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Abstract

We introduce container functors as a representation of data types providing a new
conceptual analysis of data structures and polymorphic functions. Our development
exploits Type Theory as a convenient way to define constructions within locally cartesian
closed categories. We show that container morphisms can be full and faithfully interpreted
as polymorphic functions (i.e. natural transformations) and that in the presence of W-types
all strictly positive types (including nested inductive and coinductive types) give rise to
containers.
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1 Introduction

One of the strengths of modern functional programming languages like Haskell or
CAML is that they support recursive datatypes such as lists and various forms of
trees. When reasoning about functional programs we commonly restrict our view
to total functions and view types as sets. David Turner called this elementary strong
functional programming (Turner, 1996), though total might have been a better
word. Not all recursive types make sense in this view, e.g. we can hardly understand
D∼= D→ D as a set. Moreover, even if we restrict ourselves to well behaved types
like lists over A which are a solution to ListA ∼= 1 + A×ListA, in the total setting
we have to decide which fixpoint we mean. There are two canonical choices:

finite lists correspond to the initial algebra of the signature functor. We denote this
as ListA = µX . 1 + A×X .

potentially infinite lists correspond to the terminal coalgebra of the signature
functor. We denote this as List∞ A = νX . 1 + A×X .
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In this paper we investigate strictly positive types, these are types which can
be formed using 0, 1, +, ×, +, →, µ , ν with the restriction that types on
the left side of the arrow have to be closed with respect to. type variables.
Examples of strictly positive types are: natural numbersN≡ µX . 1+X , binary trees
BTreeA≡ µX . A + X×X , streams StreamA≡ νX . A×X , ordinal notations Ord≡
µX . 1 + X +N→ X = µY . 1 +Y + (µX . 1 + X)→ Y , and Rose trees RTree ≡
µY . ListY = µY . µX . 1 + X×Y . Intuitively, these types can be understood as sets
of trees (potentially infinitely branching), which have finite and infinite parts.

Our central insight is that all strictly positive types can be represented as
containers, which can be viewed as a normal form for those types. A 1-ary
container is given by a type of shapes S and a family of position types indexed by S:
s : S ` Ps, we write this as (s : S . Ps) or just (S . P). The extension of a container
JS . PK is a functor, which on objects is given by JS . PKX = ∑s : S.(Ps→ X),
where ∑ is the infinite sum or dependent product. I.e. for a type X an element of
∑s : S.(Ps→ X) is a pair (s, f ) where s : S is a shape and f : Ps→ X is a function
which assigns elements of X to all positions for that shape. E.g. List is represented
by the container (n : N . Finn) where Finn = {0,1, . . . ,n− 1}, i.e. a list is given
by the length (its shape) and a function which assigns elements to all the positions
in the list. List∞ is represented by (n : N∞ . Fin′ n) where N∞ ≡ νX .1 + X are the
conatural numbers which extend the usual natural numbers by an infinite element
∞ = 1+∞ and Fin′ extends Fin by Fin∞ =N, that is the positions of an infinite list
are the natural numbers. We show (corollary 5.1) that all strictly positive types can
be represented as containers — we leave it as an exercise for the reader to work out
the representation of rose trees.

Morphisms between functorial datatypes are polymorphic functions, in categorical
terms natural transformations. We define morphisms between containers which
represent polymorphic functions: given two containers (S . P) and (T . Q) a
morphism is given by a pair (u,g) where

• u : S→ Q is a function on shapes,
• g : ∏s : S.Q(us)→ Ps is a function which assigns to every position in the target

a position in the source.

Each container morphism gives rise to a natural transformation, for example
the reverse function revA : ListA → ListA is represented by (id :N→ N, r :
∏n :N.(Finn→ Finn)) where rni = n− 1− i. The function on positions has to
be defined contravariantly because we can always assign where an element of the
target structure comes from but not vice versa. E.g. consider the tail function on lists
which is represented by (λn.n−̇1, λ i.i+1) where −̇ is cutoff subtraction. This can
be visualised as
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tail of list

x0 x1 x2 7→ x1 x2

We show that every polymorphic function can be represented as a container
morphism (theorem 3.5), i.e. the representation functor J−K is full and faithful.

One of the main applications of containers is generic programming: our
representation gives a convenient way to program with or reason about datatypes
and polymorphic functions. We have already exploited this fact in our work on
derivatives of datatypes which uses containers to develop an important idiom in
functional programming to support generic editing operations on datatypes (Abbott
et al., 2003b, 2004c).

We use here the language of extensional Type Theory with W-types (MLWext,
see Aczel (1999)) as the internal language of locally cartesian closed categories
with disjoint coproducts and initial algebras of the functors of the form F X =

∑s : S.(Ps→ X), i.e. unary container functors. We show that W -types are sufficient
to represent all strictly positive types allowing arbitrary nestings of µ and ν ,
corollary 5.1. Thus, we improve on our previous results in two ways:

• In Abbott et al. (2003a) we only considered µ and we required that the ambient
category has infinite limits and colimits, which rules out many interesting
examples (e.g. realisability categories).

• In Abbott et al. (2004a) we show that nested µ-types can be represented using
W -types, but did not consider ν-types.

The extension to ν-types is non-trivial: it requires to show proposition 4.6 which
is stronger than the corresponding proposition 6.1 in Abbott et al. (2004a) — we
show that we have an initial solution and not just an isomorphism — and it requires
the reduction of M-types (the dual of W -types) to M-types — we achieve this in
proposition 4.5.

1.1 Related work

The term container is commonly used in programming to refer to a type (or its
instances) which can be used to store data. Hoogendijk and de Moor (2000) develop
a theory of container types using a relational categorical setting. We share many
underlying intuitions and motivations but our framework is based on functions and
inspired by intuitionistic Type Theory and it is not clear to use whether there is a
more formal relation between the two approaches.

Our work is clearly related to the work of Joyal (1986) on species and analytical
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functors whose relevance for Computer Science has been recently noticed by
Hasegawa (2002). Indeed, if we ignore the fact that analytical functors allow
quotients of positions, i.e. if we consider normal functors, we get a concept which is
equivalent to a container with a countable set of shapes and a finite set of positions.
Hence containers can be considered as a generalisation of normal functors of
arbitrary size.

Dyckhoff and Tholen (1987) and Johnstone (1991) introduce the notion of partial
product which is roughly equivalent to our notion of a container functor, this
is originally attributed to Pasynkov (1965) who worked on algebraic topology.
However, they use this concept in a different setting and do not introduce
morphisms of containers or show the closure properties we establish in this paper.

Dybjer (1997) has shown that non-nested inductive types can be encoded with W-
Types. His construction is a sub-case of 5.1 only covering initial algebras of strictly
positive functors without nested occurrences of µ or ν . Apart from extending this to
nested uses of µ and ν our work also provides a detailed analysis of the categorical
infrastructure needed to derive the result.

Recently Gambino and Hyland (2004) have put our results in a more general
context and indeed their theorem 12 generalises our proposition 4.6 to dependently
typed containers, which they call dependent polynomial functors. Similarly, their
theorem 14 is closely related to our proposition 4.3. We also learnt from their work
that this construction is related to the proof in Moerdijk and Palmgren (2000) that
W-types localise to slice categories.

After learning about our proposition 4.8 that M-types are derivable from W-types,
van den Berg and de Marchi (2004) have given an independent proof of this fact
using a different methodology.

1.2 Plan of the paper

We review the type theoretic and corresponding categorical infrastructure in section
2. Then in section 3 we formally introduce the category of container and prove some
basic properties such as the representation theorem and closure under polynomial
operations. The core of the paper is section 4 where we show that container types
are closed under µ and ν and that M-types are derivable from W-types. The fairly
technical proofs of the theorems in this section are relegated to the appendix. We
close with conclusion and discuss further work.
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2 Background

2.1 The Categorical Semantics of Dependent Types

This paper can be read in two ways:

(1) as a construction within the extensional Type Theory MLWext (see Aczel,
1999) with finite types, W-types but no universes;

(2) as a construction in the internal language of locally cartesian closed
categories with disjoint coproducts initial algebras of the functors of the form
F X = ∑s : S.(Ps→ X), i.e. W-types. We call those categories Martin-Löf
categories

The key idea to this dual view is to regard an object B ∈C/A as a family of objects
of C indexed by elements of A, and to regard A as the context in which B regarded
as a type dependent on A is defined. The details of this construction can be found
in Streicher (1991), Hofmann (1994), Jacobs (1999) and Abbott (2003).

Elements of A will be represented by morphisms f :U → A in C, and substitution
of f for A in B is implemented by pulling back B along f to f ∗B∈C/U . We start to
build the internal language by writing a : A ` Ba to express B as a type dependent
on values in A, and then the result of substitution of f is written as u :U ` B( f u).
We will treat Ba as an alias for B and B( f u) as an alias for f ∗B, and we’ll write
a : A ` Ba or even just A ` B for B ∈ C/A—variables will occasionally be omitted
from the internal language where practical for conciseness.

Note that substitution by pullback extends to a functor f ∗ :C/A→ C/U : for
conciseness of presentation we will assume that substitution corresponds precisely
to a choice of pullback, but for a more detailed treatment of the issues involved see
Bénabou (1985), Hofmann (1994) and Abbott (2003).

Terms of type a : A ` Ba correspond to global sections of B, which is to say
morphisms t : 1→ B in C/A. In the internal language we write a : A ` ta : Ba for
such a morphism in C. We will occasionally write t for ta, again omitting a variable
when it can be inferred. Given objects a : A ` Ba and a : A ` Ca we will write
a : A ` f a : Ba→Ca for a morphism in C/A, and similarly a : A ` f a : Ba ∼= Ca for
an isomorphism.

The morphism in C associated with B ∈ C/A will be written as πB : ∑A B→ A (the
display map for B); the transformation B 7→ ∑A B becomes a left adjoint functor
∑A a π∗B, where pulling back along πB plays the role of weakening with respect to a
variable b :Ba in context a : A. In the type theory we’ll write ∑A B∈C as ∑a : A.Ba,
or more concisely ∑A B, with elements Γ ` (t,u) : ∑a : A.Ba corresponding to
elements Γ ` t : A and Γ ` u : Bt.
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More generally, all of the constructions described here localise: given an arbitrary
context Γ ∈ C and an object A ∈ C/Γ we can use the isomorphism (C/Γ)/A ∼=
C/∑Γ A to interpret Γ,a : A ` Ba both as a morphism πB : ∑A B→ A in C/Γ and as
πB : ∑A B→ ∑Γ A in C, and ∑ extends to provide a left adjoint to every substitution
functor. We will write Γ,a : A,b : Ba ` C(a,b) or just Γ,A,B ` C as a shorthand for
Γ,(a,b) : ∑A B ` C(a,b). For non-dependent Σ-types we write A×B.

Local cartesian closed structure onC allows right adjoints to weakening π ∗A a∏A to
be constructed for every Γ ` A with type expression Γ ` ∏a : A.Bb for Γ ` ∏A B
derived from Γ,A ` B. For non-dependent Π-types we use the notations A→ B and
also BA.

Finally the equality type a,b : A ` a = b is represented as an object of C/A×A
by the diagonal morphism δA : A→ A×A, and more generally Γ,a,b : A ` a = b.
Note that we work in extensional Type Theory, hence there is no difference between
definitional and propositional equality. We believe that our development could also
be implemented in an intensional system like COQ (Huet et al., 2004) by using
setoids (Hofmann, 1997).

For coproducts in the internal language to behave properly, in particular for
containers to be closed under products, we require that C have disjoint coproducts:

the pullback of distinct coprojections A κ A + B Bκ ′ into a coproduct is
always the initial object 0. When this holds the functor C/A+B→ (C/A)× (C/B)
taking A + B ` C to (A ` κ∗C, B ` κ ′∗C) is an equivalence: write − ◦+− for the
inverse functor. Thus given A ` B and C ` D (with display maps πB and πD) we
write A +C ` B ◦+ D for their disjoint sum; this satisfies two identities: ∑A+C(B ◦+
D)∼= ∑A B + ∑C D and πB ◦+D = πB + πD (modulo the preceding isomorphism).

For the development of finite coproducts it is actually sufficient to introduce
only 0 and disjoint Bool = 1 + 1. In the Type Theory disjointness corresponds to
having a constant disjoint : (true = false)→ 0. Given this we can encode arbitrary
coproducts as A + B = ∑b : Bool.(b = true→ A)× (b = false→ B).

Given a (finite) index set I define [CI,CJ] to be the category of fibred functors
and natural transformations CI → C where the fibre of CI over Γ ∈ C is the I-
fold product (C/Γ)I . Of course, when J = 1 we will write this as [CI,C]. We write
∏i∈I Ai and ∑i∈I Ai for finite products/coproducts indexed by a finite set I. The same
extends to the disjoint finite sum of families where we write ∑i∈I Ai ` ◦

∐
i∈I Bi.

The following lemma collects together some useful identities which hold in any
category considered in this paper.

Lemma 2.1 For extensive locally cartesian closed C the following isomorphisms
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hold (IC stands for intensional choice, Cu for Curry and DF for disjoint fibres):

∏a : A. ∑b : Ba. C(a,b)∼= ∑ f : ∏a : A.Ba. ∏a : A. C(a, f a) (IC1)

∏i∈I ∑b : Bi. Cib∼= ∑a : ∏i∈I Bi. ∏i∈I Ci(πia) (IC2)

∏a : A. CBa ∼=
(
∑a : A. Ba

)
→C (Cu1)

∏i∈I(Bi→C)∼=
(
∑i∈I Bi

)
→C (Cu2)

(
◦
∐

i∈I
Bi

)
(κia)∼= Bia (DF1)

∑i∈I ∑a : Ai. C(κia)∼= ∑a : ∑i∈I Ai. Ca (DF2) 2

2.2 W-types and M-types

In Martin-Löf’s Type Theory (Martin-Löf, 1984; Nordström et al., 1990) the
building block for inductive constructions is the W-type. Given a family of
constructors A ` B the type Wa : A.Ba (or WAB) should be regarded as the type
of “well founded trees” constructed by regarding each a :A as a constructor of arity
Ba.

The standard presentation of a W-type is through one type forming rule, an
introduction rule and an elimination rule, together with an equation.

Definition 2.2 A type system has W-types iff it has a type constructor

Γ,A ` B
Γ ` WAB

(W-type)

together with a constructor term

Γ, a : A, f : Ba→WAB ` sup(a, f ) : WAB (sup)

and an elimination rule

Γ, w : WAB ` Cw
Γ, a : A, f : Ba→WAB, g : ∏b : B(a).C( f b) ` h(a, f ,g) :C(sup(a, f ))

Γ, w : WAB ` wrechw :Cw
(wrec)

satisfying the equation for variables a : A and f : (WAB)B(a):

wrechsup(a, f )) = h(a, f ,wrech · f ) .

where (wrech · f )b≡ wrech( f b); note that the first argument of this composition is
a dependent function.

Note that the elimination rule together with equality types ensures that wrech

is unique. It is easy to see that the rule (wrec) implies that each WAB is an
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initial algebra for the functor FX = ∑a : A.(Ba→ X) in each slice. Moerdijk and
Palmgren (2000) show that the global version of W-types implies the existence of
W-types in each slice.

We consider that this notion summarises the essence of Martin-Löf’s Type Theory
from a categorical perspective, hence the following definition.

Definition 2.3 A Martin-Löf category is a locally cartesian closed category with
disjoint coproducts and an initial algebra for every container functor (i.e. W-types).

We know that W-types exist in toposes with natural numbers objects (Moerdijk and
Palmgren, 2000, proposition 3.6) and in categories which are both locally cartesian
closed and locally presentable (Abbott et al., 2003a, theorem 6.8). Moreover, W-
types exist in models of Type Theory based on realisability such as the category of
ω-sets.

Dually, we introduce M-types as the terminal coalgebras as the terminal coalgebras
of the same collection of functors. There is no standard representation of M-types
in Type Theory, indeed the elegant unification of primitive recursion and induction
does not dualise easily. However, in extensional Type Theory we can simply state
the equations implied by assuming that M-types are terminal coalgebras:

Definition 2.4 A type system has M-types iff it has a type constructor

Γ,A ` B
Γ ` MAB

(M-type)

together with a deconstructor term

Γ, m : MAB ` sup−1m :∑a : A. (Ba→MAB) (supinv)

and an unfolding rule

Γ, c :C ` sc : A
Γ, c :C ` pc : B(sc)→C

Γ, c :C ` unfolds,pc : MAB
(mrec)

satisfying the equation

sup−1(unfolds,pc) = (sc, unfolds,p · pc) .

and the conditional equation

Γ, c :C ` hc : M
sup−1(hc) = (sc, h · pc)

hc = unfolds,pc
(mrec-eta)
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Observe that we can define the inverse

sup = unfoldπ,π ′ :
(
∑a : A. (Ba→MAB)

)
−→MAB

2.3 Strictly positive types

We have already discussed strictly positive types in the introduction, here is an
inductive definition:

Definition 2.5 A strictly positive type (SPT) in n variables (Abel and Altenkirch,
2000) is a type expression (with type variables X1, . . . ,Xn) built up inductively
according to the following rules:

• if K is a constant type (with no type variables) then K is a SPT;
• each type variable Xi is a SPT;
• if F, G are SPTs then so are F + G and F×G;
• if K is a constant type and F a SPT then K→ F is a SPT;
• if F is a SPT in n + 1 variables then µX . F,νX . F is a SPT in n variables (for X

any type variable).

3 Basic Properties of Containers

We will now introduce the category of containers G equipped with its interpretation
functor J−K :G → [C,C]. When constructing fixed points it is also necessary to
take account of containers with parameters, so we define J−K :GI → [CI,C] for
each parameter index set I. For the purposes of this paper the index set n or I
can be assumed to be a finite set, but in fact this makes little difference. Indeed,
it is straightforward to generalise the development in this paper to the case where
containers are parameterised by internal index objects I ∈ C; when C has enough
coproducts nothing is lost by doing this, since CI ' C/∑i∈I 1. This generalisation
will be important for future developments of this theory, but is not required in this
paper.

This discussion leads to the following definition of a container in I parameters.

Definition 3.1 Given an index set I define the category of containers in I
parameters GI as follows:

• Objects are pairs (A ∈ C, B ∈ (C/A)I); write this as (A . B) ∈ GI

• Morphisms (A . B) → (C . D) are pairs (u, f ) for u : A→C in C and
f : (u∗)ID→ B in (C/A)I .
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Thus a container in one parameter is just a family A ` B, while a container in n
parameters consists of a single shape A together with a family of positions A ` Bi

for each i ∈ n.

A container (A . B) ∈ GI can be written using type theoretic notation as

` A i : I, a : A ` Bi(a) .

A morphism (u, f ) : (A . B)→ (C . D) can be written in type theoretic notation
as

u : A−→C i : I, a : A ` fi(a) : Di(ua)−→ Bi(a) .

Finally, each (A . B) ∈ GI , thought of as a syntactic presentation of a datatype,
generates a fibred functor JA . BK :CI → C which is its semantics.

Definition 3.2 Define the container extension functor J−K :GI → [CI,C] as
follows. Given (A . B) ∈ GI and X ∈ CI define

JA . BKX ≡∑a : A. ∏i∈I(Bi(a)→ Xi) = ∑A ∏I XB ,

and for (u, f ) : (A . B)→ (C . D) define Ju, f K : JA . BK→ JC . DK to be the
natural transformation with components Ju, f KX : JA . BKX → JC . DKX defined
thus:

(a,g) : JA . BKX ` Ju, f KX (a,g)≡ (ua, (gi · fi)i∈I) .

An alternative inductive definition of containers can be shown to be equivalent to
the system above: a container functor F(~X ,Y ) in n + 1 parameters can be thought
of as a family of containers in one parameter indexed by the parameter ~X . To be
precise, we have the following proposition.

Proposition 3.3 The following induction clauses define the containers with finite
sets of parameters.

(1) A container in 0 parameters is the same thing as an object of C, which is its
extension.

(2) There is a bijection between container functors in n + 1 parameters and
pairs (S,P) where S is a container functor S :Cn→ C in n parameters and
P is a family S~X ` P~X for each ~X ∈ Cn satisfying coherent isomorphisms
(P~Y )((S~f )s) ∼= (P~X)s for ~f :~X →~Y and s : S~X. Define the extension of the
pair (S,P) to be the functor FS,P(~X ,Y )≡ ∑s : S~X .((P~X)s→ Y ).

PROOF. Case 1 is obvious by inspection, so consider case 2.
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Write a container in n + 1 parameters as (A . B,C) where B is an n-indexed
family with extension JA . B,CK(~X ,Y ) = ∑a : A. (∏i∈I(Bia→ Xi))× (Ca→ Y ).
Given (A . B,C) define S ≡ JA . BK and define P~X ≡C(S!~X) where !~X :~X → 1 in
Cn. Observe that S!~X is the projection π : ∑A ∏I XB→ A, and so (P~X)(a, f ) = Ca
depends only on a : A. This gives us the construction of a pair (S,P) from an
n + 1 parameter container. Conversely, given a pair (S,P) we can reconstruct the
container (A . B,C) by taking C ≡ P1; indeed P is fully determined by P1.

To see that these two construction have the same extension:

JA . B,CK(~X ,Y ) = ∑a : A.
(
∏i∈I(Bia→ Xi)

)
× (Ca→ Y )

∼= ∑a : A. ∑ f : ∏i∈I(Bia→ Xi). (Ca→ Y )

∼= ∑s : S~X . (Ps→ Y ) = FS,P(~X ,Y ) 2

The following proposition follows from the construction of J−K as a type
expression.

Proposition 3.4 For each container F ∈ GI and each container morphism
α : F → G the functor JFK and natural transformation JαK are fibred over C. 2

By making essential use of the fact that the natural transformations in [CI,C] are
fibred we can show that T is full and faithful.

Theorem 3.5 (Representation) The functor T :GI → [CI,C] is full and faithful.

PROOF. To show that T is full and faithful it is sufficient to lift each natural trans-
formation α : JA . BK→ JC . DK in [CI,C] to a map (uα , fα) : (A . B)→ (C . D)
in GI and show this construction is inverse to T .

Given α : JA . BK→ JC . DK define ` ≡ (a, idB(a)) : JA . BKB in the context a : A
— that is to say, construct ` : 1→ JA . BKB in the fibre C/A. As the natural
transformation α is fibred, it localises to αB : JA . BKB→ JC . DKB in C/A and
so we can compute A ` αB` : JC . DKB = ∑C ∏I BD; write this as αB`= (uα , fα),
where uαa :C and fαa : ∏i∈I(Di(uα(a))⇒ Bi(a)) in context a : A.

Thus (uα , fα) can be understood as a morphism (A . B)→ (C . D) in GI , so we
have a construction [CI,C](JA . BK ,JC . DK)→GI((A . B), (C . D)); it remains
to show that this is inverse to the action of the functor T .

For α = Ju, f K, evaluate αB` = (ua, id · f ) = (u, f ). In the opposite direction, to
show that α = Juα , fαK, let X ∈CI , a : A and g :∏i∈I(Bi(a)⇒ Xi) be given, consider

11



the diagram

1 `

(uαa, fαa)

JA . BKB
JA . BKg

αB

JA . BKX

αX

JC . DKB JC . DKg
JC . DKX

in C/JA . BKX

and evaluate

αX(a,g) = αX((JA . BKg)`) = (JC . DKg)(αB`) = (JC . DKg)(uαa, fαa)

= (uαa, g · fαa) = Juα , fαKX (a,g) .

This shows that α = Juα , fαK as required. 2

This theorem gives a particularly simple analysis of polymorphic functions between
container functors. For example, it is easy to observe that there are precisely nm

polymorphic functions Xn → Xm: the data type Xn is the container (1 . n) and
hence there is a bijection between polymorphic functions X n→ Xm and functions
m→ n. Similarly, any polymorphic function ListX→ListX can be uniquely written
as a function u :N→ N together with for each natural number n :N, a function
fn : un→ n.

It turns out that each GI inherits products and coproducts from C, and that T
preserves them:

Proposition 3.6 If C has products and coproducts then GI has products and
coproducts preserved by T .

PROOF. Since T is full and faithful it we can reflect the construction products and
coproducts along T .

Products. Let (Ak . Bk)k∈K be a family of objects in GI and compute

∏k∈K JAk . BkKX = ∏k∈K ∑a : Ak. ∏i∈I(Bk,i(a)⇒ Xi)

∼= ∑a : ∏k∈K Ak. ∏k∈K ∏i∈I(Bk,i(πka)⇒ Xi)

∼= ∑a : ∏k∈K Ak. ∏i∈I

((
∑k∈K Bk,i(πka)

)
⇒ Xi

)

=
r
∏k∈K Ak . ∑k∈K(π∗k )IBk

z
X

showing by reflection along T that

∏k∈K(Ak . Bk)∼=
(
∏k∈K Ak . ∑k∈K(π∗k )IBk

)
.
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Coproducts. Given a family (Ak ` Bk)k∈K of objects in GI calculate (making
essential use of disjointness of fibres):

∑k∈K JAk . BkKX = ∑k∈K ∑a : Ak. ∏i∈I(Bk,i(a)⇒ Xi)

∼= ∑k∈K ∑a : Ak. ∏i∈I

((
◦
∐

k′∈K
Bk′,i

)
(κka)⇒ Xi

)

∼= ∑a : ∑k∈K Ak. ∏i∈I

((
◦
∐

k∈K
Bk,i

)
(a)⇒ Xi

)

=
r
∑k∈K Ak . ( ◦

∐
k∈K

B j,i)i∈I

z
X

showing by reflection along T that

∑k∈K(Ak . Bk)∼=
(
∑k∈K Ak . ◦

∐
k∈K

Bk

)
. 2

Container functors are also closed under exponentiation by a constant type.

Proposition 3.7 If F :CI → C is a container functor then so is the exponential
functor FK defined by FKX ≡ K→ FX.

PROOF. Let F = JA . BK and calculate

K→ JA . BKX = K→
(
∑a : A. ∏i∈I(Bia→ Xi)

)

∼= ∑ f : K→ A. ∏k : K. ∏i∈I(Bi( f k)→ Xi)

∼= ∑ f : K→ A. ∏i∈I

((
∑k : K. Bi( f k)

)
→ Xi

)

=
r

f : K→ A .
(
∑k : K. Bi( f k)

)
i∈I

z
X

showing that we can define K→ (A . B)≡
(

f : K→ A . (∑k : K.Bi( f k))i∈I

)
. 2

Given containers F ∈GI+1 and G∈GI we can compose their extensions to construct
the functor

JFK [JGK]≡ (CI (idCI ,JGK) CI×C∼= CI+1 JFK C) .

Writing this equation as JFK [JGK]~X = JFK(~X ,JGK~X) we can see that this defines a
form of substitution.

This substitution lifts to a functor−[−] :GI+1×GI → GI as follows. For a container
in GI+1 write (A . B,E) ∈ GI+1, where B ∈ (C/A)I and E ∈ C/A and define:

(A . B,E)[(C . D)]≡
(

a : A, f : Ea→C .
(
Bia +∑e : Ea. Di( f e)

)
i∈I

)
.

13



In other words, given type constructors F(~X ,Y ) and G(~X) this construction defines
the composite type constructor F [G](~X)≡ F(~X ,G(~X)).

Proposition 3.8 Substitution of containers commutes with substitution of functors
thus: JFK [JGK]∼= JF [G]K.

PROOF. Calculate (for conciseness we write exponentials using superscripts
where convenient and elide the variable a : A throughout):

r
A . ~B,E

z[
JC . DK

]
X

= ∑A

((
∏i∈I XBi

i

)
×
(

E→∑c :C. ∏i∈I XDic
i

))

∼= ∑A

((
∏i∈I XBi

i

)
×
(
∑ f :CE . ∏e : E. ∏i∈I XDi( f e)

i

))

∼= ∑A ∑ f :CE . ∏i∈I

(
XBi

i ×
(
∏e : E. XDi( f e)

i

))

∼= ∑A ∑ f :CE . ∏i∈I

((
Bi +∑e : E. Di( f e)

)
→ Xi

)

∼=
r

(A . ~B,E)[C . D]
z

X .

As all the above isomorphisms are natural in X we get the desired isomorphism of
functors. 2

This shows how composition of containers captures the composition of container
functors. More generally, it is worth observing that a composition of containers
of the form −◦− :GI×G I

J → GJ reflecting composition of functors CJ → CI → C
can also be defined making containers into a bicategory with 0-cells the index sets
I and the category of homs from I to J given by the container category G J

I (Abbott,
2003, proposition 4.4.4).

Finally we should look at the treatment of variables and the weakening of containers
as type expressions. First note that every type variable Xi can be regarded as a
container.

Proposition 3.9 Every projection function πi :CI → C defined by πi~X ≡ Xi for
each i ∈ I is a container functor.

PROOF.
q

1 . (i = j) j∈I
y
~X ∼= ∏ j∈I((i = j)→ X j)∼= Xi. 2

Given a type expression F(X1, . . . ,Xn) in n variables and a variable renaming
function f : n→ m we can construct a type expression F(X f 1, . . . ,X f n) in m
variables. This construction extends to containers in an obvious way.

14



Proposition 3.10 Each function f : I→ J lifts to a functor ↑ f :GI → GJ withq
↑ f F

y
X ∼= JFK(X ◦ f ), where we regard X as a functor J→ C.

PROOF. Define ↑ f (A . ~B)≡ (A . (∑i∈I( f i = j)×Bi) j∈J) and calculate

r
↑ f (A . ~B)

z
X = ∑a : A. ∏ j∈J

((
∑i∈I( f i = j)×Bia

)
→ X j

)

∼= ∑a : A. ∏ j∈J ∏i∈I((( f i = j)×Bia)→ X j)

∼= ∑a : A. ∏i∈I(Bia→ X f i) =
r

A . ~B
z

(X ◦ f ) . 2

For example, in the special case of weakening a container (A . B) in n variables
by adding one variable in the final position we obtain ↑(A . B) = (A . B′) where
B′i ≡ Bi for i≤ n and B′n+1 ≡ 0. More generally we can weaken along any inclusion
f : I½ J of variables transforming (A . B) into (A . B′)≡↑ f (A . B) where B′f i =

Bi and B′j = 0 otherwise. We will normally leave such weakenings implicit.

4 Inductive and Coinductive Containers

We have already observed in section 2 that the existence of W-types is equivalent
to assuming that every container functor in one parameter has an initial algebra.
Indeed, this assignment extends to a functor µ :G1→ G0, and similarly M-types
gives us a functor ν .

Proposition 4.1 The construction of W-types and M-types extends to functors
µ :G1→ G0 and ν :G1→ G0 respectively.

PROOF. Since G0
∼= C the action of µ on objects is given by taking W-types.

For each morphism of containers α : F → G define µα : µF → µG by induction
over the algebra supG · JαKµG : JFK(µG)→ µG, so µα uniquely satisfies the

equation µα · supF = supG · JαKµG · JFK(µα). It is a routine verification that this
construction is functorial; the construction for ν is dual. 2

In this section we will see how to extend this construction to the following more
general result.

Theorem 4.2 There exist functors µ :GI+1→ GI and ν :GI+1→ GI satisfying
isomorphisms JµFK∼= µ JFK and JνFK∼= ν JFK.
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PROOF. For each F a container functor in n+1 parameters and n fixed parameters
~X we know that F(~X ,−) is a container functor in one parameter, so the initial
algebra µY . F(~X ,Y ) exists as a W-type for each choice of ~X , and similarly
νY . F(~X ,Y ) exists via M-types.

Thus we have functors µ J−K :GI+1→ [CI,C] and ν J−K :GI+1→ [CI,C]. It
remains to show that if F(~X ,Y ) is a container functor over parameters ~X and Y
then µY . F(~X ,Y ) and νY . F(~X ,Y ) are container functors over ~X . We show this for
µ in proposition 4.3 below and for ν in proposition 4.5. The existence of functors
µ,ν :GI+1⇒ GI then follows by full and faithfulness of J−K. 2

Now let F = (S . P,Q)∈GI+1 be a container in multiple parameters with extension

JFK(~X ,Y )≡ JS . P,QK(~X ,Y )

= ∑s : S.
(
∏i∈I(Pis→ Xi)

)
× (Qs→ Y ) .

To show that µY . JFK(~X ,Y ) and νY . JFK(~X ,Y ) are container functors with respect
to ~X we need to compute I-indexed containers (Aµ . Bµ) and (Aν . Bν) such thatq

Aµ . Bµ
y
~X ∼= µY . JFK(~X ,Y ) and JAν . BνK~X ∼= νY . JFK(~X ,Y ). Clearly we can

calculate

Aµ ∼=
q

Aµ . Bµ
y

1∼= µY . JFK(1,Y )∼= µY . JS . QKY ∼= WSQ

Aν ∼=
q

Aν . Bν
y

1∼= νY . JFK(1,Y )∼= νY . JS . QKY ∼= MSQ ,

but the construction of WSQ ` Bµ and MSQ ` Bν will involve the inductive
construction of families; we will show how to construct A ` B using W-types in
proposition 4.6 below.

In the rest of this section we will simplify the presentation by ignoring the index
set I and writing P→ X for ∏i∈I(P→ Xi). In particular, this means that the family
B ∈ (C/A)I will be treated uniformly (as if I = 1). It is a straightforward exercise
to generalise the development to arbitrary index sets. We will therefore take

JFK(X ,Y )≡∑s : S. (Ps→ X)× (Qs→ Y ) .

For any container G≡ (A . B) we can calculate the substitution

F [G] = (S . P,Q)[(A . B)] =
(
s : S, f : Qs→ A . Ps +∑q : Q. B( f q)

)
.

This can be written more concisely as
(
S,AQ . P + ∑Q ε∗B

)
, where ε : AQ×Q→ A

is the evaluation map. Observe now that any fixed point ψ : JS . QKA ∼= A induces
an isomorphism of positions between F [G] and G, or equivalently an isomorphism
ψ : JF [G]K1∼= J[G]K1 and it’s clear that any fixed point F [G] ∼= G which agrees
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with ψ must be of the form (ψ,ϕ−1) : F [G]→ G for some family of isomorphisms

s : S, f : Qs→ A ` ϕs, f : Ps +∑q : Q. B( f q)∼= B(ψ(s, f )) .

It turns out that for the initial algebra µY . F(X ,Y ) the existence of a family
WSQ ` Bµ satisfying the fixed point above is sufficient.

Proposition 4.3 Given the notation above, if there exists a family WSQ ` B
equipped with a family of isomorphisms

s : S, f : Qs→WSQ ` ϕ : Ps +∑q : Q. B( f q)∼= B(sup(s, f ))

then JWSQ . BKX ∼= µY . JFK(X ,Y ).

PROOF. See appendix A.1. 2

It may seem surprising that any isomorphism ϕ : P + ∑Q ε∗B∼= sup∗B is sufficient,
as in general we would expect this isomorphism problem to have multiple solutions.
Indeed, we can discover from the proposition above that in this case B is defined
uniquely up to isomorphism, since µY . JFK(X ,Y ) is itself unique.

This can be explained intuitively by observing that B corresponds to the type of
paths into a finite tree, and consequently there cannot be any infinite paths. This
occurs because the structure of the functor X 7→ P + ∑Q ε∗X respects the structure
of the initial algebra sup, thereby forcing B to be unique. An example of this occurs
in Wraith’s theorem (Johnstone, 1977, theorem 6.19) which treats the special case
A = N.

The corresponding result for final coalgebras requires a little more structure on Bν ,
as the isomorphism ϕ does not fully determine Bν over MSQ: in effect there can be
infinite paths into an infinite tree. Instead, we will require MSQ ` Bν to be an initial
family over the fixed point sup : JS . QKMSQ∼= MSQ, as we will want to select only
finite paths into the infinite tree generated by MSQ.

The following definition and proposition 4.6 are specialised to the application of
this paper. For more general notions of initial family see Gambino and Hyland
(2004).

Definition 4.4 An initial family over a fixed point ψ : JS . QKA ∼= A is defined to
be an initial algebra for the functor C/A→ C/A taking X to ψ−1∗(P + ∑Q ε∗X).

In other words, a family A ` B is initial over ψ if it is equipped with a morphism
ϕ : P + ∑Q ε∗B→ ψ∗B and given any other family A ` X also equipped with a
morphism α : P + ∑Q ε∗X → ψ∗X there exists a morphism α : B→ X uniquely
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satisfying the equation ψ∗α · φ = α ·
(
P + ∑Q ε∗α

)
. Using the internal language

we can write the two components of this equation thus:

s : S, f : AQs, p : Ps ` αψ(s, f )(ϕs, f (κ p)) = α(κ p)

s : S, f : AQs, q : Qs, b : B( f q) ` αψ(s, f )(ϕs, f (κ ′(q,b))) = α(κ ′(q,α f qb)) .

If we can find an initial family over the final coalgebra sup−1 : MSQ∼= JS . QKMSQ
then this is sufficient to show that νY . JFK(X ,Y ) is a container functor.

Proposition 4.5 Given a family MSQ ` B equipped with an initial family

s : S, f : Qs→WSQ ` ϕ : Ps +∑q : Q. B( f q)−→ B(sup(s, f ))

over sup then JA . BKX ∼= νY . JFK(X ,Y ).

PROOF. See appendix A.2. 2

So the construction of both µ and ν types as containers depends on the construction
of initial families over fixed points. Concurrently with this work Gambino and
Hyland (2004) has shown that the existence of such initial families follows from the
existence of W-types. Here we provide a detailed construction as a regular subtype
of a W-type.

Proposition 4.6 For every fixed point ψ : JS . QKA ∼= A there exists an initial
family A ` PosP,ψ over ψ for the functor X 7→ P + ∑Q ε∗X.

PROOF. See appendix A.3. 2

Combining propositions 4.3 and 4.5 with 4.6 and 4.8 below we obtain theorem 4.2,
summarised by the following corollary.

Corollary 4.7 If C has W-types then containers are closed under the construction
of µ-types and ν-types, and provide a complete semantics of strictly positive types.

2

4.1 Constructing M-types

Up to now we have separately assumed the existence of W-types and M-types in
the ambient category C. In this section we will show that in fact coinductive types
can be constructed using inductive types.
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If we assume C to have enough infinite limits, in particular to be closed under the
formation of ω-limits, then it is easy to see that M-types exist: writing T ≡ JS . PK
construct the ω-limit

1 T 1 · · · T n1 · · · lim←−n∈NT n1 ,

then as T preserves ω-limits (indeed T preserves all connected limits as so does the
functor ∑S) it is a well known result (eg, Poigné, 1992) that νT ≡ lim←−n∈NT n1 is a
final coalgebra. This approach was taken in Abbott et al. (2003a); Abbott (2003).

In the present treatment we cannot assume the existence of ω-limits: for example,
in the effective topos the natural numbers object is not the external limit ofN copies
of 1. One possible approach is to construct the family n :N ` T n1 as a family in C
together with an internal representation of the restriction morphisms T n+k1→ T n1
and take its internal limit, which certainly does exist. We do not do this in this
paper, as the necessary machinery is not developed here.

However, we can use this (internal) limit construction to understand the
construction in the present paper. Each projection πn : νT → T n1 takes a potentially
infinite tree and truncates it to depth n; such truncated trees can be expressed
as subobjects of the W-type M̂ ≡ µX . 1 + T X . Writing ⊥ and sup for the
two components of the constructor 1 + T M̂→ M̂, we can define an inclusion
in : T n1½ M̂ inductively with i0 ≡⊥ and in+1(s, f )≡ sup(s, in · f ).

This means that the family of composites in ·πn can be understood as a morphism
N×νT → M̂, or equivalently, a morphism νT → M̂N: this last morphism turns
out to be a regular monomorphism. Each infinite tree in νT is represented as an
evolving family of finite truncated trees, and it’s clear that f :N→ M̂ is in νT only
if f n is a truncation of f (n+1). Correctly captured, this turns out to be the defining
equation for νT as a regular subobject of M̂N.

Thus we get the following theorem.

Proposition 4.8 Every Martin-Löf category is closed under the formation of M-
types, that is, every unary container functor has a final coalgebra.

PROOF. See appendix B.1. 2

5 Conclusions and Further Work

We can summarise the main results of the paper in the following corollary:
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Corollary 5.1 Each strictly positive type F in n variables can be interpreted as
an n-ary container LFM : Gn. Assuming as given the interpretation of n-ary SPTs
LFM = (S . ~P), LGM = (T . ~Q) and n + 1-ary SPT LHM = (U . ~R,R′), we have the
following translation:

LKM= (K . j 7→ 0)

LXiM = (1 . j 7→ (i = j))
LF + GM= (S + T . j 7→ Pj

◦
+ Q j)

LF×GM= ((s, t)S×T : . j 7→ Pj s + Q j t)

LK→ FM 7→
(

f : K→ S . j 7→∑k : K. Pj ( f k)
)

LµX .HM= (WU R′ . j 7→ PosR j,sup)

LνX .HM= (MU R′ . j 7→ PosR j,sup)

In the special case n = 1 this implies that all closed strictly positive types can be
interpreted as objects in any Martin-Löf category.

PROOF. By combining propositions 3.6, 3.7, 3.9, 3.10 and corollary 4.7.

The reader will notice that our definition of strictly positive types is restricted to
a simple type discipline even though we work in a dependently typed setting. A
natural extension of the work presented here would allow the definitions of strictly
positive families which can be interpreted as initial algebras of endofunctors on
a given slice category. We are currently working on this, it seems that W-types,
i.e. Martin-Löf categories are still sufficient to interpret strictly positive families.
This has important consequences for the implementation of systems like Epigram
(McBride, 2004) which use schematic inductive definitions. The correctness of the
schemes is not checked and is a likely cause of unsoundness. Using our construction
we can translate the schematic definitions into a fixed core theory whose terms can
be easily checked.

Nested datatypes (Altenkirch and Reus, 1999; Bird and Paterson, 1999) provide
another challenge: to treat them we would need to represent higher order functors.
However, it is likely that Martin-Löf categories are still sufficient as a framework.

Another interesting line is to allow quotients of positions to be able to treat types
like Bags. Indeed this is already present in Joyal’s definition of analytic functors
and can be easily adapted to the category of containers, we have presented first
results in Abbott et al. (2004b). There is an interesting interaction with our work on
derivatives, e.g. using quotients we should be able to prove a version of Taylor’s
theorem in a type-theoretic setting. This construction will take place within a
predicative topos with W-types which extends Martin-Löf categories by effective
quotients.
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A Proofs for Induction and Coinduction

Throughout this appendix F denotes the container F ≡ (S . P,Q).

Proposition A.1 If there exists a family WSQ ` B equipped with an isomorphism

s : S, f : Qs→WSQ ` ϕs, f : Ps +∑q : Qs. B( f q)∼= B(sup(s, f ))

then JWSQ . BKX ∼= µY . JFK(X ,Y ).

PROOF. For conciseness write A ≡ WSQ and G ≡ (A . B) through this proof.
First observe that JFK(X ,JGKX) = JFK [JGK]X ∼= JF [G]KX and calculate

F [G] = (S . P,Q)[(A . B)] =
(
s : S, f : Qs→ A . Ps +∑q : Q. B( f q)

)
;

it is clear that α ≡ (sup,ϕ−1) : F [G]→ G is an F [−] algebra. To show that each
JαKX generates an initial JFK(X ,−)-algebra let an algebra β : JFK(X ,Y )→ Y be
given: we need to construct β : JGKX → Y uniquely making

JFK(X ,JGKX) ∼= JF [G]KX
JαKX

JFK(X ,β )

JGKX

β

JFK(X ,Y )
β

Y

(A.1)

commute. The corresponding equation can be written as

s : S, f : Ps→ X , g : Qs→ JGKX ` β (sup(s,g1), k) = β (s, f , β ·g) (A.2)

for

g1 ≡ π ·g g2(q,b)≡ (π ′(gq))b k ≡ [ f ;g2] ·ϕ−1 . (A.3)

The decomposition of g into g1 : Qs→ A and g2 : (∑q : Qs.B(g1q))→ X is at the
heart of the isomorphism JFK [JGK] ∼= JF [G]K, and of course the bijection between
k : B(sup(s,g1))→ X and f , g2 is mediated by the isomorphism ϕ . Note also that g
can be reconstructed as gq = (g1q, g2(q,−)) where g2(q,−)≡ λb. g2(q,b).

We can now construct β : (∑A XB)→ Y by W-induction by constructing

a : WSQ ` β (a,−) : (Ba→ X)→ Y

and using the W-induction rule wrec. To apply this rule we need to define the
induction step h taking induction data and returning a value of the above type.
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The following type expression turns out to be appropriate:

s : S, g1 : Qs→ A, r : ∏q : Qs.((B(g1q)→ X)→ Y ), k : B(sup(s,g1))→ X `
(h(s,g1,r))k ≡ β (s, f , λq. (rq)(g2(q,−))) ,

where [ f ;g2] = k ·ϕ as in (A.3) above. If we now define β (a,−) ≡ wrecha then
the induction equation becomes, using the variables of (A.2) and the identities of
(A.3):

β (sup(s,g1), k) = (h(s, g1, λq. β (g1q,−)))k

= β (s, f , λq. β (g1q, g2(q,−)))

= β (s, f , λq. β (gq)) = β (s, f , β ·g)

which is precisely the equation (A.2), showing that β is the required initial
morphism and that indeed JGKX is an initial algebra. 2

Now let sup−1 : MSQ→ JS . QKMSQ be a final coalgebra for JS . QK with inverse
sup.

Proposition A.2 Given a family MSQ ` B equipped with an initial family

s : S, f : Qs→WSQ ` ϕs, f : Ps +∑q : Qs. B( f q)−→ B(sup(s, f ))

over sup then JMSQ . BKX ∼= νY . JFK(X ,Y ).

PROOF. First note that the construction of in−1 : TA.BX → F(X ,TA.BX) in the
proof above works unchanged and so in−1 is a coalgebra. We now want to show that
this is a final coalgebra, so let β :Y → F(X ,Y ) be a coalgebra; it will be sufficient
to construct β :Y → TA.BX uniquely satisfying in ·F(X ,β ) ·β = β .

Start by writing β = (s,g,h) :Y → ∑S(XP×Y Q), which we can write as

Y s S Y ` s∗P
g

X Y ` s∗Q h Y .

The goal then is to construct β = (a,k) :Y → ∑A XB thus:

Y a A Y ` a∗B k X ,
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and the equation in ·F(X ,β ) ·β = β translates into the commutative square

Y
(s,g,h)

(a,k)

∑S(XP×Y Q)

∑S(XP× (a,k)Q)

∑A XB

in−1 ∑S

(
XP×

(
∑A XB)Q

)
.

Observe that π · in−1 · (a,k) = s, in other words we can write

a = ψ · (s, f ) for some Y ` s∗Q
f

A .

Evaluating both edges of this square leads to the equation

(s, g, (a ·h, h∗k)) = (s, k ·φ ·κ, ( f , k ·φ ·κ ′))

which can be interpreted as the following three equations in the type theory (where
the detailed dependency of each function symbol is made explicit):

y :Y , p : P(sy) ` gy p = kyϕsy, fyκ p g = k ·φ ·κ
y :Y , q : Q(sy) ` ahyq = fyq a ·h = f

y :Y , q : Q(sy), b : B( fyq) ` khyqb = kyϕκ ′(q,b) h∗k = k ·ϕ ·κ ′ .

Now the equation a = ψ · (s, f ) = ψ · (s,a ·h) fully determines a :Y → A by finality
of A, so the problem remains to determine k. The equations for k can be captured
by the following commutative triangle:

Y ` s∗P +∑s∗Q f ∗B
(s, f )∗ϕ

[g;h∗k]

a∗B

k
X

.

Note that s∗P + ∑s∗Q f ∗B = (s, f )∗(P + ∑Q ε∗B) and similarly a∗B = (s, f )∗ψ∗B,
so we can transpose the right hand edge of this triangle to produce the top and right
edges of the square below

S,AQ ` P +∑Q ε∗B ϕ

idP + ∑Q ε∗k

ψ∗B

ψ∗k

P +∑Q ε∗∏a X α ψ∗∏a X .
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Here A ` k : B→∏a X is the transpose of k. As ψ is an isomorphism we can write
∏(s, f ) X ∼= ψ∗∏a X , and so in particular ψ∗k ·ϕ is the transpose of k ·(s, f )∗ϕ . If we
can construct α = [α0;α1] such that α · (idP + ∑Q ε∗k) is the transpose of [g;h∗k]

then we can appeal to initiality of ϕ to conclude that k (and hence k) is uniquely
determined and so TA.B is a terminal coalgebra.

Taking α0 to be the transpose of g : s∗P = (s, f )∗P→ X it remains to construct α1.

Start by observing that A ` ∏a X can be written as

a′ : A ` ∏a X ≡
(
∑y :Y . Eq(ay,a′)

)
⇒ X = X∑y:Y .Eq(ay,a′) ,

or more suggestively, as ∏a X ≡∏y :Y ¹ Eq(ay,a′).X . Now for s′ : S and f ′ : AQ(s′),
we can write ψ∗∏a X = ∏y :Y ¹ Eq(ay,ψ(s′, f ′)).X , and similarly for q : Q(s′) we
have ε∗∏a X = ∏y :Y ¹ Eq(ay, f ′q).X . The map A ` k : B→∏a X can be described
by the equation

a′ : A, b : B(a), y :Y ¹ Eq(ay,a′) ` (ka′b)y≡ kyb .

Now define S,AQ,Q ` α1 : ε∗∏a X → ψ∗∏a X by the equation in context

s′ : S, f ′ : AQ(s′), q : Q(s′), θ : ∏y :Y ¹ Eq(ay, f ′q).X , y :Y ¹ Eq(ay,ψ(s′, f ′)) `
(α1θ)y≡ θ(hyq) .

This is well defined so long as ay = ψ(s′, f ′) =⇒ ahyq = f ′q, but this follows from
the equation ay = ψ(sy,a ·hy), which in particular implies that f ′ = a ·hy.

It remains to verify that α1 ·∑Q ε∗k is the transpose of h∗k; this follows from the
calculation

s′ : S, f ′ : AQ(s′), q : Q(s′), b : B( f ′q), y :Y ¹ Eq(ay,ψ(s′, f ′)) `
(α1k f ′qb)y = (k f ′qb)(hyq) = khyqb . 2

Proposition A.3 For every fixed point ψ : JS . QKA ∼= A the functor C/A→ C/A
taking X to ψ−1∗(P + ∑Q ε∗X) has an initial algebra.

PROOF. Write S,AQ ` ϕ : P + ∑Q ε∗B→ ψ∗B for the isomorphism that we wish
to construct. As already noted, we cannot directly appeal to W-types to construct
this fixed point, so the first step is to create a fixed point equation that we can solve.
Begin by “erasing” the type dependency of B and construct (writing ∑QY ∼= Q×Y ,
etc)

B̂≡ µY . ∑S ∑AQ (P + Q×Y )∼= µY .
(
∑S(AQ×P)+

(
∑S(AQ×Q)

)
×Y
)

∼= List
(
∑S(AQ×Q)

)
×∑S(AQ×P) ;
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there is no problem in constructing arbitrary lists in C so B̂ clearly exists.

The task now is to select the “well-formed” elements of B̂. A list in B̂ can be thought
of as a putative path through a tree in µY . JS . P,QK(X ,Y ); we want B(a) to be the
set of all valid paths to X-substitutable locations in the tree.

An element of B̂ can be conveniently written as a list followed by a tuple thus

([(s0, f0,q0), . . . ,(sn−1, fn−1,qn−1)],(sn, fn, p))

for si : S, fi : AQ(si), qi : Q(si) and p : P(sn). The condition that this is a well formed
element of B(ψ(s0, f0)) can be expressed as the n equations

fi(qi) = ψ(si+1, fi+1) for i< n

which can be captured as an equaliser diagram

∑A B e

πB

B̂

ϖ

α

β
ListA

A

where α , β and ϖ are defined inductively on B̂ as follows (and πB ≡ ϖ · e):

α(nil, p′) = nil α(cons((s, f ,q), l), p′) = cons( f q,α(l, p′))
ϖ(nil,(s, f , p)) = ψ(s, f ) ϖ(cons((s, f ,q), l), p′) = ψ(s, f )

β (nil, p′) = nil β (cons(b, l), p′) = cons(ϖ(l, p′),β (l, p′)) .

The property that b : B̂ is an element of B can be written b : B(ϖb) and using the
equations above we can establish:

(nil,(s, f , p)) : B(ψ(s, f )) (A.4)
f q = ϖ(l, p′)∧ (l, p′) : B( f q) =⇒ (cons((s, f ,q), l), p′) : B(ψ(s, f )) . (A.5)

The converse to (A.5) also holds, since (cons((s, f ,q), l), p′) : B(ψ(s, f )) ⇐⇒
cons( f q,α(l, p′)) = cons(ϖ(l, p′),β (l, p′)) ⇐⇒ f q = ϖ(l, p′)∧ (l, p′) : B( f q).

The isomorphism ϕ̂ : ∑S ∑AQ(P + Q× B̂)∼= B̂ can now be used to construct the
isomorphism ϕ for B. Writing an element of ∑S ∑AQ(P + Q× B̂) as (s, f ,κ p) or
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(s, f ,κ ′(q,b)), the function ϕ̂ can be computed thus:

∑S ∑AQ(P + Q× B̂)
ϕ̂∼=

List
(
∑S(AQ×Q)

)

×∑S(AQ×P)
= B̂

(s, f ,κ p) ←→ (nil,(s, f , p))

(s, f ,κ ′(q,(l, p′))) ←→ (cons((s, f ,q), l), p′) .

To show that ϕ̂ restricts to a morphism ϕ : P + ∑Q ε∗B→ ψ∗B we need to show for
each s : S and f : AQ that x : (P(s)+ ∑q : Q(s).B( f q)) implies ϕ̂(s, f ,x) :B(ψ(s, f )).

When x = κ p we immediately have ϕ̂(s, f ,κ p) = (nil,(s, f , p)) : B(ψ(s, f )) by
(A.4) above. Now let (s, f ,κ ′(q,(l, p′))) be given with (l, p′) :B( f q) (which means,
in particular, that ϖ(l, p′) = f q) and consider the equation ϕ̂(s, f ,κ ′(q,(l, p′))) =
(cons((s, f ,q), l), p′), then by (A.5) this is also in B(ψ(s, f )). Thus ϕ̂ restricts to

s : S, f : AQ(s) ` ϕs, f : P(s)+∑q : Q(s). B( f q)−→ B(ψ(s, f )) .

We have, in effect, constructed ϕ making the diagram below commute:

∑S ∑AQ

(
P +∑Q ε∗B

) ϕ

π

∑A B

πB
e∑S AQ ψ

A

∑S ∑AQ(P + Q× B̂)
ϕ̂

π

B̂

ϖ

.

Finally to show that ϕ is an initial morphism let A ` X be given together with
S,AQ ` h : P + ∑Q ε∗X → ψ∗X . The condition that a map A ` h : B→ X is an
algebra morphism can be written as the pair of equations

s : S, f : AQ(s), p : P(s) ` hψ(s, f )ϕs, f κ p = hs, f κ p (A.6)

s : S, f : AQ(s), q : Q(s), b : B( f q) ` hψ(s, f )ϕs, f κ ′(q,b) = hs, f κ ′(q,h f qb) .

(A.7)

We will construct h : B→ X by induction over B̂, but some preparation is required.
Write A ` B̂ϖ for B̂ regarded as a type over A with display map ϖ , then B̂∼= ∑A B̂ϖ .
Similarly observe that B as the equaliser B∼= Eq(α,β ) can now be written using the
isomorphism A ` B ∼= ∑B̂ϖ

Eq(α,β ). We can now transpose h into a form suitable
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for induction over B̂ thus:

A ` B∼= ∑B̂ϖ
Eq(α,β ) h X

B̂∼= ∑A B̂ϖ ` Eq(α,β ) ϖ∗X

B̂ ` h̃ : (ϖ∗X)Eq(α,β ) .

We can relate h and h̃ by the equation (the parameter w can be silently ignored:
only its presence is important)

a : A, b : B̂ϖ(a), w : Eq(αb,βb) ` h̃(b) = ha(b) : X(a) . (A.8)

We can now construct h̃ and verify the equations it satisfies by constructing two
terms h0 and h1 as follows. We can use the membership rules (A.4, A.5) to reason
about elements of XEq(α,β ), ie b : B(ϖb) iff αb = βb iff b∗Eq(α,β ) is inhabited.
Now write Wf(b) ≡ Eq(αb,βb) (abbreviating the type that says that “b is a well
formed element of B”), and then Wf(nil,(s, f , p)) ∼= 1 and so we can define h0:

s : S, f : AQ(s), p : P(s) ` h0 p≡ hs, f κ p : X(ψ(s, f )) .

Now consider the construction of h1 in context:

s : S, f : AQ(s), q : Q(s), l : List
(
∑S(AQ×Q)

)
, p′ : ∑S(AQ×P),

x : (l, p′)∗
(
(ϖ∗X)Eq(α,β )

)
` h1 : (cons((s, f ,q), l), p′)∗

(
(ϖ∗X)Eq(α,β )

)
.

In context s, f ,q, l, p′ define b≡ (cons((s, f ,q), l), p′); this can now be written as

w1 : Wf(l, p′), x : X(ϖ(l, p′)), w2 : Wf(b) ` h1 : X(ϖb) .

Now ϖb = ψ(s, f ) and the existence of w2 : Wf(b) implies ϖ(l, p′) = f q and
hence x : X( f q) and so we can define h1 ≡ hs, f κ ′(q,x). Now h̃ ≡ lrech0,h1 can be
constructed by induction and finally define h to be the transpose of h̃.

It remains to verify that the equations for h̃ transpose using (A.8) to the equations
(A.6, A.7) for h:

h̃(nil,(s, f , p)) = hψ(s, f )(nil,(s, f , p)) = hψ(s, f )ϕs, f κ p

h0(s, f , p) = hs, f κ p

h̃(cons((s, f ,q), l), p′) = hψ(s, f )ϕs, f κ ′(q,(l, p′))

h1((s, f ,q), l, p′, h̃(l, p′)) = hs, f κ ′(q,h((l, p′))) . 2
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B Proof of Existence of M-types

Proposition B.1 In a Martin-Löf category, every container functor in one
parameter has a final coalgebra.

PROOF. Let S ` P be the family for which MSP ≡ νX . JS . PKX is to be
constructed; for conciseness, write T X ≡ JS . PKX = ∑S XP throughout this proof.
Define M̂ ≡ µX . 1+T X , writing ⊥ : M̂ and sup : T M̂→ M̂ for the two components
of the initial algebra 1 + T M̂→ M̂. The idea of this proof is to represent an element
m : MSP by a family of functions m :N→ M̂ where each mn : M̂ represents the
infinite tree m truncated at depth n: the value ⊥ represents points where the tree
has been cut off.

We can define coalgebra to algebra coinduction over M̂N. First construct the T -
algebra α : T (M̂N)→ M̂N by cases over N:

α0(s, f )≡⊥ αn+1(s, f )≡ sup(s, fn) ,

where fn ≡ λ p : Ps.( f p)n for f : Ps→ M̂N. It will be convenient to use this
convention for the parameter n throughout this proof. The morphism α will later
restrict to the inverse to the final coalgebra for MSP.

Now let β : X → T X be any given coalgebra; writing the components of βx as β0x :S
and β1x : P(β0x)→ X construct β : X → M̂N by induction over N:

β 0x≡⊥ β n+1x≡ sup(β0x, β n ·β1x) .

Observe that β makes the diagram

T X

T β

X
β

β

T (M̂N) α M̂N

(B.1)

commute:

α0(T β (βx)) =⊥= β 0x

αn+1(T β (βx)) = αn+1(T β (β0x,β1x)) = αn+1(β0x, β ·β1x)

= sup(β0x,(β ·β1x)n) = sup(β0x, β n ·β1x) = β n+1x .
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Furthermore, β is the unique morphism making (B.1) commute: let g also satisfy
g = α ·T g ·β , then

g0x = α0(T g(βx)) =⊥= β 0x

gn+1x = αn+1(T g(βx)) = αn+1(T g(β0x,β1x)) = αn+1(β0x, g ·β1x)

= sup(β0x, gn ·β1x) = sup(β0x, β n ·β1x) = β n+1x .

This shows that for every coalgebra β : X → T X there exists a unique morphism
β : X →M satisfying the equation α ·T β ·β = β .

Note however that α is not an isomorphism, and in particular there is no suitable
coalgebra on M̂N: to construct the final coalgebra we need to define M ↪→ M̂N to
be the subobject of “well-formed” sequences of trees. To do this we would like to
construct a truncation morphism N ` M̂→ M̂ + 1 with component at n :N cutting
off elements of M̂ to depth n — the extra value in the codomain represents the
result of truncating a tree where ⊥ occurs anywhere in the body of the cut off tree,
so trees being “ill-formed”.

In practice it is necessary to define M ≡ µX . 1 + T X + 1 with algebra components
written ⊥, sup and ? respectively and to construct trunc : M̂→M

N
. This is

because the question of whether ⊥ occurs at an in appropriate depth is in general
undecidable, so the simpler form of trunc as a morphism into M̂+1 discussed above
is not implementable.

Define trunc : M→M
N

by induction over M and N by the following clauses:

trunc0x≡⊥ truncn+1⊥≡ ?
truncn+1(sup(s, f ))≡ sup(s, truncn · f ) truncn+1?≡ ? .

Note that the construction of trunc is an instance of W-type induction with algebra
[u;v;w] : 1 + T (M

N
)+ 1→M

N
defined by induction over N with u0 ≡ v0(s, f ) ≡

w0 ≡⊥, un+1 ≡ wn+1 ≡ ? and vn+1(s, f )≡ sup(s, fn).

There is an obvious inclusion ι : M̂ ↪→M defined inductively by:

ι⊥≡⊥ ι(sup(s, f ))≡ sup(s, ι · f ) .

Finally define trunc≡ trunc · ι which therefore satisfies equations:

trunc0x = ι⊥ truncn+1(sup(s, f )) = sup(s, truncn · f ) .

We can now say that m : M̂N is “well-formed” iff each mn is a truncation to depth n
of all the larger trees mn+k, which can be captured as ∀n :N.(ιmn = truncnmn+1).
So define

M ≡∑m : M̂N. ∏n :N. (ιmn = truncnmn+1) , (B.2)
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describing a regular subobject of M̂N. Note that for (s, f ) : T M the equation above
translates into the equation ι · fn = truncn · fn+1; this can be used to show that α
restricts to α : T M→M, ie ι(αnx) = truncn(αn+1x) for x : T M, thus:

ι(α0(s, f )) = ι⊥= trunc0(α1(s, f ))

ι(αn+1(s, f )) = ι(sup(s, fn)) = sup(s, ι · fn) = sup(s, truncn · fn+1)

= truncn+1(sup(s, fn+1)) = truncn+1(αn+2(s, f )) .

For the rest of this proof we’ll write α for the restricted morphism α : T M→M.
The morphism β constructed from a coalgebra β also factors through M ↪→ M̂N:

ι(β 0x) = ι⊥= trunc0(β n+1x)

ι(β n+1x) = ι(sup(β0x, β n ·β1x)) = sup(β0x, ι ·β n ·β1x)

= sup(β0x, truncn ·β n+1 ·β1x) = truncn+1(sup(β0x, β n+1 ·β1x))

= truncn+1(β n+2x)

showing that ι ·β n = truncn ·βn+1. Now writing β : X →M we can see that β is still
the unique solution to the equation β = α ·T β ·β ; to complete the proof it remains
to show that α is an isomorphism.

By definition (B.2) a term m : M satisfies the equation ιmn+1 = truncn+1mn+2;
by disjointness of coproducts and the definition of truncn+1 we can see
that this equation must be of the form ιmn+1 = sup(s, truncn · fn+1)) =
truncn+1(sup(s, fn+1)) = truncn+1mn+2 for some s and fn+1. We can therefore write
mn+1 = sup(s, fn) where fn satisfies the equation ι · fn = truncn · fn+1. By defining
α ′m≡ (s, f ) we obtain a morphism α ′ : M→ T M.

Now α ′(α(s, f )) = (s′, f ′) where sup(s′, f ′n) = αn+1(s, f ) = sup(s, fn), showing
that α ′ ·α = idT M. Conversely, writing α ′m = (s, f ) where mn+1 = sup(s, fn) and
ι · fn = truncn · fn+1 we can show that α(α ′m) = m:

ι(α0(α ′m)) = ι⊥= trunc0m1 = ιm0

ι(αn+1(α ′m)) = ι(αn+1(s, f )) = ι(sup(s, fn)) = sup(s, ι · fn))

= sup(s, truncn · fn+1) = truncn+1(sup(s, fn+1))

= truncn+1mn+2 = ιmn+1 .

Thus α ′ = α−1 and we see that M is a final coalgebra for JS . PK. 2
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