INTRODUCTION

ocamli is a proof-of-concept interpreter for OCaml,
which can show the steps of evaluation of an
OCaml program for teaching or debugging. For
example:

S ocamli —-e "1 + 2 % 3" —-show—-all

There are options to search and prune the output,
to stop execution early, and to load libraries such
as the OCaml Standard Library or the Unix library.

IMPLEMENTATION DETAILS

The ocamli interpreter requires no patches to the
OCaml compiler; it is implemented entirely using

compiler-libs.

The OCaml program is lexed and parsed by
compiler-libs, typechecked, then the parse tree
is converted to a simpler, more direct datatype,
called Tinyocaml.

The Tinyocaml representation is then interpreted
step-by-step, optionally printing each stage out.
We use a custom prettyprinter, but hope to even-
tually contribute back to the standard one.

Keeping ocamli in sync with OCaml will involve
updating it to reflect any changes in the compiler-
libs API and adding any new features added to the
OCaml languages. So, we will have ocamli 4.05
for OCaml 4.05 and so on.

ocamli’s facilities for conversing with C code (such
as OCaml $external declarations) are based on
reading and writing OCaml heap values.

REFERENCES

[1] compiler-libs: The ocaml compiler front-end
http:/ /caml.inria.fr /pub/docs/manual-
ocaml/parsing.html.

[2] J. Whitington and T. Ridge. Visualizing the Evalua-

tion of Functional Programs for Debugging. SLATE
'17,2017.

ocamli: Interpreted OCaml

JOHN WHITINGTON UNIVERSITY OF LEICESTER

OBJECTIVES

Teaching It’s useful to draw this kind of evalua-
tion diagram out by hand, in small-group teaching
sessions. But, it takes a lot of time, and doesn’t
scale well. The interpreter ocamli can help by pro-
viding the ability to interactively experiment.

Debugging Whilst ocamli is not yet complete
enough to act as a reliable debugger, extending
it to do the job should be possible. It would need
to support the whole language, and cope with
mixed C/OCaml programs, and so on. If it can’t
run any program, it might not be able to run my
program, and will not be an attractive debugger.

STATUS

The ocamli interpreter is a proof-of-concept. Do
not expect it to run all or even most of your pro-
grams.

It supports just enough of the language to load
(and run the module initialisation of) the OCaml
Standard Library. This is quite a large number of
constructs, though, including functors, first class
modules and so on.

ocamli can run almost all the programs in the
OCaml from the Very Beginning textbook. The exam-
ples are included in the download.

ocamli currently makes no guarantee of computa-
tional complexity, even when the steps of evalu-
ation are not shown. The extent to which such a
guarantee can be given is an open research ques-
tion.

ocamli can be downloaded from GitHub, and con-
tains simple documentation and some example
programs.

FUTURE WORK
o Extend ocamli to the full language

o Make it fast enough for general use

e Fasy invocation as a debugger regardless of

build system or source structure

SAMPLE EXECUTION

S ocamli programs/factorial.ml
factorial 4

n =4 => 1f n = 1 then 1 else n x factorial (n - 1)
n =4 => n % factorial (n - 1)
> 4 % factorial 3
n = 3 > 4 x (£ n =1 then 1 else n x factorial (n - 1))
n =3 => 4 %« (n » factorial (n - 1))
=> 4 x (3 x factorial 2)
n = 2 > 4 x (3 x (Lf n = 1 then 1 else n x factorial (n - 1)))
n = 2 > 4 % (3 » (n » factorial (n = 1)))
=> 4 x (3 x (2 % factorial 1))
n =1 => 4 %« (3 « (2 » (£ n =1 then 1 else n » factorial (n - 1))))
> 4 % (3 * (2. * 1))
=> 24

MORE SAMPLE EXECUTIONS

We can search through the output, showing only certain steps of execution.

“I want to see the last few steps before i1 £ true”:

S ocamli programs/factorial.ml -show—-all -search "if true" -upto 3
=> 3 *x (2 * factorial (2 - 1))

=> 3 x (2 x factorial 1)
=> 3 * (2 « (let n =1 1n 1f n = 1 then 1 else n x factorial (n — 1)))
=> 3 x (2 * (let n =1 in then 1 else n » factorial (n - 1)))

The interpreter can be used at runtime, and the resulting value bought back into the caller:

let x : 1nt list * 1int list =
Tinyocaml.to_ocaml_value
(Runeval.eval_string "List.split [(1, 2); (3,
int list ~ int list = ([1; 31, [2; 4])

4)17") 7
val x :
A PPX rewriter, PPX_eval is provided, so that writing
let compiler_command = [Scomplletimestr "Sys.argv. (0)"])
in a normal compiled OCaml program with PPX_eval generates

let compiller_ command = "ocamlopt"

CONTACT INFORMATION

Web cs.le.ac.uk/people/jw642/

e Better tools for searching and eliding
Email jw642@le.ac.uk

o Allow interpretation of just one module —
other modules run at full speed

GitHub github.com/johnwhitington /ocaml-i
(tag “OCamll7”)

e An interactive interface

