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Abstract. Legacy systems constitute valuable assets to the organizations that own them, and today, there is an
increased demand to make them accessible through the World Wide Web to support e-commerce activities. As
a result, the problem of legacy-interface migration is becoming very important. In the context of the CELLEST
project, we have developed a new process for migrating legacy user interfaces to web-accessible platforms. Instead
of analyzing the application code to extract a model of its structure, the CELLEST process analyzes traces of the
system-user interaction to model the behavior of the application’s user interface. The produced state-transition
model specifies the unique legacy-interface screens (as states) and the possible commands leading from one
screen to another (as transitions between the states). The interface screens are identified as clusters of similar-
in-appearance snapshots in the recorded trace. Next, the syntax of each transition command is extracted as the
pattern shared by all the transition instances found in the trace. This user-interface model is used as the basis for
constructing models of the tasks performed by the legacy-application users; these task models are subsequently
used to develop new web-accessible interface front ends for executing these tasks. In this paper, we discuss the
CELLEST method for reverse engineering a state-transition model of the legacy interface, we illustrate it with
examples, we discuss the results of our experimentation with it, and we discuss how this model can be used to
support the development of new interface front ends.
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1. Motivation and background

Legacy systems constitute valuable assets to the organizations that own them. Frequently, a
legacy system is the sole repository of valuable corporate knowledge and the sole specifica-
tion of the organization’s business processes, as they have evolved over time. Unfortunately,
such systems suffer from two important disadvantages. First, they generally have text-based
user interfaces designed with a command-language interaction style. This requires that the
users memorize numerous ad-hoc rules for the command-language syntax, making the in-
terface un-intuitive and difficult to learn, especially for today’s users, who are accustomed
to interacting with form-based and graphical user interfaces (GUIs). Furthermore, due to
their limited space for information presentation and simple text-entry-only input capabili-
ties, they often require duplicate data entry or redundant navigation to accomplish a single
user task. The second, and more important disadvantage is that, due to the proprietary
platforms on which legacy applications run, they are accessible only to users internal to
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the organization that owns the application. With the advent of electronic commerce, an
increasing number of organizations need to make their services available to their partners
and customers on the web, and even to integrate their services with those of their partners,
and this move is difficult in the case of most legacy systems.

Legacy system re-engineering (Pressman, 1996) projects are labor intensive, due to their
high complexity and many constraints. Therefore, there is a pressing need for developing
automated support for all re-engineering activities, including user-interface migration. It is
not surprising, then, that this problem has been the subject of substantial research activity
(Merlo et al., 1995). In general, there are two types of interface migration approaches:
a new user interface can be “grafted” on top of the original application, after the code
implementing the original interface has been deleted, or the original user interface can be
wrapped with a new interface front-end.

If the original legacy application is not highly interactive, calling a set of relatively
independent application procedures from a newly developed GUI is fairly simple and does
not involve complex reverse engineering. The GUI can be developed independently and the
user-initiated events are programmed to invoke the procedures in question (Gannod et al.,
2000; Phanouriou and Abrams, 1997). To enable some configuration of the underlying
applications and re-formatting of their outputs some reverse-engineering process might
be required to identify the internal variables of interest and trace their values (Tucker
and Stirewalt, 1999). If, however, the original application is highly interactive, there is a
substantial amount of code implementing the original interface that has to be identified,
extracted and replaced. Moore et al. (1994) describe a method for migrating graphical user
interfaces, from one platform to another. This method uses a knowledge-based model to
map the functionalities of the widgets in the user-interface toolkit of the original platform to
those of the target platform toolkit. Given a widget in the legacy interface, the tool identifies
candidate equivalent widgets in the target platform toolkit. The major disadvantage of this
approach is that a new knowledge-based model has to be developed for any new combination
of source-target platforms. A similar approach (Antoniol et al., 1995) has been developed
to address the problem of migrating text-based interfaces to graphical user interfaces. The
interesting difference is that since there is no source widget toolkit, the reverse-engineering
process hypothesizes widgets from the code.

An alternative to grafting is to develop web-enabled user-interface wrappers for legacy
systems. This solution involves the restructuring of the application in a web client/server
architecture (Horowitz, 1998; Tan et al., 1998). The underlying idea is to wrap the legacy
application in an application server that communicates with an HTML browser or a thick
client through a protocol such as HTTP or Java Remote Method Invocation (RMI) in the
case of Java clients, for example. This approach introduces an overhead in accessing the
application functionality, which, however, is usually negligible in comparison to the latency
introduced by the network between the client browser and the application server.

All the above approaches, both grafting and front-ending, have a common feature: they all
adopt code analysis for reverse engineering the original application. However, in most cases,
the code of the legacy application is a very poor expression of its design. It includes “dead
code” and “glue code” implementing obsolete functionalities and incremental updates. In
addition, due to its long-term evolution, the code is highly coupled and even small changes
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may have unpredictable side-effects. Furthermore, when individual code modules are reused
in the context of the new client interface, there is a great danger of missing, or even violating,
application logic built in the dialog implemented in the legacy interface.

In our CELLEST project we have adopted a front-ending approach to legacy interface
migration, to avoid the risks involved with extracting and reusing isolated code modules.
Furthermore, to be able to reuse the business logic implemented in the dialog of the legacy
user interface, we have opted to reverse engineer a model of the legacy user-interface be-
havior instead of the legacy application code. The overall CELLEST method consists of a
reverse-engineering phase, aiming at constructing a state-transition model of the legacy user
interface, and a forward-engineering phase, aiming at developing user-interface specifica-
tions executable by special web-accessible translators. These new user-interface specifica-
tions enable the execution of user tasks by using the reverse-engineered model to emulate
the user navigation through the legacy user interface. Our method is, to some extent, inspired
by “screen scraping”, a quite successful industrial practice in legacy-application migration,
which has been largely ignored by academic research. They are similar in that they both ex-
pose some aspects of the legacy interface to the new interface front-end and they also use the
legacy interface to drive the underlying application. However, the CELLEST method brings
a substantial innovation to the traditional screen-scraping process. With screen scraping, a
developer has to analyze the behavior of the interface and write code that is highly specific
to the original application and its user interface to extract the information of interest from
this interface. Instead, with CELLEST, a model of the legacy interface behavior and of the
specific tasks of interest is semi-automatically constructed. These models, after they have
been reviewed and revised, can be executed by multiple platform-specific translators. Thus,
the models produced by CELLEST enable the simultaneous migration of the legacy interface
to multiple target front-end platforms, where different screen-scraping applications would
have to be developed.

The focus of this paper is the reverse-engineering phase of CELLEST, which produces
a state-transition model of the legacy-application user interface. To illustrate the use of
the model in the overall legacy user-interface migration process, we also briefly discuss
the subsequent forward-engineering phase. The input of the reverse-engineering phase is
a recorded trace of the user interaction with the legacy interface and its product is a state-
transition model specifying the unique legacy interface screens (as states) and the possible
commands leading from one screen to another (as transitions). The model states are identified
as clusters of similar in appearance snapshots in the recorded trace. Next, the syntax of each
transition from one screen to another is extracted as the pattern shared by all the instances
of the transition in the trace.

In this paper, we describe the overall CELLEST environment (Section 2) and the corre-
sponding interface-migration process it supports. We then discuss LENDI, which implements
the reverse-engineering step of the process: we describe the major steps of the process, fea-
ture extraction, screen and action identification (Sections 3.1, 3.2 and 3.3), we illustrate the
process with a case study and we present some experiments we have conducted to eval-
uate its effectiveness (Section 3.4). Then we briefly discuss the forward-engineering step
of CELLEST (Section 4). Finally, we conclude with some lessons we have learned and our
plans for future research (Section 5).
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2. The CELLEST environment and the corresponding user-interface
migration process

Let us illustrate the overall user-interface migration process supported by the CELLEST
environment with an example scenario, from a real application, on which we have applied our
method. Consider an insurance company that computerized its claim department separately
from the customer database, and, as a result, owns two separate subsystems, i.e., Customer
and Claims. Using the Claims subsystem, the user can retrieve from a sequence of different
screens the data necessary for generating a report on the customer’s accident. However,
to do that, the user has to know the accident number, when usually he/she only knows
the claimant’s name. As a result, the user has first to search for the claim number in the
Customer system. Now, the insurance company wants to let its lawyer partners use its
systems to generate the required reports. The lawyers, however, are not on the company’s
intranet, so these services have to be made available through a client-server application,
preferably web based.

Traditionally, to accomplish this goal, one would have first, to isolate and extract from
the application code all the modules relevant to “claim number search” and “claim data
retrieval” and then, make them available through a server application. In addition, a new web-
accessible client application, with an interface easily learnable and usable by the lawyers,
should be developed to access the server.

The CELLEST environment supports an alternative process, shown diagrammatically in
figure 1. Using a specially instrumented emulator, traces of the insurance company employ-
ees interacting with the existing interface are captured. The emulator should be used by

Figure 1. The tools of the CELLEST environment and the overall user-interface migration process.
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all employees whose tasks may have to be migrated. The emulator provides the user with
a text-based interface that mimics the original hardware terminals used to access the host
system, on which the legacy application resides, by implementing the protocol of commu-
nication between the host and the emulator user interface. The emulator is instrumented so
that it also records the interaction between the legacy application and its users.

A trace recorded by this emulator consists of a sequence of snapshots of the screens
forwarded by the legacy application to the user’s terminal. Between every two snapshots,
the user keystrokes are recorded. The interface reverse-engineering step starts by translating
each snapshot in the recorded traces into a vector of visual features (Task T1 in figure 1,
described in Section 3.1). It then uses the processed trace to extract a model of the behavior
of the legacy user interface (Tasks T2 and T3 in figure 1, described in Sections 3.2 and 3.3).
This model is represented as a directed state-transition graph. The graph nodes correspond
to the distinct interface screens, which are identified by clustering all the screen snapshots,
contained in the recorded trace, according to their visual similarity. Each edge of the graph
corresponds to an action that can be taken, i.e., a command that can be executed, when the
source-screen node is visible to the user and leads to the destination-screen node. Given
all the instances of the transition from one screen to another encountered in the recorded
traces, a pattern of the command syntax enabling this transition is extracted. These three
tasks are implemented by the LENDI prototype tool.

This model captures the overall behavior of the user interface, to the extent that it has been
exercised by the users of the emulators and recorded in the captured traces. To construct
models of the specific tasks that need to be migrated (Task T4 in figure 1, described in
Section 4.1), in our example the “accident report” task, multiple instances of this task
have to be recorded1 The task model specifies the path on the interface state-transition
model through which the user navigates, i.e., the distinct screens that the user visits while
performing the task in question. In addition, the model specifies the flow of information
between the legacy application and the user, i.e., the input provided by the user (as recorded
in the trace), and the output displayed to the user (that the user has to annotate subsequently
on the recorded trace). The final step in the CELLEST process (Task T5 in figure 1, described
in Section 4.2) is the actual construction of the GUI. The GUI is a web-accessible application,
i.e., an applet or a browser accessible web server. Based on the task model, it interacts with
the user to receive(display) the expected input(output) information; it also translates this
interaction to a sequence of calls to the emulator, similar to the calls that the original legacy
user interface used to generate. Currently the emulator is able to emulate IBM 3270 and
VT100 data transfer protocols. To date, in the CELLEST project we have focused almost
exclusively on IBM 3270, which is a block-mode data transfer protocol. We have also
experimented with VT100, which is a character-based protocol but can be emulated in
block-mode. These last two steps of the process have been implemented in the URGENT and
MATHAINO prototypes.

Since all the above tasks are inductive in nature, i.e., they construct models on the basis
of examples, their results are products of “unsafe” inferences. The problem of evaluating
whether or not the collected results are sufficient for learning a complete model of the
interface is undecidable. In the context of the CELLEST process, we propose to address
it in two ways. The first is methodological; we assume that recording emulators will be
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provided to all users whose jobs involve the functionalities that need to be migrated. In
this way, we expect the collected traces to “cover” all interesting aspects of the legacy
user interface, albeit not necessarily the whole user interface. In addition, the CELLEST
environment includes QANDA (Questions AND Answers), a tool supporting the reviewing,
verification and possibly revision of these results by an expert user. The role of the QANDA
system in the CELLEST environment is to visualize the intermediate products of the process
(screen clusters and task models) so that an expert user, familiar with the legacy interface
that is being migrated, can inspect, validate or revise them (Task T6 in figure 1).

3. Interaction reverse engineering with LENDI

The purpose of the LENDI tool, which is the focus of this paper, is to produce a model of
the legacy interface behavior, represented as a directed state-transition graph. The basic
input to LENDI, as shown in figure 1, are the traces recorded during the users’ interaction
with the legacy application. For legacy systems that use a block-mode transfer protocol
between the mainframe application host and the user terminals, such as the 3270 protocol,
a trace is a sequence of screen snapshots interleaved with the actions that the user performs,
such as character typing and function key presses. The intuition underlying the CELLEST
interaction reverse-engineering process is that as the user interacts with the legacy interface,
the underlying application goes through a sequence of distinct behavioral states, which
correspond to the distinct screens of the legacy interface. The sequence of screen snapshots
in the trace parallels the application’s behavioral state sequence. The implication is that,
identifying the distinct interface screens corresponds to identifying the behavioral states that
the application goes through, during its interaction with the users. Consequently, identifying
the different actions possible at a distinct screen corresponds to identifying the conditions
of the transitions from one behavioral state to another. Therefore, the process of extracting
the model of the interface behavior from the recorded traces consists of two steps:

1. the identification of the unique interface screens (i.e., the nodes of the state-transition
graph) of the application interface and the corresponding predicates for evaluating
whether a new snapshot is an instance of one of them, and

2. the identification of the possible user actions, that are applicable to each of these screens
(i.e., the edges enabling the transition from one state to another).

The first sub-problem can be addressed by clustering the recorded screen snapshots:
two instances of the same screen should appear more similar than two instances of two
different screens. Thus, if all the screen snapshots were organized in clusters according to
their visual appearance, each cluster should contain all the snapshots that are instances of
some distinct system screen. Clustering is a generic problem with instances in a variety of
application domains. In general, clustering algorithms are either batch, assuming that the
complete set of input instances is available at the same time, or incremental, allowing for
additional instances to be provided after initial clustering. Incremental algorithms, given a
new instance, decide the cluster to which it belongs. Batch clustering algorithms are either
top-down, starting with a single cluster and continuously decomposing it until a stopping
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criterion is met, or bottom up, starting with each instance belonging to a cluster by itself
and joining clusters until a stopping criterion is met. Irrespective of their control flow, all
clustering algorithms require a distance (or similarity) metric, on the basis of which to
decide whether to split a cluster (in top-down algorithms) or whether to join two clusters (in
bottom-up algorithms) or whether a new instance is sufficiently similar to an existing cluster
(in incremental algorithms). Any such metric depends on a set of features that describe the
input instances. The result of clustering is a partition of the entire snapshot set, i.e., a set of
non-overlapping clusters, such that each recorded snapshot belongs to a cluster.

We have explored two clustering algorithms in the context of the screen-identification
process: an incremental algorithm and a top-down algorithm stopping when the number
of expected clusters has been reached. As we describe later in detail, these two algo-
rithms have different knowledge requirements and each one is preferable under different
usage scenarios. Through analysis of several legacy interfaces, we have identified a set of
distinguishing screen features (described in Section 3.1); we use these features to trans-
form the recorded trace snapshots into vectors of feature values, which are then input
as instances to the clustering algorithms (described in Section 3.2). We have also devel-
oped, based on these features, the corresponding distance metrics required by the two
algorithms.

Irrespective of which of the two clustering algorithms is used, the result is the identi-
fication of the distinct legacy interface screens and the classification of all recorded trace
snapshots as instances of these screens. Using these classified snapshots as examples, a
classifier is constructed which, given a new snapshot at run time, recognizes the screen in
which each snapshot belongs.

The final step in the interaction reverse-engineering process is action recognition (de-
scribed in Section 3.3). If there is a transition between two snapshots in the recorded trace,
then there exists a command that enables a transition between their corresponding screens.
Given all the examples of this transition in the trace, a pattern is extracted that characterizes
the syntax of the underlying command. Therefore, at run time, new valid commands can be
issued with new parameters.

The run-time ability to recognize the current screen forwarded by the legacy application
and to issue commands so that a new desired screen may be obtained is crucial for the new
web-based front-end to drive the legacy interface. In Section 4 we briefly discuss how the
legacy-interface model constructed by LENDI is used as the basis for developing the new
web-based interface front-end.

3.1. Feature extraction

The snapshots in the interaction trace are recorded as two-dimensional buffers of ASCII
characters. Thus, in principle, their similarity could be evaluated by their character-by-
character comparison. Such comparison, however, would give rise to many “superficial”
differences, due to the dynamic content of many screens. Therefore, after reviewing a variety
of legacy interfaces and consulting with experts in the domain of legacy-interface design,
we have developed three sets of characteristic features on the basis of which the similarity
of two screen snapshots is calculated.
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1. Keywords: The periphery of the screen often contains special information, such as
date, time, system messages, page numbers, titles, or identifiers describing the screen
function. LENDI examines the first two non-empty lines at the top and bottom of the
snapshot to detect any such keywords. An encoding of the discovered information and
the general area where it appears, i.e., right/middle/left of line 1/2/23/24, is used as a
feature.

2. Screen layout: The snapshots of dynamic screens that display information retrieved
from the application’s database back-end may appear quite different. However, they are
usually laid out in some canonical structure. This is why we have developed two sets of
layout features in LENDI: projection profiles and layout structure. Projection profiles is a
technique widely used in document analysis (Srihari et al., 1992). They are horizontal or
vertical projections of all or parts of the snapshot into a histogram. In horizontal profiles,
a histogram is constructed for the occurrences of the character(s) of interest per line. In
vertical profiles, occurrences are counted per column. Default or user-defined thresholds
are used to remove the effect of noise, i.e., insignificant occurrences of character(s). For
example, to avoid recognizing a column separator when two “space” characters happen
to be aligned in two consecutive rows, the threshold should be setup to 3. Values above
the threshold are represented by ones, implying that a column/row separator has been
recognized, and values under the threshold are represented by zeros, thus resulting in
binary features.

Five extracted features are based on projection profiles. Two are the horizontal and
vertical profiles of all characters. The third is the vertical profile for the numeric content
of the snapshot, i.e., the count of digits per column. The fourth encodes the number of
words in the two top and bottom lines of the snapshot. This is the only non-binary profile.
The fifth is a projection profile of the most frequent character on the snapshot among a
default or user defined set of special characters, which are frequently used to impose a
geometric pattern on the layout of the screen.

Layout description is inferred by examining if a snapshot contains a table, a list or a
general structure. LENDI uses the T-Rec algorithm (Kieninger, 1998) to detect tabular
structures. If a table or a list is detected, LENDI stores its specifications as a feature for
this snapshot. A list’s features are the number of its elements, the increment step, the
order (ascending/descending), its first element and its left and right boundaries. A table’s
features are its upper left corner, its width, its length and the number of its columns. If
none was detected, the snapshot is labeled as a general structure with no specification.

To illustrate these different five types of projection profiles, figure 2 gives an example
of all five types extracted for a legacy screen snapshot. Figure 2(a) shows the setup
parameters used in this example. The upper and lower vertical cut parameters specify
the number of lines from the top and bottom of the snapshot that should be ignored,
before building the all-characters vertical profile. The vertical threshold value is used
to decide whether to represent a column by one (if the number of characters in this
column, ignoring the cut lines, is above or equal to the threshold) or by zero (if the
opposite). The horizontal and numbers thresholds are used similarly. Finally the special
character set describes which special characters to look for and what type of profile to
build for each. For example, #(H ) means that a horizontal profile should be built for the
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Figure 2. An example of projection profiles.

character #. Figure 2(b) shows an example snapshot, with the upper and lower vertical
cuts shown in grey. Its horizontal profile is shown to its right and its vertical profile is
shown at the bottom. Note that the least significant digit in all profiles except the number
of words profile represent the 4 left most columns or the 4 topmost rows, depending on
the direction of the profile. So the profile “1110111110111111...” will be represented by
the string “..fdf7”.

3. Application-specific features: Finally, the existence and locations of application-specific
keywords, such as “Menu” and “Input” for example, can also be used for screen iden-
tification. Furthermore, the initial cursor location, i.e., the location of the cursor on
the screen immediately after it is forwarded by the legacy application to the terminal
interface, and the label to its left can be significant in distinguishing among screens.

Clearly, the set of features currently extracted from the recorded snapshots is not in
any sense complete; they are the result of our domain analysis and it is possible that
different types of legacy interfaces may require additional features in order to produce
correct clusterings of their snapshots. The LENDI feature set is easily extendible and addition
of new features would not disturb the rest of the screen-identification process.

The output of the feature extraction process is a feature vector for every snapshot. It
is important to notice that the ability of each individual feature to discriminate between
snapshots belonging to different screens differs from one legacy application to another,
depending on the approach followed in designing the legacy user interface. Based on our
reviewing of multiple legacy user interfaces, we believe that the suite of all the features we
have developed is broad enough to deal with a variety of legacy interfaces in the information-
systems domain.
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3.2. Screen identification

After having transformed the recorded snapshots into vectors of the above features’ values,
the next step is to produce a partition of the entire snapshot set, i.e., a set of non-overlapping
clusters such that each snapshot belongs to one, and only one, cluster. Each of the partition
clusters is assumed to contain instances of the same distinct screen of the legacy interface.
The end goal of clustering is to infer a classifier that can subsequently be used at run time
to recognize new snapshots as instances of the legacy interface screens.

We have implemented two different clustering algorithms and corresponding similarity
metrics, which we describe in the paragraphs below. The two algorithms have different input
requirements and control flow and are appropriate under different knowledge conditions.
The first, single-path incremental clustering, is an iterative process that requires several
cycles of feature setup, clustering and result review. This is most suitable when the user is
familiar with the clustering process and the available snapshot features but is still exploring
the legacy system in hand and does not know it very well. On the other hand, the top-
down clustering approach requires only a user estimate of the number of legacy screens
to be modeled. This requires enough experience with the legacy system to estimate such
a number. Using this estimate, the method provides a good initial partition without any
further user setup. The two algorithms are described in the two subsequent subsections and
their relative merits are described in Section 3.4.

3.2.1. Single-path incremental clustering. The first clustering algorithm in LENDI is a
single-path incremental clustering algorithm (van Rijsbergen, 1979). It requires as input
the trace snapshots, a set of weights defining the relative important of the various features
in calculating their similarity, and a similarity threshold, i.e., the minimum similarity value
that is necessary to establish that two snapshots are instances of the same screen. The
algorithm views clusters as centered at a representative snapshot, the centroid, and aims
at maximizing the distance, i.e., the dissimilarity, between the centroids of the various
clusters. It is incremental because it processes snapshots one by one and is single-path
because it examines each snapshot only once. The partition is initialized to contain zero
clusters. Each snapshot in the recorded trace is accessed and compared to the centroid of
each partition cluster. The similarity of two snapshots is the weighted-sum of the similarity
of their individual features. If a snapshot is similar enough to a cluster centroid, i.e., if
the similarity score surpasses the defined threshold, then the snapshot is assigned to the
centroid’s cluster. If the new snapshot is not similar enough to any of the cluster centroids,
then a new cluster is initialized with the new snapshot as its only instance and centroid.

The way in which individual feature similarity is evaluated depends on the type of the
feature. The values of textual features, e.g., titles and codes, are compared using binary
matching, i.e., if the feature values are exactly the same then the snapshots are similar in
that feature dimension, and different otherwise. For layout features, a similarity factor is
calculated based on the number of feature elements that the snapshots have in common.
For example, there are four elements defining the table feature: the upper left corner, its
width, its length and the number of its columns. When comparing the “table” feature of
two snapshots, if they share the number of columns only, then their table-feature similarity
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is 25%. For projection profiles, similarity is calculated as the ratio of matching bits to the
total number of bits in the profile. When comparing two binary projection profiles of the
numeric content of two snapshots or of their most frequent characters, the mutual existence
of 1s is considered more important than the mutual existence of 0s. This means that the
fact that some column on both snapshots contains some numbers is more significant than
that some column has no numbers on both snapshots. If a feature is missing on a particular
snapshot, the algorithm can be configured to either ignore it in the calculation of the snapshot
similarity, or to consider its absence as evidence that there exists a distinct screen that lacks
the feature in question.

The algorithm can be configured to use as the cluster centroid either the first snapshot
assigned in the cluster, or an “artificial” snapshot derived from the snapshots currently
belonging to the cluster. In the latter case, the centroid is recomputed each time a new
snapshot is added to the cluster by taking the most frequent value for every feature as the
feature value for the centroid. In this manner, the sum of the distances between the centroid
and cluster members is minimized.

After all the snapshots in the recorded traces have been clustered, the user can review the
results, readjust the feature weights for the computation of the similarity measure and the
threshold weight for establishing similarity and repeat clustering. Our experience has been
that after a few repetitions (less than ten) clustering accuracy becomes satisfactory, i.e., at
90%. If there are still mis-clustered snapshots, the user can move these snapshots to the
clusters where they belong, through the drag-and-drop interface of QANDA, the visualization
tool of CELLEST.

After the user has reviewed the partition and no further changes are required, a pattern
can be inferred as the “signature” for every cluster in the partition, to be used for classifying
new snapshots at run-time. The signature is a generalized pattern of the feature values
common in all screen instances. It consists of an artificial feature vector with the values
shared by all the cluster members and a “don’t care” character, ‘?’, wherever there is no
common value. For example, assume a cluster with three instances and with three features
for each instance: two multi part features and one string feature. Assume the following
feature vectors for the three instances: (“Claims Menu”, 1089, 101010), (“Customer List”,
3481, 101011), (“Help”, 1081, 101011). The signature of this cluster is (“?”, ??8?, 10101?).
This signature pattern can be used at run time to recognize whether or not a new snapshot
belongs to this cluster, i.e., is an instance of the screen corresponding to this cluster. Given
a new snapshot, LENDI computes its feature-value vector and evaluates whether it matches
any of the cluster signatures. If the feature vector matches a single signature, then LENDI
recognizes the snapshot as an instance of the corresponding cluster. If no cluster signature
matches, LENDI informs the user that the current snapshot was not recognized. If more than
one signature match, LENDI prompts the user to select the best match.

3.2.2. Two-phase top-down clustering. The single-path clustering algorithm, described in
the above section, requires substantial parameter configuration from the user. The user has
to define the relative weights of the various features and the required similarity threshold.
Although LENDI provides default values for these parameters, fine-tuning them is necessary
to accomplish precise clustering, and this process can be un-intuitive. For that reason, we
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Figure 3. The pseudo-code for the basic top-down unsupervised clustering algorithm.

have explored a second clustering algorithm for LENDI’s screen-identification process. This
second algorithm is a two-phase top-down clustering algorithm, and is shown in pseudo-
code in figure 3. It requires as input the trace snapshots and an estimate of the number of
distinct screens in the legacy interface, information that an experienced user of the legacy
interface would be able to provide.

Initially, the partition is initialized to contain a single cluster, containing all input snap-
shots. As long as the current number of clusters is less than the estimated number of clusters,
the algorithm identifies the most incoherent cluster and splits it into two new clusters, in a
way that minimizes the incoherence of the resulting clusters. Incoherence is measured as the
average distance of every instance in a cluster from every other instance in the same cluster.
The algorithm uses the same features as the ones used in the first algorithm, with every
multi-element feature broken into a number of single-element features. All the features are
equally weighted and are treated as having discrete, non-ordinal values. If two instances
have different values for a feature, that feature contributes its weight to the distance measure.
The distance between two instances is then simply the sum of the weights of their differing
features.

The figure 3 illustrates the first phase of the top-down clustering algorithm, when the
original partition cluster is recursively decomposed in smaller, less incoherent clusters. In
each step, the algorithm identifies the most incoherent cluster (line 1) and then calculates
the incoherence of the clusters that would be produced if this cluster were split according to
each feature-value combination (nested loops in lines 2a, 2b). The feature-value that results
in the smallest maximum incoherence is selected; then the cluster is removed (line 3) and
it is replaced by two clusters: one that contains the instances with the chosen feature value
(line 4a), and one that contains all the rest (line 4b). Note that, when this first phase of the
algorithm is complete, the produced partition is associated with a decision tree that defines
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how this partition was constructed, i.e., which feature and value were used for splitting each
intermediate cluster corresponding to the internal tree nodes. This decision tree can be used
directly for classifying new snapshots; it functions similarly to the cluster signatures that
are being derived after the completion of the single-path incremental clustering algorithm.

As was the case with the single-path clustering, the LENDI user can examine the partition
produced by the top-down algorithm using the QANDA interface, drag and drop mis-clustered
snapshots to their correct clusters, and then request a revised decision tree to be constructed.
The revision of the partition produced by the single-path algorithm involved the recalculation
of the cluster centroids and the recomputation of the cluster signatures. The revision of the
partition produced by the top-down algorithm involves the reorganization of the cluster tree
and the corresponding re-specification of the predicates splitting an intermediate cluster to
each children.

We use the MoJoPlus algorithm (Tzerpos et al., 1999; El-Ramly et al., 2001) for compar-
ing two partitions to calculate the minimum number of snapshot(s) moves from a cluster to
another and joins of two clusters together, that would have the same effect upon the original
partition as the user’s feedback. Then, the decision tree is revised to reflect the changes,
as shown in figure 4. If two clusters, A and B, need to be joined (line 1), the algorithm
simply changes the leaf node A to B, or if A and B share the same parent node, it eliminates
the decision node and collapses A, B and their parent. If the instances of a subcluster C of

Figure 4. The pseudo-code for the decision tree extension algorithm.
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cluster A need to move from A to B (line 2), the algorithm proceeds to discover either the
features that could be used to distinguish these instances from the rest of the instances in
A, or the features that these instances share in common with all the instances in the target
cluster B (line 3). If instances are being moved from a larger cluster to a smaller cluster, the
tree-revision algorithm first looks for features distinguishing the instances in the larger set
from the instances being moved and those in the destination set. If the instances are moving
from a smaller cluster to a larger one, the tree-revision algorithm first looks for features
shared by the moved instances and the destination set, but not by the ones in the origin
set. If the first of these feature quests fails, the alternative is tried next. If that second quest
fails, the algorithm recursively tries again, this time ignoring the features in the destination
set (line 4). If this still fails, the moved instances are split into groups according to the
best split test for minimizing the maximum cluster incoherence, and then each resulting
group is checked recursively for distinguishing features (line 5). If the algorithm recurses
down to a single instance, and no distinguishing feature can be found, the algorithm simply
reports the failure and proceeds. This situation is, in fact, seldom encountered in all the
legacy system traces that we have tested. Once a set of distinguishing features has been
found, the algorithm currently selects one at random and uses it to create a new decision
node to distinguish the instances from their initial classification. We experimented with
various heuristics for selecting among a set of distinguishing features, and we evaluated
their effectiveness with ten-fold cross-validation. None proved more reliable than random
selection.

3.3. Identification of actions

After snapshot clustering is completed, the clusters produced correspond to the distinct
screens of the legacy interface. The next step in LENDI’s process is to identify the edges in
this graph, which correspond to the actions enabling the user to navigate from one screen
of the legacy application interface to another.

Most legacy interfaces adopt a mix of function-key, menu-driven, command-driven, and
form fill-in interaction. In the function-key interaction style, the interface implements a
well-structured dialog with the user. At each point of this dialog, the user presses one of a
small set of function keys to select one of the corresponding alternative options. A similar
kind of interaction can be implemented in a menu-style interface. Such interfaces present the
user with a list of items, each of which can be selected by moving the cursor to its location
and pressing a function key. In the command-driven interaction style, the user issues textual
commands to the system. A command language is specified in terms of the vocabulary of
possible command names and the syntax of these commands in terms of the arguments
they require and the options they allow. The command-driven interaction style enables a
more dynamic system-user interaction, since the transitions of the system from one state
to another are caused by possibly complex, multi-parametric commands instead of simple
function-key presses. Finally, in the form fill-in interaction style, the interface presents the
user with forms that require the entry of specific types of information at particular locations
on the screen. The completion of the form is signaled to the system with the press of a
function key or the typing of a command at a particular command line.
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Figure 5. A grammar for describing transitions in legacy systems.

To date, our research in LENDI has focused on systems adopting a combination of function-
key and command-driven interaction style, since after reviewing several legacy systems we
have found that this combination occurs very often. LENDI possesses a general “transition
model”, shown in terms of a BNF grammar in figure 5. According to this model, each
transition from a start state to an end state is caused by an action which may consist of
one or more action items. An action item involves the entry of a data item at a particular
location of the screen, which may be static or may vary dynamically within an area range.
An action item may conclude with the press of a function key.

To perform action modeling, LENDI groups the snapshots of each cluster according to
the destination of the user action performed on them. LENDI assumes that there is a single
action leading from a start screen-state to an end screen-state, therefore all the transitions in
one group must be instances of the same action. Next, LENDI attempts to infer the command
form(s) and/or the function key that defines this action, assuming that it conforms to the
general model described by the transition-model grammar.

LENDI starts analyzing each group of action instances, one word at time, starting with
the first word in all instances. It uses a set of heuristic rules for command-language design
to discover any relations between the four most frequent terms that appear as the first word
in various instances of the same action and whether any of these terms is an optional or
mandatory command keyword or argument. According to these rules, LENDI assumes that if
there are different versions of the same command name they will most likely be prefixes of
a canonical command name or substrings of this name, possibly with the vowels removed.
LENDI examines only the 4 most frequent terms, since our experience showed that it is
unlikely that more than four forms of the same command will be available. In order for a
particular string to be identified as the canonical command keyword, its different variants
have to appear frequently enough, i.e., at least 33% of the times that the action occurred. If
no keyword appears sufficiently often, LENDI assumes that the command name is implicit,
and that the user has to only enter its arguments. It assumes that an argument is optional if
it does not appear in some of the action instances, otherwise it assumes it is mandatory. The
same analysis is applied to the second word, and so on. LENDI assumes that the command
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Figure 6. An example of modeling user actions in a command-driven legacy system.

keyword, if any, can be at any position, and is not necessarily the first word. LENDI collapses
the collected hypotheses in a compact form.

An example of modeling the retrieve command of a command-driven library system
is shown in figure 6. LENDI examines the first word, which is R for all the examples and
concludes that R is a compulsory keyword for this action. Then it examines the second word.
By applying the rules mentioned above, no relation can be discovered between the words in
the second position and none of them appears more than 33% of the time. The conclusion
is that the second word is an argument for the command that is mandatory because all the
instances have a second word. Doing the same analysis for the third word concludes that
it is an optional argument. The inferred model is shown in figure 6(b), where ∗ means a
mandatory argument and [∗] means an optional argument. The command R (or RETRIEVE)
takes, as an argument, a phrase of one word at least, searches the library catalog indexes
for it, and creates a results set for the matching items.

3.4. LENDI evaluation

To illustrate the overall user-interface reverse-engineering process, implemented in LENDI,
we will revisit the example case study we introduced in Section 2, of developing a new
web-based interface, accessible by the insurance company lawyers for generating accident
reports. Next we will provide some quantitative evidence for the effectiveness of the process,
using some publicly available library applications.

3.4.1. LENDI on the “legacy insurance application”. The first step in the process is the
collection of traces of the legacy insurance application. In this phase, the legacy-system
users perform their tasks as usual; the emulator middleware is transparent and completely
unobtrusive. Figure 7(a) shows a sequence of recorded screen snapshots, as seen through
the LENDI user interface. In this case study, the LENDI user chose the incremental screen
clustering algorithm for the screen-identification step. Ideally, this step would be performed
by a user of the insurance application who would have had a tutorial of the LENDI process.
It was actually performed by a developer in the CELLEST project (not the primary LENDI
developer). Figure 7(b) shows a dialog box, where the LENDI user configures the process
by specifying the combination and the relative weights of the particular features that will
be used for clustering the trace snapshots.
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Figure 7. Snapshots form the CELLEST environment interface, during the reverse-engineering phase using
LENDI.

Once LENDI completed the snapshot clustering, the produced clusters were reviewed. In
our example, the first screen of the insurance application is fairly static—it contains a title in
the first line with the keyword “SPLASH”. The title feature is very successful in clustering
all the instances of this screen. However, the review process revealed classification errors in
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other snapshot clusters; the process of configuration, identification and review was actually
repeated nine times in this case study, until the analyst was satisfied with the result of the
classification. Figure 7(d) shows the interface enabling the user to review all the snapshots
of a cluster. The intent of this view is to reveal non-uniform clusters, i.e., clusters with
snapshots that are not instances of the screen represented by the cluster, such as the dark
gray snapshots in this picture.

When the LENDI user was satisfied that no snapshots were misclustered, he proceeded
to the action-identification step. We will discuss in detail one particular command. When a
legacy user has retrieved the claim number from the Customer subsystem, he/she navigates
to a screen behaving as a menu where he/she can enter the claim number and then type
a keyword that determines the kind of report he/she wants to see, i.e., “xs” or “c1” for
“expense summary” and “medical claims” respectively. The second keyword determines
the destination screen of the user’s action. Nine instances of the transition to the “Expense
Summary” screen were recorded, as shown in Table 1.

LENDI’s algorithm for action recognition inspected these instances and concluded that
all of them terminate with the same function key, “Enter”, but there is no instance with
only the function key and no text content. Then it proceeded to consider the first word
of each instance as a candidate command name. The most frequent words are “120921”,
“123233” and “045536” which appear in two instances each. They are not similar to each
other according to the criteria defined in the algorithm. Each of these words appears in only
20% of the instances. So, none of them qualified to be a command name; the inference is
that the command must always start with a variable string. Then the algorithm considered
the second word in every instance. There is only one word, “xs”, that appears all the time in
this position. So, the conclusion is that this is a mandatory keyword. As a result, the syntax
for this command is specified as “* xs (Enter)”.

Figure 7(c) shows the QANDA window on which the LENDI user reviews the results of
the action recognition. The representative of a cluster is shown at the left of the interface.
The interface shows that four actions were modeled for the screen shown, each causes a
transition to a different target screen. The first one has two forms as the active buttons to the

Table 1. Recorded instances of the transition to the expense summary screen (node named sum display in
figure 11).

First word Second word Control key

1 120921 xs Enter

2 123233 xs Enter

3 022323 xs Enter

4 265765 xs Enter

5 123233 xs Enter

6 045536 xs Enter

7 120921 xs Enter

8 045536 xs Enter

9 986443 xs Enter
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right of the window suggests. One of these forms is shown on the lowest line of the cluster
representative, which is b brws browse[ ](Enter), where is used to separate the variant
forms of the same keyword. The instances used to model this action are listed in the middle
list with a scroll bar, where one can select any of them to view along with the corresponding
destination snapshot.

3.4.2. Some quantitative experimental results with LENDI. Let us now discuss the effi-
ciency and accuracy of LENDI’s reverse-engineering of the legacy user interface. We report
here on the results of our experimentation with an IBM 3270 trace of the public on-line
Library of Congress Information System (LOCIS, locis.loc.gov). It was recorded while a
user was browsing the library catalogue, retrieving sets of catalogue entries, displaying
them, and running into some system errors. This trace is 406 snapshots long. Manually,
a user built an authoritative partition for this trace, which had 17 distinct clusters. Some
screens had only 1 or 2 snapshots in the trace, while others had up to 157. Figure 8 depicts
a segment of the LOCIS trace and a part of the derived model.

Single-path incremental clustering experiment. The single-path incremental clustering
algorithm is quite interactive, and the efficiency of the reverse-engineering process based
on this algorithm depends on the experience of the user configuring its parameters. In this
section, we report on an experiment performed by a user who had no particular familiarity
with the LOCIS system but was familiar with the overall CELLEST process and was given
a tutorial on how to use LENDI. Out of the feature suite available in LENDI. This user used
the following features to perform the single-path incremental clustering:

1. a3 is the exact text at middle of the topmost non-empty line on the screen instance, which
LENDI identified as a potential code or title for the LOCIS trace.

2. c1 encodes the cursor’s label.
3. d2 encodes the vertical all-character binary profile.
4. d5 encodes a special character binary profile. This chosen character is the most frequent

on the snapshot among a default or user defined set of characters.

Figure 8. Diagrammatic representation of a partial LOCIS trace and its model.
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Table 2. The setup for the single-path incremental clustering algorithm for the LOCIS experiment.

Feature employed Weight Ignore if empty

1 a3 30 N

2 c1 10 N

3 d2 20 N

4 d5 10 Y

5 e1 5 Y

6 e2 25 N

5. e1 encodes the layout description of a snapshot and e2 encodes the specification of this
description if it is a list or a table.

A threshold of 40% was used along with the choice that the cluster centroid will be its
representative. It took eight recognition/review/reconfiguration rounds to reach the setup
shown in Table 2, which the user thought was satisfactory. The column “Ignore if empty”
indicates whether to ignore a feature if missing on some snapshot, or not.

The partition produced by the final configuration consisted of 23 different clusters. It
included 17 mis-clustered snapshots (4.2%) and six redundant clusters. A mis-clustering
is a false positive error that assigns snapshots with potentially different behaviors to the
same screen cluster, causing false connections between the state-transition graph nodes.
Redundant clusters are considered false negative errors which are duplications in the state-
transition graph, resulting from the snapshots of the same screen being split into two or
more clusters. This partition was reviewed by the user; 12 corrective operations, i.e., cluster
joins and moves of instance groups, are necessary to fix the errors identified by the user.
After, moving the mis-clustered instances to their clusters, a signature was calculated for
every cluster. Then the signature generated was used to identify the instances in the training
set, i.e., the same trace that was used to build the model. One snapshot was misclustered
(0.25%). A measure of the algorithm’s performance on unseen test data was obtained with
repeated 10-fold cross validation. 10-fold cross validation on LOCIS yielded an error rate
of (8%) (see Table 3) on the data in the test sets for the single-path incremental clustering
algorithm.

Two-phase top-down clustering experiment. For the same LOCIS trace, 39 single-element
features2 were extracted for every snapshot of the trace. Then, the top-down clustering
algorithm was applied to the data with a threshold of 17 clusters. The result was that 14
(3.4%) snapshots were clustered into 3 redundant clusters. On the other hand, 44 (10.8%)
snapshots were misclustered. Ignoring the 3 unnecessary splits, we can say that 89.2% of
the instances were “correctly” clustered. The partition was again reviewed and revised by
a user. Using QANDA, the user corrected the preliminary clustering of the LOCIS trace and
MoJoPlus inferred the operations necessary to obtain the desired authoritative partition.
The tree-revision algorithm was applied, and a new tree containing 46 nodes and having
a maximum depth of 12 was produced. When this decision tree was tested on the 406
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Table 3. A comparison of the two clustering algorithms implemented in LENDI against one another and against
C4.5.

Clustering method MoJo plus Training error (%) Test error (%)

(a) Using a LOCIS trace, consisting of 406 snapshots belonging in 17 distinct screens

Two-phase top-down clustering 20 0.00 3.4

Incremental clustering with signatures 12 0.25 8

C4.5 (supervised learning) – 1.20 2.4

(b) Using a HOLLIS trace, consisting of 542 snapshots belonging in 29 distinct screens

Two-phase top-down clustering 50 0.0 5.4

Incremental clustering with signatures 92 0.6 1.7

C4.5 (supervised learning) – 1.0 4.3

snapshots, all were correctly classified. 10-fold cross validation on LOCIS yields an error
rate of 3.4% on the data in the test sets (see Table 3).

Table 3 reports on the results of two experiments: one with the LOCIS library (a) and
another with the Harvard library (HOLLIS, hollis.harvard.edu) (b). For each of the two
clustering algorithms, the table reports on the distance of the partition produced by the
algorithm from the authoritative partition produced after the user’s review and revisions
(column 2), the error when the revised partition was used to classify the training examples
(column 3), and the average test error with 10-fold cross-validation experiments (column 4).
As can be seen from the table, in both experiments the test error of the single-path algorithm
was smaller than the test error of the top-down algorithm but its training error was larger in
both cases. This implies that the signature generation process tends to overfit the training
data and is not as effective in recognizing new snapshots.

In addition, we compared the behavior of these two algorithms against C4.5 (Quinlan,
1993), a standard decision-tree learning algorithm. Note that C4.5 requires all examples to
be labeled, so it cannot be used as an alternative to our clustering algorithms that start by not
knowing the screen in which each snapshot belongs. However, it could be used to build a
decision tree after the authoritative partition has been established by the user, after reviewing
the output either of the incremental single-path algorithm or of the top-down algorithm.
It could, in effect, substitute the signature generation step in the incremental single-path
algorithm and the tree-revision step in the top-down algorithm. As can be seen from the
data, the top-down clustering algorithm and its tree-revision method is comparable to C4.5,
although slightly less effective. This implies that substituting the tree-revision step with
the application of C4.5 on the classified snapshots, after the user has revised the produced
partition, would produce the most effective classifier for new snapshots.

Considering the variety of practices used in designing legacy user interfaces, complete
automation of the reverse-engineering process is not possible. There will always be a need
for some user feedback to complete the user-interface model. Developing better feature
sets and smarter clustering methods can reduce the user input. However, the quality of
the screen-identification result ultimately depends on the sufficiency of the input traces; if
the recorded traces do not provide a sufficient number of screen snapshots, clustering may
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miss screens and consequently, if instances of the omitted screens are encountered later
at run time, they will be misclassified. “Sufficiency of example traces” is the fundamental
assumption of the overall process, and, at this point, we have only a methodological answer
to it; namely, we assume that the recording emulators stay in place for a sufficiently long
time, so that an appropriate number of traces is collected. Errors due to lack of sufficient
traces can be corrected using the QANDA tool.

Even when clustering has correctly identified all user-interface screens however, the
induced classifier that will be used to recognize new snapshots at run time may contain
errors, irrespective of whether it is a signature pattern or a decision tree. Even the best of
several C4.5 versions that we implemented could not fully generalize and still had 2.4%
error in the LOCIS example. Again this problem is due to the insufficiency of the recorded
snapshots. If the features do not correlate well with the commonalities of the instances in a
cluster or if some clusters have only 1 or 2 snapshots in the trace, then the model produced
will not be free of generalization (test) error. To eliminate classification error, the induced
classifier may be “manually” corrected with additional features.

In general, however, it is unlikely that the complete legacy interface will have to be
migrated. Usually only specific user tasks have to be made available through the web,
and 100% snapshot classification correctness is essentially required only for the screens
included in the navigation of these tasks’ executions. Thus, practically, the collection of
sufficient examples for these specific tasks does not present a major challenge.

4. Interface migration to the web

Although this paper focuses on the CELLEST process for reverse engineering legacy user
interfaces as implemented in LENDI, to illustrate how this process supports the overall
objective of legacy migration to the web, we discuss the process following LENDI’s user-
interface reverse engineering, namely, the development of the new, web-accessible user
interface front-end.

As discussed in Section 3, LENDI’s process produces a state-transition model of the
legacy interface behavior. The states of the model are the unique interface screens, and
using the classifier induced by LENDI—either cluster signatures or a decision tree—each
new snapshot can be recognized as an instance of these states. The transitions of the model
correspond to the commands of the interface command language, and using the extracted
action patterns each new user key-stroke on a snapshot can be recognized as an instance
of a particular command that should lead to an instance of the command’s destination
screen. This model constitutes a “map” of how users navigate through the legacy-interface
screens to accomplish their tasks. Based on this intuition, the next step in the CELLEST
process is to model specific user tasks in terms of the screens that the user has to navigate
through and the information he/she has to exchange with the legacy interface. It further uses
these task models as the basis for generating new, web-accessible front-ends for the legacy
interface, thus completing the overall interface-migration process. In this section, we briefly
describe Processes T2 and T3 in figure 1 to illustrate how the interface model produced
by the reverse-engineering process implemented in LENDI provides the foundation for the
subsequent phase of interface migration. Two systems have been developed to implement
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processes T2 and T3, URGENT (User interface ReGENeration Tool) (Kong et al., 1999)
and its successor, MATHAINO (Kapoor and Stroulia, 2001; Stroulia and Kapoor, 2002). Both
these systems share the same task-analysis step, but differ slightly on the type of the new
user interfaces they produce.

4.1. Task analysis

The objective of the task-analysis step (Kapoor and Stroulia, 2001; Stroulia and Kapoor,
2002) is to model the information exchange that takes place between the user and the legacy
application while the user interacts with the interface to accomplish a specific task. This
step requires as input a set of task-specific traces recorded by the emulator, much in the
same way as required by LENDI, but with two differences. First, the snapshots that appear
on the user’s terminal interface during the task execution are recognized as instances of the
legacy-application screens. Second, the user has to highlight the areas of interest on these
screens, in order to indicate the pieces of information displayed by the interface relevant
for accomplishing the task in question.

The basic intuition underlying the task-analysis step is that during the task execution,
the user navigates through a path of screens and executes a sequence of actions, in order to
provide(obtain) some pieces(s) of information to(from) the system. The derived task model
specifies

• the navigation path that the task execution follows, i.e., the sequence of legacy screens
that the user visits to accomplish the task (note that this navigation path is a subgraph of
the overall interface state-transition model), and

• the problem variables exchanged between the user and the legacy interface and their
scope, and how exactly the information exchange is implemented in the original legacy
user interface.

To identify the task navigation path, the screen sequences of the different example task
traces are compared. A simple algorithm, similar to the Unix diff, is used to identify the
alternative paths that can be used to accomplish the task in question.

The first objective of the information-exchange analysis step is to identify the variables
exchanged between the user and the legacy interface during the task execution. The assump-
tion is that there are as many input variables as there are distinct input values provided by
the user to the application. Similarly, it is assumed that there are as many output variables
as the screen areas highlighted by the user. Given that assumption, the objective becomes
to more precisely characterize how each variable is used during the execution of the task.
The different variables are classified as follows:

• Constants: a variable, whose value is the same in all the corresponding actions of all
example task traces.

• Enumerated: a variable that takes values from a set for all example traces.
• Derived: a variable, whose value is obtained through an information-acquisition ac-

tion and is subsequently provided to the legacy interface through an information-input
interaction.
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• Redundant: a variable, whose value is provided as input to the system through multiple
information-input interactions.

• Unpredictable: an independent variable provided as input by the user.

At this point, an expert user can use the QANDA system to review the identified prob-
lem variables, correct their scope and annotate them with semantic information such as
meaningful names, for example.

The second objective of the information-exchange analysis is to specify how exactly the
information is exchanged, i.e., where on the screen it is displayed (in the case of output)
and where it must be entered (in the case of input). User input usually occurs in static
screen locations in the legacy interface. Information display, on the other hand, may appear
in static or dynamic locations. If the screen where the information appears is static, then
the information in question always appears in the same location that can be specified in
terms of static x, y coordinates. If the screen is dynamic, the location of the information
may vary but often it is still possible to specify it in terms of a pattern defined relative
to static “landmarks” of the screen. When the location of the displayed information can
be specified, either in terms of static coordinates or relative to screen “landmarks”, the
information can be automatically extracted from the original interface. For all the pieces of
information that appear in dynamic locations in the screen, the whole legacy screen can be
shown to the user to select them. The resulting task model is, in effect, executable: given
all the unpredictable variables, it can be used as a driver of the original legacy interface to
accomplish the analyzed task.

4.2. GUI specification and generation

After the analysis of a task, an abstract specification of a GUI is generated. Based on the
variables identified in the previous step, a set of heuristics are used to identify widgets
that could be used to implement the information-exchange interaction. At this point, some
optimization of the current system-user interaction can be accomplished: the new interface
will automatically retrieve from the legacy interface all the variables displayed at static
positions on the screen and will feed them as input to the appropriate front-end widgets. It
will also receive the variables input by the user and feed them to the appropriate locations
of the screens in the underlying legacy interface. Finally, for all the variables that appear
in dynamic locations on the screen, the new interface will expose the underlying screen for
the user to select them. In the new interface, the user will be required to input the problem
variables to the system only once. The new interface will buffer all the recurrent variables
and will deliver them to all screens that use them. At the GUI specification phase, for all
problem variables exchanged during the task, depending on their type, a class of graphical
interaction objects, appropriate for the data-entry action at hand, are identified (Lewis and
Rieman, 1993). For example, for an input action manipulating a date, appropriate graphical
objects might be a calendar, a combination of three scrolling lists for year, month and day
selection, a simple text-entry box, etc. The selection of the actual widget is based on a set
of heuristics. The selected widgets are placed in forms, each of which traverses a segment
of the task navigation path. The number of forms, their corresponding path segments and
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their relative order are decided based on a set of heuristics that ensure that no form can
be submitted before all the input(output) information necessary for the execution of its
corresponding navigation path has been entered by (displayed to) the user (Kapoor and
Stroulia, 2001).

On the basis of the GUI specification, the final step in the process is the actual generation
of a GUI. URGENT uses a collection of java beans to implement a set of simple graphical
objects, including text and password entry boxes, radio and combo boxes, and display fields.
The result is an applet through which the user can perform the task at hand (Kong et al.,
1999). MATHAINO extends this work by providing a set of components that act as web-
accessible servers, interpreting the abstract GUI specification so that it can be accessed
from a variety of platform-specific thin clients, such as HTML browsers and WAP-enabled
devices (Kapoor and Stroulia, 2001; Stroulia and Kapoor, 2002).

Because of the more user-intensive nature of the interface-migration process, the nature
of our experimentation and evaluation of URGENT and MATHAINO is different. We have a
number of case studies. We were able to collect task-specific traces for six different tasks on
four different systems with ASCII-based interfaces. In addition to the accident-report task
discussed below, we have used URGENT and MATHAINO to construct wrappers for several
Unix tasks, such as reading and sending email messages using pine and examining the
contents of directories and files, for a job-search application running on a mainframe, and
for several variations of book searches in the Harvard library (Kong et al., 1999; Kapoor
and Stroulia, 2001; Stroulia and Kapoor, 2002). Our experience with all these case studies
has been that, with a small number of examples—usually around five—and with an effort
of only a few hours, a legacy task could be wrapped with a simpler, form-based front-end.

4.3. Migration of the “accident report” task of the “legacy insurance application”

Let us now illustrate the interface-migration process using our “Legacy Insurance Applica-
tion” case study. A small part of the interface state-transition model constructed by LENDI
for the insurance system is diagrammatically depicted in figure 9. The notation used in

Figure 9. The interface state-transition diagram for the insurance system.
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figure 9 is the same as the notation used in figure 6. Additionally, “∗ @ x1y1 8c” means that
some undefined string whose maximum length is 8 characters must be entered at location x1,
y1 on the screen. The system, in its initial behavioral state presents the “SPLASH” screen-
state. The only possible transition from this state is to the “menu” screen-state, achieved
through typing two strings at two different locations on the screen and pressing the “F10”
function key.

Task analysis. The task-analysis step is initiated by providing a set of task-execution
examples and does not require any further interaction until it is completed. Then, the QANDA
system provides four different views on the task model and the corresponding navigation
path: (a) a “compressed” view, where only the different screens are shown, (b) a “detailed”
view that shows each snapshot in the trace, (c) an “information flow” view that is basically
the “detailed” view annotated with arrows illustrating the flow of the problem variables
from one snapshot to another, and (d) an “annotation” view which allows the editing of
the problem variables. Figure 10 shows the detailed QANDA view of the recorded trace
on the right pane. In addition, it shows the flow of some problem variable, whose values
are shown on the left pane. This variable is displayed to the user on screen 11 (top right)
and is provided as input to the application in screen 168 (bottom middle), which is visited
three times. The QANDA user can verify or correct the scope and the flow of the selected
variable.

A diagrammatic representation of the task model produced for the accident-report ex-
ample of the insurance legacy system is shown in figure 11. The task model of figure 11 is

Figure 10. Reviewing the task model of the accident-report task.

Figure 11. The task model of the accident report task in the insurance system.
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based on the state-transition model of figure 9. This model depicts the sequence of necessary
system-user interactions, involving the exchange of problem and user variables. Interac-
tions related to system constants are hidden because they can be automated in the new
interface front end, thus relieving the user from having to remember and repeat tedious
steps. So for this particular task, the user has to input his/her “user-id” and “password”,
which will be transferred at particular locations of the screen “SPLASH” of the legacy
interface. Then through a sequence of two actions, i.e., pressing “F10” at the “SPLASH”
screen and typing 1 and “Enter” at the resulting screen “Menu”, the user will reach the
screen “Name Entry”, where he/she will input the “customer name” variable. Then, by
pressing “Enter”, the user will move to the “Number Selection” screen where he/she will
select from a dynamic screen the customer’s accident number. Next, after pressing “F12”
the user will return to the “Menu” screen, where he/she will select option “2” and press
“Enter” to go to the “Number Entry” screen, where he/she will input the selected accident
number, and type “xs”. This action will cause the application to move to the “Summary
Display” screen, where the “accident summary” is displayed at a standard location. Fi-
nally, after pressing “F12” the user will return again to the “Number Entry” screen, where
he/she will input the selected accident number and then “ac”, which will lead the appli-
cation to the “Account Display” screen”, which displays at a static location the accident
accounting.

GUI generation. Finally, when the user completes the task-analysis review, an abstract
user interface is generated, consisting of widgets appropriate for the data types of the
problem variables involved. The user can review and, to some extent, modify the choices
of widgets. Figure 12 shows the interface constructed for the accident-report task. This
interface consists of three forms. The first one enables the user to input all the vari-
ables that need to be “told” to the system. The second exposes the legacy screen where
claimant names are associated with claim numbers, so that the user can select the number
on which the report should be generated. Finally the third window contains all the infor-
mation of interest to the user collected from the two last screens (i.e., sum-display and
acct-display).3 This interface greatly simplifies the system-user interaction. In the legacy
interface the user has to navigate through 7 screens and 9 transitions, where in the new
interface the user has to go through only 3 forms and 2 transitions. Note that the sequence
of the forms preserves the logic of the legacy interface dialog: the output information to
be displayed to the user defines boundary between two subsequent forms. The underly-
ing assumption is that, if some user input was entered after some system output in the
original legacy interface, then there may be a dependency between them and the same
order is preserved in the new front end. This is a conservative heuristic, and it may miss
the opportunity to optimize the front-end design but it will not violate the legacy applica-
tion logic (Kapoor and Stroulia, 2001). According to this heuristic, the first form of the
accident-report task (shown in figure 12) contains widgets to receive all input information
provided in the first two screens of the legacy interface (shown in figure 11). After this input
some information is displayed in the third legacy screen of the task; the corresponding
display widget and all subsequent input before the next display are included in the second
form.
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Figure 12. The three forms of the new graphical user-interface front end, for the accident-report task.

5. Summary and conclusions

In this paper, we described the CELLEST process for reverse engineering the system-user
interaction of legacy systems with text-based interfaces and for wrapping task-specific
segments of this interaction with new web-accessible front-ends. This method consists of
the following steps: First system-user interaction traces are unintrusively collected by a
middleware. Next the dynamic behavior of the system interface is reverse engineered, in
terms of the screens it presents to the user and the navigation it allows through them. Finally,
task-specific navigation paths are analyzed in order to extract a model of the task, in terms
of the interface navigation and the information exchange it implies and an appropriate web-
based interface is constructed for wrapping this navigation and enabling its execution from
a standard web browser.

The CELLEST process uses artificial-intelligence algorithms to leverage and advance
similar manual industrial practices, such as screen scraping. These industrial practices are
not automated: they assume that an analyst will model the user interface behavior and will
develop the new application to interpret and drive this behavior. Therefore, they are labor-
intensive and error prone. The novelty of the CELLEST approach lies in the following three
important contributions:

• It is highly automated. As a result it is light-weight in terms of the skills it assumes since
it requires more an expert-user’s familiarity with the application interface as opposed to
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a software-developer’s understanding of the interface-behavior implementation. In fact,
it has been our experience that junior members of our research group could use the
environment effectively within a few of days of practice. With legacy systems, developed
over a long period of time by different people, the latter type of knowledge is often
unavailable where the former is not.

• It constructs a high-level, intermediate abstraction of the legacy system behavior, to
support interface migration. Understanding the system-user interaction at the level of
information exchange enables the simultaneous migration to multiple target platforms.
Furthermore, the new user interfaces can be more tailored to their native look and feel
and don’t have to mimic closely the original legacy user interface.

• It is code-independent, and therefore its applicability is not constrained by programming-
language details. This advantage comes at the cost of being essentially limited to as-is
user-interface migration, as opposed to code-based analysis techniques that are appli-
cable to more general reengineering and maintenance problems. However, for purposes
such as web-enabling and lightweight system integration, “code understanding” is an
expensive and possibly brittle approach to interface reverse engineering and migration.
Our experiments with the CELLEST environment indicate that “trace understanding” is
an effective alternative.

The applicability of this method depends primarily on the generality of the recording
component, and secondarily, on the feature set we have developed for recognizing screens.
We have successfully tested our recording and feature extraction components with block-
mode data transfer protocols or those which can be emulated in block-mode. Specifically
we applied our method to IBM 3270 and VT100. The challenge in scroll mode data transfer
protocol, e.g. IBM 5250 and VT100 is to define a concept corresponding to the “snapshot”
concept and, possibly, to define an extended set of features on it. A potential solution, which
we have already explored in reverse-engineering VT100 interfaces, is to define as a received
snapshot the contents of the terminal buffer just before each user action. We believe that
similar approaches could be employed with other protocols, such as AS400 for example,
although more experimentation is clearly necessary.

The method’s usefulness lies in its ability to construct a high-level model of the inter-
action behavior between the legacy system and its users. Instead of analyzing the widgets
implementing the legacy interface so that they can be replaced by functionally similar
widgets in a target platform, an approach that has been the state of the art until today in
interface migration, our method constructs a model of the interface behavior in terms of
behavioral states and possible commands that enable the transitions between them. Thus,
instead of replicating the same interaction with different widgets in new platforms, we can
encapsulate interesting behavioral segments with new user-interface front-ends on differ-
ent platforms. More importantly, this high-level interaction model can be simultaneously
migrated to multiple platforms at once.

On the other hand, as is common with wrapping approaches, the user-interface front
ends developed with CELLEST may suffer a performance cost due to the introduction of
a new layer on top of the existing legacy user-interface; the new front-end layer access
the application through the legacy protocol emulator. This cost however is marginal when
compared to the latency introduced by the network separating the new web-based interface
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and the host; this latter cost is unavoidable when web-based access to the application host
is required.

The work reported in this paper is still in progress, but the results of our initial exper-
imentation with the interface reverse engineering, task-modeling and interface migration
processes are quite promising, and we continue to develop and evaluate this process.

Finally, because exactly this work has been motivated by a partnership with an industrial
sponsor and its methodology is inspired by industrial practices in the area, we believe that
the CELLEST process can potentially have an impact to legacy migration practices.
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Notes

1. In our more recent work (El-Ramly et al., 2002), we have developed a data-mining algorithm to discover similar
interaction segments in the recorded trace. Such similar segments can play the role of task examples.

2. These features are the full suite of LENDI’s features, discretized in order for their similarity to be evaluated as
a binary question.

3. Some areas in the last two windows are blacked-out because the data they contain are private.
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