
6/7/07

Automotive Case Study: LowOil Scenario

A SRML Model

Laura Bocchi1 and Jose Bustos1

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

{bocchi,jab67}@mcs.le.ac.uk

Revision: Draft 1.2
Classification: PU

Contract Start Date: September 1, 2005 Duration: 48 months
Project Coordinator: LMU
Partners: LMU, UNITN, ULEICES, UWARSAW, DTU,
PISA, DSIUF, UNIBO, ISTI, FFCUL, UEDIN, ATX,
TILab, FAST, BUTE, S&N, LSS-Imperial, LSS-UCL

Sensoria

016004
Software Engineering for Service-Oriented

Overlay Computers

Integrated Project funded by the
European Community under the
“Information Society Technologies”
Programme (2002—2006)

R M L

– 3 –

1 Introduction

In this document, we present a SRML-P [1,2,3] model for the business process of
LowOil described in the context of the Sensoria Automotive Case Study. The SRML
model has been designed on the basis of the UML specification of the Automotive
Case Study provided in [4]. Anyway, this document presents a new UML specifica-
tion for compliance with the ongong work in Sensoria about UML externsions1. The
LowOil agent addresses a low oil emergency within a vehicle by composing a number
of internal components and invoking external services (e.g., for obtaining an accurate
diagnosis of the problem and for booking a suitable on road repair service). The aim
of this work is to gain experience from the modelling activity and to provide a feed-
back for the ongoing development of SRML. The LowOil case study provided a use-
ful feedback on

• the notion of agent module (a module that does not provide any service and uses
external services for achieving a private business goal),

• the notion of family of interaction events used to perform an arbitrary (i.e., de-
termined at run time) number of interactions of the same type,

• some ideas on the relationship between UML structure diagrams and SRML
module structure, and between UML activity diagrams and SRML business proc-
esses as we derived the SRML modules from a UML specification,

• the notion of message loss and unreliability.

Two SRML modules are proposed: LowOil1 that assumes reliable messaging as pro-
vided by middleware and by the interacting services (this assumptions are expressed
as SLA requirements) and LowOil2 that copes with unreliability within the business
logic.

Section 2 presents a summary of the case study, Section 3 defines the structure of the
SRML modules, Section 4 discusses the request of reliability as a SLA, Section 5
comments on how unreliability is addressed in the busienss logic, Section 6 presents
the conclusions. The appendixes present the SRML modules.

2 The Automotive Case Study: LowOil Scenario

We use structure diagrams for describing the structure of the module and activity
diagrams to describe the orchestration. Section 2.1 presents the structure diagram of
the low oil scenario, Section 2.2 specifies the orchestration in the simple scenario that
assumes reliable communications. Section 2.2 specifies a number of error scenarios to
address unreliable communications.

1 http://www.pst.informatik.uni-muenchen.de:8080/Sensoria/T1.4

– 4 –

2.1 The Structure of the Service

The service includes the following components:

• Communication System orchestrates the interaction with the external serv-
ices.

• GPS is a known component (i.e., not discovered) with a permanent connec-
tion with Communication System. It returns the current location of the vehi-
cle.

• External Diagnostic Service is a known component that has a temporary
connection with Communication System. It represents an external service
that is bound at run time and is used just if/when necessary. It provides a di-
agnosis of the problem presented by the vehicle.

• On Road Repair must be discovered before the connection. It performs the
booking of garage.

Figure 1: structure diagram of the Low Oil Level scenario

2.2 The Base Scenario - Assuming Reliabile Communication

The process of the basic low oil scenario is the following:

• The first activity belongs to the Communication System and is triggered by
the notification of a low oil emergency.

• The vehicle, through the Communication System, establishes a connection
with an External Diagnostic Service to have a more accurate diagnosis.

• In the mainwhile the service asks the current location of the vehicle to the
GPS component, with a synchronous interaction; we are supposing the GPS
position is always available.

– 5 –

• The vehicle, through the Communication System, communicates with an On
Road Repair Service to obtain an appointment for repairing the vehicle. In
this communication the location of the car is also communicated to the On
Road Repair Service.

The activity diagram is presented in Figure 1.

Figure 2: activity diagram of the Low Oil Level scenario (assuming reliable communication)

2.3 The Extended Scenario – Not Assuming Reliable Communication

In the first error scenario, illustrated in Figure 3, the communication connect is asso-
ciated to a timer: if the participant does not synchronize on time, we assume that there
was an error in the communication and we make another attempt with the same Ex-
ternal Diagnostic Service. This protocol is repeated until a reply is received. Notice
that in a more complex scenario we could communicate with another instance of
External Diagnostic Service. In this document we keep trying the connection with the
same service instance.

Figure 3: first error scenario: message loss of connect

– 6 –

The second error scenario, illustrated in Figure 4Figure 4, copes with message loss
in the asynchronous communication sendErrorData with ExternalDiagnosticService.
If a reply to the message is not received before a deadline, the whole protocol from
the synchronous connection connect is repeated.

Figure 4: sequence diagram of the second error scenario: message loss of sendErrorData

The third error scenario is illustrated in Figure 5. If the functionality for retrieving the
GPS position of the car is not available, the Driver is notified and instructed about the
alternative procedure with a synchronous message.

Figure 5: sequence diagram of the third error scenario: GPS not available

The fourth error scenario is illustrated in Figure 6. Communication System attempts a
communication with On Road Repair Service to obtain an appointment. If no reply is
received within an interval of time, a synchronous message is sent to ask the Driver to
arrange the appointment manually, by phone.

– 7 –

Figure 6: sequence diagram of the fourth error scenario: Onroad Repair service not available

3 The Structure of the Module

The structure of the module derives from the UML structure diagram. The compo-
nents of the structure diagrams are modelled as nodes in the SRML module. In par-
ticular:

• Communicating System is the main orchestrator of the module and is repre-
sented as a component.

• The nodes with a permanent connection with Communicating System (i.e.,
GPS) are also represented as SRML service-components.

• The nodes with a temporary connection (either known or discovered) are
represented as external interfaces. In our case all such components are pro-
viders, represented then as external-requires interfaces. A requester compo-
nent with a temporary connection would be represented as an external pro-
vides interface.

We recall that SRML service-components are tightly coupled. External interfaces
represent loosely coupled (typically) external services that are discovered/bound at
run time. The UML components with a temporary connection but that are known a
priori (e.g., External Diagnostic Service) are modelled as external interfaces whose
serviceID is specified as a SLA requirement.

Figure 7 presents the structure of the SRML module for lowOil1 (assuming reliabil-
ity). CommunicationSystem and GPS are modelled as business roles. ExternalDiag-
nosticService and OnRoadRepairService are modelled as business protocols.

– 8 –

Figure 7: the structure of the SRML module LowOil1

The module does not provide any service and the process is started internally to the
vehicle.

The module LowOil2 (considering unreliabile communication) includes the additional
component DR of type Driver. We chose to model Driver as a business role, and not
as a EX-P or EX-R, since it is “statically bound” to the service and it is an internal
element to the module car.

4 Requiring Reliability as a SLA

We modelled the request for reliable communication as a SLA in LowOil1. The con-
straints specifies an upper bound, represented by the constant ctime, for the replies of
the interactions with external parties Connect, onRoadService and SendErrorData.
The upper bound is defined in terms of the delay of the reply associated to an interac-
tion (e.g., connect.Reply) and the delay of the wire (e.g., CE.Delay). The wire delay is
considered twice because both the request and the response are subject to the delay.
The constraints C1 defines a specific service identifier of ED, as it represents a UML
component that is known a priori but has temporary connection.

CONSTRAINT SYSTEM

 S is <[0..1],max,min,0,1>
 D is {n∈N:0≤n≤100}
 V is {ED.ServiceID, ED.connect.Reply, ED.SendError.Reply,

 OR.orderOnRoadService.Reply, CO.Delay, CE.Delay }

CONSTRAINTS

 C1 is <{ED.ServiceID},def1> s.t. def1(n)=1
 if n=myExternalDiagnosticService;

 C2 is <{ED.connect.Reply,CE.Delay},def2> s.t. def2(n,m)=1
 if n+2m<ctime and def2(n,m)=0 otherwise;

 C3 is <{ED.sendError.Reply, CE.Delay},def3> s.t. def3(n,m)=1
 if n+2m<ctime and def3(n,m)=0 otherwise;

 C4 is <{OR.orderOnRoadService.Reply,CO.Delay},def4> s.t.
 def4(n,m)=1 if n+2m<ctime and def4(n,m)=0 otherwise;

– 9 –

5 Orchestration and Business Protocols

The orchestration of the business roles derive from the UML activity diagrams. We
focus on the module LowOil2 that presented a challenging scenario requiring to use
families of interactions. We focus on the orchestration of CommunicatingSystem.
Since every interaction event happens at most once during a session we use families
of events denoted with different indexes. In this case study we use nested indexes: we
have an arbitrary number of attempts of the interactions connect (i.e., first error sce-
nario) and of the interaction sendError (i.e., second error scenario). The failure of
sendError causes the reiteration of the process since the attempt of establishing a
connection (i.e., connect). We use an asyncronous SRML interaction type to model
the interactions with external parties. We use the notation connect[i][j] where i is the
number of attempts to receive a reply to sendError and j is the number of attempts of
performing the synchronous connection in the round j. The local variables bl (i.e., big
loop represented by the first index of connect) and sl (i.e., small loop represented by
the secong index of connect) keep record of the current state of this nested interaction.
We use a local variable timer to set trigger the time. It follows the code fragment of
the transition managing timeouts. The timeout can be related to: (1) the expiration of
connect, (2) the expiration of sendError or (3) the expiration of orderOnRoadService.
We use the local variable phase to keep track of the type of interaction currently asso-
ciated with the timer.

 transition Talert
triggeredBy now=timer
effects phase=connect ⊃ bl’=bl ∧ sl’=sl+1 ∧ s’=1
 ∧ timer’=now+ctime
 ∧ phase=sendError ⊃ bl’=bl+1 ∧ sl’=1 ∧ s’=1
 ∧ timer’=now+ctime ∧ phase’=connect
 ∧ phase=orderOnRoad ⊃ s’=5
 ∧ callService(sendError.diagnostic)
sends phase≠orderOnRoad ⊃ connect[bl’][sl’]!

The business protocols of LowOil2 require, for every message that can be lost, that
eventually a message will be received and a synchronous connection attempt will be
successful. We modelled the behaviour of the protocol using universal quantifiers.

∀j(¬∃h<jconnect[i][h]? ensures ∃k>jconnect[i][k]?)

6 Concluding Remarks

7 References

1. J. L. Fiadeiro, A. Lopes, L. Bocchi (2006) The SENSORIA Reference Modelling Language,
Primitives for service description. Sensoria Deliverable D1.1c.

– 10 –

2. J. Abreu, L. Bocchi, L. Fiadeiro, A. Lopes (2007) Specifying and composing interaction
protocols for servic-oriented system modelling. In: J. Derrick, V. Jüri (eds) Web Services
and Formal Methods. LNCS, vol 4576. Springer, Berlin Heidelberg New York, pp 358–373

3. J. L. Fiadeiro, A. Lopes, L. Bocchi (2006) A formal approach to service-oriented architec-
ture. In: M. Bravetti, M. Nunez, G. Zavattaro (eds) Web Services and Formal Methods.
LNCS, vol 4184. Springer, Berlin Heidelberg New York, pp 193–213

4. M. Banci, A. Fantechi, S. Giannini, F. Santanni (2006). Automotive Case Study: a UML
Description Scenario. (Available at http://www.pst.informatik.uni-muenchen.de:8080/
AutomotiveCaseStudy/Description+by+UML+Sequence+Diagrams+of+Scenarios)

– 11 –

Appendix 1 – LowOil assuming reliability

LOWOIL1 consists of:
• ED – requires-interface, of type ExternalDiagnosticService;
• OR – requires-interface, of type OnRoadRepairService;
• CS – component of type CommunicationSystem;
• GP – component of type GPS;
• CE, CO, CG – the internal wires.

MODULE LowOil1 is

DATATYPE

sorts: problemData, diagnosticData, loca-
tion, location ∪ NULL, boolean, natural

COMPONENTS

 GP: GPS
 CS: CommunicationSystem

REQUIRES

 ED: ExternalDiagnostic
 OR: OnRoadRepairService

CONSTRAINT SYSTEM

 S is <[0..1],max,min,0,1>
 D is {n∈N:0≤n≤100}
 V is {ED.ServiceID, ED.connect.Reply, ED.SendError.Reply,

 OR.orderOnRoadService.Reply, CO.Delay, CE.Delay}

CONSTRAINTS

 C1 is <{ED.ServiceID},def1> s.t. def1(n)=1
 if n=myExternalDiagnosticService;

 C2 is <{ED.connect.Reply,CE.Delay},def2> s.t. def2(n,m)=1
 if n+2m<ctime and def2(n,m)=0 otherwise;

 C3 is <{ED.sendError.Reply, CE.Delay},def3> s.t. def3(n,m)=1
 if n+2m<ctime and def3(n,m)=0 otherwise;

– 12 –

 C4 is <{OR.orderOnRoadService.Reply,CO.Delay},def4> s.t.
 def4(n,m)=1 if n+2m<ctime and def4(n,m)=0 otherwise;

WIRES

GP
GPS

CG

CS
Communication
System

 tll getLocation S1
AskTllEmptyI
[location] R1 ask getLocation

CS

Communication
System

CE ED

ExternalDiagnostic

s&r connect S1 Straight R1 r&s connect

s&r sendError
 problem
 diagnosis

S1

i1
o1

Straight
I[problemData]

O[diagnosticData]

R1

i1
o1

r&s sendError
 problem
 diagnosis

CS
 Communication

System

CO

OR
OnRoadRepairService

s&r orderOnRoadService S1 Straight R1 r&s orderOnRoadService

s&r sendGPS&Data
 vehicleLocation
 diagnosis

S1

i1
i2

Straight
I[location,
diagnos-
ticData]

R1

i1
i2

r&s sendGPS&Data
 vehicleLocation
 diagnosis

END MODULE

SPECIFICATIONS

BUSINESS ROLE GPS is

 INTERACTIONS
 tll getLocation():location ∪ NULL

 ORCHESTRATION
 local vehicleLocation()→location ∪ NULL
 transition

triggeredBy getLocation()
send vehicleLocation()

END BUSINESS ROLE

– 13 –

BUSINESS ROLE CommunicationSystem is

 INTERACTIONS
 ask getLocation():location ∪ NULL
 s&r connect
 s&r sendError

 problem: problemData
 diagnosis: diagnosticData

 s&r orderOnRoadService
 s&r sendGPS&Data

 diagnosis: diagnosisData
 vehicleLocation: location

 ORCHESTRATION
local s:[0..5], position:location ∪ NULL, get-
Data()→problemData, once:boolean

 initialisation
 s=0 ∧ ¬once ∧ position=NULL

 termination
 s=5

 transition Init 1
triggeredBy true
guardedBy s=0
effects s’=1
sends connect!

 transition Init 2
triggeredBy true
guardedBy s=0 ∧ ¬once
effects position’=getLocation() ∧ once’

 transition Connected
triggeredBy connect?
guardedBy s=1
effects s’=2
sends sendError!
 ∧ sendError.problem=getData()

 transition Join
triggeredBy sendError?
guardedBy s=2 ∧ position≠NULL
effects s’=3
sends orderOnRoadService!

 transition SendData
triggeredBy orderOnRoadService?
guardedBy s=3
effects s’=4
sends sendGPS&Data!
 ∧ sendGPS&Data.diagnosis=sendError.diagnosis
 ∧ sendGPS&Data.vehicleLocation=position

 transition Confirmation
triggeredBy sendGPS&Data?
guardedBy s=4
effects s’=5

END BUSINESS ROLE

BUSINESS PROTOCOL ExternalDiagnosticService is

– 14 –

 INTERACTIONS
 r&s connect

 r&s sendError
 problem:problemData
 diagnosis: diagnosticData
 BEHAVIOUR
 initiallyEnabled connect?
 connect! enables sendError?

END BUSINESS PROTOCOL

BUSINESS PROTOCOL OnRoadRepairService is

 INTERACTIONS
 r&s orderOnRoadService
 r&s sendGPS&Data

 vehicleLocation:location
 diagnosis:diagnosticData
 BEHAVIOUR
 initiallyEnabled orderOnRoadService?
 orderOnRoadService! enables sendGPS&Data?

END BUSINESS PROTOCOL

INTERACTION PROTOCOL Straight is

 ROLE A
 snd S1

 ROLE B
 rcv R1

 COORDINATION

 S1 ≡ R1

INTERACTION PROTOCOL Straight.I(d1)O(d2) is

 ROLE A
 r&s S1

 i1:d1

 o1:d2

 ROLE B
 s&r R1

 i1:d1

 o1:d2

 COORDINATION

 S1 ≡ R1
 S1.i1=R1.i1

 S1.o1=R1.o1

INTERACTION PROTOCOL Straight.I(d1,d2) is

 ROLE A

– 15 –

 r&s S1

 i1:d1
 i2:d2

 ROLE B
 s&r R1

 i1:d1
 i2:d2

 COORDINATION

 S1 ≡ R1
 S1.i1=R1.i1

 S1.i2=R1.i2

INTERACTION PROTOCOL AskTllEmptyI(d1) is

 ROLE A
 ask S1():d1

 ROLE B
 tll R1():d1

 COORDINATION
 S1() = R1()

Appendix 2 – LowOil not assuming reliability

LOWOIL2 consists of:
• ED – requires-interface, of type ExternalDiagnosticService;
• OR – requires-interface, of type OnRoadRepairService;
• DR- component of type Driver;
• GP- component of type GPS;
• CS – component of type CommunicationSystem;
• CG, CE, CD, CO – the internal wires.

MODULE LowOil2 is

DATATYPE

– 16 –

sorts: problemData, diagnosticData, loca-
tion, location ∪ NULL ∪ NA, boolean,
natural

COMPONENTS

 CS: CommunicationSystem
 DR: Driver
 GP: GPS

REQUIRES

 ED: ExternalDiagnostic
 OR: OnRoadRepairService

WIRES

GP
GPS

CG

CS
Communication
System

 tll getLocation S1
AskTllEmptyI
[location] R1 ask getLocation

DR
Driver

CD

CS
Communication
System

 ask callService S1
AskTllEmptyO

[diagnosticData] R1 rpl callService

 ask providePos S1 AskTll R1 rpl providePos

CS

Communication
System

CE ED

ExternalDiagnostic

s&r connect S1 Straight R1 r&s connect

s&r sendError
 problem
 diagnosis

S1

i1
o1

Straight
I[problemData]

O[diagnosticData]

R1

i1
o1

r&s sendError
 problem
 diagnosis

CS
 Communication

System

CO

OR
OnRoadRepairService

s&r orderOnRoadService S1 Straight R1 r&s orderOnRoadService

s&r sendGPS&Data
 vehicleLocation
 diagnosis

S1

i1
i2

Straight
I[location,
diagnos-
ticData]

R1

i1
i2

r&s sendGPS&Data
 vehicleLocation
 diagnosis

– 17 –

END MODULE

SPECIFICATIONS

BUSINESS ROLE GPS is

 INTERACTIONS
 tll getLocation():location ∪ NULL ∪ NA

 ORCHESTRATION
 local vehicleLocation()→location∪NULL∪NA

 transition

triggeredBy getLocation()
send vehicleLocation()

END BUSINESS ROLE

BUSINESS ROLE Driver is

 INTERACTIONS
 ask providePos()
 ask callService(diagnosticData)
 ORCHESTRATION
 transition

triggeredBy providePos()
transition

triggeredBy callService(d)

END BUSINESS ROLE

BUSINESS ROLE CommunicationSystem is

 INTERACTIONS
 ask getLocation():location ∪ NULL ∪ NA
 s&r connect[i:natural][j:natural]

 s&r sendError[i:natural]
 problem: problemData
 diagnosis: diagnosticData

 s&r orderOnRoadService
 s&r sendGPS&Data

 diagnosis: diagnosticData
 vehicleLocation: location
 rpl providePos()
 rpl callService(diagnosticData)

 ORCHESTRATION
local s:[0..6], position:location∪NULL∪NA, get-
Data()→problemData, bl,sl:natural, timer:time,
once:boolean, phase:{connect,sendError,orderOnRoad}

 initialisation
 s=0 ∧ position=NULL ∧ bl=sl=1 ∧ timer=∞ ∧ ¬once

 termination
 s=6

 transition Init1
triggeredBy true
guardedBy s=0
effects s’=1

– 18 –

 ∧ timer’=now+ctime
 ∧ phase’=connect
sends connect[bl][sl]!

 transition Init2
triggeredBy true
guardedBy s=0 ∧ ¬once
effects position’=getLocation() ∧ once’

 transition Connect
triggeredBy connect[i][j]?
guardedBy s=1 ∧ bl=i ∧ sl=j
effects phase’=sendError
 ∧ timer’=now+ctime
sends sendError[i]!
 ∧ sendError.error=getData()

 transition Talert
triggeredBy now=timer
guardedBy
effects phase=connect ⊃ bl’=bl ∧ sl’=sl+1 ∧ s’=1
 ∧ timer’=now+ctime
 ∧ phase=sendError ⊃ bl’=bl+1 ∧ sl’=1 ∧ s’=1
 ∧ timer’=now+ctime ∧ phase’=connect
 ∧ phase=orderOnRoad ⊃ s’=5
 ∧ callService(sendError.diagnostic)
sends phase≠orderOnRoad ⊃ connect[bl’][sl’]!

 transition SendingError
triggeredBy sendError[i]?
guardedBy s=2 ∧ position ≠ NULL
effects s’=3
 ∧ position=NA ⊃ providePosition()
 ∧ timer’=now+ctime
 ∧ phase’=orderOnRoad
sends orderOnRoadService!

 transition RepairBooking
triggeredBy orderOnRoadService?
guardedBy s=3
effects s’=4 ∧ timer’=∞
sends sendGPS&Data!
 ∧ sendGPS&Data.vehicleLocation=position
 ∧ sendGPS&Data.diagnosis=sendError.diagnosis

 transition ConfirmDates
triggeredBy sendGPS&Data?
guardedBy s=4
effects s’=5

END BUSINESS ROLE

BUSINESS PROTOCOL ExternalDiagnosticService is

 INTERACTIONS
 r&s connect[i:natural][j:natural]

 r&s sendError[i:natural]
 problem:problemData
 diagnosis:diagnosticData
 BEHAVIOUR
 ∀j(¬∃h<jconnect[i][h]? ensures ∃k>jconnect[i][k]?)

 connect[i][j]! enables sendError[i]?
 ∀i(¬∃h<isendError[h]? ensures ∃k>isendError[k]?)

– 19 –

END BUSINESS PROTOCOL

BUSINESS PROTOCOL OnRoadRepair is

 INTERACTIONS
 r&s orderOnRoadService
 r&s sendGPS&Data

 vehicleLocation:location
 diagnosis:diagnosticData
 BEHAVIOUR
 initiallyEnabled orderOnRoadService?
 orderOnRoadService! enables sendGPS&Data?

END BUSINESS PROTOCOL

INTERACTION PROTOCOL Straight is

 ROLE A
 snd S1

 ROLE B
 rcv R1

 COORDINATION

 S1 ≡ R1

INTERACTION PROTOCOL Straight.I(d1)O(d2) is

 ROLE A
 r&s S1

 i1:d1

 o1:d2

 ROLE B
 s&r R1

 i1:d1

 o1:d2

 COORDINATION

 S1 ≡ R1
 S1.i1=R1.i1

 S1.o1=R1.o1

INTERACTION PROTOCOL Straight.I(d1,d2) is

 ROLE A
 r&s S1

 i1:d1
 i2:d2

 ROLE B
 s&r R1

 i1:d1

– 20 –

 i2:d2

 COORDINATION

 S1 ≡ R1
 S1.i1=R1.i1

 S1.i2=R1.i2

INTERACTION PROTOCOL AskTllEmptyI(d1) is

 ROLE A
 ask S1():d1

 ROLE B
 tll R1():d1

 COORDINATION
 S1() = R1()

INTERACTION PROTOCOL AskTllEmptyO(d1) is

 ROLE A
 ask S1(d1)

 ROLE B
 tll R1(d1)

 COORDINATION
 S1(x) = R1(x)

INTERACTION PROTOCOL AskTll is

 ROLE A
 ask S1()

 ROLE B
 tll R1()

 COORDINATION
 S1() = R1()

