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Abstract. The approach known as Design by Contract (DbC) [23] promotes reliable
software development through elaboration of type signatures for sequential programs
with logical formulae. This paper presents an assertion method which generalises the
notion of DbC to multiparty distributed interactions, enabling the specification and ver-
ification of distributed multiparty protocols, based on the π-calculus with full recursion.
Centring on the notion of global assertions and their projections onto endpoint asser-
tions, our method allows fully general specifications for typed sessions with session
channel passing, constraining the content of the exchanged messages, the choice of sub-
conversations to follow, and invariants on recursions. The paper presents key theoretical
foundations of this framework, including a validation algorithm for consistency of global
assertions and a sound and relatively complete compositional proof system for verifying
a large class of processes against assertions.

1 Introduction
This paper introduces an assertion method for specifying and verifying distributed mul-
tiparty interaction protocols, drawing from the idea often known as Design-by-Contract
(DbC) for sequential computation. DbC [23] specifies a contract between a user and a
program as a set of pre-conditions, post-conditions, and invariants over the program’s
type signature. Instead of saying “the method fooBar should be invoked with a string
and an integer, and then it will return (if ever) another string”, DbC allows more precise
specifications, such as “if we invoke the method fooBar with a string representing a date
d between 2007 and 2008 and an integer n less than 1000 then it will (if ever) return a
string representing the date n days after d”.

A type signature describes a basic shape of how a program can interact with other
programs, stipulating its key interface to other components, which may be developed
by other programmers. By associating signatures with logical predicates, DbC enables a
highly effective framework for specifying, validating and managing systems’ behaviour,
usable throughout all phases of software development [19, 21, 27]. As a modelling and
programming practice, DbC encourages engineers to make contracts among software
modules precise [13, 23], and build a system on the basis of these contracts.

The traditional DbC-based approaches are however limited to type signature of se-
quential procedures. A typical distributed application implements interaction scenarios
that are much more complex than, say, request-reply. To build a theory that extends
the core idea of DbC to distributed applications, we consider a generalised notion of
type signature for distributed interactions centring on the abstraction units, called ses-
sions, studied in [3, 18]. A session consists of a structured series of message exchanges
among multiple participants. More than one sessions can interleave or run in parallel
even in a single application. For example, a session for an electronic commerce can
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run interleaved with a session for a financial transaction to settle its payment. Each
session follows a stipulated protocol, given as a type called session type [3, 18], which
prescribes interaction scenarios among its participants.

On this basis, we introduce a theory of assertions for distributed interactions cen-
tring on global assertions. A global assertion specifies a contract for multiparty ses-
sions by elaborating session types with logical predicates. A session type only specifies
the skeleton of interaction scenarios: it does not, for example, refer to constraints on
message values except their types. Just as in the traditional DbC, the use of logical
predicates allows us to specify more fine-grained constraints on protocols, regarding
content of messages, how choice of sub-conversations is made based on preceding in-
teractions, and what invariants may be obeyed in recursive interactions. The key ideas
are presented in Figure 1, which we illustrate below.

(0,1) A specification for a multiparty session is given as a global assertion G , namely a
protocol structure annotated with logical predicates. A minimal semantic criterion,
well-assertedness of G (§ 3.1), characterises consistent specifications with respect
to the temporal flow of events, to avoid unsatisfiable specifications.

(2) G is projected onto endpoints, yielding one endpoint assertion (Ti) for each partic-
ipant, specifying the behavioural responsibility of the endpoint (§ 4). The consis-
tency of endpoint assertions are automatically guaranteed once the original global
assertion is checked to be well-asserted.

(3) Asserted processes, modelled by the π-calculus annotated with predicates (§ 5.1),
are verified against endpoint assertions through a sound and relatively complete
compositional proof system (§5.2, §6). Completeness, proved through generation
of principal formulae, yields a relative decision procedure for satisfiability.

Our contributions include an algorithmic validation of consistency of global assertions
(Propositions 3.2 and 4.3); semantic foundations of global assertions through projec-
tion and labelled transitions (Propositions 6.4 and 6.3); a compositional proof system
for validating processes against assertions (Theorem 6.5), leading to assertion-error
freedom (Theorem 6.6) which ensures that the process will meet its obligations assum-
ing that the remaining parties do so. Theorems 6.7 and 7.2 ensure completeness. For
readability, we first present a simplified version of our theory and then, in § 7, we ex-
tend it to delegation and shared name passing. § 8 concludes with the related work.
The omitted definitions are listed in the attached appendix, while the detailed proofs
are found in the full version [31].
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2 DbC for Distributed Multiparty Interactions

The theory presented in this paper centres on what we call global assertions for spec-
ifying contracts for multiparty sessions. A global assertion uses a logical formula to
prescribe, for each interaction specified in the underlying session type, what the send-
ing party must guarantee, and dually what the receiving party can rely on. Concretely:

1. Each message exchange in a session is associated with a predicate which constrains
the values carried in the message (e.g., “the quantity on the invoice from seller to
buyer equals the quantity on the order”);

2. Each branch in a session is associated with a predicate which constrains the selec-
tion of that branch (e.g., “seller chooses the ‘sell’ option for a product if the ordered
quantity does not exceed the stock”);

3. Each recursion in a session is associated with an invariant representing an obliga-
tion to be maintained by all parties at each repetition of the recursion (e.g., “while
negotiating, seller and buyer maintain the price per unit about a fixed threshold”).

As an illustration, Figure 2 describes a simple multiparty session among the participants
Buyer, Seller, and Bank exchanging messages whose content is represented by the
interaction variables vo, vp (of type Int) and va (of type Bool). Buyer asynchronously
sends an offer vo, then Seller selects either to recursively start negotiating (hag) or
to accept the offer (ok). In the latter case, Buyer instructs Bank to make a payment vp.
Finally, Bank sends Seller an acknowledgement va. The recursion has one parameter
p vo, initially set to 100, that upon recursive invocation takes the value that vo has in
the instance of recursion which invoked the current one. This allows us to compare the
current content of vo with the one of the previous recursion instance (see A2 below).

The predicates attached to the interactions are in a way similar to guards in sequence
diagrams (the present framework however models and constrains distributed communi-
cations). The example uses five predicates. The recursion invariant A states that p vo is
always greater or equal than 100. Buyer guarantees A1 (i.e., the value of vo is above
100) which, dually, Seller relies upon. By A2, Buyer has to increase the price during
negotiations until an agreement is reached. The value of the (last) offer and the payment
must be equal by A3, while A4 does not constrain va.

The specification framework naturally extends to more complex situations which
involve, among others, delegation (session channel passing), as we shall discuss later.
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3 Global Assertions
We use the syntax of logical formulae, often called predicates, as follows.

A,B ::� e1 � e2 | e1 ¡ e2 | φpe1, . . . ,enq | A^B |  A | DvpAq

where ei range over expressions1 and φ over a pre-defined set of atomic predicates with
fixed arities and types (such as those on natural numbers [22, §2.8]). The set varpAq
denotes the set of free variables of A, similarly for varpeq. We assume the validity of
closed formulae of the underlying logic to be decidable.

Global assertions (ranged over by G ,G 1, . . .) elaborate global session types in [18]
with logical formulae. The syntax is given below:

G ::� pÑ p1 : k pṽ : S̃qtAu.G
| pÑ p1 : k ttA jul j : G ju jPJ

| µtxẽypṽ : S̃qtAu.G

| txẽy
| G ,G 1

| end

– p,p1, .. are participants,
– k,k1, .. are channels,
– u,v, .. are interaction variables,
– S,S1, .. are sorts.

Interaction pÑ p1 : k pṽ : S̃qtAu.G describes a communication between a sender p
and a receiver p1 via the kth session channel (k is a natural number), followed by G . The
variables in the vector ṽ are called interaction variables and bind their occurrences in
A and in G ; interaction variables are sorted by sorts S (Bool, Int, ...) that denote types
for first-order message values (session delegation and shared name passing is discussed
in § 7). The predicate A constrains the content of ṽ: the sender p guarantees A and the
receiver p1 relies on A (following the rely-guarantee paradigm [20]).

Branching pÑ p1 : k ttA jul j : G ju jPJ allows the selector p to send to participant p1,
through k, a label li from tl ju jPJ (J is a finite set of indexes) if p guarantees Ai (upon
which p1 can rely). Once li is selected, Gi is to be executed by all parties.

Recursive assertion µtxẽypṽ : S̃qtAu.G (cf. [11], t is an assertion variable) specifies
how a recursive session, which may be repeated arbitrarily many times, should be car-
ried out through interactions among participants. The formal parameters ṽ are a vector
of pairwise distinct variables (sorted by a vector S̃ of sorts of the same length; each vi in
ṽ has sort Si of S̃); ṽ bind their free occurrences in A. The initialisation vector ẽ denote
the initial values for the recursion, each ei instantiating vi in ṽ. The recursion invariant
A specifies the condition that needs be obeyed at each recursion instantiation; recursion
instantiation, of the form txẽy, is to be guarded by prefixes, i.e. the underlying recursive
types should be contractive. A recursive assertion can be unfolded to an infinite tree, as
in the equi-recursive view on recursive types [29].

Composition G ,G 1 represents the parallel interactions specified by G and G 1; end
represents the termination. Sorts and trailing occurrences of end are often omitted.

We write p P G when p occurs in G . For the sake of simplicity we avoid linearity-
check [3] by assuming that each channel in G is used (maybe repeatedly) only between
two parties: one party for input/branching and by the other for output/selection.

Example 3.1 (Global Assertions). Gneg models the protocol described in § 2. Gneg has
recursion parameter p vo denoting the offer of Buyer in the previous recursion instance;
p vo is 100 in the first instance. tk1,k2,k3,k4u are channels.
Gneg � µtx100ypp vo : IntqtAu. BuyerÑ Seller : k1 pvo : IntqtA1u.

SellerÑ Buyer : k2ttA2uhag : txvoy,ttrueuok : Goku
Gok � BuyerÑ Bank : k3 pvp : IntqtA3u. BankÑ Seller : k4 pva : BoolqtA4u. end

1 Expressions include sorted variables but not channels.
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3.1 Well Asserted Global Assertions
When setting up global assertions as a contract among multiple participants, we should
prevent inconsistent specifications, such as those in which it is logically impossible
for a participant to meet the specified obligations. Below we give two constraints on
predicates of global assertions that guarantee consistency.

Let I pGq be the set of variables occurring in G ; a participant p knows v P I pGq if v
occurs in an interaction of G involving p (this relation can be computed effectively, see
Appendix B). I pGqæp denotes the set of variables of G that p P G knows.

History-sensitivity A predicate guaranteed by a participant p can only contain those
interaction variables that p knows.

Temporal-satisfiability For each possible set of values satisfying A and, for each pred-
icate A1 appearing after A, it is possible to find values satisfying A1.

Consider the following examples:

pAÑ pB : k1pv : Intqttrueu. pBÑ pC : k2 pv1 : Intqttrueu. pCÑ pA : k3 pz : Intqtz¡ vu. end

pAÑ pB : k1pv : Intqtv  10u pBÑ pA : k2 pz : Intqtv¡ z^ z¡ 6u. end.

The first global assertion violates history-sensitivity since pC has to send z such that
z¡ v but pC does not know v. The second global assertion violates temporal-satisfiability
because if pA sends v� 6, which satisfies v  10, then pB will not be able to find a value
that satisfies 6¡ z^ z¡ 6.

Assertions satisfying history-sensitivity and temporal-satisfiability are called well-
asserted assertions. For the formal definitions, including inductive rules to check well-
assertedness, see Appendix B.

Proposition 3.2 (Well-assertedness). Checking well-assertedness of a given global
assertion is decidable if the underlying logic is decidable.

4 Endpoint Assertions and Projection
The endpoint assertions, ranged over by T ,T 1, .., specify the behavioural contract of a
session from the perspective of a single participant. The grammar is given as follows.

T ::� k!pṽ : S̃qtAu;T | µtxẽypṽ : S̃qtAu.T | k&ttAiuli : TiuiPI | end
| k?pṽ : S̃qtAu;T | txẽy | k`ttA jul j : T ju jPI

In k!pṽ : S̃qtAu;T , the sender guarantees that the values sent on k (denoted by
S̃-sorted variables ṽ) satisfy A; then the sender behaves as T ; dually for receiving
k?pṽ : S̃qtAu;T .

In k` ttA jul j : T ju jPI the selector guarantees A j when choosing l j on k; dually
k&ttA jul j : T juiPI states that A j can be assumed when branching at k on a label l j.
Assertion µtxẽypṽ : S̃qtAu.T constrains parameters ṽ of type S̃ which are initially take
values ẽ; the invariant of the recursion is A.

The projection of predicate A on participant p, written Aæp, is defined as DVextpAq
where Vext � varpAqzI pGqæp. Also, ẽæp are the expressions in ẽ including only such
that varpe1iq � I pGq æ p. The projection function in Definition 4.1 maps global asser-
tions, predicates and participants to endpoint assertions.
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Definition 4.1 (Projection). Given G and A, the projection of G for a participant p wrt
A is denoted by pGq ÓA

p and, assuming p1 � p2, recursively defined as follows.

p1q pp1Ñ p2 : k pṽ : S̃qtAu.G 1q ÓAP
p �

$'&
'%

k!pṽ : S̃qtAu.pG 1q ÓA^AP
p if p� p1

k?pṽ : S̃qtpA^APqæpu.pG 1q ÓA^AP
p if p� p2

pG 1q ÓA^AP
p otw

p2q pp1Ñ p2 : k ttAiuli : GiuiPIq Ó
AP
p �

$'&
'%

k`ttAiuli : pGiq Ó
Ai^AP
p uiPI if p� p1

k&ttpAi^APqæpuli : pGiq Ó
Ai^AP
p uiPI if p� p2

pG1q Ó
AP^
�

jPI A j
p p� pGiq Ó

AP^
�

jPI A j
p q otw

p3q pG1,G2q Ó
AP
p �

#
pGiq Ó

AP
p if p P Gi and p R G j, i� j P t1,2u

end if p R G1 and p R G2

p4q pµtxẽypṽ : S̃qtAu.Gq ÓAP
p � µtxẽæpypṽæp : SqtAæpu.pGq ÓAP

p

p5q ptxẽyq ÓAP
p � txẽæpy p6q pendq ÓAP

p � end

If no side condition applies, pGq ÓA
p is undefined. The projection of G on p, denoted

G æp, is given as pGq Ótrue
p .

In (1), value passing interactions are projected. For a send, the projection of a predicate
A consists of A itself. For a receive, it is not sufficient to verify the non-violation of the
current predicate only. Consider the following well-asserted global assertion:

SellerÑ Buyer : k1 pcost : Intqtcost ¡ 10u.BuyerÑ Bank : k2 ppay : Intqtpay¥ costu.end

The predicate pay ¥ cost is not meaningful to Bank since Bank does not know cost
hence cannot verify it: rather the projection on Bank should be k2?ppay : IntqtDcostpcost ¡
10^ pay¥ costquwhich incorporates the interaction between Buyer and Seller. Thus
in (1) all the past predicates are projected on p2, existentially quantifying the variables
unknown to p2, so that p2 can detect violations of predicates coming from interactions it
has not participated in. Note (1) yields the strongest precondition for p2 (the contract is
satisfied iff p2 receives a legal message), avoiding the burden of defensive programming
(e.g., the programmer of Bank can concentrate on the case pay¤ 10).

In (2), the “otw” case says the projection should be the same for all branches. In (3),
each participant is in at most a single global assertion to ensure each local assertion is
single threaded. In (4), the projection to p is the recursive assertion itself with its predi-
cate projected on p by existential quantification (see Appendix C for details). Similarly
in (5) the projection of a recursive call is itself with its predicate projected.

Example 4.2 (Projection). The projection of Gneg (Example 3.1) on Seller is

Tsel � µtx100ypp vo : Intqtp vo ¥ 100u;k1?pvo : IntqtBu;T2
T2 � k2`ttvo ¡ p vouhag : txvoy,ttrueuok : Toku
Tok � Gok æSeller� k4?pva : BoolqtB1u

where B� p vo ¥ 100^ vo ¥ 100 and B1 � Dp vo.B^ vo � vp.

Well-assertedness can be defined on endpoint assertions as for global assertions, char-
acterising the same two principles discussed in §3.1.

Proposition 4.3 (Projections). Let G be a well-asserted global assertion. Then for
each p P G , if G æp is defined then G æp is also well-asserted.
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5 Compositional Validation of Processes
5.1 The π-Calculus with Assertions
We use the π-calculus with multiparty sessions [18, §2], augmented with predicates for
checking (both outgoing and incoming) communications.

P ::� a[2..n]ps̃q.P request

| a[p]ps̃q.P accept

| pνaqP hide

| s!xẽypṽqtAu;P send

| s?pṽqtAu;P receive

| if e then P else Q conditional

| s� tAul;P select

| s� ttAiuli : PiuiPI branch

| P | Q parallel

| µXxẽt̃ypṽs̃q.P rec def

| Xxẽs̃y rec call

| 0 idle

Prt ::� P | pνs̃qPrt

| s : h̃

| errH | errT

e ::� n | e^ e1...

n ::� a | true | false

h ::� l | ñ

Fig. 3. Syntax of asserted processes

The grammar of asserted processes or simply processes (P,Q, . . .) is given in Figure 3.
On the left, we define programs. a[2..n]ps̃q.P multicasts a session initiation request to
each a[p]ps̃q.P (with 2 ¤ p ¤ n) by multiparty synchronisation through a shared name
a.2 Send, receive, and selection, all through a session channel s, are associated with a
predicate. Branch associates a predicate to each label. Others are standard.

Runtime processes Prt , defined on the right-hand side of the grammar, extend pro-
grams with runtime constructs. Process s : h1..hn represents messages in transit going
through a session channel s in an asynchronous order-preserving message delivery as
in TCP, where each hi is either a branching label or a vector of sessions/values. The
empty queue is written s :H. Processes errH and errT indicate two kinds of run-time
assertion violation: errH (for “error here”) indicates a violation of a predicate by the
process itself; and errT (“error there”) indicates a violation by the environment.

The reduction rules with predicate checking are given in Figure 4, which generate
Ñ by closing the induced relation under | and ν and taking terms modulo the standard
structural equality3 [18]. The satisfaction of the predicate is checked at each commu-
nication action: send, receive, selection and branching, where we write A Ó true (resp.
ẽ Ó ñ) for a closed formula A (resp. expression ẽ) when it evaluates to true (resp. ñ).
When initiating a session, [R-LINK] establishes a session through multiparty synchroni-
sation, generating queues (all session channels are hidden at the initiation). The remain-
ing rules are standard, modelling communications in a session via queues [3, 18].

Example 5.1 (Seller’s Process). Continuing from Examples 3.1 and 4.2 we present a
process that implements Gneg, focusing on P2 of Seller. Below, B, B1 are as in Example
4.2. We set Buyer,Seller, Bank to be participants 1,2,3. We denote s1, ..,s4 with s̃.

Pneg � a[2,3]ps̃q.P1 | a[2]ps̃q.P2 | a[3]ps̃q.P3
P2 � µXx100, s̃ypp vo, s̃q.s1?pvoqtBu;Q2
Q2 � if e then ps2 �hag;Xxvo, s̃yq else ps2 �ok;Pokq where Pok � s4?pvaqtB1u;0

Q2 defines, with e, a policy to select a branch (e.g., e� tvo ¡ 200^vo ¡ p vou). While
the predicates are known to all parties, e is a local policy to Seller.

2 Session initialisation does not have predicates because we study contracts for individual sessions.
3 We include µXxẽypṽs̃1 . . . s̃nq.P � PrµXpṽs̃1 . . . s̃nq.P{Xsrẽ{ṽs where Xxẽ1 s̃1yrµXpṽs̃1 . . . s̃nq.P{Xs is de-

fined as µXxẽ1 s̃1ypṽs̃1 . . . s̃nq.P.
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a[2..n]ps̃q.P1 | a[2]ps̃q.P2 | ... | a[n]ps̃q.Pn Ñ pνs̃qpP1 | P2 | ... | Pn | s1 :H | ... | sn :Hq [R-LINK]

s!xeypvqtAu;P | s : h̃Ñ Prñ{ṽs | s : h̃ � ñ pẽ Ó ñ^Arñ{ṽs Ó trueq [R-SEND]

s?pvqtAu;P | s : ñ � h̃Ñ Prñ{ṽs | s : h̃ pArñ{ṽs Ó trueq [R-RECV]

s�ttAiuli : PiuiPI | s : l j � h̃Ñ Pj | s : h̃ p j P I and A j Ó trueq [R-BRANCH]

s�tAul : P | s : h̃Ñ P | s : h̃ � l pA Ó trueq [R-SELECT]

if e then P else QÑ P pe Ó trueq if e then P else QÑ Q pe Ó falseq [R-IF]

s!xeypvqtAu;PÑ errH pẽ Ó ñ^Arñ{ṽs Ó falseq [R-SENDERR]

s?pvqtAu;P | s : ñ � h̃Ñ errT | s : h̃ pArñ{ṽs Ó falseq [R-RECVERR]

s�ttAiuli : PiuiPI | s : l j � h̃Ñ errT | s : h̃ p j P I and A j Ó falseq [R-BRANCHERR]

s�tAul : PÑ errH pA Ó falseq [R-SELECTERR]

Fig. 4. Reduction: non-error cases (top) - error cases (bottom)

5.2 Validation Rules

For validation, we use the judgement of the form C ;Γ$ P�∆, which reads: “under C
and Γ, process P is validated against ∆”. Here, C is an assertion environment, which
incrementally records the conjunction of predicates. Γ is a global assertion assignment
that is a finite function mapping shared names to well-asserted global assertions, writing
Γ$ a : G when Γ assigns G to a; and process variables (X ,Y, ...) to the specification of
their parameters, writing Γ$ X : pṽ : S̃qT1 @p1...Tn @pn when Γ maps X to the vector
of endpoint assertions T1 @p1...Tn @pn using the variables ṽ sorted by S̃. And ∆ is an
endpoint assertion assignment which maps the channels for each session, say s̃, to a
well-asserted endpoint assertion located at a participant, say T @p.

The validation rules are given in Figure 5. In each rule, we assume all occurring
(global/endpoint) assertions are well-asserted. The rules validate the process against
assertions, simultaneously annotating processes with the interaction predicates from
endpoint assertions. We illustrate the key rules.

Rule [SND] validates that participant p sends values ẽ on session channel k, provided
that ẽ satisfy the predicate under the current assertion environment; and that the con-
tinuation is valid, once ṽ gets replaced by ẽ. Dually, rule [RCV] validates a value input
against the continuation of the endpoint assertion under the extended assertion envi-
ronment C ^A (i.e., the process can rely on A for the received values after the input).
Rules [SEL] and [BRA] are similar. Rules [MACC] and [MCAST] for session acceptance and
request validate the continuation against the projection of the global assertion onto that
participant (n is the number of participants in G and p is one of them).

Rule [IF] validates a conditional against ∆ if each branch is validated against the
same ∆, under the extended environment C^e or C^ e, as in the corresponding rule in
Hoare logic [17]. As in the underlying typing [18], rule [CONC] takes a disjoint union of
two channel environments, and rule [IDLE] takes ∆ which only contains end as endpoint
assertions. Rule [HIDE] is standard, assuming a is not specified in C .

Rule [CONSEQ] uses the refinement relation � on endpoint assertions. If T � T 1,
T specifies a more refined behaviour than T 1, in that T strengthens the predicates for
send/selection, so it emits/selects less; and weakens those for receive/branching, so it
can receive/accept more. The formal definition follows this intuition, and is given in
Appendix D. Below we illustrate this relation through an example.
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C � Arẽ{ṽs C ;Γ$ Prẽ{ṽs�∆, s̃ :T rẽ{ṽs@p Γ$ ẽ : S̃
C ;Γ$ sk!xẽypṽ : S̃qtAu;P�∆, s̃ :k!pṽqtAu;T @p

[SND]
C ^A;Γ, ṽ : S̃$ P�∆, s̃ :T @p

C ;Γ$ sk?pṽ : S̃qtAu;P�∆, s̃ :k?pṽ : S̃qtAu;T @p
[RCV]

C � A j C ;Γ$ P�∆, s̃ :T j @p j P I
C ;Γ$ sk �tA jul j : P�∆, s̃ :k`ttAiuli :TiuiPI @p

[SEL]
C ^Ai;Γ$ Pi�∆, s̃ :Ti @p @i P I

C ;Γ$ sk �ttAiuli : PiuiPI�∆, s̃ :k&ttAiuli :TiuiPI @p
[BRA]

C ;Γ$ P�∆, s̃ :pΓpaqæpq@p p 1
C ;Γ$ a[p]ps̃q.P�∆

[MACC]
C ;Γ$ P�∆, s̃ :pΓpaqæ1q@1

C ;Γ$ a[2..n]ps̃q.P�∆
[MCAST]

C ^ e;Γ$ P�∆ C ^ e;Γ$ Q�∆

C ;Γ$ if e then P else Q�∆
[IF] C ;Γ$ P�∆ C ;Γ$ Q�∆

1

C ;Γ$ P | Q�∆,∆1
[CONC] ∆ end only

C ;Γ$ 0�∆
[IDLE]

C ; Γ, a :G $ P � ∆ a R fnpC ,Γ,∆q
C ; Γ$ pνa : GqP � ∆

[HIDE] C 1;Γ$ P�∆
1 C � C 1

∆
1 � ∆

C ;Γ$ P�∆
[CONSEQ]

T1rẽ{ṽs, . . . ,Tnrẽ{ṽs well-asserted and well-typed under Γ, ṽ : S̃
C ; Γ, X : pṽ : S̃qT1 @p1..Tn @pn $ Xxẽs̃1..s̃ny� s̃1 :T1rẽ{ṽs@p1, .., s̃n :Tnrẽ{ṽs@pn

[VAR]

C ; Γ, X : pṽ : S̃qT1 @p1..Tn @pn $ P� s̃1 :T1 @p1..s̃n :Tn @pn

C ; Γ$ µXxẽs̃1..s̃nypṽs̃1..s̃nq.P� s̃1 :T1rẽ{ṽs@p1..s̃n :Tnrẽ{ṽs@pn
[REC]

Fig. 5. Validation rules for program phrases

Example 5.2 (Refinement). Below, endpoint assertion Ts refines Tw (i.e., Ts � Tw):

Tw � k1!pv : Intqtv¡ 0u;k2?pz : Intqtz¡ 10u;k3&ttv¡ 100ul1 : T1u
Ts � k1!pv : Intqtv¡ 10u;k2?pz : Intqtz¡ 0u;k3&tttrueul1 : T1,tv¡ 100ul2 : T2u

Ts has a stronger obligation on the sent value v, and a weaker reliance on the received
value z; while Ts has a weaker guarantee at l1 and offers one additional branch.

The refinement relation is decidable if we restrict the use of recursive assertions so that
only those in identical shapes are compared as illustrated in Appendix D, which would
suffice in many practical settings.

Rule [VAR] validates an instantiation of X with expressions against the result of per-
forming the corresponding substitutions over endpoint assertions associated to X (in
the environment). In [REC], a recursion is validated if the recursion body P is validated
against the given endpoint assertions for its zero or more sessions, under the same end-
point assumptions assigned to the process variable X . The validity of this rule hinges
on the partial correctness nature of the semantics of the judgement.

Henceforth we write Γ$ P�∆ for true;Γ$ P�∆.

Example 5.3 (Validating Seller Process). We validate Pneg (part of Seller from Ex-
ample 5.1) under Tsel (from Example 3.1). We focus on one branch of Q2 in Pneg.
We associate each s1, . . . ,s4 of Pneg to a channel k1, . . . ,k4 of Tneg, respectively. Re-
call B� tp vo ¥ 100^vo ¥ 100u, A1� tvo ¡ p vou, and A2� tDvp.p vo ¥ 100^vo ¥
100^ vo � vpu. Below Qok � s4?pvaqtB1u;0.

- [IDLE]
pB^ e^B1q,Γ$ 0� t : end@2

[RCV]
pB^ eq,Γ$ s4?pvaqtB1u;0� s̃ : k4?pva : IntqtB1u;end@2

(substituting)
pB^ eq � A1 pB^ eq,Γ$ Qok� s̃ : Tok @2

[SEL]
B^ e,Γ$ s2 �ok;Qok� s̃ : k2`tttrueuok : Tok,tA1uhag : txvoyu@2 . . .

[IF]
B,Γ$ if e then ps2 �hag;Xxvo, s̃yq else ps2 �ok;s4?pvaqtB1u;0q� s̃ : T2 @2

[RCV]
true,Γ$ s1?pvoqtBu;Q2� s̃ : k1?pvo : IntqtBu;T2 @2

The . . . on the premise of [IF] indicate the missing validation of the first branch. The
interested reader may refer to [31] for a complete validation example with recursion.
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6 Error-Freedom and Completeness
6.1 Semantics of Assertions
The semantics of asserted processes is formalised as a labelled transition relation which
includes the reduction semantics given in § 5.1 and is standard except that predicates
are checked for communications. We use the following labels:

α ::� ar2..nsps̃q | arisps̃q | s!ñ | s?ñ | | s� l | s� l | τ

We write P α
Ñ Q when P has a one-step transition α to Q. The transition rules are stan-

dard synchronous ones 4 except that (i) a process moves to errT after an input/branching
action if its predicate is violated, (ii) a process has the τ-action to errH when it violates
the predicate of an output/selection, and (iii) PÑ Q induces P τ

Ñ Q.
The semantics of endpoint assertions is defined as another labelled transition rela-

tion, of form xΓ,∆y
α
Ñ xΓ1,∆1y, which reads: the specification xΓ,∆y allows the action

α, with xΓ1,∆1y as the specification for its continuation. In this transition relation, only
legitimate (assertion-satisfying) actions are considered.

We use a simulation between the transitions of processes and those of assertions to
define the semantic counterpart of Γ$ P�∆. In the simulation (Definition 6.1 below),
an input/branching action is required to be simulated only for each “valid” value/label,
i.e. a type-correct action which does not violate the associated predicate. Thus we de-
mand conformance to a proper behaviour only if the environment behaves properly. If
not, the process is allowed to misbehave. Below erasepPq is the result of erasing all
predicates from P. Similarly erasepΓq and erasep∆q erase predicates from the underly-
ing session types, giving the typing environments. We use the erasure to show that the
validation can prevent bad behaviour even without runtime predicate checking. Below
P is closed if it is without free variables.

Definition 6.1 (Conditional Simulation). Let R be a binary relation whose element
relates a closed process P without errH or errT and a pair of assignments xΓ,∆y such that
erasepΓq $ erasepPq� erasep∆q in the typing rules in [18, §4]. Then R is a conditional
simulation if, for each pP,xΓ,∆yq P R :

1. for each input/branching/session input P α
Ñ P1, xΓ,∆y has a respective move at

sbjpαq (the subject of α) and, if xΓ,∆y
α
Ñ xΓ1,∆1y then pP1,xΓ1,∆1yq P R .

2. for each output/selection/τ/session output move P α
Ñ P1, xΓ,∆y

α
Ñ xΓ1,∆1y such

that pP1,xΓ1,∆1yq P R . If R is a conditional simulation we write P À xΓ,∆y for
pP,xΓ,∆yq P R .

The conditional simulation requires P to be well-typed against erasepΓq and erasep∆q.
Without this condition, the inaction 0 would conditionally simulate any ∆. This stringent
condition can be dropped, but it does not lose generality since our interest is to build an
assertion semantics on the basis of the underlying type discipline.

Definition 6.2 (Satisfaction). Let P be a closed program and ∆ an end-point assertion
assignment. If PÀ xΓ,∆y then we say that P satisfies ∆ under Γ, and write Γ |ù P�∆.
The satisfaction is extended to open processes, denoted C ;Γ |ù P�∆, by considering
all closing substitutions respecting Γ and C over ∆ and P.

4 The synchronous transition suits our present purpose since it can describe how a process places/retrieves
messages at/from queues, at which points message content is checked.

10



The judgement Γ |ùP�∆ in Definition 6.2 states that (1) P will send valid messages
or selection labels; and (2) P will continue to behave well (i.e., without going into
error) w.r.t. the continuation specification after each valid action in (1) as well as after
receiving each valid message/label (i.e. which satisfies an associated predicate). The
satisfaction is about partial correctness since if P (is well-typed and) has no visible
actions, the satisfaction trivially holds.

6.2 Soundness, Error Freedom and Completeness
To prove soundness of the validation rules, we first extend the validation rules to pro-
cesses with queues, based on the corresponding typing rules in [3, 18]. This is left to
Appendix H. Below xΓ,∆y allows a sequence of actions α1..αn pn ¥ 0q if for some
xΓ1,∆1y we have xΓ,∆y

α1..αnÝÑ xΓ1,∆1y (and similarly for processes).

Proposition 6.3 (Subject Reduction). Let Γ$P�∆ be a closed program and suppose
we have xΓ,∆y

α1..αnÑ xΓ1,∆1y. Then P
α1..αnÑ P1 implies Γ1 $ P1�∆1.

The proof demands the analysis of the effects of τ-actions on endpoint assertions, ob-
serving the reduction at free session channels changes the shape of linear typing [3, 18],
hence of endpoint assertions.

The following Proposition says that if a process satisfies a stronger (more refined)
specification, it also satisfies a weaker one.

Proposition 6.4 (Refinement). If Γ |ù P�∆ and ∆� ∆1 then Γ |ù P�∆1.

The soundness result follows. Its proof uses Propositions 6.3 and 6.4, see [31].

Theorem 6.5 (Soundness of Validation Rules). Let P be a program. Then C ;Γ $
P�∆ implies C ;Γ |ù P�∆.

A direct consequence of Theorem 6.5 is the error freedom of validated processes.

Theorem 6.6 (Predicate Error Freedom). Suppose P is a closed program, Γ$ P�∆

and P
α1..αnÝÑ P1 such that xΓ,∆y allows α1..αn. Then P1 contains neither errH nor errT.

The proof system is complete relative to the decidability of the underlying logic for
processes without hidden shared names. We avoid name restriction since it allows us
to construct a process which is semantically equivalent to the inaction if and only if
interactions starting from a hidden channel terminates. Since we can simulate arbitrary
Turing machines by processes, this immediately violates completeness. In this case,
non-termination produces a dead code, i.e. part of a process which does not give any
visible action, which causes a failure in completeness. 5

For each program without hiding, we can compositionally construct its “principal
assertion assignment” from which we can always generate, up to�, any sound assertion
assignment for the process. Since the construction of principal specifications is compo-
sitional, it immediately gives an effective procedure to check |ù as far as� is decidable
(which is relative to the underlying logic). We conclude:

Theorem 6.7 (Completeness of Validation Rules for Programs without Hiding).
For each closed program P without hiding, if Γ |ù P�∆ then Γ $ P�∆. Further Γ |ù
P�∆ is decidable relative to the decidability of �.

5 Not all dead codes cause failure in completeness. For example a dead branch in a branching/conditional
do not cause this issue since the validation rules can handle it, see Appendix I.
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7 Extension with Shared Name Passing and Session Delegation
In this section we extend the theory with delegation (session channel passing) and
shared name passing. The incorporation of shared name passing also leads to a gen-
eralised completeness result where we can treat name hiding.
Extension in Assertions and Processes. The shared name passing is easily incorpo-
rated by extending the grammar of sorts S,S1, ... with a global assertion xGy. Then the
syntax of global/endpoint assertions are automatically extended so that they can specify
shared name passing, similarly for processes. For example, in global assertions, we can
write pÑ p1 : k pv : xGyqtAu.G 1, in which v, standing for a shared name, is constrained
by G (the predicate A is generally trivial but we keep it for uniformity). No change is
needed for well-assertedness, projection nor the reduction rules.

To model delegation, we extend the original grammars of global and endpoint as-
sertions (respectively in § 3 and in § 4) and of processes (in § 5.1).

G ::� ... | pÑ p1 : k pṽ : T @pqtAu.G T ::� ... | k!pṽ : T1@pqtAu;T2 | k?pṽ : T1@pqtAu;T2

P ::� ... | s!xxt̃yypṽ : T @pqtAu;P | s?ppṽ : T @pqqtAu;P

Above T @p constraints the receiver’s behaviour for the delegated session, represented
by the session channels ṽ. For processes, the reduction rules are extended for delegation
in the standard way, where the communicated channels are checked against the anno-
tating assertion through refinement: when delegating a session, its publicly stipulated
assertion should refine the annotating assertion, dually when receiving 6 (for example,
s!xxt̃yypṽ : T @pqtAu;P with an appropriate queue will reduce successfully if the pub-
licly stipulated local assertion at t̃ refines T , otherwise it reaches errH, dually for input:
see Appendix A). The clauses for well-assertedness and projection are as before. An
example of processes and assertions with delegation follows.

Example 7.1 (Seller’s Process with Delegation). Consider a variation of Example 5.1
where Seller delegates the communication with Bank to a process Pcashier.

Pneg � a[2,3]ps̃q.P1 | a[2]ps̃q.P2 | a[3]ps̃q.P3 | Pcashier
P2 � µXx100, s̃ypp vo, s̃q.s1?pvo : IntqtBu;Q2
Q2 � if e then ps2 �hag;Xxvo, s̃yq else pk2 �ok; t!xxs̃yypṽ : Tok @2qttrueu;0q
Pcashier � t?ppṽ : Tok @2qqttrueu;v4?pva : BoolqtB2u;0
Tdeleg � h1?pṽ : T 1

ok @2qttrueu.T 1
ok

Tok � k4?pva : BoolqtB1u.end
T 1

ok � k4?pva : BoolqtB2u.end where B2 � B1^pvp   100� vaq

Above we assume h1 corresponds to the channel t used for delegation. Note B2 � B1 for
any B1 hence Tok � T 1

ok. By the refinement of delegation discussed soon (covariant in
input), the delegation session in Pcashier can be validated w.r.t. Tdeleg.

Extension in Validation Rules, Soundness and Completeness. For validation, shared
name passing can be treated using the same send/receive rules as before, while delega-
tion requires the following two additional rules:

C ;Γ$ P�∆, s̃ :T @p

Γ$ sk!xxt̃yypṽ : T 1@qqtAu;P�∆, s̃ :k!pṽ : T 1@qqtAu;T @p, t̃ :T 1@q
[SDEL]

C^A;Γ$ P�∆, s̃ :T @p, ṽ :T 1@q

C ;Γ$ sk?ppṽ : T 1@qqqtAu;P�∆, s̃ :k?pṽ : T 1@qqtAu;T @p
[RDEL]

6 To maintain decidability of reduction, we assume that � is decidable, see Appendix D.
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For transitions, since shared name passing can induce name extrusion, we extend the
transition labels with pνã : G̃qs!ñ. The transition is standard, demanding that, for free
names, its publicly declared global assertion coincides with the annotating global type.
For delegation we add labels s!xxt̃yy and s?ppt̃qq. The delegation transitions accompany
predicate checking as in reductions (see Appendix A). The refinement for delegation is
affected by the refinement of annotating assertions contravariantly in output and covari-
antly in input, in parallel with their typing [25].

Soundness of validation rules (Theorem 6.5) and error freedom (Theorem 6.6) hold
for the extension (the proofs in [31] are given for this extended system). Further, through
the use of shared name passing, completeness (Theorem 6.7) holds for processes with
hiding, which in particular can model the generation of unbounded resources. A vis-
ible program is a closed program, say P, for which each of the hidden shared names
occurring in P is immediately exported outside after the hiding, i.e. each hiding, say
pνaq, in P is always of the form pνaqk!xay;Q. Visible programs encompass all well-
typed behaviours up to pruning of hidden behaviours (which get exposed by visibility),
including dynamic creation of unbounded resources. We conclude:

Theorem 7.2 (Completeness with Delegation and Hiding). For each closed visible
program P in the extended syntax, if Γ |ù P�∆ then Γ $ P�∆. Further Γ |ù P�∆ is
decidable relative to the decidability of �.

8 Conclusion and Related Work
Hennessy-Milner logic for the π-calculus. Hennessy-Milner Logic (HML) is an ex-
pressive modal logic with an exact semantic characterisation [16]. The presented the-
ory addresses some of the key challenges in practical logical specifications for the π-
calculus, unexplored in the context of HML. First, by starting from global assertions,
we gain in significant concision of descriptions while enjoying generality within its
scope (properties of individual protocols). Previous work [2, 11] show how specifica-
tions in HML tend to be lengthy from the practical viewpoint. In fact, the direct use of
HML is tantamount to reversing the methodology depicted in Figure 1 of § 1: we start
from endpoint specifications and later try to check their mutual consistency, which may
not easily yield understandable global specifications. Further, since � is decidable for
practically important classes assertions [31], the present theory also offers algorithmic
validation methods for key engineering concerns [32] including consistency of specifi-
cations (cf. §3.1) and correctness of process behaviours with full recursion against non-
trivial specifications (cf. Theorem 6.7), whose analogue may not be known for the gen-
eral HML formulae on the π-calculus. The use of the underlying type structures plays a
crucial role in obtaining these methods. From the viewpoint of logical specifications for
name passing, the present theory takes an extensional approach: we are concerned with
what behaviours will unfold starting from given channels, than their (in)equality [11].
While our approach does reflect recommended practices in application-level distributed
programming (where the direct use of network addresses is discouraged), it is an inter-
esting topic to study how we can treat names as data as studied in [11].
Corresponding assertions and refinement/dependent types. The work [6] combines
session-types with correspondence assertions. The type system can check that an asser-
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tion end L, where L is a list of values (not a logical formula), is matched by the corre-
sponding begin effect. The refinement types for channels (e.g. [5]) specify value depen-
dency with logical constraints. For example, one might write ?px : int, !ty : int | y¡ xuq
using the notations from [14, 33]. This only specifies a dependency at a single point
(channel), unable to describe a constraint for a series of interactions among multiple
channels. Our theory, based on multiparty sessions, can verify processes against a con-
tract globally agreed by multiple distributed peers.
Contract-based approaches to communications and functions. Theories of contracts
for web services based on advanced behavioural types are proposed in, e.g. [7, 9, 10].
Some authors focus on compliance of client and services, often defining compliance
in terms of deadlock-freedom. In [1] a type system guaranteeing a progress property
of clients is defined. Process calculi and concurrent constraint programming are com-
bined in [8, 12] to model constraints that specify a Service Level Agreement on QoS
parameters. Verification of financial protocols are also studied as contracts for func-
tional languages (e.g. [28, 34]). Our theory treats contracts for distributed interactions
with the link-mobility, using the π-calculus as an underlying formalism.

The global consistency checking is also used in the advanced security formalisms.
In [15] a rely-guarantee technique is applied to a trust-management logic. The main
technical difference is that users have to directly annotate each participant with asser-
tions because of the the absence of global assertions. In [4] cryptography is used to
ensure integrity of sessions but logical contracts are not considered.

Our approach differs from these preceding works in its use of global assertions
for multiparty sessions, and its underpinning by a compositional proof system. This
permits us to express and enforce fine-grained contracts of choreographic scenarios.
The proposed assertion method builds on and enriches the underlying type discipline:
types in [18] cannot deal with different conditions under which different sub-sessions
are chosen at a branching point. Global/endpoint assertions can express constraints over
message values (including channels), branches and invariants, impossible in [18]. The
enriched expressiveness of specifications introduces novel technical challenges. Our
consistency conditions for global assertions ensure that the end-point assertions are
automatically consistent when projected, on whose basis a sound and complete proof
system is built for a large class of name passing process behaviours.

As a different DbC-based approach to concurrency, an extension of DbC has been
proposed in [26], using contracts for SCOOP [24] in order to reason about liveness
properties of concurrent object-oriented systems. The main difference of our approach
from [26] is that our framework captures and specifies for distributed message passing
systems while [26] treats shared resources. The notion of pre-/post-conditions and in-
variants for global assertions centring on communications and the use of projections
cannot be found in [26].
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A Notation
Delegation and Channel Passing Throughout this appendix, we present definitions
and discussions for processes and assertions which include shared channel passing and
delegations, as discussed in Section 7.
Decidability of Refinement For the extension with delegation, an assertion includes an
annotation which is again another assertion, i.e. assertions can be nested. In particular,
the refinement over endpoint assertions is used for runtime checking.

The set of extended endpoint assertions are stratified as follows. First, we have the
set of endpoint assertions which do not use delegations (the original set of endpoint
assertions). Second, we have the set of endpoint assertions which may use endpoint
assertions for specifying delegations. And so on.

For the initial set, we assume recursive assertions are always of the same shape,
and parameters (variables) bind variables in the predicates for the actions in the body
precisely in the same way. Under this condition, the refinement is decidable if the un-
derlying logic is decidable, since we have only to compare the predicates for the same
actions individually. The rest is by way of stratification: under the same condition for
recursive assertions, the refinement for the second set of assertions again becomes de-
cidable. In this way we obtain a decidable subset of extended assertions.

Further details are found in [31].
Recursion Initialisation The proof of completeness is done for a slightly more general
syntax for recursion. We can express the syntax presented in the paper with this more
general one, as discussed below.

In the syntax of G in §3, we substitute recursion definition µtxẽypṽ : UqtA1u.G with
µtxũ : Aypṽ : UqtA1u.G , where ũ has the same length as ṽ, and xũ : Ay defines the set
of valid initialisations for ṽ, that is each vi is initialised with a value for which ui
satisfies A (e.g., A � ^ipui ¡ 0q). This syntax allows to specify sets of possible ini-
tial values for each recursion parameter, other than specific expressions (notice that
µtxẽypṽ : UqtA1u.G � µtxũ : ũ� ẽypṽ : UqtA1u.G). Similarly we substitute recursion call
txẽy with txũ : Ay.

In the syntax for T , we substitute recursion definition µtxẽypṽ : UqtA1u.T with
µtxũ : Aypṽ : UqtA1u.T and recursion call txẽy with txũ : Ay. Projection becomes:

Definition A.1 (Extended Projection). Given G and A, the projection of G for a par-
ticipant p wrt A is denoted by pGq ÓA

p and, assuming p1 � p2, recursively defined as
follows

p1q pp1Ñ p2 : k pṽ : UqtAu.G 1q Ó
AProj
p �

$'&
'%

k!pṽ : UqtAu.pG 1q Ó
A^AProj
p if p� p1

k?pṽ : UqtpA^AProjqæpu.pG 1q Ó
A^AProj
p if p� p2

pG 1q Ó
A^AProj
p otw

p2q pp1Ñ p2 : k ttAiuli : GiuiPIq Ó
AProj
p �

$''&
''%

k`ttAiuli : pGiq Ó
Ai^AProj
p uiPI if p� p1

k&ttpAi^AProjqæpuli : pGiq Ó
Ai^AProj
p uiPI if p� p2

pG1q Ó
p_A jq jPI^AP
p otw

p3q pG1,G2q Ó
AProj
p �

#
pGiq Ó

AProj
p if p P Gi and p R G j, i� j P t1,2u

end if p R G1 and p R G2

p4q pµtxũ : Aypṽ : UqtBu.Gq ÓAProj
p � µtxũ : Aæpypṽ : UqtBæpu.pGq ÓAProj

p

p5q ptxũ : Ayq Ó
AProj
p � txũ : pA^AProjqæpy

p6q pendq Ó
AProj
p � end
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If no condition applies, pGq ÓA
p is undefined; G æp � pGq Ótrue

p is the projection of G
on p. Recall we write Aæp for the projection of predicate A on participant p defined as
DVextpAq where Vext � varpAqzI pGqæp.

Differently from Definition 4.1, the definition above does not change the number
of recursion parameters in the projection of recursive assertions if the participant does
not know some of the parameters, i.e., cases (4) and (5). This is just a conceptual sim-
plification that does not alter the semantics of endpoint assertions. In fact, a participant
that does not know some parameters will simply use them as dummy parameters when
recurring.

The reason to consider a more general syntax for recursion is that in the proof of
completeness it is necessary to merge endpoint assertions. The merging is needed be-
cause, in order to generate the most refined assertion for a given process, we need to
“merge” the endpoint assertions that have been generated for the different branches of,
for example, a conditional process. In order to merge two recursive process it is neces-
sary to merge the initialisation expressions. The more general syntax allows us to use
the logical “and” to merge the initialisations.

Location Annotations for Recursion in Global Assertions We often use an annota-
tion for recursion definition in global assertions (e.g., for checking well-assertedness).
Specifically, we annotate recursion definition as,

µtxũ : Aypv1@L1 : U1, ...,vn@Ln : UnqtA1u.G

where Li, called locations, are sets of the form tp,p1u yielding the participants that either
send or receive the value denoted by each parameter variable vi in G . More specifically,
the annotation v@tp,p1u : U for recursion parameter v means that in all recursive calls
inside G , the variables that are used to derive the actual value to be assigned to v are all
known by both p and p1 (thus p and p1 know v inside the recursion body). A location
is empty (i.e., H) if a parameter is always assigned an expression with no interaction
variables (e.g., txu : u � 10y). In that case the value is determined by the global asser-
tion. Each recursion parameter has exactly one location (this does not cause a loss of
generality). The annotation can be done automatically (see [31]).

B Well-Assertedness of Global Assertions
B.1 Algorithm for Annotating Recursion parameters

We define an algorithm to find the locations of recursion parameters in a global assertion
G . More precisely, we give a function LpG ;Γ;MK;Cqwhere MK (after “must know”) is a
set of pairs pp,vq which reads “participant p is required to have met interaction variable
v”, and C assigns interaction parameters and a vector of sets of interaction variables to
a type variable t so that the ith element of the vector includes all the variables passed as
the ith argument of a recursive invocation of t in G .

LpG ;Γ;MK;Cq returns a triple pΓ1,MK1,C1q as follows:

1. if G � pÑ p1 : k pṽqtAu.G 1, then return LpG 1;Γ, ṽ@tp,p1u;MKztpp,vq,pp1,vq : v P ṽu;Cq
2. if G � pÑ p1 : k ttA jul j : G ju jPJ then return ] jPJLpG j;Γ;MK;Cq
3. if G � G1,G2 then return ]iPt1,2uLpGi;Γ;MK;Cq
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4. if G � txu1, . . . ,un : A1, ...,Any
7, assuming Cptq � ṽ,V1, . . . ,Vn, then return

pΓ,MK,Crt ÞÑ ṽ,V1Y varpA1qzu1, . . . ,VnY varpAnqzunsq
5. if G � end then return pΓ,MK,Cq
6. if G � µtxu1, . . . ,un : A1, ...,AnypṽqtAu.G 1 then return

LpG 1;Γ;MK;Crt ÞÑ ṽ,varpA1qzu1, . . . ,varpAnqzunsq.

where ] returns BadAssertion if one of its arguments is BadAssertion otherwise

] jPJpΓ j,MK j,C jq � pY jPJΓ j,Y jPJMK j,Y jPJC jq

.
If LpG ;Γ;MK;Cq returns a triple pΓ1,MK1,C1q such that, for every t P dompC1q, C1ptq

has the form
ṽ,tv1

1, . . . ,v
1
n1
u, . . . ,tvm

1 , . . . ,vm
nmu

and for each 1 ¤ i ¤ m, vi
1, . . . ,v

i
ni

have the same location Li in Γ, such variables are
located at Li. Otherwise the program is badly specified when the previous condition
does not hold or LpG ;Γ;MK;Cq returns BadAssertion.

B.2 Checking history-sensitivity

We use environments Γ defined by the grammar:

Γ ::� H | Γ,v@L | Γ, t : v1 @L1, . . . ,vn @Ln

to assign to an interaction variable v its location L and to an assertion variables t a
sequence of pairs vi @Li to handle recursive types. We omit the type annotation from
the recursive variables. We write Γ $ u@p when p P Γpuq and Γ $ e@p when Γ $
u@p for all u P varpeq.

Γ, ṽ@tp,p1u $ G @u P varpAqzṽ,Γ$ u@p

Γ$ pÑ p1 : k pṽqtAu.G
@ j P J, Γ$ G j @u P

�
jPJ varpA jq,Γ$ u@p

Γ$ pÑ p1 : k ttA jul j : G ju jPJ

Γ$ G Γ$ G 1

Γ$ G ,G 1 Γ$ end
dompΓqY ṽ� varpAqzũ

Γ, t : v1 @L1 . . .vn @Ln $ txũ : Ay

Γ, t : v1 @L1 . . .vn @Ln $ G dompΓq � varpAq dompΓ, t : v1 @L1 . . .vn @Lnq � varpA1qzũ
Γ$ µtxũ : Aypv1 @L1, . . . ,vn @LnqtA1u.G

Fig. 6. Checker for history sensitivity on global assertions

The rules in Figure 6 discipline the usage of assertion variables and restricts the
set of interaction variables that can be used in each assertion so to enforce the history
sensitivity principle. The first two rules require that the sender/selector p must know
all the interaction variables of the predicate. The other rules are straightforward. Note
that the rules are purely syntactic, hence the verification of history sensitivity of G is a
linear time problem.

7 The algorithm requires the assertion used for assignments to recursion parameters, to be partitioned into a
number of independent sub-predicates A1, ...,An, one for each recursion parameter (see also case 6). This
requirement still allows us to model global assertions as described in § 3.
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B.3 Checking temporal satisfiability
To enforce temporal satisfiability, validity of formulae has to be checked. Below we
pre-annotate each occurrence of type variables t with tApṽq where A is the invariant of
the recursion binding t and ṽ are the corresponding formal parameters8.

Definition B.1 (Well-asserted Global Assertions). We recursively define a boolean
function GSatpG ,Aq as follows:

1. G � p1Ñ p2 : k pṽ : UqtA1u.G 1

#
if A� DṽpA1q then GSatpG ,Aq � GSatpG 1,A^A1q
otherwise GSatpG ,Aq � false

2. G � p1Ñ p2 : kttA jul j : G ju jPJ

#
if A� p

�
jPJ A jq then GSatpG ,Aq �

�
jPJ GSatpG j,A^A jq

otherwise GSatpG ,Aq � false

3. G � G1,G2 then GSatpG ,Aq � GSatpG1,Aq^GSatpG2,Aq

4. G � µtxũ : A1ypṽ : UqtBu.G 1

#
if A^A1rṽ{ũs � B then GSatpG ,Aq � GSatpG 1,A^Bq
otherwise GSatpG ,Aq � false

5. G � tBpṽqxũ : A1y then GSatpG ,Aq � true provided that A^A1rṽ{ũs � B
6. G � end then GSatpG ,Aq � true

G is well asserted if it satisfies history sensitivity (i.e., Fig. 6) and GSatpG , trueq � true.

Notably, GSatpG ,Aq incrementally builds the conjunction of all the predicates that pre-
cede the current interaction predicate. In (1) we require that for all the values that sat-
isfy A, there exists a set of values for the interaction variables ṽ that satisfy the current
predicate A1. In (2) GSatpG ,Aq takes predicates of branching points disjunctively and
requires that (for all the values that satisfy A) there exists at least one branch that can
be chosen (i.e., the corresponding predicate A j is true). For example, the protocol

AliceÑ Bob : k1 pv : Intqtv¡ 0u. BobÑ Alice : k2 ttv  0ul1 : G1,tv¡ 0ul2 : G2u

is well-asserted even if only its second branch is satisfiable. Note we do not specify any
relationship among the predicates in a branch (such as a XOR relationship to enforce
determinism in potential paths) in order to allow vague specifications (as far as consis-
tent). For the same reason, well-assertedness does not prohibit unreachable branches.
Note GSatpG , falseq � true (i.e., global assertions are trivially satisfiable in a bad envi-
ronment). The remaining clauses of Definition B.1 are intuitive.

Well-assertedness is decidable under the assumptions that the logic is decidable. The
fixed shape of the implications (e.g. no alternating quantifiers) suggests that validation
can be done efficiently [30]. Since the algorithm is compositional it can be integrated
with the checker in Figure 6.

C Well-Assertedness of Endpoint Assertions
As done for global assertions, we give a decision procedure for the satisfiability of
endpoint assertion.

Definition C.1 (Well Asserted Endpoint Assertions). We define a boolean function
LSatpT ,Aq recursively as follows:

8 This annotation is always possible if G does not have free assertion variables.

20



1. If T � k!pṽ : UqtA1u;T 1 or k?pṽ : UqtA1u;T 1

– if A� DṽpA1q then LSatpT ,Aq � LSatpT 1,A^A1q
– otherwise LSatpT ,Aq � false

2. If T � k`ttA jul j : T ju jPJ or T � k&ttA jul j : T ju jPJ with j � 1, . . . ,n
– If A� pA1_ . . ._Anq then LSatpT ,Aq � LSatpT1,A^A1q^ . . .^LSatpTn,A^Anq
– otherwise LSatpT ,Aq � false

3. If T � µtxũ : A1ypṽ : UqtBu.T 1

– If A^A1rṽ{ũs � B then LSatpT ,Aq � LSatpT 1,A^Bq
– otherwise LSatpT ,Aq � false

4. If T � tBpṽqxũ : A1y then LSatpT ,Aq � A^A1rṽ{ũs � B
5. If T � end then LSatpT ,Aq � true

We say T is well-asserted if LSatpT , trueq � true

D Refinement
We assume the standard subtyping for session types, in which a subtype describes a
more constrained behaviour, e.g. more branches and less selections. More precisely, a
super session-type has

– more selection labels and less branch labels than a sub session-type;
– super types for their non-channel values to be sent by outputs, and subtypes for

their non-channel values to be inputted (covariant value typing); and
– subtypes of channel values to be sent by outputs and super types for their channel

values to be inputted (contravariant channel typing).

Convention D.1. We adopt the standard definition of unfolding unfolding of recursive
assertion. The one-time unfolding of µtxũ : Aypṽ : Uq.T is T rµtpṽ : Uq.T {ts where the
invariant is omitted since it does not affect the unfolding and

txũ : A1yrµtpṽ : Uq.T {ts def
� µtxũ : A1ypṽ : Uq.T

Definition D.2 (Refinement). A binary relation R over closed well-asserted endpoint
assertions is a refinement relation if T1R T2 implies one of the following conditions
holds, up to the unfoldings of recursive assertions.

– T1� k!pṽ : T @pqtA1u;T 1
1 , T2� k!pṽ : T 1@pqtA2u;T 1

2 s.t. A1�A2, T 1
1 σR T 1

2 σ and T R T 1

for each σ� rt̃{ṽs with A1σ Ó true.
– T1 � k!pṽ : UqtA1u;T 1

1 and T2 � k!pṽ : UqtA2u;T 1
2 (where U is not a located endpoint as-

sertion) s.t. A1 � A2 and T 1
1 σR T 1

2 σ for each σ� rñ{ṽs with A1σ Ó true.
– T1 � k?pṽ : T @pqtA1u;T 1

1 and T2 � k?pṽ : T 1@pqtA2u;T 1
2 s.t. A2 � A1, T 1

1 σR T 1
2 σ and

T 1R T or each σ� rt̃{ṽs with A2σ Ó true.
– T1 � k?pṽ : UqtA1u;T 1

1 and T2 � k?pṽ : UqtA2u;T 1
2 (where U is not a located endpoint as-

sertion) s.t. A2 � A1 and T 1
1 σR T 1

2 σ for each σ� rñ{ṽs with A2σ Ó true.
– T1�k`ttA1iul1i :T1iuiPI and T2�k`ttA2 jul2 j :T2 ju jPJ where I � J, A1i�A2i and T1iR T2i
pi P Iq.

– T1�k&ttA1iul1i :T1iuiPI and T2�k&ttA2 jul2 j :T2 ju jPJ where J � I, A2 j�A1 j and T1 jR T2 j
p j P Jq.

where predicates are evaluated in fixed environments Γ and ∆.
If T1R T2 for some refinement relation R , we say T1 is a refinement of T2, denoted

T1 � T2. The relation � extends to open endpoint assertions in the standard way.
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a[2..n]ps̃q.P
ar2..nsps̃q
Ñ P [LINKOUT]

a[i]ps̃q.Pi
arisps̃q
Ñ Pi [LINKIN]

sk!xñypṽqtAu;P
pνHqsk!ñ
Ñ Prñ{ṽs pArñ{ṽs Ó trueq [SEND]

sk?pṽqtAu;P sk?ñ
Ñ Prñ{ṽs pArñ{ṽs Ó trueq [RECV]

sk!xxt̃yypṽqtAu;P
s!xxt̃yy
Ñ Prt̃{ṽs pArt̃{ṽs Ó true, t̃ R fnpAqY fnpPqq [DELEG]

sk?ppṽqqtAu;P
s?ppt̃qq
Ñ Prt̃{ṽs pArt̃{ṽs Ó true^ t̃ R fnpAqY fnpPqq [SREC]

sk � tAul : P sk�l
Ñ P pA Ó trueq [SEL]

sk � ttAiuli : PiuiPI
sk�l j
Ñ Pj pA j Ó trueq jPI [BRANCH]

P|Q α
Ñ P1|Q (when P α

Ñ P1) [PAR]

pνa : xGyqP α
Ñ pνa : xGyqP1 (when P α

Ñ P1 and a R fnpαq) [NRES]

pνs̃qP α
Ñ pνs̃qP1 (when P α

Ñ P1) [CRES]

pνa : xGyqP pνab̃:xGy ˜xG1yqs!ñ
Ñ P1 (when P

pνb̃: ˜xG1yqs!ñ
Ñ P1 and a P tñu) [BOUT]

P τ
Ñ Q (when PÑ Q) [TAU]

P α
Ñ Q (when P1 α

Ñ Q1, P� P1 and Q� Q1) [STR]

sk!xñypṽqtAu;P τ
Ñ errH pArñ{ṽs Ó falseq [SENDERR]

sk?pṽqtAu;P sk?ñ
Ñ errT pArñ{ṽs Ó falseq [RECVERR]

sk!xxt̃yypṽqtAu;P τ
Ñ errH pArt̃{ṽs Ó falseq [DELEGERR]

sk?ppṽqqtAu;P
sk?ppt̃qq
Ñ errT pArt̃{ṽs Ó false^ t̃ R fnpAqY fnpPqq [SRECERR]

sk � tAul : P τ
Ñ errH pA Ó falseq [LABELERR]

sk � ttAiuli : PiuiPI
sk¡l j
Ñ errT pA j Ó falseq jPI [BRANCHERR]

Fig. 7. Labelled Transition for Processes

E Labelled Transition System for Asserted Processes
See Figure 7. We assume that in rule [DELEG] the sender cannot send a channel that is
free in the continuation (i.e., t̃ R fnpPq). Note [LINKOUT] and [LINKIN] do not capture
multicasting. This does not lead to the lack of soundness [31].22



F Labelled Transition System for Assertions

�

xΓ,∆y
τ
Ñ xΓ,∆y

[TR-TAU]

�

xa :G �Γ,∆y
ar2..nsps̃q
Ñ xa :G �Γ,∆, s̃ : G æ1@1y

[TR-LIN]

�

xa :G �Γ,∆y
arisps̃q
Ñ xa :G �Γ,∆, s̃ : G æ i@iy

[TR-LINKIN]

ñ : U Arñ{ṽs Ó true Γ
1 � Γ, ã : xG̃y ã :xG̃y P ñ

xΓ,p∆, s̃ :k!pṽ : UqtAu;T @pqy
pνã:xG̃yqsk!ñ

Ñ xΓ1,p∆, s̃ :T rñ{ṽs@pqy

[TR-SEND]

ñ : U Arñ{ṽs Ó true Γ
1 � Γ, ã :xG̃y ã :xG̃y P ñ : U

xΓ,p∆, s̃ : k?pṽ : UqtAu;T @pqy
sk?ñ
Ñ xΓ1,p∆, s̃ : T rñ{ṽs@pqy

[TR-RECV]

Art̃{ṽs Ó true t̃XpfnpT qY fnpAqq �H

xΓ,p∆, s̃ :k!pṽ : T 1@qqtAu;T @p, t̃ :T 1@qqy
sk!xxt̃yy
Ñ xΓ,p∆, s̃ :T rt̃{ṽs@pqy

[TR-DELEG]

Art̃{ṽs Ó true t̃XpfnpT qY fnpAqq �H

xΓ,p∆, s̃ : k?pṽ : T 1@qqtAu;T @pqy
sk?ppt̃qq
Ñ xΓ,p∆, s̃ : T rt̃{ṽs@p, t̃ : T 1@qqy

[TR-SREC]

A j Ó true

xΓ,p∆, s̃ : k`ttAiuli : TiuiPI @pqy
sk�l j
Ñ xΓ,p∆, s̃ : T j @pqy

[TR-SEL]

A j Ó true

xΓ,p∆, s̃ : k&ttAiuli : TiuiPI @pqy
sk�l j
Ñ xΓ,p∆, s̃ : T j @pqy

[TR-BRANCH]

Fig. 8. Labelled transition for endpoint assertions

G Type Discipline Underlying Definition 6.1
The present theory builds on the underlying type discipline from [18]. The practical
significance of this approach is that this enables us to fix the shape of type signature
when specifying fine-grained behavioural properties. Theoretically this allows us to
build the theory of assertions, including its semantic basis, concentrating on high-level
logical specifications on the basis of the abstraction already provided by type signatures.

Write erasepPq for the unasserted (typable) process underlying P, i.e. the result of
taking off all predicates and associated variables from P. Similarly we write erasepΓq
and erasep∆q. In Definition 6.1 (conditional simulation), a simulation relates P to xΓ,∆y,
under the condition erasepΓq $ erasepPq� erasep∆q in the type discipline from [18].
Thus a simulation is inherently typed, allowing the dispensation of such issues as type
errors in our formulation.
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H Validation Rules of Runtime Processes

s̃ : H rk!pṽ : S̃qtAu;T s Ñ s̃ : H rk!xñy;T rñ{ṽss pArñ{ṽsÓ trueq

s̃ : H rk`ttAiuli :TiuiPIs Ñ s̃ : H rk` l j;T js p jP I,A j Ó trueq

s̃ : H rk!xñy;T @p, k?pṽqtAu;T 1@qs Ñ s̃ : H rT @p,T 1rñ{ṽs@qs

pArñ{ṽs Ó trueq

s̃ : H rk!xxs̃yy;T @p, k?ppṽqqtAu;T 1@qs Ñ s̃ : H rT @p,T 1rs̃{ṽs@qs

pArs̃{ṽs Ó true, s̃ R A,T q

s̃ : H rk` l j;T @p, k&ttAiuli :TiuiPI@qs Ñ s̃ : H rT @p,T 1@qs

p j P I, A j Ó trueq

∆1,∆2 Ñ ∆11,∆2 p∆1 Ñ ∆11q

Fig. 9. Reduction Rules for Assertion Assignments

Message Assertions For treating the τ-action (which is identical with reduction), we in-
troduce the validation rules for runtime processes. For this purpose we adapt the frame-
work of typing for runtime processes in [3], using message assertions (corresponding
to message types in [3]), which abstract messages in queues.

We first extend endpoint assertions as follows.

M ::� k!x~ny | k!xxs̃yy | k` l | M ;M 1

T ::� ... | M | M ;T

We call M a message assertion, which is simply a sequence of a sending action with
a concrete value and a selection action with a concrete label. Using this extended set
of endpoint assertions, we further extend several notions. First we use a context H r � s
given by the grammar:

H r � s ::� r � s |H r � s, Tp@p | Tp@p, H r � s

Next we extend � as:

p∆1, s̃ :Hq�∆2 � ∆1�∆2

p∆1, s̃ : H1rM @psq�p∆2, s̃ : H2rTp@psq �
p∆1, s̃ : H1rM 1@psq�p∆2, s̃ : H2rT 1

p @psq

pM �Tq �M 1 �T 1
p q

In the second rule we add a prefix of a message assertion to an endpoint assertion from
the head of a queue. In the rule we used the commutative and associative operator � as
follows. BelowH is the empty sequence.

pk!xñy;M q �T � M � k!xñy;T pk!xxs̃yy;M q �T � M � k!xxs̃yy;T
pk` l;M q �T � M � k` l;T
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Reduction of Message Assertions We can now define the rules for asserted reduction
for assertion assignments which plays a key role in the proof of Subject Reduction,
given in Figure 9. The rules come from [3], elaborated with assertion checking.

1. The first rule non-deterministically instantiates an assertion for sending under the
predicate A to the corresponding message assertion with carried values satisfying
A.

2. The second rule non-deterministically instantiates an assertion for selection under
the predicates tAiuiPI to a specific label (message assertion) l j when A j (with j P I)
evaluates to true.

3. The third rules depict how a sending message assertion interacts with its dual, the
assertion for receiving. The forth rule is for a delegation.

4. The fifth rules depict how a selection message assertion interacts with the assertion
for branching.

5. The sixth and seventh rules close the reduction under contexts.

Some comments on the use of non-deterministic instantiation of values and labels in
the first and second rules follow.

Remark H.1 (non-deterministic instantiation). The motivation for having the non-
deterministic instantiation rules for the assertions for sending and selection is to enable
the assertion reduction to follow the process reduction: an assertion assignment has
more reductions than the corresponding process, which serves the purpose since we
only demand that the assertion can follow the process in reduction. This idea comes
from [3]: the involved non-determinism is particularly natural in the present context
since each assertions (say an assertion for sending) describes many, possibly infinite,
instances of distinct process behaviours.

�

Γ$ sk :H � s̃ :tH@pup
[QNIL]

Γ$ sk : h̃ � ∆, s̃ :H rT @ps

Γ$ sk : h̃ � ñ � ∆, s̃ : ∆, s̃ :H rk!xñy;T @ps
[QVAL]

Γ$ sk : h̃ � ∆, s̃ :H rT @ps

Γ$ sk : h̃ � t̃ � ∆, s̃ : ∆, s̃ :H rk!xxt̃yy;T @ps
[QSESS]

Γ$ sk : h̃ � ∆, s̃ :H rT @ps

Γ$ sk : h̃ � l � ∆, s̃ : ∆, s̃ :H rk` l;T @ps
[QSEL]

Γ$ P�∆, s̃ : tTp @pupPI tTp @pupPI coherent
Γ$ pν s̃qP�∆

[CRES]

Fig. 10. Validation Rules for Runtime Processes

Validation for Queues and Session Hiding We list the validation rules for queues and
channel hiding in Figure 10, where [NRES] in Figure 10 generalises that of [NRES] in
Figure 5 (since if a R fn∆ then the hiding can be erased by the equality above) hence
replacing the original version. The remaining rules from Figure 5 are used as they are
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except we are now using the extended sets of processes and assertion assignments (ac-
cordingly [CONC] now uses the extended � defined above). Since message assertions do
not involve interaction predicates, these rules are a direct analogue of the typing rules
for runtime processes in [3, 18] except message assertions now mention values.

Convention H.2. Henceforth we write C ;Γ$ P�∆ for a runtime process P when it is
derived by combining the rules of Figure 5 excepting [NRES] and those of Figure 10.

Note that, following [3, 18], the validation of the composability of multiple processes is
relegated to the session hiding rule [CRES] rather than to the parallel composition rule
[CONC]. By the shape of these rules we immediately observe:

Proposition H.3. Suppose Γ$ P�∆. Then P contains no error.

I Completeness: Examples of Dead Code

The proof of completeness is given in [31]. Here we list basic examples which illustrate
why we consider restricted classes of processes in our completeness results.

Example I.1 (Hiding). Consider the following process which tries to initiate a session
at a and a is hidden: P � pνaqar2, ...,nspsq.PBAD Assume P has the correct interaction
structure with respect to Γ,∆ (i.e., erasepΓq $ erasepPq�erasep∆q) but its sub-processes
PBAD sends a violating value. We observe that P cannot perform any transition (thus
trivially satisfies Γ |ù P�∆), but since PBAD sends a violating message, Γ �$ P�∆.

Along the same veign, we can construct a process which, when a certain Turing machine
terminates, emits at a hidden channel, whose reception by another process leads to an
output at a visible channel.

Other cases of dead code (i.e., unreachable paths) do not violate completeness. Con-
sider the process if true then PGOOD else PBAD where erasepPGOODq and erasepPBADq are
well-typed but PBAD contains predicate violations. Since the assertion environment for
the branch PBAD would includes  true, then the validation would be successful for that
branch despite the violations. This case is illustrated by example I.2.

Example I.2 (Unreachable Paths).

T � s!pv : Intqtv¡ 10u;end
P � ar2spsq.if true then s!x20ypvqtv¡ 10u;0 else s!x0ypvqtv¡ 10u;0

The process P can be validated against T since the second branch (i.e., the one that
violates the predicate v¡ 10) would be validated since the assertion environment would
include  true thus  true� 0¡ 10.

Unreachable paths in endpoint assertions, e.g., where a branch of a select/branching
has a false predicate 9, are similarly handled.

9 An endpoint assertion with predicate false in one of its branches can be well-assertedness as long as there
is at least one path forward.
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J Proof of Proposition 4.3 (Projection Preserves
Well-Assertedness)

Proposition 4.3 immediately follows from Lemma J.1. By Lemma J.1, GSat implies
LSat assuming that the set of predicates of the global assertion imply those of the end-
point assertion (intuitively, the predicates in global assertions are projected by adding
existential quantiers which make them weaker).

Lemma J.1. Let G be a well-formed global assertion then, for all predicates AG ,AT
such that AT � AG and all p P pigpGq,

GSatpG ,AG q � LSatpG æp,AT q

Proof. By induction on the projection rules, proceeding by case analysis on G .

Values sending/receiving. If G � p1Ñ p2 : k pṽ : UqtAu.G 1 then we have two cases.
Case p� p1. By Definition A.1, G æp� k!pṽ : UqtAu;T 1. From AT � AG (by hypoth-
esis) and AG � DṽpAq (by well-assertedness of G) it follows

AT � DṽpAq. (J.1)

By (J.1) and C.1, LSatpG æp,AT q � LSatpT ,AT ^Aq. The lemma holds for this case
by induction on GSatpG 1,AG ^Aq and LSatpT ,AT ^Aq since AT ^A� AG ^A.

Case p� p2. Then (by A.1) G æp� k?pṽ : UqtDVextpAT ^Aqu;T 1. From AT � AG (by
hypothesis) and AG � DṽpAq (by well-formedness of G) it follows AT � DṽpAq which
is equivalent to

AT � AT ^DṽpAq. (J.2)

Since the consequence of J.2 implies DVextpAT ^DṽpAqq and v1 . . .vn R varpAT q,

AT � DṽpDVextpAT ^Aqq. (J.3)

By (J.3) and C.1, LSatpG æp,AT q � LSatpT ,AT ^Aq. The lemma holds for this case
by induction on GSatpG 1,AG ^Aq and LSatpT 1,AT ^Aq since AT ^A� AG ^A.

Branching. If G � p1Ñ p2 : k ttA jul j : G ju jPJ then again we have two cases.

Case p � p1. By Definition A.1, G æp � k`ttA jul j : T ju jPJ . From AT � AG (by hy-
pothesis) and AG � A1_ . . ._An (by well-formedness of G) it follows

AT � A1_ . . ._An. (J.4)

By (J.4) and C.1, LSatpG æ p,AT q � ^ jPJLSatpT j,AT ^ A jq. The property holds by
induction on GSatpG j,AG ^A jq and LSatpT j,AT ^A jq for all j P J, since AT ^A j �
AG ^A j.

Case p� p2. By Definition A.1, G æp� k&ttDVextpAT ^A jqul j : T ju jPJ . From AT �AG
(by hypothesis) and AG � A1_ . . ._An (by well-formedness of G) it follows AT �
A1_ . . ._An which is equivalent to

AT � pAT ^A1q_ . . ._pAT ^Anq. (J.5)
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By weakening the consequence of J.5 (since for all j P J, pAT ^A jq � DVextpAT ^A jq)
we obtain

AT � DVextpA1qY . . .YDVextpAnq. (J.6)

By (J.6) and C.1, LSatpG æ p,AT q � ^ jPJLSatpT j,AT ^ A jq. The property holds by
induction on GSatpG j,AG ^A jq and LSatpT j,AT ^A jq for all j P J, since AT ^A j �
AG ^A j.

Recursion. If G � µtxũ : Aypṽ : UqtBu.G 1 then G æp� µtxũ : Aæpypṽ : UqtBæpqu.T 1.
By well formedness of G

AG ^Arṽ{ũs � Brṽ{ũs. (J.7)

By weakening (J.7) where w̃ is the vector of variables in varpAqY varpBq but not in
G æp (i.e., they are not known by p):

Dw̃pAG ^Arṽ{ũs � Brṽ{ũsq. (J.8)

Equation J.8 is stronger than

AG ^Dw̃Arṽ{ũs � Dw̃Brṽ{ũs. (J.9)

where w̃ does not appear free in the assertion environment AG (interaction variables
have fresh names). Equation J.9 is equivalent to

AG ^DArṽ{ũsæp� DBrṽ{ũsæp. (J.10)

Finally, since by hypothesis AT �AG , by strengthening the hypothesis of equation J.10:

AT ^DArṽ{ũsæp� DBrṽ{ũsæp. (J.11)

Type Variable. If G � tApṽqxũ : A1y, then the projection is tBpṽqxũ : B1y where B� Aæp
and B1 � A1 æp. The proof proceeds like in the case of recursion definition.

Composition. If G � G1,G2, the projection is either G1 or G2, hence the result is im-
mediate by induction hypothesis.

End. Immediate.

K Proof of Proposition 6.4 (Refinement)
We prove Proposition 6.4 (relationship between the refinement relation and the satis-
faction), after a lemma. The full definition of refinement is presented in § D.2.

Definition K.1. An endpoint assertion is closed (resp. open) if it does not (resp. it may)
contain free variables.

Definition K.2. xΓ,∆y allows α when xΓ,∆y
α
Ñ xΓ1,∆1y for some xΓ1,∆1y.

Definition K.3. Below we illustrate how to perform an unfolding of recursive asser-
tion. It follows the standard definition. Assume given a recursive assertion as follows
(omitting an invariant since it does not affect it as far as it is well-asserted):

µtxu : Aypv : Sq.T
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Then its one-time unfolding is:

T rµtpv : Sq.T {ts

where we define this substitution starting from:

txu : A1yrµtpv : Sq.T {ts def
� µtxu : A1ypv : Sq.T

The rest being homomorphic.

If there exists an α such that xΓ,∆y allows α then we say that xΓ,∆y is capable to
move at the subject sbjpαq.

Lemma K.1. Assume ∆� ∆1. If xΓ,∆y is capable of moving at the subject sbjpαq then
xΓ,∆1y is also capable to move at the subject sbjpαq.

Remark. The endpoint assertions in ∆ and in ∆1 are well-asserted by definition of re-
finement (Definition D.2). Notice anyway that it is sufficient that only the endpoint
assertions in ∆1 are well-asserted for this lemma to hold.

Proof. The proof is straightforward from the definition refinement (Definition D.2). No-
tice that, up to the unfoldings of recursive assertions, an endpoint assertion may differ
from its refinement only in (a) the predicates in case of input/output/selection/branching
and (b) the sets of possible labels/branches in case of selection/branching. By Defini-
tion D.2, if a refinement T1 consists of an input/output/selection/branching with sub-
ject k then also the refined process T2 consists of an input/output/selection/branching,
respectively, with subject k (for input and branching we use well-assertedness). This
property holds recursively for their respective continuations.

Lemma K.2. Assume ∆� ∆1 below.

1. If xΓ,∆y
α
ÑxΓ1,∆1y such that α being a value output, selection or the τ-action, then

xΓ,∆1y
α
Ñ xΓ1,∆

1
1y such that ∆1 � ∆11 again.

2. If xΓ,∆y
α
Ñ xΓ1,∆1y such that α being an input or branching, and if pΓ,∆1q allows

α, then xΓ,∆1y
α
Ñ xΓ1,∆

1
1y such that ∆1 � ∆11 again.

Proof. The proof is by induction on the structure of ∆. We assume ∆ (resp. ∆1) to have
the structure ∆side,∆re f (resp. ∆1side,∆

1
re f ) where ∆re f has the form s̃ : T @p and assume

the transition is from this ∆re f . We do not consider [TR-LINKOUT] and [TR-LINKIN]
since they just add the same new element to the assertion assignment. For the same rea-
son, in the proofs below for value input and value outout, we do not consider the cases
of new name import and export, since they only add to Γ the same new elements. Below
in each case we use � over endpoint assertions as the refinement relation justifying the
original refinement (note � is the largest refinement relation).

(1) If ∆� ∆side, s̃ : k!pṽ : S̃qtA1u;T 1@p then

xΓ,∆y
sk!ñ
Ñ xΓ,∆side, s̃ : T 1@py (K.1)
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by [TR-SEND]. By hypothesis we have ∆� ∆1, so by Definition D.2 we can set

∆
1 � ∆

1
side, s̃ : k!pṽ : S̃qtA2u;T 2@p (K.2)

with ∆side � ∆1side, T 1 � T 2 and A1 � A2. Since A1 � A2 then

A1rñ{ṽs Ó true� A2rñ{ṽs Ó true. (K.3)

It follows that also the following transition is possible:

xΓ,∆1y
sk!ñ
Ñ xΓ,∆1side, s̃ : T 2@py. (K.4)

The lemma hold by induction for this case since ∆side, s̃ : T 1@p� ∆1side, s̃ : T 2@p.

(2) If ∆� ∆side, s̃ : k?pṽ : S̃qtA1u;T 1@p then

xΓ,∆y
sk?ñ
Ñ xΓ,∆side, s̃ : T 1@py (K.5)

by [TR-REC]. Assume further we have

xΓ,∆1y allows sk?ñ. (K.6)

As before, by hypothesis and by Definition D.2 we can set:

∆
1 � ∆

1
side, s̃ : k?pṽ : S̃qtA2u;T 2@p (K.7)

such that ∆side�∆1side, T 1�T 2 and A2�A1. By (K.6), however, we also have A2rñ{ṽs Ó
true. It follows that the following transition is possible:

xΓ,∆1y
sk?ñ
Ñ xΓ,∆1side, s̃ : T 2@py (K.8)

The statement hold since ∆side, s̃ : T 1@py � ∆1side, s̃ : T 2@p.

(3) If ∆� ∆side, s̃ : k`ttA1iuli : T1iuiPI @p then

xΓ,∆y
sk l j
Ñ xΓ,∆side, s̃ : T1 j @py (K.9)

by [TR-SEL]. By hypothesis and by Definition D.2, we can set

∆
1 � ∆

1
side, s̃ : k`ttA1iuli : T1iuiPJ @p (K.10)

with ∆side � ∆1side, and there exists i P J such that l j � li, A1i � A2 j and T1i � T2 j. It
follows that also the following transition is possible:

xΓ,∆1y
sk l j
Ñ xΓ,∆1side, s̃ : T2 j @py. (K.11)

The lemma hold since ∆side, s̃ : T1i @p� ∆1side, s̃ : T2 j @p.
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(4) If ∆� ∆side, s̃ : k&ttA1iuli : T1iuiPI @p then

xΓ,∆y
sk¡l j
Ñ xΓ,∆side, s̃ : T1 j @py. (K.12)

Assume further we have
xΓ,∆1y allows sk ¡ l j. (K.13)

By hypothesis and by Definition D.2, we can set

∆� ∆
1
side, s̃ : k&ttA1iuli : T1iuiPJ @p (K.14)

with ∆side � ∆1side. By (K.13) we know j P J and A1 j Ó true. It follows that also the
following transition is possible:

xΓ,∆1y
sk¡l j
Ñ xΓ,∆1side, s̃ : T2 j @py. (K.15)

The lemma hold since ∆side, s̃ : T1i @p� ∆1side, s̃ : T2 j @p.

(5) The case of [TR-TAU] is immediate since there is no change in assertion environ-
ments.

We now prove Proposition 6.4. We reproduce the statement below.

Proposition K.1 (Refinement). If Γ |ù P�∆ and ∆� ∆1 then Γ |ù P�∆1.

Proof. The proof is by induction on the transitions of P. We proceed by case analysis.

1 If P α
Ñ P1 by output/selection/τ move, since Γ |ù P�∆ then xΓ,∆y

α
Ñ xΓ,∆1y. By

Lemma K.2, xΓ,∆1y
α
Ñ xΓ,∆11y where ∆1 � ∆11.

2 If P α
Ñ P1 by input/branching, since Γ |ù P�∆ then xΓ,∆y has the capability of a

move at the subject sbjpαq. By Lemma K.1 also xΓ,∆1y has the capability of a move at
the subject sbjpαq. We have two possible cases:

– ∆1 cannot move (because its predicate is more restrictive) but still Γ |ù P�∆1 since
xΓ,∆1y is capable of an input/branching step at the subject sbjpαq,

– xΓ,∆1y
α
ÑxΓ,∆11y. In this case also xΓ,∆y

α
ÑxΓ,∆1y since the refinement is less re-

strictive that the refined endpoint assertion in input/branching moves. By Lemma K.2,
∆1 � ∆11. The predicate holds by induction.

L Proof of Proposition 6.3 (Subject Reduction)
L.1 Substitution Lemma

The substitution lemma uses the following lemma.

Lemma L.1. If T is well-asserted under Γ, ũ :U and ñ :U then T rñ{ũs is well-asserted.

Proof. The proof trivially follows from the fact that LSat universally quantifies the free
variables of T .
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Lemma L.2 (Substitution).
Let C ;Γ,u : U $ P�∆ with ∆ well-asserted. If u is free in P and n has type U then

C rn{us;Γ$ Prn{us�∆rn{us and ∆rn{us is well-asserted.

Proof. The proof is by rule induction on validation rules. We proceed by case analysis
o the rules in Figure 5. Assume u : U 1.

– If P� sk!xẽypṽqtAu;P1 then by [SND]

Γ$ C � Arẽ{ṽs C ;Γ,u : U 1 $ P1rẽ{ṽs�∆, s̃ : T @p Γ$ ẽ : U
C ;Γ,u : U 1 $ sk!xẽypṽqtAu;P1�∆, s̃ : k!pṽ : UqtAu;T @p

.

Without loss of generality we assume u R ṽ. By definition, pC � Arẽ{ṽsqrn{us is
equivalent to C rn{us � Arẽ{ṽsrn{us and, since C � Arẽ{ṽs is supposed to be uni-
versally quantified on the free variable u, thus

Γ$ C rn{us � Arẽ{ṽsrn{us. (L.1)

Moreover, by inductive hypothesis, we have

C rn{us;Γ$ P1rẽ{ṽsrn{us�p∆, s̃ : T @pqrn{us. (L.2)

By applying [SND] with premises L.1 and L.2 we obtain

C rn{us;Γ$ psk!xẽypṽqtAu;P1qrn{us�
p∆, s̃ : k!pṽ : UqtAu;T @pqrn{us.

The substituted endpoint assertion is well-asserted by Lemma L.1.
– If P� sk?pṽqtAu;P1 then by [RCV]

C ^A,Γ, ũ : U 1 $ P1�∆, s̃ : T @p

C ;Γ, ũ : U 1 $ sk?pṽqtAu;P1�∆, s̃ : k?pṽ : UqtAu;T @p

Without loss of generality we assume u R ṽ. By inductive hypothesis

pC ^Aqrn{us;Γ$ P1rn{us�p∆, s̃ : T @pqrn{us. (L.3)

By applying L.3 as a premise for [RCV] we obtain

C rn{us;Γ$ psk?pṽqtA1u;P1qrn{us�
p∆, s̃ : k?pṽ : UqtAu;T @pqrn{us.

The substituted endpoint assertion is well-asserted by Lemma L.1.
– If P� sk!xxt̃yypṽ : T 1@pqtAu;P1 then by the validation rule for delegation [SDEL]

C ;Γ,u : U 1 $ P1rt̃{ṽs�∆, s̃ :T @p

Γ,u : U 1 $ sk!xxt̃yypṽ : T 1@qqtAu;P1�∆, s̃ :k!pṽ : T 1@qqtAu;T @p, ṽ :T 1@q

Without loss of generality we assume u R ṽ. By inductive hypothesis, we have

C rn{us;Γ$ P1rt̃{ṽsrn{us�p∆, s̃ : T @pqrn{us. (L.4)

By applying [SDEL] with premise L.4 we obtain

C rn{us;Γ$ psk!xxt̃yypṽ : T 1@pqtAu;P1qrn{us�
p∆, s̃ : k!pṽ : T @pqtAu;T @pqrn{us.

The substituted endpoint assertion is well-asserted by Lemma L.1.
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– The case for [RDEL] is similar.
– If P� sk � tA jul j : Pj then by [SEL]

Γ$ C � A j C ;Γ,u : U 1 $ Pj�∆, s̃ : T j @p j P I
C ;Γ,u : U 1 $ sk � tA jul j : Pj�∆, s̃ : k`ttAiuli : TiuiPI @p

By inductive hypothesis

C rn{us;Γ$ Pjrn{us�p∆, s̃ : T @pqrn{us. (L.5)

Since (C � A j) then also pC � A jqrn{us holds, i.e.

Γ$ C rn{us � A jrn{us. (L.6)

By applying L.5 and L.6 as a premise for [SEL] we obtain

C rn{us;Γ$ psk � tA jul j : Pjqrn{us�
p∆, s̃ : k`ttAiuli : TiuiPI @pqrn{us

where the substituted endpoint assertion is well-asserted by Lemma L.1
– The case for [BRA] is similar to the case of [SEL].

– If P� if e then Q else R then by [IF]

C ^ e;Γ,u : U 1 $ Q�∆ C ^ e;Γ,u : U 1 $ R�∆

C ;Γ,u : U 1 $ if e then Q else R�∆

By inductive hypothesis

pC ^ eqrn{us;Γ$ Qrn{us�∆rn{us and
pC ^ eqrn{us;Γ$ Rrn{us�∆rn{us (L.7)

By applying L.7 as a premise for [IF] we obtain

C rn{us;Γ$ if ern{us then Qrn{us else Rrn{us�∆rn{us

where the substituted endpoint assertion is well-asserted by inductive hypothesis.

– If P� a[2..n]ps̃q.P1 by [MCAST]

Γ,u : U 1 $ a : G C ;Γ,u : U 1 $ P�∆, s̃ : pG æ1q@1

C ;Γ,u : U 1 $ a[2..n]ps̃q.P1�∆

By inductive hypothesis

C rn{us;Γ$ P1rn{us�∆rn{us, s̃ : pG æ1q@1rn{us. (L.8)

Also Γ $ a : Grn{us (trivially since G does not have free variables). By applying
L.8 as a premise for [MCAST] we obtain

Γ$ a[2..n]ps̃q.P1rn{us�∆rn{us

where the substituted endpoint assertion is well-asserted by inductive hypothesis.

33



– The case for [MACC] is similar to the case for [MCAST].

–
– If P� Xxẽs̃1..s̃ny by [VAR]

T1rẽ{ṽs...Tnrẽ{ṽs well-asserted and well-typed under Γ,u : U 1, ṽ : U
C ;Γ,u : U 1,X : pṽ : UqT1 @p1..Tn @pn $ Xxẽs̃1..s̃ny

�∆, s̃1 : T1rẽ{ṽs@p1, .., s̃n : Tnrẽ{ṽs@pn

Without loss of generality we assume u R ṽ. Since T1rẽ{ṽs...Tnrẽ{ṽs are well-typed
under Γ,u :U 1, ṽ :U and n :U 1 then T1rẽ{ṽsrn{us...Tnrẽ{ṽsrn{us are also well-typed.
Also, T1rẽ{ṽsrn{us...Tnrẽ{ṽsrn{us are well-asserted by Lemma L.1.
By applying T1rẽ{ṽsrn{us...Tnrẽ{ṽsrn{us as a premise of [VAR] we obtain

C rn{us;Γ,X : pṽ : UqT1rn{us@p1 . . .Tnrn{us@pn $ Xxẽs̃1..s̃nyrn{us
�s̃1 : T1rẽ{ṽsrn{us@p1..s̃n : Tnrẽ{ṽsrn{us@pn

The remaining cases for [CONC], [IDLE], [HIDE], [CONSEQ] and [REC] are straightforward.

L.2 Evaluation Lemma
Lemma L.3 (Evaluation). If C ;Γ$Ppẽq�∆pẽq and ẽ Ó ñ then we have C ;Γ$Prñ{ẽs�
∆rñ{ẽs.

Proof. The proof is by rule induction on the validation rules (Figures 5 and 10). We
proceed by case analysis. By decidability of underlying logic, we can write Arẽ{ṽs Ó true
when a closed formula Arẽ{ṽs evaluates to true. Note that if we further have ẽ Ó ñ then
we have Arñ{ṽs Ó true.

– If Ppẽq � sk!xẽypṽqtAu;P1 then

Ppñq � sk!xñypṽqtAu;P1,

∆pẽq � ∆
1, s̃ : k!pṽ : UqtAu;T @p,

with and C � Arẽ{ṽs. Notice that C � Arẽ{ṽs is equivalent to

C � Arñ{ṽs. (L.9)

By inductive hypothesis

C ;Γ$ P1rñ{ẽs�∆
1rñ{ẽs, s̃ : T rñ{ẽs@p. (L.10)

By applying (L.9) and (L.10) to the validation rule [SEND] the lemma holds for this
case.

– If Ppẽq � Xxẽs̃1..s̃ny (since Ppẽq is well-formed against ∆ by hypothesis) then
Ppñq � Xxñs̃1..s̃ny. Since C � Arẽ{ṽs is equivalent to C � Arñ{ṽs then Ppñq is well-
formed against ∆rñ{ṽs by rule [VAR].

– Ppeq � if e then Q else R the property holds by induction since C ^ e Ó true is
equivalent to C ^n Ó true.

– If Ppẽq � sk!xe1ypvqtAu;P1, Ppẽq � Xxẽ1s̃1..s̃ny, Ppeq � if e1 then Q else R, multicast
session request, session acceptance, value reception, label selection, label branch-
ing, parallel composition, inaction, hiding, recursion, message queue or error the
property holds straightforwardly by induction.

This exhausts all cases.
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L.3 Subject Reduction
τ-action (1): Refinement and Message Assertions We extend� to message assertions
as follows, again taking recursive assertions up to their unfolding. The following is
Definition D.2 except for the last four clauses which are about message assertions.

Definition L.4 (Refinement for Message Assertions). A binary relation R over closed
endpoint assertions is a refinement relation if T1R T2 implies one of the four conditions
in Definition D.2 or one of the following conditions holds.

– T1 � k!xñy;T 1
1 and T2 � k!xñy;T 1

2 such that T 1
1 R T 1

2 .
– T1 � k` l j;T 1

1 and T2 � k` l j;T 1
2 such that T 1

1 R T 1
2 .

– T1 � k!xñy;T 1
1 and T2 � k!pṽ : S̃qtuA;T 1

2 such that Arñ{ṽs Ó true and T 1
1 R T 1

2 rñ{ṽs
again

– T1 � k` l j;T 1 and T2 � k`ttAiuli : T 1
i uiPI with p j P Iq such that A j Ó true and

T 1R T 1
j .

If T1R T2 for some refinement relation R , then, as before, we say T1 is a refinement of
T2, denoted T1 � T2.

Assertion assignments used for refinements now include non-singleton assignments (i.e.
s̃ may be assigned more than two endpoint assertions for different participants): in spite
of this, the non-trivial refinement of endpoint assertions is only applied to singleton
assignments 10, as made explicit in the following.

Definition L.5 (refinement on extended assertion assignments). We define ∆ � ∆1

where ∆ and ∆1 may possibly contain non-singleton assertions as follows:

∆ � ∆

s̃ : T @p � s̃ : T 1@p pT � T 1q

∆1,∆2 � ∆
1
1,∆

1
2 p∆i � ∆

1
i, i� 1,2q

We say ∆ refines ∆1 if ∆� ∆1.

We also define transitions involving message assertions. In particular, a non-singleton
assignment — where we have two or more endpoint assertions with compensating chan-
nels for a single session — may have a transition which represents a reduction at a free
session channel. For conceptual clarity and technical convenience, we add the following
new action for this transition.

α ::� ..... | τfree

τxs̃y says that a reduction of assertions as we have defined has taken place at a free
session channel (we do not need to mention a specific channel). Such a transition can
be non-deterministic (i.e. can have more than one derivatives for a single transition
starting from the same source).

The transition rules which involve message assertions, both visible ones and invisi-
ble ones, are given in Figure 11. We observe:

10 This restriction is not essential but is natural from a semantic viewpoint and enables a cleaner technical
development.
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1. The first two rules for visible transitions, [TR-M-SEND] and [TR-M-SEL], are
straightforward. These transitions are defined only over singleton assertions, just as
in Figure 8 (page 23). Thus they are never induced at say s̃ when have more than 1
endpoint assertions assigned to s̃.

2. Rule [TR-TAU-SEND] uses the τfree-action label. “H non-trivial” says that this
rule is applied only when we have more than one assertions under s̃. The rule cor-
responds to the first reduction rule in Figure 9.

3. Rule [TR-TAU-SELECT] is similar. The rule corresponds to the second reduction
rule in Figure 9.

4. Rule [TR-TAU-VAL] is for interaction, corresponding to the third reduction rule in
Figure 9.

5. Rule [TR-TAU-BRA] corresponds to the third reduction rule in Figure 9.

Accordingly we also use the τfree-actions for processes, by dividing the rule [TAU] in
Figure 7, presented in Figure 12. The rules simply divide the reduction into two cases,
depending on whether it is at a free session channel or othersise.

These two silent transitions are consistent with those in Figure 7 since program
phrases and their derivatives never have reduction at free session channels: thus τ is
used for the universal cases, while τfree is only used when session channels are not yet
hidden. 11

�

xΓ,p∆, s̃ :k!xñy;T @pqy
sk!ñ
Ñ xΓ,p∆, s̃ :T @pqy

[TR-M-SEND]

�

xΓ,p∆, s̃ : k` l j;T @pqy
sk¡l j
Ñ xΓ,p∆, s̃ : T @pqy

[TR-M-SEL]

Arñ{ṽsÓ true

s̃ : H rk!pṽ : S̃qtuA;T s τfreeÑ s̃ : H rk!xñy;T rñ{ṽss
[TR-TAU-SEND]

A j Ó true jP I

s̃ : H rk`ttAiuli :TiuiPIs
τfreeÑ s̃ : H rk` l j;T js

[TR-TAU-SEL]

Arñ{ṽs Ó true

s̃ : H rk!xñy;T @p, k?pṽqtAu;T 1@qs
τfreeÑ s̃ : H rT @p,T 1rñ{ṽs@qs

[TR-TAU-VAL]

A j Ó true j P I

s̃ : H rk` l j;T @p, k&ttAiuli :TiuiPI@qs
τfreeÑ s̃ : H rT @p,T 1@qs

[TR-TAU-BRA]

Fig. 11. Labelled Transition for Message Assertions

Proposition L.6 (extended transitions).
11 For both assertions and processes, we can merge this τfree-transition and the τ-action and can still establish

all the main technical results, with no essential change in arguments. The purpose of using this action is for
conceptual clarity, so that the τ-transition continues to denote the (assertion-wise) deterministic transition
while incorporating the silent action at free session channels (which no derivative of program phrases has
but is needed to analyse its behaviour).
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1. (coincidence with reduction, 1) xΓ,∆y
τfreeÑ xΓ,∆1y iff ∆Ñ ∆1.

2. (coincidence with reduction, 2) PÑ Q iff P τ
Ñ Q or P τfreeÑ Q.

3. (determinism of non-τfree-actions) Suppose xΓ,∆y
α
Ñ xΓ1,∆1y such that α� τfree.

Then xΓ,∆y
α
Ñ xΓ2,∆2y implies Γ1 � Γ2 and ∆1 � ∆2.

Proof. (1) is by definition. (2) is also direct from the definitions. For example xΓ,∆y
τ
Ñ

xΓ1,∆1y implies Γ1 � Γ and ∆1 � ∆, similarly for others.

By (1) above, we can safely identify a τfree-action from xΓ,∆y and a reduction from ∆.
Using these extended transition relations, we generalise our results in Appendix K.

Recall below that we still use only singleton assertion assignments for visible transi-
tions, as discussed in (1) above. The τfree transition takes place only when there is a
non-singleton assignment.

PÑ P1 at a shared name or a hidden session channel

P τ
Ñ P1

[TAU]

PÑ P1 at a free session channel

P τfreeÑ P1
[TAUFSC]

Fig. 12. Refined τ-Transitions (replacing [TAU] in Fig. 7)

Definition L.7 (extended conditional simulation and satisfaction). We extend the
notion of the conditional simulation in Definition 2 as follows:

1. R in the definition now relates P which can be a (closed) runtime process with-
out errH or errT; and xΓ,∆yq where Γ is an environment and ∆ may include non-
singleton assignments.

2. In (2), we include the case of τfree.

Using this extended conditional simulation, the satisfaction relation Γ |ù P�∆ with P
a runtime process and ∆ containing possibly non-singleton assignments, is defined by
precisely the same clauses as in Definition 6.2 (§6.1, page 10).

Proposition L.8 (extended assertion transition and refinement).

1. The same statement as given in Lemma K.2 holds for assertion assignments with
message assertions, adding the clause:

If xΓ,∆y
τfreeÑ xΓ,∆1y then xΓ,∆1y

τfreeÑ xΓ,∆11y or xΓ,∆1y
τfreeÑ

τfreeÑ xΓ,∆11y
such that ∆1 � ∆11 again.

2. The same statement as given in Proposition K.1 holds for assertion assignments
extended with message assertions.

Remark. In (1) above, we only have to find one appropriate ∆11 which corresponds to
∆1, due to the non-determinism, cf. Proposition L.6 (3). Further notice ∆1 may need
two τfree-actions for catching up with the reduction of ∆, since ∆ can have already
instantiated a send/select assertion which may still be abstract in ∆1 (see the proofs
below).

37



Proof. For (1), the proof is identical to the proof of Lemma K.2 except the pairs intro-
duced in Definition L.4. The case for identical pairs is immediate. For the remaining
two cases, we treat the case of send. The case of selection is by the same argument.
First we consider the case of a visible action. Using the same notations as in the proof
of Lemma K.2:

∆ � ∆side, s̃ : k!xñy;T1 @p (L.11)
∆
1 � ∆

1
side, s̃ : k!pṽ : S̃qtuA;T 1

1 @p (L.12)

such that ∆side � ∆1side, T1 � T 1
1 and Arñ{ṽs Ó true. Now consider the following labelled

transition:
xΓ,∆y

sk!ñ
Ñ xΓ,∆side, s̃ : T 1@py (L.13)

By Arñ{ṽs Ó true we can derive:

xΓ,∆1y
sk!ñ
Ñ xΓ,∆1side, s̃ : T 1

1 @py. (L.14)

as required. Next we consider the τfree-action. Suppose

xΓ,∆y
τfreeÑ xΓ,∆1y (L.15)

First assume in (L.15) that this action is induced by the reduction from

s̃ : H rk!pṽ : S̃qtuA;T s (L.16)

in ∆ to its instantiation
s̃ : H rk!xñy;T rñ{ṽs@ps (L.17)

in ∆1 such that
Arñ{ṽs Ó true. (L.18)

Then ∆1 will have the corresponding reduction from

s̃ : H rk!pṽ : S̃qtuA1;T 1s (L.19)

in ∆1, because, by the definition of refinement, we have A � A1, hence by (L.18) we
obtain A1rñ{ṽs Ó true too, so that we obtain the corresponding instantiation:

s̃ : H rk!xñy;T 1rñ{ṽs@ps (L.20)

for which we have, by definition,

k!xñy;T rñ{ṽs � k!xñy;T 1rñ{ṽs (L.21)

as required. On the other hand if the transition in (L.15) is induced by the following
redex in ∆

s̃ : H rk!xñy;Ta@p, k?pṽqtAbu;Tb@qs (L.22)

and, under Arñ{ṽs Ó true, this has the reduction into:

s̃ : H rTa@p, Tb@rñ{ṽs@qs (L.23)
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First assume the corresponding assertions in ∆1 have the isomorphic shape:

s̃ : H rk!xñy;T 1
a @p, k?pṽqtA1bu;T 1

b @qs (L.24)

such that

Ta � T 1
a (L.25)

A1b � Ab (L.26)
Tbrm̃{ṽs � T 1

b rm̃{ṽs (if A1brm̃{ṽs Ó true) (L.27)

Thus (L.24) can have the corresponding reduction, hence xΓ,∆1y can have the corre-
sponding τfree-action, and the result is again in the closure, as required. Second when
the corresponding assertions in ∆1 do not have the isomorphic shape, we can set:

s̃ : H rk!pṽ : S̃qtuA1a;T 1
a @p,k?pṽqtA1bu;T 1

b @qs (L.28)

such that

Aa � A1arñ{ṽs (L.29)
Tarm̃{ṽs � T 1

b rm̃{ṽs (if Aarm̃{ṽs Ó true) (L.30)
A1b � Ab (L.31)

Tbrm̃{ṽsT 1
b rm̃{ṽs (if A1brm̃{ṽs Ó true) (L.32)

By (L.29) we know (L.33) has the reduction into:

s̃ : H rk!xñy;T 1
a rm̃{ṽs@p, k?pṽqtA1bu;T 1

b @qs (L.33)

We further use (L.31) to obtain the reduction from (L.33) into:

s̃ : H rT 1
a rm̃{ṽs@p, T 1

b @rñ{ṽs@qs (L.34)

as required.

Corollary L.9 (Assertion Reduction and Coherence). If ∆ is coherent and ∆Ñ ∆1 or
equivalently xΓ,∆y

τfreeÑ xΓ,∆1y, then ∆1 is again coherent.

Proof. We only consider the two cases for the send message assertion. The cases for
the select message assertions are treated in the same way. We start from a simpler case.
Consider the following redex:

s̃ : H rk!pṽ : S̃qtuA;T @p, s (L.35)

For this being coherent, there is some G such that

k!pṽ : S̃qtuA;T � G æp (L.36)

similarly for other endpoint assertions under s̃. Now consider we have a reduction from
(L.35) by the first rule in Figure 9 into:

s̃ : H rk!xñy;T rñ{ṽs@p, s (L.37)
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where we have
Arñ{ṽs Ó true (L.38)

By (L.36) and (L.38) and because � is transitive we obtain:

k!xñy;T rñ{ṽs � G æp (L.39)

as required. For the other case, the reduction involves a pair. Assume ∆ has a redex

s̃ : H rk!xñyTa,k?pṽqtAbu;Tbs (L.40)

As before, by coherence we can set:

k!xñy;Ta � G æp (L.41)
k?pṽqtAbu;Tb � G æq (L.42)

Note we can safely assume G has the shape (up to permutation of utterly unordered
actions):

G � pÑ q : pṽ : S̃qtA1u.G 1 (L.43)
hence we can assume:

G æp � k!pṽ : S̃qtuA1;pG 1 æpq (L.44)
G æq � k?pṽqtA1u;pG 1 æqq (L.45)

such that, by Definition L.4, A1 � Ab and A1rñ{ṽs Ó true and hence

Ta � G 1 æprñ{ṽs (L.46)
G 1 æqrñ{ṽs � Tbrñ{ṽs (L.47)

Now consider the reduction from (L.40) into:

s̃ : H rTa,Tbrñ{ṽss (L.48)

By (L.46) and (L.47) we obtain

Ta � G 1rñ{ṽsæp (L.49)
Tbrñ{ṽs � G 1rñ{ṽsæq (L.50)

Since for each r R tp,qu, and because by HSP the variables in ṽ only occur in assertion-
s/actions involving either p of q, we know:

G 1rñ{ṽsær � G ær (L.51)

hence as required.

We shall also use the following result later.

Lemma L.10. Suppose C ;Γ $ P|Q�∆ is derived. Then there is always a derivation
with the same conclusion and with the same or lesser length than the original derivation
such that the last rule applied is [CONC]. Similarly for the remaining syntactic shapes.

Proof. By the shape of the validation rules, the last rules applied to derive this judge-
ment can only be the application of [CONC] followed by zero or more [CONSEQ].
However since � is only applied point-wise, and this does not affect the composability
by � (which is based on linear compatibility), we can first apply the same refinement
point-wise then finally apply [CONC], to obtain exactly the same final conclusion. The
same reasoning holds for other rules.
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τ-action (2): Key Lemmas The current definition of τ-action as well as τfree-action is
not based on compatible visible actions but is defined from reduction. The following
lemma shows that, in spite of this, the τ{τfree-action is indeed derivable from com-
plementary visible actions except for initiation and conditionals). Let Cr s denote a
reduction context.

Lemma L.11. If PÑ P1 then one of the following cases hold:

1. P � Crif e then Q1 else Q2s such that P1 � CrQ1s (if e Ó true) or P1 � CrQ2s (if
e Ó false).

2. P � CrP1|..|Pns such that P1
ar2..nsps̃q
Ñ P11 and Pi

arisps̃q
Ñ P1i for 2 ¤ i ¤ n, with P1 �

Crpνs̃qpP11|..|P
1
nqs.

3. P�CrQ|s : h̃s such that Q s!~n
Ñ Q1 and P1 �CrQ1|s : h̃ �~ns.

4. P�CrQ|s : h̃ �~ns such that Q k?~n
Ñ Q1 and P1 �CrQ1|s : h̃s.

5. P�CrQ|s : h̃s such that Q s�l
Ñ Q1 and Q1 �CrQ1|s : h̃ � ls.

6. P�CrQ|s : h̃ � ls such that Q l�l
Ñ Q1 and P1 �CrQ1|s : h̃s.

Proof. Immediate from the corresponding reduction rules.

By Lemma L.11 we can reduce the reasoning on each communication-induced reduc-
tion to the corresponding visible action combined with the accompanying transforma-
tion of a queue. The difference cases are analysed below.

Lemma L.12. Assume below all transitions are typed under the implicit typing.

1. If P
ar2..nsps̃q
Ñ P1 and Γ$ P�∆ such that Γpaq � G then Γ$ P1�∆, s̃ : pG æ1q.

2. If P
arpsps̃q
Ñ P1 and Γ$ P�∆ such that Γpaq � G then Γ$ P1�∆, s̃ : pG æpq.

3. If P s!~n
Ñ P1 and Γ$ P|s : h̃�∆ then Γ$ pP1|s : h̃ � ñq�∆1 such that ∆Ñ ∆1.

4. If P s�l
Ñ P1 and Γ$ P|s : h̃�∆ then Γ$ P1|s : h̃ � l�∆1 such that ∆Ñ ∆1.

5. If P s?ñ
Ñ P1 and Γ$ P|s : h̃ � ñ�∆ then Γ$ P1|s : h̃�∆1 such that ∆Ñ ∆1.

6. If P s�l
Ñ P1 and Γ$ P|s : h̃ � l�∆ then Γ$ P1|s : h̃�∆1 such that ∆Ñ ∆1.

Further in the cases of (3..6) above, ∆ and ∆1 only differ in the assignment at s̃ such that
s P ts̃u.

Remark. In the third clause above, we do not include the case of bound outputs since
we do not need them in Lemma L.11 (due to the use of contexts).

Proof. (1) and (2) are immediate. Below we show the cases (3) and (5) since (4) (resp.
(6)) is an easy version of (3) (resp. (5)). For (3), suppose we have

Γ$ P|s : h̃�∆ (L.52)

By Lemma L.10, we safely assume the last rule applied is [CONC]. Thus we can assume,
for some ∆0 and ∆1:

Γ$ P � ∆0 (L.53)

Γ$ s : h̃ � ∆1 (L.54)
∆0 �∆1 � ∆ (L.55)
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Now consider the transition
P s!ñ
Ñ P1 (L.56)

By (L.53) we observe ∆0 has the shape, with s� sk:

∆0 � s̃ : H rk!peqtṽuA;T @ps,∆00 (L.57)

for some p; and that P1 can be typed by ∆10 such that:

∆
1
0 � s̃ : H rT rñ{ṽss,∆00 (L.58)

Now the assertion ∆1 for the queue has the shape, omitting the vacuous “end”:

∆1 � s̃ : H rM @ps (L.59)

hence the addition of the values to this queue, s : h̃ � ñ, must have the endpoint assertion:

∆
1
1 � s̃ : H rk!xñy;M @ps (L.60)

Setting ∆1 � ∆10 �∆11, we know:

Γ $ P1|s : h̃ � ñ � ∆
1 (L.61)

By (L.58) and (L.60) and the type composition � and the type reductionÑ, we obtain

∆
1
0 �∆

1
1 � s̃ : H rk!xñy;T rñ{ṽss, ∆00, ∆1

Ð ∆0,∆1

That is we have ∆Ñ ∆1, and the only change is at the type assignment at s, as required.
For (3), suppose we have

Γ$ P|s : h̃ � ñ�∆ (L.62)

Again by Lemma L.10, we safely assume the last rule applied is [CONC]. Thus we can
assume, for some ∆0 and ∆1:

Γ$ P � ∆0 (L.63)

Γ$ s : h̃ � ñ � ∆1 (L.64)
∆0 �∆1 � ∆ (L.65)

Now consider the transition
P s?ñ
Ñ P1 (L.66)

As before, we can infer, from (L.63) and (L.66) the shape of ∆0 as follows, with s� sk:

∆0 � s̃ : H rk?pṽqtAu;T @ps,∆00 (L.67)

for some p; and that P1 can be typed by ∆10 given as

∆
1
0 � s̃ : H rT rñ{ṽss,∆00 (L.68)
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Now the assertion ∆1 for the queue has the shape (again omitting “end”-only asser-
tions):

∆1 � s̃ : H rk!xñy;M @ps (L.69)

which, if we take off the values (hence for the queue s : h̃), we obtain:

∆
1
1 � s̃ : H rM @ps (L.70)

Note this is symmetric to the case (1) above. As before, setting ∆1 � ∆10 �∆11, we know:

Γ $ P1|s : h̃ � ∆
1 (L.71)

By (L.68) and (L.70) and the type composition � and the type reductionÑ, we obtain

∆
1
0 �∆

1
1 � s̃ : H rT rñ{ṽss, ∆00, ∆1

Ð ∆0,∆1

That is we have ∆Ñ ∆1, and the only change from ∆ to ∆1 is at the type assignment at
s, as required.

τ-action (2): Subject Reduction We now establish Lemma L.1, the subject reduction.

Lemma L.1 (Subject Reduction). Suppose Γ$ P�∆ and PÑ P1. Then Γ$ P1�∆1

such that either ∆1 � ∆ or ∆Ñ ∆1

We prove a stronger statement. Below we use the refined τ-transition rules in Figure 12.

Lemma L.13. Suppose Γ$ P�∆.

1. If P τ
Ñ P1 by Figure 12 then Γ$ P1�∆ again.

2. If P τfreeÑ P1 by Figure 12 then Γ$ P1�∆1 such that ∆Ñ ∆1.

Remark. Via Proposition L.6, Lemma L.13 above entails Lemma L.1.

Proof. Assume
true;Γ0 $ P�∆0 and P τ

Ñ P1. (L.72)

Each of the six cases in Lemmas L.11 are possible, which we inspect one by one. Below
let Cr � s is an appropriate reduction context.
1. Conditional. By Lemmas L.11 (1) assume P�CrRs where

R� if e then Q1 else Q2 (L.73)

such that if e Ó true then P1 � Q1. Since Cr � s is a reduction context we know R is
closed. Therefore we can safely set:

true;Γ$ R�∆ (L.74)

By Lemma L.10 we can assume R is inferred by [IF] of Figure 5. Hence we have

true^ e;Γ$ Q1�∆ (L.75)

By [CONSEQ] we get
true;Γ$ Q1�∆ (L.76)

as required. Dually for the case of e Ó false.
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2. Link. By Lemmas L.11 (2) we set P�CrRs where

R� P1|...|Pn (L.77)

with their initialization actions compensating each other, as given in Lemmas L.11 (2),
i.e.

P1
ar2..nsps̃q
Ñ P11 (L.78)

Pi
arisps̃q
Ñ P1i p2¤ i¤ nq (L.79)

As before, we can safely set:
true;Γ$ R�∆ (L.80)

By Lemma L.10 we can assume R is inferred by [IF] of Figure 5 by consecutive appli-
cations of [CONC], hence we safely assume:

true;Γ$ Pi�∆i (L.81)

such that ∆1 � ..�∆n � ∆. By Lemma L.12 (1) and (2), we have, with Γpaq � G ,

true;Γ$ P1i �∆i, s̃ : pG æ iq@i (L.82)

Hence
true;Γ$ P1|..|Pn�∆, s̃ : tpG æ iq@iu1¤i¤n (L.83)

Since tpG æ iq@iu1¤i¤n is obviously coherent, we have

true;Γ$ pνs̃qpP1|..|Pnq�∆ (L.84)

as required.
3. Send. By Lemmas L.11 (3) we set

P� rQ|s : h̃s (L.85)

with
Q s!~n
Ñ Q1 (L.86)

As above we can safely set
true;Γ$ Q|s : h̃�∆ (L.87)

By Lemmas L.12 (3), (L.86) and (L.87), we infer:

true;Γ$ Q1|s : h̃ � ñ�∆
1 (L.88)

such that ∆Ñ ∆1 where the only change is at s̃ which contains s. Since P reduces to P1

by τ-transition rather than τfree-transition, by Figure 12, we know that this s̃ in R are
hidden in P. Assume therefore, without loss of generality:

P�C1rpνs̃qpQ|s : h̃|Rqs (L.89)

Γ1 $ Q|s : h̃|R�∆1 (L.90)
∆
1 coherent and∆1 � ∆�∆01 (L.91)

By Lemma L.9 and noting ∆1 Ñ ∆1 �∆01 we know ∆1 � ∆1 �∆01 is also coherent, hence
as required.
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4. Receive. By Lemmas L.11 (4) we set

P�CrQ|s : h̃ �~ns (L.92)

with
Q s?~n
Ñ Q1 (L.93)

As above we can safely set
true;Γ$ Q|s : h̃ �~n�∆ (L.94)

As before, by Lemmas L.12 (4), (L.93) and (L.94), we get:

true;Γ$ Q1|s : h̃�∆
1 (L.95)

such that ∆Ñ ∆1 where the only change is at s̃ which contains s. Again by Figure 12,
we can set, without loss of generality:

P�C1rpνs̃qpQ|s : h̃|Rqs (L.96)

Γ1 $ Q|s : h̃|R�∆1 (L.97)
∆
1 coherent and∆1 � ∆�∆01 (L.98)

As before, by Lemma L.9 and noting ∆1 Ñ ∆1 �∆01 we know ∆1 � ∆1 �∆01 is also
coherent, hence done.

5. Select. The argument exactly follows Case 3.Send above using Lemmas L.11 (5) and
Lemmas L.12 (5) instead of Lemmas L.11 (3) and Lemmas L.12 (3), respectively.

6. Branch. The argument exactly follows Case 4.Receive above except using Lemmas
L.11 (6) and Lemmas L.12 (6) instead of Lemmas L.11 (4) and Lemmas L.12 (4),
respectively.

Finally the τfree-reduction,

true;Γ0 $ P�∆0 and P τfreeÑ P1. (L.99)

rather than (L.72), precisely follow the same reasoning as given in the cases of 3..6
above, excepting we do not have to hide s̃.

L.4 Subject Transition
In this subsection we list the proofs for Proposition 6.3. The proof hinges on two lem-
mas: Substitution Lemma (Lemma L.2, whose statement and proof are given in Ap-
pendix L.1, page 32); and Evaluation Lemma (Lemma L.3, whose statement and proof
are given in Appendix L.2, page 34)).

Convention L.14 (shape of processes).

1. In this subsection, unless otherwise stated, P,Q, . . . range over runtime (i.e. general)
processes (cf. Appendix H) and validation and other judgements are considered for
runtime processes (cf. Convention H.2).

2. Further whenever the definitions, statements etc. mention the transition or reduction
of processes, we implicitly assume these processes are closed (remember reduction
and transition are only defined over closed processes).
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L.5 Subject Transition for Visible Transitions
We now prove Proposition 6.3 in §6, the subject transition for visible transitions. We
reproduce the statement in the following.

Proposition L.15 (Subject Transition for Visible Transitions). If Γ$ P�∆, P α
Ñ P1,

and xΓ,∆y
α
Ñ xΓ1,∆1y where α� τ, then we have Γ1 $ P1�∆1.

Proof. The proof is by rule induction on the validation rules in Figures 5 and 10, show-
ing a stronger result which adds to the statement:

If P α
Ñ P1 and Γ $ P�∆ with α being an output, a selection, or an action at a

shared channel (accept and request), then xΓ,∆y allows α.

In the following proof we refer to both the transition rules for asserted processes in
Figure 7 and the transition rules for endpoint assertions in Figure 8. Assume we have:

1. Γ$ P�∆ (which stands for true;Γ$ P�∆)
2. P α

Ñ P1 and
3. xΓ,∆y

α
Ñ xΓ1,∆1y.

We proceed by the case analysis depending on the last rule used for deriving this judge-
ment. By Convention L.14 (2), We assume all processes concerned are closed. Further
below notice C in the conclusion of each rule should be true by our assumption.
Rule [SEND]: In this case, we derive C ;Γ$ P�∆ with:

C � true (L.100)
P � sk!xeypvqtAu;Q (L.101)
∆ � ∆0, s̃ : k!pṽ : S̃qtẽuA;T @p. (L.102)

By the first premise of [SEND] and (L.100) we have:

true� Arẽ{ṽs (L.103)

Since P is closed, we can set ẽ Ó n. By (L.103) we infer:

Arñ{ṽs Ó true. (L.104)

It follows that P can move only by [SEND] (i.e., not [SENDERR]), hence, setting α �
sk!ñ:

P α
Ñ Qrñ{ṽs def

� P1 (L.105)

Now ∆ can move by [TR-SEND]:

xΓ,∆y
α
Ñ xΓ, p∆0, s̃ : T rñ{ṽs@pqy (L.106)

By the second premise of [SEND] in Figure 5, we have

true;Γ$ Qrẽ{ṽs�∆0, s̃ : T rẽ{ṽs@p (L.107)

By Lemma L.3 (Evaluation Lemma), (L.107) immediately gives:

true;Γ$ Qrñ{ṽs�∆0, s̃ : T rñ{ṽs@p (L.108)

as required.
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Rule [RCV]: In this case the conclusion is C ;Γ $ P�∆ with, as well as C � true as
before:

P � sk?pvqtAu;Q (L.109)
∆ � ∆0, s̃ : k?pṽ : S̃qtAu;T @p (L.110)

By the shape of P we can set α� sk?ñ for which we have, by [TR-REC]:

Arñ{ṽs Ó true (L.111)

xΓ,∆y
α
Ñ xΓ � ã : G̃ , ∆0, s̃ : T rñ{ṽs@py (L.112)

Thus P can move only by [RECV] (not by [RECVERR]), obtaining:

P α
Ñ Qrñ{ṽs (L.113)

Now the premise of [RCV] in Figure 5 says:

true^A ; Γ$ Q�∆0, s̃ : T @p (L.114)

By Lemma L.2 (Substitution Lemma) we obtain

true^Arñ{ṽs;Γ, ṽ : S̃$ Qrñ{ṽs�∆0, s̃ : T rñ{ṽs@p (L.115)

By (L.111) and by [CONSEQ] we obtain

true;Γ, ṽ : S̃$ Qrñ{ṽs�∆0, s̃ : T rñ{ṽs@p (L.116)

as required.

Rule [SEL]: We can set C ;Γ$ P�∆ such that, as well as C � true:

P � sk � tA jul j : Pj (L.117)
∆ � ∆0, s̃ : k`ttAiuli : TiuiPI @p (L.118)

By the premise of the rule we have:

true� A j (L.119)

hence A j Ó true, therefore P can move only by [LABEL] (i.e., not [LABELERR]). Thus
we set α� sk!  l j and we have

P α
Ñ Pj (L.120)

The following assertion transition is also possible by [TR-SELECT]:

xΓ,∆y
α
Ñ xΓ,∆0, s̃ : T j @py. (L.121)

By the second premise of [LABEL] in Figure 5 we get

true;Γ$ Pj�∆0, s̃ : T j @p (L.122)

as required.
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Rule [BRANCH]: In this case we have true;Γ$ P�∆ such that

P � sk � ttAiuli : PiuiPI (L.123)
∆ � ∆0, s̃ : k&ttAiuli : TiuiPI @p (L.124)

By the shape of P we can set α� sk   l j for which we have, by [TR-CHOICE]:

A j Ó true (L.125)

xΓ,∆y
α
Ñ xΓ � ã : G̃ , ∆0, s̃ : T j @py (L.126)

Thus P can move only by [BRANCH] (not by [BRANCHERR]), obtaining:

P α
Ñ Pj (L.127)

Now the premise of [BRANCH] in Figure 5 says:

true^A j ; Γ$ Pj�∆0, s̃ : T j @p (L.128)

By (L.125) and [CONSEQ] we obtain:

true;Γ, ṽ : S̃$ Qrñ{ṽs�∆0, s̃ : T rñ{ṽs@p (L.129)

as required.

Rule [MCAST]: In this case we have true;Γ $ P�∆ such that, combining with the
premises of the rule:

P� a[2..n]ps̃q.Q (L.130)
Γ$ a : G (L.131)

true;Γ$ Q�∆, s̃ : pG æ1q@1 (L.132)

By the shape of P we can set α� ar2..nsps̃q and

a[2..n]ps̃q.Q α
Ñ Q (L.133)

By (L.131) the following transition is possible using [TR-LINKOUT]:

xΓ,∆y
α
Ñ xΓ,∆, s̃ : pG æ1q@1y (L.134)

as required.

Rule [MACC]: Similar to the case [MCAST] above.

Rule [PAR] Immediate, since the visible transition for P|Q is reducible to the same ac-
tion by either P or Q, and because the resulting assertion environments (one result of the
visible transition) can again be composed, because linear compatibility only depends on
channel names and participant names.

Rules [NRES], [CRES] and [BOUT]: In each case, direct from the induction hypothesis.
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Rule [CONSEQ]: Suppose the conclusion is true;Γ$ P�∆ which is derived from

true;Γ$ P�∆0 (L.135)
∆0 � ∆ (L.136)

Now first suppose the concerned visible action α is neither a receive action nor a branch-
ing. Now suppose

P α
Ñ P1 (L.137)

xΓ,∆y
α
Ñ xΓ1,∆1y (L.138)

By induction hypothesis and by (L.135), (L.138) gives us:

xΓ,∆0y
α
Ñ xΓ1,∆10y (L.139)

for some ∆10 for which we have, by induction hypothesis

true;Γ
1 $ P1�∆

1
0 (L.140)

Since the assertion transition is deterministic and by Lemma K.1 we know:

∆
1
0 � ∆

1. (L.141)

By (L.141) and (L.140) we can use [CONSEQ] to reach

true;Γ
1 $ P1�∆

1 (L.142)

as required. This exhausts all cases.

M Semantics of Open Judgement
In this section, we define the semantics of open judgement for satisfiability,

C ;Γ |ù P�∆ (M.1)

We define the notion incrementally, starting from the judgement on closed processes
based on conditional simulation given in Definition 6.2, page 10 and adding variables
of different kinds. First we consider value variables. We first make clear the kinds of
variables we treat, from Sections 3 and 5.1:

Definition M.1 (variables). A value variable is a variable for a name or an atomic
value, for which we used v,w, .. as well as x,y, ... A process variable X is a variable
standing for a (possibly parameterised) process. An assertion variable is a variable
standing for an assertion, written t.

When we think about open judgements, we need to think about these different kinds
of variables. Below asssertion erasure of a process P (resp. Γ, resp. ∆) is the result of
removing all predicate annotations from P (resp. Γ, resp. ∆), resulting in a typed process
(resp. a shared typing assignment, resp. a linear typing assignment).
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Definition M.2 (open judgement, 1). Let P be an open asserted process and none of
Γ, ∆, Ti and P contains value variables, process variables nor assertion variables. Then
assuming the typability of the assertion erasure of P under the assertion erasure of Γ, ∆,
and the induced assignment to X , we write:

Γ,X : pṽ : S̃qT1 @p1...Tn @pn |ù P�∆

when, for each parametrised process Qpx̃, s̃1, ..., s̃nq (with each s̃i as induced by the use
of channels in Ti), whose free variables are in x̃ and otherwise well-typed under the
above typing, such that for each σ mapping x̃ to values,

Γ |ù Qσ�Zis̃i : T1σ@pi

we have
Γ |ù PrQpx̃, s̃1, ..., s̃nq{Xs�∆

in the sense of Definition 6.2, page 10. Similarly when a judgement contains more than
one free process variables.

Based on this, we extend to the

Definition M.3 (open judgement, 2). Let P be an open asserted process and none of
Γ, ∆ and P contains assertion variables. Then we write, assuming the typability of the
assertion erasure of P under the assertion erasure of Γ and ∆:

C ;Γ |ù P�∆

when, for each closing σ which maps all free value variables in Γ (hence in C and P) to
values respecting types, we have either Cσ is false or, if it is true:

Γσ |ù Pσ�∆σ

in the sense of Definition M.2 above.

Finally we introduce assertion variables, which we interpret based on substitution by
closed well-asserted assertions so that the resulting assertions are again well-asserted.12

Definition M.4 (open judgement, 3). Let P be an open asserted process and none of
Γ, ∆ and P contains assertion variables. Then we write, assuming typability as above,

C ;Γ |ù P�∆

when, for each σ which maps each free assertion variable with an instantiation, say txẽy,
to a parametrised assertion Apx̃q such that types for x̃ in A match ẽ, we have

C ;Γσ |ù Pσ�∆σ

in the sense of Definition M.3 above.
12 We can directly interpret assertion variables as transition relations, though a resulting difference, if any,

does not concern us here, since well-assertedness implies inhabitation, while our interests are only those
transitions representable by well-asserted assertions, which can capture, for example, all well-typed tran-
sitions without any constraints.
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Observe we could have made all definitions into one: the division into three definitions
is to make clear what substitutions are involved.

Definition M.5 (Closure of judgement). Let C ;Γ$ P�∆. Then its closure by substi-
tution σ, denoted Pσ, is the process obtained by applying to P the substitution σ such
that:

– for each free interaction variable declared in Γ, σ instantiate it into a value that
satisfy Γ and C (i.e., it has the correct type and does not violate the assertion envi-
ronment), and

– for each process variable X s.t. ΓpXq � pṽ : S̃qT̃ , the substitution σ instantiates
X into a parametrised process Qpṽs̃q (so that each call Xxẽs̃y is instantiated into
Qpẽs̃q), such that we have C ,Γ, ṽ : S̃ |ù Qpṽs̃q� s̃1 : T̃1 @p1...s̃n : T̃n @pn.

Similarly we define a closure of an open satisfaction judgement.

Remark. Note that, in the last clause above, we use the satisfaction |ù when consider-
ing substitutions for process variables, cf. [2]. This corresponds to Definition M.2.

N Proof of Theorem 6.5 (Soundness)
We prove Theorem 6.5 (soundness of validation rules). The soundness proof relies on
basic properties of the proof system for validation in Figures 5 and 10.

Lemma N.1. Suppose say C ;Γ$ S�∆ is derived and, in its derivation, C0;Γ0 $ S0�
∆0 is used, hence S0 occurs in S. Suppose C0;Γ0 $ S10�∆0 where S10 and S0 have the
identical typing. Then we can replace the occurrence of S0 by S10, with the result written
S1, such that C ;Γ$ S1�∆ is derivable.

Proof. By noting that, in each step of derivation, the only thing that matters is the
assertion environment, the assertion assignment, and the assertion context, in addition
to the typing.

Lemma N.2 (postponement of [DEF]). Suppose Γ$ P�∆ is derived. Then there is a
derivation tree of the same or less length such that there are no applications of [DEF]
(cf. Figure 5) except at the end of the derivation.

Proof. The premise of [DEF] for Q (the main process) reads:

C ;Γ,X : pṽ : S̃qT1 @p1 . . .Tn @pn $ Q�∆ (N.1)

Note the only condition it demands is the assumption contains

X : pṽ : S̃qT1 @p1 . . .Tn @pn (N.2)

and the only effect of the application of [DEF] is we lose this assumption. Since no
other rules use this assumption, by Lemma N.1, we can always permute an application
of any rule with [DEF] to obtain the same conclusion.

Definition N.3. We say C ;Γ $ P�∆ is well-initiated if ∆ contains only singleton as-
signments and, moreover, P has no queue at a free session channel.
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Lemma N.4. The second premise of [DEF] is well-initiated if and only if its conclusion
is well-initiated.

Proof. Because the assertion assignment (∆) does not change and the process (Q) does
not change except adding the new definition.

We now prove Theorem 6.5, whose statement is reproduced below.

Theorem N.5 (Soundeness for Open Processes).
Let P be a program phrase. Then C ;Γ$ P�∆ implies C ;Γ |ù P�∆.

Proof. Let R be the relation collection all the pairs of the form:

pPσ,xΓσ,∆σyq (N.3)

such that C ;Γ $ P�∆ with P being a sub-term of a multi-step α
Ñ-derivative of a pro-

gram phrase and ∆ an assertion assignment possibly containing non-singleton assign-
ments, and σ being its closing substitution. We show R is a conditional simulation (in
the extended sense defined in Definition 2), by rule induction on the validation rules.
Assume

C ;Γ$ P�∆ (N.4)

is derived and σ is a closing substitution conforming to C and Γ. We carry out case
analysis depending on the last rule used.

Case [SEND]. By [SENDR] in Figure 5, we can set

P� sk!xeypvqtAu;P1 (N.5)

where C ;Γ$ P�∆ such that

∆� ∆
1, s̃ : k!pṽ : S̃qtñuA;T @p. (N.6)

By the definition of closure

Pσ � sk!xeσypvqtAσu;P1σ (N.7)

where ẽσ Ó ñ. Process Pσ can only move because of rule [SEND] (Figure 7) with label
is sk!ñ. Since Arñ{ṽs Ó true by [SEND] and Arñ{ṽs ùñ Aσrñ{ṽs,

sk!xeσypvqtAσu;P1σ
sk!ñ
Ñ P1σ. (N.8)

It follows that
∆σ � ∆

1
σ, s̃ : k!pṽ : S̃qtñuAσ;Tσ @p. (N.9)

By [TR-SEND] in Figure 8, since Aσrñ{ṽs Ó true,

xΓ,∆1σ, s̃ : k!pṽ : S̃qtñuAσ;Tσ @py
sk!ñ
Ñ xΓ,∆1σ, s̃ : Tσ @py, (N.10)

It follows by induction,
pP1σ,xΓ,∆1σ, s̃ : Tσ @pyq P R. (N.11)
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Case [RCV]. By [RCV] in Figure 5, and setting P� sk?pvqtAu;P1, we have

C ;Γ$ P�∆ (N.12)

with ∆� ∆1, s̃ : k?pṽ : S̃qtAu;T @p. Let Pσ � sk?pvqtAσu;P1σ. It follows that

∆σ � ∆
1
σ, s̃ : k?pṽ : S̃qtAσu;Tσ @p. (N.13)

Process Pσ can only move because of rule [RCV] in Figure 7 with label sk!ñ. By defi-
nition of conditional simulation, we only consider the case in which ∆σ is able to move
(i.e., ñ : S̃ and Aσrñ{ṽs Ó true). In such case, by [RCV] in Figure 7,

sk?pvqtAσu;P1σ
sk!ñ
Ñ P1σ (N.14)

and by [TR-REC] in Figure 8,

xΓ,∆1σ, s̃ : k?pṽ : S̃qtAσu;Tσ @py
sk?ñ
Ñ xΓ,∆1σ, s̃ : Tσ @py. (N.15)

It follows by induction
pP1σ,xΓ1,∆σ, s̃ : Tσ @pyq P R. (N.16)

Case [SEL]. Let P� sk � tA jul j : Pj. By [SEL] in Figure 5,

C ;Γ$ sk � tA jul j : Pj�∆ (N.17)

with ∆�∆1, s̃ : k`ttAiuli : TiuiPI @p and j P I. It follows ∆σ�∆1σ, s̃ : k`ttAiσuli : TiσuiPI @p.
We have Pσ � sk � tA jσul j : Pjσ Process Pσ can only move because of rule [LABEL] in
Figure 7 with label sk   l j and, since A j Ó true by well formedness of P and A j ùñ A jσ
then

sk � tA jσul j : Pjσ
sk l j
Ñ Pjσ. (N.18)

By [TR-SEL] in Figure 8, since A j Ó true

xΓ,∆1σ, s̃ : k`ttAiσuli : TiσuiPI @py
sk l j
Ñ xΓ,∆1σ, s̃ : T jσ @py. (N.19)

By induction,
pPjσ,xΓ,∆1σ, s̃ : T jσ @pyq P R. (N.20)

Case [BRANCH]. We can set P� sk � ttAiuli : PiuiPI then Pσ � sk � ttAiσuli : PiσuiPI .
By [BRANCH] in Figure 5,

C ;Γ$ sk � ttAiuli : PiuiPI�∆ (N.21)

with ∆� ∆1, s̃ : k&ttAiuli : TiuiPI @p. It follows ∆σ � ∆1σ, s̃ : k&ttAiσuli : TiσuiPI @p.
Process Pσ can only move because of rule [BRANCH] with label sk ¡ l j. By def-

inition of conditional simulation we only consider the case in which xΓ,∆σy is able
to perform a branching move with label sk ¡ l j, that is when A jσ Ó true. Assuming
A jσ Ó true, by [BRANCH] in Figure 7:

sk � tA jσul j : Pjσ
sk¡l j
Ñ Pjσ, (N.22)

and by [TR-CHOICE] in Figure 8:

xΓ,∆1σ, s̃ : k&ttAiσuli : TiσuiPI @py
k¡l j
Ñ xΓ,∆1σ, s̃ : T jσ @py. (N.23)

By induction,
pPjσ,xΓ,∆1σ, s̃ : T jσ @pyq P R. (N.24)
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Case [MCAST]. In this case P� a[2..n]ps̃q.P1 and we can set:

Γ$ a[2..n]ps̃q.P�∆. (N.25)

Let Pσ � a[2..n]ps̃q.P1σ. Process Pσ can only move because of rule [LINKOUT] in Fig-
ure 7:

a[2..n]ps̃q.P1σ
ar2..nsps̃q
Ñ P1σ. (N.26)

By [TR-LINKOUT] in Figure 8,

xΓ,∆σy
ar2..nsps̃q
Ñ xΓ1,∆σ, s̃ : pG æ1qσ @p1y. (N.27)

By induction hypothesis we have

pP1σ,xΓ1,∆σ, s̃ : pG æ1qσ @p1yq P R. (N.28)

Case [MACC]. This case is essentially identical to the case [MCAST] above.
Case [CONC]. The cases of independent actions are direct from the induction hypothe-
sis. If the reduction takes place by interaction, then we use Lemma L.13.
Case [IF]. With P� if e then P else Q then by Definition M.5:

Pσ � if eσ then Qσ else Rσ, (N.29)

By [IF] in Figure 5, such that

C ;Γ$ P�∆ (N.30)
C ^ e;Γ$ Q�∆ (N.31)

We note Pσ � if eσ then Qσ else Rσ. Process Pσ can move because of either [IFT] or
[IFF] (Figure 7) with label is τ. Let us consider the case in which the transition happens
by rule [IFT] (the case with [IFF] is symmetric):

if eσ then Qσ else Rσ

τ
Ñ Qσ with ẽσ Ó true. (N.32)

By induction, since eσ Ó true and moreover eσ does not have free variables.

pQσ,xΓ,∆σyq P R. (N.33)

as required.
Case [INACT]. We can set P� 0 the property holds since there are no transitions.
Case [NRES]. Immediate from induction hypothesis.
Case [VAR]. We can set

P� Xxẽ, s̃1, ..., s̃ny (N.34)

with
ΓpXq � pṽ : S̃qT̃ . (N.35)

Then by well formedness of P, C ùñ Arẽ{ṽs Ó true. Pσ is a process such that

Cσ,Γσ $ Pσrẽ{ṽs�∆
1
σ, s̃1 : T1σ @p1, .., s̃n : Tnσ @pn. (N.36)

Notice that
∆
1
σ, s̃1 : T1σ @p1, .., s̃n : Tnσ @pn � ∆σ (N.37)

where ∆σ is the closure of the asserted local type of P. The property holds straightfor-
wardly by the cases for the other process types.
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Case [NRES]. Immediate from induction hypothesis.

Case [DEF]. This case is proved by the standard syntactic approximation of a recursion.
By Lemma N.2, we can assume, in all derivations for processes in R , the application
of Rule [DEF] only occurs in (the last steps of) a derivation for a transition derivative
of a program phrase, without loss of generality. Under this assumption, by Lemma N.4,
we know the premise and conclusion of an application of [DEF] is well-initiated in the
sense of Definition N.3. Note that the reductions of such processes are completely char-
acterised by τ

Ñ (cf. Proposition L.6), and the correspoinding τ-transition for assertions
is deterministic. Assume that we have

C ;Γ,X : pṽ : S̃qT1 @p1 . . .Tn @pn, ṽ : S̃ |ù P
�s̃1 : T1 @p1 . . . s̃n : Tn @pn

(N.38)

Further we also assume

C ;Γ,X : pṽ : S̃qT1 @p1 . . .Tn @pn |ù Q�∆ (N.39)

In the following we often use the notation for the substitution Qrpx̃qR{Xswhich replaces
each occurrence of Xxẽy with Rrẽ{x̃s. Using well-guardedness of process variables [18,
§2], we first approximate the recursion by the following hierarchy:

P0 def
� P1 � 0

P1 def
� Prpx̃qP0{Xs
� � �

Pn�1 def
� Prpx̃qPn{Xs

Above P1 is chosen as the process which is typed by the same typing as P and which
has no visible action. 13 We also set Pω to be the recursively defined agent itself:

def Xpx̃q � P in P. (N.40)

In the conclusion of [DEF] we abstract the process variable X by the def construct.
Instead, we replace each X in Q with px̃qP0, px̃qP1, ... px̃qPn, and finally px̃qPω. We call
the result Q0, Q1, ... Qn, and Qω, where Qω is nothing but the term in the conclusion
(after one-time unfolding which does not change the behaviour).

Using Lemma N.1, we first note that, for any xΓ,∆y and C , we have C ;Γ |ù P0�∆.
Thus we apply this to (N.38) and replace X in P by pṽs̃1..s̃nqP0:

C ;Γ |ù P1� s̃1 : T1 @p1 . . . s̃n : Tn @pn (N.41)

This can again be used for (N.38) (noting the environment Γ can always be taken as
widely as possible in [VAR]):

C ;Γ |ù P2� s̃1 : T1 @p1 . . . s̃n : Tn @pn (N.42)

13 For example, writing apsq.S for ar2spsq.S and choosing a and s to be fresh, let P1 def
� pνaqpapsq.Pq then

P1 � 0.
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In this way we know

C ;Γ |ù Pn� s̃1 : T1 @p1 . . . s̃n : Tn @pn (N.43)

for an arbitrary n. By applying this to (N.39), we obtain:

C ;Γ |ù Qn�∆ (N.44)

for an arbitrary n. Now assume, for simplicity, that there are no free variables in Q
(hence in Qn) and therefore C � true (the reasoning is precisely the same by applying
a closing substitution). We can then construct a relation taking each node in the transi-
tions from Qω and relating it to the derivative of xΓ,∆y, by observing that assertions’
transitions are always deterministic for the given process and its transition derivatives.
Let the resulting relation be R . Since any finite trace of Qω is in some Qn, the con-
ditions of Definition 2 hold at each step, hence R is a conditional simulation, hence
done.

Case [CONSEQ]. By Proposition 6.4 (Proposition K.1 in Appendix K, page 29).

Cases [QNIL], [QVAL] and [QSEL] of Figure 10. Again these processes (queues) do
not have transitions.14

Case [CRES]. By Lemma L.9. This exhausts all cases.

As an immediate corollary we obtain:

Theorem N.6 (Soundeness for Programs).
Let P be a program. Then Γ$ P�∆ implies Γ |ù P�∆.

O Proof of Theorems 6.7 and 7.2 (Completeness)
O.1 General Structure of Completeness Proof
For completeness, we introduce the generation rules for (visible) programs and program
phrases by which we can derive a “principal” formula. The principal formula of P (if
one can be generated) is the most refined assertion assignment against which P can be
validated.

The general intuition is that, for every P, Γ and ∆ such that Γ |ù P�∆, we can
generate ∆1 such that Γ $ P�∆1 and ∆1 � ∆ (thus Γ $ P�∆ by rule [CONSEQ]). To
be more precise, we generate an assignment ∆1 which is parametric with respect to
a number of predicate variables, and we show that there exist a substitution of the
predicate variables in ∆1 that produces an assignment refining ∆ (see O.2).

The completeness proof is done in the following steps:

1. We define a generalised sequent and generation rules. We show that the derivability
in this system is subsumed by the derivability in our validation rules.

2. We show it is sound w.r.t. the satisfiablity.
3. We show it is complete w.r.t. the satisfiablity; we show that the principal formula is

a representative formula for the process (i.e. the principal formula under appropriate
instantiation refines (w.r.t. �) all satisfiable formulae).

14 The behaviours of queues are taken into account as part of τfree-actions.
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O.2 Predicate Variables and Extended Predicates
The generation rules for principal formulae use sequents with predicate variables with
fixed arities. There is no need for manipulation of these predicate variables during the
generation. We need predicate variables since we cannot rely on a specific predicate
when we stipulate a constraint on an input value: if we concretize it, we may lose
principality (i.e., the principal formula is not the strongest), since the stronger an input
constraint is, the stronger a related output constraint is.

Consider, for instance, the following assertion

G � pÑ p1 : k1 pv : Intqtv¡ 0u.p1Ñ p : k2 pu : Intqtu¡ 1u.end

where the projection on p1 is

G æp1 � k1?pv : Intqtv¡ 0u;k2!pu : Intqtu¡ 1u;end

and the following (unasserted) process implementing p1

P� s1?pvq.s2!xv�1ypuq;0.

Assume the generated principal formula includes the following endpoint assertion
for P:

T � k1?pv : IntqtAu;k2!pu : IntqtBu;end.

The intuition is: for T to be the strongest formula validating P, the predicate A for
the input should as weak as possible, whereas the predicate B for the output should be
as strong as possible. Assume we set A to be true and B to be v� 1 � u. Notice T
would not be the principal formula since it would not be a refinement of G æp1. In the
derivation rules, we leave the constraint A open, by using a predicate variable.

Extended predicates are defined as predicates where predicate variables can occur;
predicate variables are ranged over by φpṽq and are meant to be replaced by normal
predicates A such that fnpAq � ṽ.

O.3 Generalised Sequent
We use the following sequents towards completeness, all using predicate variables.

1. C ;Γ0 $
� erasepPq � ∆. This is used for generation of principal formulae and reads:

”Under C as constraints on values and Γ0 as public contracts for shared
names, P has the principal formula ∆”.

Note predicates in these assertions use predicate variables, defined in §O.5, page 60.

2. C ;Γ $ext P�∆. This is the same provability using the validation rules in Figure 5
except using the syntax of predicates incorporating predicate variables and endpoint
assertion variables.

3. C ;Γ |ùext P�∆. Again this is the same satisfiability as we defined in §6.1 except
using the syntax of predicates incorporating predicate variables (the semantics of
predicate variables is taken in the standard way, taking satisfiability as in §6.1 under
all closing substitutions).
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In brief (1) is the sequent for generation described in O.5 while (2) and (3) are the se-
quents for validation/satisfiability obtained extending the logic with predicate variables.

As more clear later, for all possible concrete substitutions, (2) implies the normal
provability and (3) implies satisfiability.

O.4 Two Merge Operations
This subsection is a technical discussion introducing and studying two merge opera-
tions used in the generation rules. These operations “merge” endpoint assertions. After
introducing the operations, we establish their basic properties. This subsection is tech-
nical, needed only for the proofs of completeness, hence may as well be skipped until
the proof of the theorem.

Convention O.1 (shape of recursive assertions). In this subsection and henceforth
we assume two recursive assertions to be merged are always in the same shape. Since
the shape of recursive assertions to be generated rely on the shape of recursions in the
original process, this assumption means semantically neutral assumption (up to a simple
transformation) of recursions in processes. Since generated formulae are equivalent for
different shapes of recursions, this does not lose generality.

Merging Assertions (1)

Definition O.2 (Merge of Endpoint Assertions). The function _ takes two end-point
assertions and merges them; it is recursively defined as follows:

– k!pṽ : UqtAu;T 1
1 _ k!pṽ : UqtBu;T 1

2
de f
� k!pṽqtA_Bu;T 1

1 _T 1
2

where U has the form S̃ or xGy
– k!pṽ : T @pqtAu;T 1

1 _ k!pṽ : T @pqtBu;T 1
2

de f
� k!pṽ : T @pqtA_Bu;T 1

1 _T 1
2

– k?pṽ : UqtAu;T 1
1 _ k?pṽ : UqtBu;T 1

2
de f
� k?pṽ : UqtA^Bu;T 1

1 _T 1
2

– k?pṽ : T @pqtAu;T 1
1 _ k?pṽ : T @pqtBu;T 1

2
de f
� k?pṽ : T @pqtA^Bu;T 1

1 _T 1
2

– k`ttAiu li : TiuiPI _ k`ttBiu li : T 1
i uiPI

de f
� k`ttAi_Biu li : Ti_T 1

i uiPI

– k&ttliuTi : i P I uAi _ k&ttliuT 1
i : i P I uBi

de f
� k&ttliuTi_T 1

i : i P I uAi^Bi

– µtxũ1 : Aypṽ1 : U1qttrueu.T 1
1 _ µtxũ2 : Bypṽ2 : U2qttrueu.T 1

2
de f
� µtxũ1ũ2 : A^Bypṽ1ṽ2 : U1U2qttrueu.T 1

1 _T 1
2

where we assume ṽ1X ṽ2 � ũ1X ũ2 �H.

– txũ1 : Ay _ txũ2 : By
de f
� txũ1ũ2 : A^By where we assume ũ1X ũ2 �H.

– end_end� end.

The merge function T1_T2 returns the strongest endpoint assertion T (if any) such that
T1 � T and T2 � T . Observe that in the cases for delegation (2nd and 4th clauses in
Definition O.2), the type T @p of ṽ has to be the same in the arguments of _; in fact,
such assertions are supposed to validate a same process P and, different types in such
clauses would not be consistent with the validations of P.

Definition O.3. The merge operation is extended to assignments ∆ in the obvious way,
i.e. ∆1_∆2 is the pointwise merge of ∆1 and ∆2.
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∆1_∆2 returns an assignment ∆, assigning all the sessions occurring in ∆1 or ∆2. For
every s̃ : T1 @p in ∆1 and s̃ : T2 @p, ∆ maps s̃ to T1_T2 @p. We extend _ to multi-ary
compositions in the obvious way, writing e.g. _iTi. We note:

Lemma O.4. Let T1 and T2 be closed local assertions.

1. T1 � T1_T2.
2. If T1 � T 1 and T2 � T 1 then T1_T2 � T 1.

Proof. We prove by induction that, under arbitrary closing substitution, the statements
hold for open local assertions. The only non-trivial case is recursive assertions.

We first show (1). By our assumption, T1 and T2 are of the same shape in their
recursions. We use their finite unfoldings starting from End. We write the i-th unfolding,
T piq

1 and T piq
2 , and use induction on i. The base case is immediate.

end� end_end (O.1)

Suppose we have
T pnq

1 � T pnq
1 _T pnq

2 (O.2)

Since T pn �1q
1 is obtained by substituting the assertion variable concerned in T1 with

T pnq
1 , and since this substitution is co-variant for the substituting formula, writing the

substitution on T2 by T pnq
1 as T 1

2 , we obtain:

T pn�1q
1 � T pn�1q

1 _T 1
2 � T pn�1q

1 _T pn�1q
2 (O.3)

as required. We now observe that the transitions of T1 and T2 are determined by (all of)
their finite partial traces since their transitions are deterministic. Hence the above result
shows we can construct a refinement relation between T1 and T1_T2, by relating each
finite node based on the finite unfoldings, as required.

For (2), assume
T1,2 � T 1 (O.4)

Since each Ti is characterised by its finite partial traces, this means a refinement is
constructed relating the transition nodees of their finite partial to those in T 1. At each
finite node, T1_T2 has actions which are the exact combination of T1 and T2, they can
be related to the corresponding node of T 1 so that its actions locally refine those of T 1,
hence as required. l

Lemma O.5. _ is commutative and associative.

Proof. Mechanically by induction on open local assertions under arbitrary closing sub-
stitutions. l

Lemma O.6. Let tTiuiPI a set of endpoint assertions for which the merge is defined. If
for each i P I Ti � T , then _tTiuiPI � T .

Proof. By Lemma O.4 and Lemma O.5. l
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Merging Assertions (2) We also need a refined merging function for endpoint as-
sertions when we need to generate principal assertions for the conditional construct
(if-then-else).

Definition O.7 (Parametric Merge of Endpoint Assertions). The parametric merge
of two end-point assertions T1 and T2 wrt condition e (written T1 _

e T2) is defined
recursively as follows:

– k!pṽ : UqtAu;T 1
1 _

e k!pṽ : UqtBu;T 1
2

de f
� k!pṽ : Uqtpe^Aq_p e^Bqu;T 1

1 _
e T 1

2
where U has the form S̃ or xGy

– k!pṽ : T @pqtAu;T 1
1 _

e k!pṽ : T @pqtBu;T 1
2

de f
� k!pṽ : T @pqtpe^Aq_p e^Bqu;T 1

1 _
e T 1

2

– k?pṽ : UqtAu;T 1
1 _

e k?pṽ : UqtBu;T 1
2

de f
� k?pṽ : Uqtpe� Aq^p e� Bqu;T 1

1 _
e T 1

2
where U has the form S̃ or xGy

– k?pṽ : T @pqtAu;T 1
1 _

e k?pṽ : T @pqtBu;T 1
2

de f
�

k?pṽ : T @pqtpe� Aq^p e� Bqu;T 1
1 _

e T 1
2

– k`ttAiu li : TiuiPI _
e k`ttBiu li : T 1

i uiPI
de f
� k`ttpe^Aiq_p e^Biqu li : Ti_

e T 1
i uiPI

– k&ttAiuli : i P I uTi
_e k&ttBiuli : T 1

i uiPI
de f
� k&ttpe� Aiq^p e� Biquli : pTi_

e T 1
i uiPI

– µtxũ1 : Aypṽ1 : U1qttrueu.T 1
1 _

e µtxũ2 : Bypṽ2 : U2qttrueu.T 1
2

de f
�

µtxũ1ũ2 : pe^Aq^p e^Bqypṽ1ṽ2 : U1U2qttrueu.T 1
1 _

e T 1
2 where ṽ1X ṽ2 � ũ1X ũ2 �H.

– txũ1 : Ay _e txũ2 : By
de f
� txũ1, ũ2 : pe^Aq_p e^Bqy where ũ1X ũ2 �H.

– end_e end� end.

The parametric merge takes a boolean expression e as parameter that is the guard of the
conditional. The following properties hold.

Lemma O.8. Let ���X��1. The following properties of _e hold.

– T1_
e T2 � T1 if e Ó true.

– T1_
e T2 � T2 if e Ó false.

Proof. Mechanical from the definition. l

O.5 Generation of Principal Assertions

Judgement for Generation The rules use judgements of the form

C ;Γ0 $
� P � Γ; ∆ (O.5)

Some remarks are due about each part of the sequent and their meaning.

1. P is a process without predicate annotations;
2. Γ0 is a global assertion assignment assignment;
3. Γ maps a subset of the shared names in dompΓ0q to finite sets of local assertions,

writing Γ $ a : xT @py if ∆ maps a to a set containing xT @py; (intuitively, Γ $
a : xT @py states that P has engaged in the session initiating at a as participant p).

4. ∆ is an endpoint assertion assignment;
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The rules in Figure 15 (cf. page 72) induce an algorithm that takes in input Γ0, C
and P and generates “most general assertions” Γ and ∆ for P under the conditions C
and assignement Γ0. We remark that the principal general assertion of a program may
not exist, in which case the algorithm is supposed to return ’error’.

Without loss of generality, we assume the standard bound variable convention for
interaction and assertion variables. The generation rules use the (resp. parametric) merg-
ing to merge assertions, in branching and parallel composition (resp. in conditional).

Generation Rules The generation rules are given in Figure 15, page 72. Each rule
is naturally obtained, where under the left-hand side environment we derive the right-
hand side principal formulae for processes inductively. Because the target is program
phrases, we do not need composition of linear channels in the parallel composition,
which is crucial for the tractable derivation of principal formulae. We illustrate some
of the key rules. The first rule is for session initialisation at a shared name. We only
present the accept rule, since the dual rule is similar.

C ;Γ0 $
� P � Γ; ∆, s̃ : T @p T � Γ0paqæ p

C ;Γ0 $
� a[p]ps̃q.P � ∆

[ACC]

Intuitively, in order to generate the principal assertion for a program engaging in a ses-
sion a as participant p, the assumption first construct the corresponding session types,
and checks that such types is a refinement of the projection on p of the global type
assigned to a by Γ0 (namely what T � Γ0paqæ p).

The generation rule for the output prefix is

C ;Γ0 $
� P � Γ; ∆, s̃ :T @p

C ;Γ0 $
� sk!xẽypṽq;P � Γ; ∆, s̃ :k!pṽqtC ^ ṽ� ẽu;T @p

[SND]

Namely, when expressions ẽ are sent, the algorithm computes the most general assertion
of the continuation and prefixes it with the corresponding send assertion where the
computed predicate is the context C in conjunction with the equation ṽ � ẽ that is the
strongest constraints on the interaction variables ṽ.

Another remarkable rule for the generation algorithm is the rule for the input action
for which we introduce the notation DṽpT q for the existential closure of interaction
variables on assertions as follows:

D ˜̃vpT q �

$'''&
'''%

k!pũ : S̃qtDṽ.Au;T k!pũ : S̃qtAu;T
k`ttDṽ.A jul j : T ju jPI k`ttA jul j : T ju jPI

µtxẽypũ : S̃qtDṽ.Au.T µtxẽypũ : S̃qtAu.T
T otherwise

Note that only the predicates for output, selection, and recursion are affected, hence the
following proposition holds.

Proposition O.1. For any assertion T and any vector of pairwise dijoint interaction
variables ṽ

T � Dṽ.pT q
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Proof. Trivially from the definition of refinement and existential closure. l

The generation rule for the input prefix introduces predicate variables as follows:

C ^Φpṽq;Γ0 $
� P � Γ; ∆, s̃ :T @p

C ;Γ0 $
� sk?pṽq;P � Γ; D ˜̃vp∆q, s̃ :k?pṽqtΦpṽqu;T @p

[RCV]

where D ˜̃vp∆q � ta : D ˜̃vpT @pq@p : T @p P ∆paqu. Intuitively, predicate variables
“mark” interaction variables of input prefixes with an unknown constraint φ (supposed
to be freshly introduced at each application of [RCV]), see §O.2 for further illustration.

The variable rule is simple: we do not introduce any assumption except “unknown”
(i.e. assertion variable) and later close it in the recursion rule.

�

C ;Γ0,X : pṽ : S̃qtXxṽy@p$� Xxẽs̃1..s̃ny �H; s̃ : tXxũ : ũ� ẽ ^ Cy@p
[VAR] (O.6)

Above we present the rule for a single session for brevity. Note the rule is indeed
strongest since whatever assertion we use to instantiate t, under that assumption, we
have the strongest assertion for the session at s̃. This t is closed by the recursion rule:

C ;Γ0,X : pṽ : S̃qtXxṽy@p$� P � ∆, s̃ :T @p

C ; Γ0 $
� µXxẽypṽs̃1..s̃nq.P � Γ;∆, s̃ : µtXxũ : ũ� ẽypṽqttrueu.T @p

[REC] (O.7)

That this gives a strongest assertion, is proved in Lemma O.14, the last case.
Now we illustrate how this generation rule leads to completeness. Suppose, for a

visible program P,
true;Γ0 $

� P � ∆ (O.8)

is a sequent derivable by the generation rules. If Γ conforms to Γ0 (i.e. if T @p P Γpaq
then we have T � Γ0paqæp) and

Γ0 |ù P�∆
1 (O.9)

then we can always find a substitution of predicate variables to concrete ones, say ξ,
such that

∆ξ� ∆
1 (O.10)

which easily leads to completeness for visible processes.

Convention O.9. Hereafter, we assume that ξ maps predicate variables φpṽq to asser-
tions A such that fnpAq � ṽ and endpoint assertion variables t to well-asserted endpoint
assertions.

O.6 Completeness
In the completeness proof below we use the convention in § O.5 and several observa-
tions. The first Lemma is obvious from the definition.

Lemma O.10. C ,Γ $ext P�∆ � Cξ,Γξ $ P�∆ξ. for each ξ such that Γξ and ∆ξ

are well-asserted.
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Below we note the transitions induced by assertions are deterministic, hence can be
completely characterised by its partial traces.

Lemma O.11. Let T be a closed recursive assertion and write T piq for the i� th un-
folding of T (starting from End). Then the union of all partial finite traces of T coincide
with the union of all partial finite traces of all T piq.

Proof. First for each i we immediately have the inclusion of the partial finite traces of
T piq in the partial traces of T . Next any partial finite trace of T is surely inside T piq,
thus as required. l

We now show the generation rules are provable by the extended validation rules (hence
in particular sound). This provablity result later leads to completeness.

Lemma O.12 (Provability by Validation Rules). If C ;Γ0$
� erasepPq� ∆, then C ,Γ0$

ext

P�∆.

Proof. We show each generation rules in Figure 15 is an instance of the corresponding
validation rule in Figure 14: if the assumption is read as a sequent with $ext rather than
$�, then the same holds for the conclusion, which is enough for the soundness of the
each rule in Figure 14.

[SND] By inductive hypothesis

C ,Γ0 $
ext P�∆, s̃;T @p (O.11)

and by Substitution Lemma, we have

C rẽ{ṽs,Γ0 $
ext Prẽ{ṽs�∆rẽ{ṽs (O.12)

Also,
C � pC ^tṽ� ẽuqrẽ{ṽs (O.13)

trivially holds. Hence we can apply the extended validation rule [SND] and obtain
the thesis.

[RCV/RCVNAME] Easy by inductive hypothesis and straightforward application of ex-
tended validation rule [RCV]. For the existential elimination, observe that:
1. all occurrences of the abstracted variable are in send/select and recursion in-

stantiation; and
2. all recursion instantiation is used in send/select inside the recursion body.

Thus existential elimination only anti-refines the given assertion, hence done.
[SNDNAME] By inductive hypothesis C ,Γ0 $

ext P�∆, s̃;T @p; since the assertion gen-
erated by [SNDNAME] is C itself, we can apply [SND] of extended validation and
obtain the thesis.

[SEL] The proof follows the case [SND] considering that C � C is a tautology. Note that
I in the validation rule is the singleton t ju.

[BRA] As in [RCV].
[ACC] Immediate.
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[MCAST] By inductive hypothesis from C ;Γ0 $
� erasepPq � ∆, s̃ : T @1 it follows

C ,Γ0 $
ext P�∆, s̃ : Γpaqæ1@1 (O.14)

where Γpaqæ1� T . Hence, by [MCAST]of extended validation, we have

C ,Γ0 $
ext ar2..nsps̃q.P�∆ (O.15)

which, because we have Γ0,a : xT @1y � Γ0, is equivalent to,

C ,Γ0,a : xT @1y $ext P�∆ (O.16)

as required.
[IF] By inductive hypothesis we have

C ^ e$ext P�∆1 (O.17)

and
C ^ e$ext Q�∆2. (O.18)

By Lemma O.8 we know

∆1_∆2 � ∆1 ^ ∆1_∆2 � ∆2 (O.19)

Therefore we have both
C ^ e$ext P�∆1_∆2 (O.20)

and
C ^ e$ext Q�∆1_∆2 (O.21)

by applying rule [CONSEC]. By applying the extended validation rule [IF]we are done.
[CONC] Similar to [IF], applying Lemma O.6.
[INACT, HIDE, VAR] Immediate from the corresponding validation rules.
[REC] To prove this case, we consider substitution instance of the assumption of the rule,

with t instantiated into the corresponding recursive assertion in the conclusion. By
this we can apply the original (validation) rule for recursion, hence as required.

[DEL-OUT/DEL-OUT] Trivial by inductive hypothesis and straightforward application of
extended validation rule [SDEL] (resp. [RDEL]).

This exhausts all cases. l

If Γ0 (resp. Γ) is an assignment of shared names to sets of located endpoint as-
sertions (resp. global assertions) and ∆ and ∆1 map tuples of sessions channels to lo-
cated endpoint assertions, we write xΓ0,∆y � xΓ,∆1y if (1) Γ0 conforms to Γ and (2)
∆ps̃q � ∆1ps̃q for all s̃ P domp∆q.

Definition O.13. We say that ξ is a concretising substitution if no predicate variables
occur in its codomain.

Lemma O.14 (Completeness via Refinement). Let C ;Γ0 |ù P�∆0 be an open judge-
ment. If C ;Γ0 $

� erasepPq � ∆ then there exists a concretising substitution ξ such that,
for any closing substitution σ such that Cσ is true,
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– ∆ξσ is well asserted, and
– ∆ξσ� ∆0, (thus Cξ;Γ0 $ P�∆0).

Proof. By induction on the size of the process (we use the size of processes rather than
direct structural induction since we need to reason up to substitutions, even though we
can in effect use rule induction). In the proof below, we use typed labelled transition for
open processes, which stands for the family its instantiations into closed processes as
defined before.

[ACC/MCAST] We show [ACC]. The proof for [MCAST] is analogue. By hypothesis:

C ;Γ0 |ù a[p]ps̃q.P�∆0 (O.22)

C ;Γ0 $
� a[p]ps̃q.erasepPq � ∆ (O.23)

By O.22 and one step of conditional simulation

C ;Γ0 |ù P�∆0, s̃ : Γ0paqæp@p. (O.24)

By inductive hypothesis

C ,Γ0 $
� erasepPq � ∆, s̃ : T @p where Γ� Γ

1,a : T @p. (O.25)

and
xΓ1,∆, s̃ : T @py � xΓ0,∆0, s̃ : Γ0paqæp@py (O.26)

which implies T � Γ0paqæp and ∆� ∆0 as required.
[SND] Assume we have:

C ;Γ0 |ù sk!xẽypṽqtAu;P�∆0, s̃ : k!pṽ : S̃qtAu;T0 @p (O.27)

C ,Γ0 $
� sk!xẽypṽq;erasepPq � ∆, s̃ : k!pṽ : S̃qtC ^ ṽ� ẽu;T @p. (O.28)

Below for brevity we use asserted labelled transition for open processes, which
stands for the family its instantiations into closed processes as defined before. We
do not mention these substitutions since for each substitution the same reasoning
applies. We focus on the local assertion at s̃. Below� is extended to open assertions
First, from (O.27), we consider one-step (send) transition for the send action in
question, from (in fact under a closing substitution)

Tbefore, model � k!pṽ : S̃qtAu;T0 @p (O.29)

to
Tafter, model � T0rñ{ṽs@p (O.30)

where ñ are the constants which satisfy A, such that

Tbefore, model
k!xñy
Ñ Tafter, model (O.31)

Second, by C ^tṽ� ẽu � A, the local assertion in (O.28) at s̃, i.e.

Tbe f ore,gen � k!pṽ : S̃qtC ^ ṽ� ẽu;T @p (O.32)
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has the corresponding action, reaching:

Tafter, gen � T rñ{ṽs@p (O.33)

such that
Tbefore, gen

k!xñy
Ñ Ta f ter,gen. (O.34)

Third, through (each instantiation of) the corresponding transition, the process itself
can also reach a term smaller in size, as:

sk!xẽypṽq;P
sk!xñy
Ñ Prñ{ṽs (O.35)

Note this process has the local assertion (O.33) at s̃ (while at other linear/shared
channels being invariant), which is direct from the rule (here we use the observa-
tion that the generation rules are closed under substitution, which is immediate by
their shape). Thus, by induction hypothesis, (each substitution instance of) (O.33)
is stronger than (O.30), which, when combined for all closing substitutions, im-
plies (possibly open) (O.33) refines (possibly open) (O.30). Thus by the definition
of refinement we know (O.32) refines (O.29), as required.

[SEL/SND-DEL] Similar to [SND].
[RCV] If the following two judgments hold

C ;Γ0 |ù sk?pṽqtAu;P�∆0, s̃ : k?pṽqtAu;T0 @p (O.36)
C ;Γ0 $

� sk?pṽq;erasepPq � Dṽp∆q, s̃ :k?pṽqtΦpṽqu;T @p (O.37)

Let σ � rñ{ṽs be a substitution such that C ^Aσ holds; by conditional simulation,
(O.36) implies that

C ^Aσ;Γ0 |ù Pσ�∆0, s̃ : T0σ@p (O.38)

holds. Also, by definition of generation rule, the following judgment must be used
in the derivation of (O.37)

C ^Φpṽq;Γ0 $
� erasepPq � ∆, s̃ :T @p (O.39)

where Φpṽq is a fresh predicate variable.
Noticing that applying15 substitution rA{Φpṽqs to (O.39), by inductive hypothesis
we can conclude that there is a substitution ξ such that p∆, s̃ :T @pqrA{Φpṽqsξσ is
well-asserted, and that p∆, s̃ : T @pqrA{Φpṽqsξσ� ∆0, s̃ : T0σ@p. Since,

pk?pṽqtΦpṽqu;T @pqrA{Φpṽqsξσ� k?pṽqtAu;T rA{Φpṽqsξσ@p

then trivially

k?pṽqtAu;T rA{Φpṽqsξσ@p � k?pṽqtAu;T0σ@p

To conclude the proof, we have to show that pDṽp∆qqrA{Φpṽqsξσ�∆0; this is equiv-
alent to show that the predicates in output, select, and recursion types in Dṽp∆q im-
plies the corresponding predicates in ∆ under the substitution rA{Φpṽqsξσ. In fact,

15 The substitution of predicate variables is syntactic and not capture-avoiding (e.g., Dv.x ¡ 0 ^
Φpvqrv� x{Φpvqs yields Dv.x¡ 0^ x� v.
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the assertions in Dṽp∆q have the same shape as those in ∆ but for the predicates
in output, select, and recursion types where variables ṽ get existentially quantified.
For each of this predicates, say B, we have to prove that

DṽpBqrA{Φpṽqsξσ ùñ BrA{Φpṽqsξσ (O.40)

Assume that (O.40) does not hold, then we have BrA{Φpṽqsξσ is false while the
hypothesis of (O.40) holds. Two cases are possible: either Φpṽq occurs in B or not.
In the former case, by inspection of the generation rules, Φpṽq has to occur in a con-
junction and not under any negation; hence, under the substitution rA{Φpṽqsξσ it
would be equivalent to true. For the same reason, the occurrences of Φpṽq in DṽpBq
would be equivalent to true as Φpṽq is replaced by A and Arñ{ṽs holds by hypothe-
sis. This implies that also the antecedent of (O.40) is false, hence the contradiction.
If Φpṽq does not occur in B, then hypothesis and conclusion of (O.40) are equiva-
lent, hence we get a contradiction.

[RCV-DELL] Similar to [RCV].
[IF] Suppose that C ;Γ0 |ù if e then P else Q�∆ and C ,Γ0$

� if e then erasepPq else erasepQq� ∆0.
Then we have

C ^ e;Γ0 |ù P�∆ and C ^ e;Γ0 |ù Q�∆ (O.41)
C ^ e$� P � ∆

1
0 and C ^ e$� Q � ∆

2
0 (O.42)

where ∆10_
e ∆20 � ∆0.

The thesis easily follows by the inductive hypothesis (as both ∆10 and ∆20 are well-
asserted and refine ∆ under some substitutions hence we can invoke Lemma O.8).

[CONC] Assuming C ;Γ |ù P1 | P2�∆1,∆2 with ∆1 and ∆2 disjoint, we have

C ;Γ |ù P1�∆1 and C ;Γ |ù P2�∆2

By inductive hypothesis

C ;Γ � erasepP1q $
�

∆
1
1 and C ;Γ � erasepP2q $

�
∆
1
2

where ∆11 � ∆1 and ∆12 � ∆2. Therefore ∆11,∆
1
2 � ∆1,∆2.

[INACT] Immediate.
[HIDE] By definition of visible process, each hide is followed by a send of the hidden

name. The proof proceeds as in the case of [SND]. Assumptions:

C ;Γ |ù pνaqsk!pvqxaytAu;P�∆, s̃ : k!pv :SqtAu;T @p (O.43)

C ,Γ$� pνaqsk!pvqxaytAu;erasepPq � ∆0, s̃ : k!pṽ : S̃qtC ^ ṽ� ẽu;T0 @p. (O.44)

By (O.43), note that for each σ |ù C we have σ 9v ÞÑ eσ |ù Aσ (here |ù denotes
logical interpretation) and

C ;Γσ |ù Pσ�∆, s̃ : T ra{vsσ@p. (O.45)

Hence for Substitution Lemma (Lemma L.2) for each substitution σ

C ;Γ |ù P�∆, s̃ : T ra{vsσ@p. (O.46)
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By assumption (O.44) and construction rule

C ,Γ$� erasepPq � ∆0, s̃ : T0 @p. (O.47)

By inductive hypothesis

∆0, s̃ : T0 @p � ∆, s̃ : T ra{vs@p (O.48)

which implies the requested result by

C � Ara{vs i.e.,C ^tv� au � A from (O.43). (O.49)

[VAR] Straightforward.
[REC] We first present an informal argument: we know by induction the assumption

gives the strongest asseertion. Hence its instantiation by an appropriate substitu-
tion for the assertion variables concerned, gives the strongest assertion (recall these
variables are introduced at the time of the [VAR]). If the recursive process in the
conclusion ever satisfies an assertion, then P in the assumption also satisfies the as-
sertion if the assertion variables are instantiated into the corresponding recursive
asseritions (through the unfolding). Applying this observation to both the satisfying
assertion and the strongest assertion, we can reason, for each finite step, transitions
from (the finite unfoldings of) the strongest assertion refines (the finite unfoldings
of) the satisfying assertion.

Now write �n for the refinement considered up to the n-length finite traces (since
transition is deterministic, considering traces and relating each node suffices). We
show for each n, the principal assertion refines a(ny) satisfied assertion. We carry
out the argument with a single target session for legibility, which immediately ex-
tends to the n cases. Assume:

C ;Γ |ù µXxẽ, s̃ypṽ, s̃q.P� s̃ : T @p (O.50)

and further assume:

C ;Γ$� µXxẽ, s̃ypṽ, s̃q.erasepPq� s̃ : T0 @p (O.51)

where by construction
T0 � µtpṽqxẽy.T1 (O.52)

Now by construction we can also assume T is also a recursive assertion. By instan-
tiation, we observe:

C ;Γ0,X : pṽ : S̃qtxṽyσ@p$� erasepPq � ∆, s̃ :T p1q
0 @p (O.53)

where T p1q is the first unfolding of T0 and σ is rEnd{ts. Since P has the same initial
finite transitions (up to reaching X) as µXxẽ, s̃ypṽ, s̃q.P, this means up to some finite
n, we have

T p1q
0 �n T (O.54)
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Because �i is contravariant under substitutions, (O.56) serves as a basis, and by
instantiating (O.53) by them, we obtain:

T p2q
0 �n�n1 T pn1 ¥ 1q (O.55)

and so on, obtainin for any large m, we have

T pmq
0 �m T (O.56)

By the determinacy of transitions induced by assertions, T0 is completely charac-
terised by the finite traces of YiT piq

0 . Thus we obtain:

T0 �n T , (O.57)

as required.

This exhausts all cases. l

P Full Validation Rules (with Delegation)
Figure 14 offers the full validation rules, adding to the rules in Figure 5 (in Page 9) two
rules for delegation.

Q Generation Rules
Figure 15 presents the full generation rules including those for delegation.

– We assume the standard bound name convention. In particular, each binding in-
troduced in the conclusion indicates that the corresponding bound variables/names
only occur in its scope.

– For legibility we separate the send/receive rules to those which do not contain name
passing and those which only pass names.

– In [RECV], pDvq∆ prefix Dv to each predicate inside t and u, i.e. if we have tAu then
it is replaced by tpDvqAu then it sets

– In [DEL-OUT] the assignment in the conclusion is defined iff ∆ does not assign any
local assertion located at p1 for the session channels in t̃.

– Following Convention O.1, we assume the shape of recursions for the same sessions
or the sessions for the same shared type of the same role are always identical.
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C ;Γ0 $
� P � ∆, s̃ : T @p Γ0paqæ p � T

C ;Γ0 $
� a[p]ps̃q.P � ∆

[ACC]

C ;Γ0 $
� P � ∆, s̃ :T @1 Γ0pxqæ1 � T

C ;Γ0 $
� P � ∆

[MCAST]

C ;Γ0 $
� P � ∆, s̃ :T @p

C ;Γ0 $
� sk!xẽypṽq;P � ∆, s̃ :k!pṽqtC ^ ṽ� ẽu;T @p

[SND]

C ^Φpṽq;Γ0 $
� P � ∆, s̃ :T @p

C ;Γ0 $
� sk?pṽq;P � Dṽp∆q, s̃ :k?pṽqtΦpṽqu;T @p

[RCV]

C ;Γ0 $
� P � ∆, s̃ :T @p

C ;Γ0 $
� sk!xxt̃yypṽ : T 1@p1q;P � ∆, s̃ :k!pṽ : T 1@p1qtCu;T @p, t̃ : T 1@p1

[DEL-OUT]

C ^Φpṽq;Γ0 $
� P � ∆, s̃ :T @p, ṽ :T 1@p1 T 1 � T 2

C ;Γ0 $
� sk?ppṽ : T 2@p1qq;P � ∆, s̃ :k?pṽ : T 2@p1qtΦpṽqu;T @p

[DEL-IN]

C ;Γ0 $
� P � ∆, s̃ :T @p Γ0paq � G

C ;Γ0 $
� sk!xaypvq;P � ∆, s̃ :k!pv : xGyqtCu;T @p

[SNDNAME]

C ^Φpvq;Γ0,v : xGy $� P � ∆, s̃ :T @p
C ;Γ0 $

� sk?pv : xGyq;P � ∆, s̃ :k?pv : xGyqtΦpvqu;T @p
[RCVNAME]

C ;Γ0 $
� P � ∆, s̃ :T @p

C ;Γ0 $
� sk � l;P � ∆, s̃ :k`tCul :T @p

[SEL]

C ^Φipṽiq;Γ0 $
� Pi � ∆i, s̃ :Ti @p @i P I

C ;Γ0 $
� sk � tli : PiuiPI � _i t∆iuiPI , s̃: k&ttΦipṽiquli : Tiu@p

[BRA]

C ^ e;Γ0 $
� P1 � ∆1 C ^ e;Γ0 $

� P2 � ∆2
C ;Γ0 $

� if e then P else Q � ∆1_
e

∆2
[IF]

C ;Γ0 $
� Pi � ∆i pi� 1,2q

C ;Γ0 $
� P1 | P2 � ∆1,∆2

[CONC] ∆ end only
C ;Γ0 $

� 0 � ∆
[INACT]

C ; Γ0,a : xGy $� P � ∆

C ; Γ0 $
� pνa : xGyqP � ∆

[HIDE]

�
C ;Γ0,X : pṽ : S̃qtX

1 xṽy@p1..tX
n xṽy@pn $

� Xxẽs̃1..s̃ny � Z1¤i¤n s̃i : tX
i xũ : ũ� ẽ ^ Cy@pi

[VAR]

C ;Γ0,X : pṽ : S̃qtX
1 xṽy@p1..tX

n xṽy@pn $
� P � ∆,Z1¤i¤ns̃i :Ti @pi

C ; Γ0 $
� µXxẽypṽs̃1..s̃nq.P � ∆,Z1¤i¤ns̃i : µtX xũ : ũ� ẽypṽqttrueu.Ti @pi

[REC]

Fig. 13. Generation rules for programs
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C ;Γ$ P�∆, s̃ :pΓpaqæpq@p p 1
C ;Γ$ a[p]ps̃q.P�∆

[MACC]

C ;Γ$ P�∆, s̃ :pΓpaqæ1q@1
C ;Γ$ a[2..n]ps̃q.P�∆

[MCAST]

Γ$ C � Arẽ{ṽs C ;Γ$ Prẽ{ṽs�∆, s̃ :T rẽ{ṽs@p Γ$ ẽ : U
C ;Γ$ sk!xẽypṽ : UqtAu;P�∆, s̃ :k!pṽqtAu;T @p

[SND]

C ^A;Γ, ṽ : U $ P�∆, s̃ :T @p
C ;Γ$ sk?pṽ : UqtAu;P�∆, s̃ :k?pṽ : UqtAu;T @p

[RCV]

C ;Γ$ P�∆, s̃ :T @p

Γ$ sk!xxt̃yypṽ : T 1@qqtAu;P�∆, s̃ :k!pṽ : T 1@qqtAu;T @p, t̃ :T 1@q
[SDEL]

C^A;Γ$ P�∆, s̃ :T @p, ṽ :T 1@q

C ;Γ$ sk?ppṽ : T 1@qqqtAu;P�∆, s̃ :k?pṽ : T 1@qqtAu;T @p
[RDEL]

Γ$ C � A j C ;Γ$ P�∆, s̃ :T j @p j P I
C ;Γ$ sk � tA jul j : P�∆, s̃ :k`ttAiuli :TiuiPI @p

[SEL]

C ^Ai;Γ$ Pi�∆, s̃ :Ti @p @i P I
C ;Γ$ sk � ttAiuli : PiuiPI�∆, s̃ :k&ttAiuli :TiuiPI @p

[BRA]

C ^ e;Γ$ P�∆ C ^ e;Γ$ Q�∆

C ;Γ$ if e then P else Q�∆
[IF]

C ;Γ$ P�∆ C ;Γ$ Q�∆
1

C ;Γ$ P | Q�∆,∆1
[CONC] ∆ end only

C ;Γ$ 0�∆
[IDLE]

C ; Γ, a :G $ P � ∆ a R fnpC ,Γ,∆q
C ; Γ$ pνa : GqP � ∆

[HIDE]

T1rẽ{ṽs, . . . ,Tnrẽ{ṽs well-asserted and well-typed under Γ, ṽ : U
C ; Γ, X : pṽ : UqT1 @p1..Tn @pn $ Xxẽs̃1..s̃ny� s̃1 :T1rẽ{ṽs@p1, .., s̃n :Tnrẽ{ṽs@pn

[VAR]

C ; Γ, X : pṽ : UqT1 @p1..Tn @pn $ P� s̃1 :T1 @p1..s̃n :Tn @pn

C ; Γ$ µXxẽs̃1..s̃nypṽs̃1..s̃nq.P� s̃1 :T1rẽ{ṽs@p1..s̃n :Tnrẽ{ṽs@pn
[REC]

C 1;Γ$ P�∆
1 C � C 1

∆
1 � ∆

C ;Γ$ P�∆
[CONSEQ]

Fig. 14. Validation rules for program phrases with delegation
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C ;Γ0 $
� P � ∆, s̃ : T @p Γ0paqæ p � T

C ;Γ0 $
� a[p]ps̃q.P � ∆

[ACC]

C ;Γ0 $
� P � ∆, s̃ :T @1 Γ0pxqæ1 � T

C ;Γ0 $
� P � ∆

[MCAST]

C ;Γ0 $
� P � ∆, s̃ :T @p

C ;Γ0 $
� sk!xẽypṽq;P � ∆, s̃ :k!pṽqtC ^ ṽ� ẽu;T @p

[SND]

C ^Φpṽq;Γ0 $
� P � ∆, s̃ :T @p

C ;Γ0 $
� sk?pṽq;P � Dṽp∆q, s̃ :k?pṽqtΦpṽqu;T @p

[RCV]

C ;Γ0 $
� P � ∆, s̃ :T @p

C ;Γ0 $
� sk!xxt̃yypṽ : T 1@p1q;P � ∆, s̃ :k!pṽ : T 1@p1qtCu;T @p, t̃ : T 1@p1

[DEL-OUT]

C ^Φpṽq;Γ0 $
� P � ∆, s̃ :T @p, ṽ :T 1@p1 T 1 � T 2

C ;Γ0 $
� sk?ppṽ : T 2@p1qq;P � ∆, s̃ :k?pṽ : T 2@p1qtΦpṽqu;T @p

[DEL-IN]

C ;Γ0 $
� P � ∆, s̃ :T @p Γ0paq � G

C ;Γ0 $
� sk!xaypvq;P � ∆, s̃ :k!pv : xGyqtCu;T @p

[SNDNAME]

C ^Φpvq;Γ0,v : xGy $� P � ∆, s̃ :T @p
C ;Γ0 $

� sk?pv : xGyq;P � ∆, s̃ :k?pv : xGyqtΦpvqu;T @p
[RCVNAME]

C ;Γ0 $
� P � ∆, s̃ :T @p

C ;Γ0 $
� sk � l;P � ∆, s̃ :k`tCul :T @p

[SEL]

C ^Φipṽiq;Γ0 $
� Pi � ∆i, s̃ :Ti @p @i P I

C ;Γ0 $
� sk � tli : PiuiPI � _i t∆iuiPI , s̃: k&ttΦipṽiquli : Tiu@p

[BRA]

C ^ e;Γ0 $
� P1 � ∆1 C ^ e;Γ0 $

� P2 � ∆2
C ;Γ0 $

� if e then P else Q � ∆1_
e

∆2
[IF]

C ;Γ0 $
� Pi � ∆i pi� 1,2q

C ;Γ0 $
� P1 | P2 � ∆1,∆2

[CONC] ∆ end only
C ;Γ0 $

� 0 � ∆
[INACT]

C ; Γ0,a : xGy $� P � ∆

C ; Γ0 $
� pνa : xGyqP � ∆

[HIDE]

�
C ;Γ0,X : pṽ : S̃qtX

1 xṽy@p1..tX
n xṽy@pn $

� Xxẽs̃1..s̃ny � Z1¤i¤n s̃i : tX
i xũ : ũ� ẽ ^ Cy@pi

[VAR]

C ;Γ0,X : pṽ : S̃qtX
1 xṽy@p1..tX

n xṽy@pn $
� P � ∆,Z1¤i¤ns̃i :Ti @pi

C ; Γ0 $
� µXxẽypṽs̃1..s̃nq.P � ∆,Z1¤i¤ns̃i : µtX xũ : ũ� ẽypṽqttrueu.Ti @pi

[REC]

Fig. 15. Generation rules for programs

72


