filter type ‘make all ob-
jects below have thin lines and transparent fills’ (an outline or wire
frame effect) involves modifying the object geometries themselves.
A filter has an opacity (plain, or varying) just like any other object,
representing the extent to which the filter affects each pixel.

A filter represents an interruption in the usual front-to-back render-
ing order. Filters complicate the rendering process significantly,
especially if we are to preserve the efficiency gains we have seen
with simple front-to-back rendering.

A filter consists of:

• The geometry of the filter, which is a primitive of some kind
(polygon, brush stroke etc). Only the alpha channel is used,
for defining where and to what extent the filter acts. The
rasterizations of the filter and base scene will be blended in
proportion to this geometry, allowing for correct antialiasing
and partially transparent filters.

• The scene function, which takes as input the current scene un-
der the filter and the shape representing the part of the filter’s
shape which requires rasterization. It returns a modified scene
(perhaps removing, adding or changing objects) whose rasteri-
zation will be required before the filter itself can be rasterized,
a shape in which that rasterization is required (the reading
shape), and a shape representing how much of the filter itself
need be rendered (the same or a subset of the input shape).

• The filter function, which performs computation on the sprite
returned by the rendering of that part of the scene which is

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Rendering a filter using its geometry, scene function and
filter function. Here the geometry is a polygon, the scene function
expands the reading shape (to provide enough data for the blur to be
rendered) but does not alter the scene, and the filter function blurs the
rendered scene. (a) the shape of the filter’s geometry (b) the reading
shape (c) the scene rendered in the reading shape (d) the result of the
filter function (e) the pixels where the filtered and unfiltered scenes
must be combined (here just the antialiased pixels) (f) the original
scene rendered in those pixels (g) sprites (f) and (d) combined using
the Porter Duff ’plus’ operator. (h) the whole scene including the
filter.

returned by the scene function. For instance, it may blur it.

• The update function, which is used to determine if areas of
the filter need updating when some other area of the scene
underneath needs updating.

The scene function can, of course, produce a scene with more filters
in it, leaving open the possibility of a non-terminating renderer. An
interactive graphics program using the renderer must prevent this by
construction.

Rendering with Filters When a filter is encountered, various of
the basic set operations defined above are used, together with the
filter’s specification, to calculate its sprite and finished pixels. We
proceed as follows (letters from Figure 10):

1. Picture (a) is the geometry of the filter. Use the filter’s scene
function to find the reading shape (b) and the modified scene.

2. Render (c) the modified scene in the region of the filter which
we are rasterizing. Execute the filter function to make (d).

3. Find the pixels (e) in the rendered alpha channel of the filter
geometry which are not opaque (this is the maxshape of the
filter geometry).

4. Rasterize (f) the original scene in those pixels.

5. Blend (g) the original and filter together, attenuating the filter
in proportion to (and the original scene in proportion to the
complement of) the alpha channel of the filter geometry and
combining them where they overlap using the Porter-Duff
‘plus’ operator. Picture (h) shows this in the context of the
eventual, fully-rendered image.

6. The finished pixels for the filter object are all those in the
shape of the filter’s sprite, rather than those which are actually
opaque as for a non-filter object. This allows filters which take
paint away from the canvas to function correctly.

Some Example Filters Here we describe some filters to illustrate
how different scene and filter functions are used. Figures 11 and 14



Figure 11: Filter examples, using a brush stroke as the filter geometry.
From left to right: smear along the path of the brush stroke, outline
(wire frame), monochrome.

Figure 12: Frame-to-frame coherence in the presence of filters. The
left-hand image shows a scene with a zoom filter overlaid with
a shadow filter. The black rectangle is the region of the scene
requiring update for whatever reason. In the right hand image, the
filters’ update functions have been used to propagate the update
shape through the scene to determine which other regions have been
invalidated by the change.

show the effect of some other filters, with various geometries.

• Blur To blur the scene in a given area. The scene function
returns the scene under the filter unaltered, the reading shape
is the shape of the filter geometry convolved with a rectangle
of the width and height of the convolution kernel to include
the extra pixels required for calculation of a blur. The filter
function convolves the sprite by the kernel in the region of the
filter geometry, returning a sprite of just those pixels in the
original filter geometry.

• Cutting a hole To cut a hole in the entire scene below the filter.
The scene function returns the empty scene, the reading shape
is the shape of the filter geometry and the filter function is the
identity function. A hole can be cut just through one object by
returning the scene with that object removed.

• Affine transform To produce a magnify, reflect or similar
effect. The scene function applies some affine transform to the
scene. The reading shape is unaltered. The filter function is the
identity function, or some function such as blurring or tinting,
avoiding the needless composition of several filters when one
could suffice.

When an object is altered, added or removed from the scene, an ini-
tial update shape is calculated using the methods already described.
When the scene contains filters, part or all of each filter lying outside
this region may need to be recalculated. A simple but inefficient
method would be to invalidate the entirety of all filters when a change
is made to the scene. However, we wish to preserve the efficiency
of exact hidden surface removal over filters, making them almost
as efficient as basic shapes. We associate an update function with
each filter. The final update shape is given by the composition of the
update functions of the filters from the back-most modified object

(a) (b) (c)

Figure 13: Examples of other primitives: (a) a blurred polygon
(b) a brush stroke and (c) a polygon with a brush stroke shaped
hole in it. Our system can perform set operations on geometries to
build new ones, retaining the efficiencies of their shape and sprite
representations.

forwards, again taken in intersection with the region of interest. The
process is illustrated in Figure 12.

6 Other Primitives

Nothing in our hidden surface algorithm requires that polygons
be used—any primitive which can be rendered (i.e. its shape and
sprite calculated for a given region) may be used. There is no
need to convert them to polygons—they retain their own geometry.
Figure 13 shows:

(a) A blurred polygon (our renderer allows any object to be blurred).

(b) A brush stroke created with the techniques in [Whitted 1983].

(c) The subtraction of a brush stroke from a polygon, forming a
brush stroke shaped hole in the polygon. Our renderer allows
such set operations on any combination of types of geometry,
using the same operations to calculate the shape and partial
sprite efficiently.

The geometry of a filter may likewise be formed of any primitive or
combination of primitives. For example, Figure 11 uses brush stroke
shaped filters.

7 Conclusion

We have presented a method of hidden surface removal for static
and moving scenes containing arbitrary primitives and primitive-
combiners. We have shown how this works together with updated
versions of classic antialiasing and rendering methods to calculate
information only when it is required.

Many systems nowadays have either specific accelerated graphics
hardware, or multiple CPU cores, or both. Whilst it is always use-
ful to keep a reference software implementation, could this system
be implemented wholly inside graphics hardware? To what extent
might it be made parallel? More work is required to define the best
caching mechanisms based upon empirical observation. There is
plenty to be done on efficiency for particular kinds of scenes. It
remains to build the renderer into an interactive graphics application
for insights into its use in real situations, and to add low level opti-
misations to complement the algorithmic efficiency already present.
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Figure 14: A complete scene shown in our basic editor. The scene shows five objects with four filters in front of them. A final filter on top of
the scene reflects, shears and fades the whole scene to form a reflection. The filters (from left to right) are outline (wire frame), colour splitting,
blurring and monochrome.
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