
R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 261 – 277, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Forms2Net - Migrating Oracle Forms to Microsoft .NET

Luis Andrade1, João Gouveia1, Miguel Antunes1,
Mohammad El-Ramly2, and Georgios Koutsoukos1

1 ATX Software S.A, Rua Saraiva de Carvalho, 207C, 1350-300 Lisbon, Portugal
{luis.andrade, joao.gouveia, miguel.antunes,

georgios.koutsoukos}@atxsoftware.com
2 Department of Computer Science, University of Leicester,

University Road, Leicester, LE1 7RH, UK
mer14@le.ac.uk

http://www.cs.le.ac.uk/~mer14

Abstract. Forms2Net is an ATX Software commercial reengineering tool that
automatically converts Oracle Forms applications to the equivalent .NET (C#)
ones, with approximately 75% rate of automatic conversion. From the reengineer-
ing and transformation theoretical viewpoint, Forms2Net falls in the general cate-
gory of language-platform conversion tools. As theory and practice indicate, for
such tools to be effective, there are two major issues that must be handled: (a) the
resolution of the semantic gap between the pair of source-target languages and (b)
the resolution of the dependencies (e.g., API dependencies) on functionalities
provided by default by the source platform or on programming idiosyncrasies of
the source platform (in this case Oracle Forms). This paper presents the important
practical aspects of Forms2Net and the underlying technology. We discuss the
semantic gap between Oracle Forms and .NET forms and the design principles
and solution strategies used to bridge this gap.

1 Introduction

Software application transformation is an active area in research and practice [10,12].
For many reasons organizations decide to migrate from one language to another, from
a platform to another, from an operating system to another or a combination of these.
The reasons for such migration are diverse ranging from moving away from an obso-
lete technology, to creating an integrated corporate information system, to moving
from client-server architecture to a multi-tier or three-tier architecture. A few exam-
ples of such migration are [6, 7, 11]:

• Converting to a newer version of a language (COBOL 68 to COBOL 85),
• Converting from a language to another (COBOL to C or Java)
• Migrating an application to a different system that supports a different dialect

of the same language (Cobol on IBM Mainframe to AS/400 Cobol)
• Migrating from a file system storage or a hierarchal database to a relational

database (from VSAM files to DB2)
• Converting from an application framework to another (Oracle Forms applica-

tions to .NET applications in VB or C# or to Java applications for J2EE).

262 L. Andrade et al.

The width of the semantic gap between the source and target languages and/or plat-
forms decides the feasibility and complexity of the conversion. The wider the gap, the
less feasible, more complex and less automated the conversion is. This paper presents
the challenges faced, design decisions made and solution strategies implemented in
Forms2Net [1], a commercial tool for transforming Oracle Forms applications to C#
applications for .NET. It gives an overview of Oracle Forms platform and discusses
the reasons for converting Oracle Forms applications to .NET ones, the challenges in
this conversion and the semantic gap between both frameworks (Sections 2 to 4).
Then, it explains the strategies and design principles followed in designing
Forms2Net (Section 5) and the conversion approach implemented in Forms2Net (Sec-
tion 6). Next, the related work is discussed (Section 7). Finally, some conclusions are
drawn (Section 8). Oracle Forms might be referred to as Forms only in the rest of the
paper.

2 An Overview of Oracle Forms Applications

Oracle Forms is a 4GL rapid database application development environment plus a
runtime environment where these database applications run [13]. Table 1 summarizes
the elements of a Forms application. [9]

Figure 1 shows the structure of an Oracle Forms application from a developer’s
viewpoint and the relationships between its main components. The arrows represent a
general relation that can be association or aggregation.

 Application

Form

Block
Item

Triggers

 Menu
 PL/SQL Library

 Object Library

Package

 Program
Unit

 Program
Unit

Oracle
Database

Triggers
Packages
Procedures
...
...

 Package

 Procedure

Fig. 1. The Structure of an Oracle Forms Application from a Developer’s Viewpoint

 Forms2Net - Migrating Oracle Forms to Microsoft .NET 263

Table 1. The Elements of an Oracle Forms Application

Oracle Concept Description

Form A Form is a collection of objects and code, including windows, items, triggers
and program units. A form can include any number of separate windows.

Window The usual window concept. A form may have several windows that are closely
related.

Canvas A canvas is a content area placed inside a window. A window may display sev-
eral canvases.

Block Represents a logical container for grouping related items into a function unit for
storing, displaying, and manipulating records. Only item objects contained in a
block are visible in the application interface.

Item Items display information to users and enable them to interact with the applica-
tion. Item objects include the following types: button, check box, display item,
image, list item, radio group, text item and/or user area, among others.

Trigger Represents a block of code that adds functionality to an application by one or
more PL/SQL statements. A trigger object is associated with an event.

Program
unit

Represents a named PL/SQL function or procedure that is written in a form,
menu, or library module. It allows the reusability of code across different trigger
behaviors.

Package A package is a PL/SQL construct that groups logically related types, objects,
procedures, and functions. Packages usually have two parts, a specification and
a body, although sometimes the body is unnecessary.

Record
Group

Represents a set of column/row values similar to a database table. However,
unlike database tables, record groups are separate objects that belong to the form
module in which they are defined.

LOV
(list of
values)

A LOV object is a scrollable popup window that provides the end user with
either a single or multi-column selection list. It represents a set of column/row
values similar to a database table.

Alert An alert is a modal dialog box that displays a message notifying the operator of
some application condition.

Visual
Attrib-
ute

Represents a named visual attribute that should be applied to an object at run-
time. A visual attribute defines a collection of font, color, and pattern attributes
that determine the appearance of an object.

Menu A collection of menus (a main menu object and any number of submenu objects)
and menu item commands that together make up an application menu.

Library A collection of user-named procedures, functions, and packages that can be
called from other modules in the application.

Note in Figure 1 that the database may have some elements beside data, which are
triggers and packages of procedures that are left untouched by the Oracle Forms ap-
plication migration process. From the presentation or user interface viewpoint, an
Oracle Forms application looks like Figure 2 [6]. Frames in Oracle Forms are visual
containers similar to Group Box Controls in Windows Forms.

264 L. Andrade et al.

 Window

Canvas

Frame

 Item

Fig. 2. The Organization of an Oracle Forms Application from a Presentation Viewpoint

3 Why Convert Oracle Forms Applications to .NET?

A .NET Windows Forms application in its essence is based on similar concepts for
the presentation elements (Forms, Panels, Controls, Event handlers) and the code
elements (class libraries). These are the building blocks of a .NET application and
there are different ways to use them and organize them to make an application – this
is the role of the application architecture. Microsoft makes available several applica-
tion blocks based on the .NET Framework, but they are still low-level isolated blocks
targeting a specific task/feature (logging, cache, exceptions, data access, etc.) [5].

Oracle Forms is already a legacy environment for Forms applications. J2EE and
.NET are the major platforms to develop this kind of applications nowadays. They
both have their own strengths. Forms2Net targets only the migration to .NET Frame-
work. Although Oracle Forms was considered a powerful and productive environment
for application development, the resulting applications lack the flexibility and the
interface features available in modern applications. Several other factors may influ-
ence the decision to move from Oracle Forms to .NET:

• Easy to find and cheaper workforce
• Cost savings (database costs)
• Increased development productivity
• Platform harmonization / migration.
• Customer/partner alignment;

The conversion of legacy Forms applications is also an opportunity to integrate ex-
isting legacy applications into a service-oriented architecture if one is being con-
structed as the backbone of the company’s information system. Applications may
provide new (migrated) services to other applications or reuse already built services to
replace or add functionality.

Forms2Net provides options to adapt the converted applications to multi-tier envi-
ronments, enabling an easy path to an integrated service environment. Currently,
Forms2Net supports Oracle Forms version 4.5 to 6i.

 Forms2Net - Migrating Oracle Forms to Microsoft .NET 265

4 The Semantic Gap

As mentioned above there are several similarities between Oracle Forms and .NET
Windows Forms, as well as some important and relevant differences that make an
automated migration a complex process. For better understanding of the gap between
the two approaches we present here the main differences.

4.1 Interface Elements

The most common interface elements are present in both platforms (windows, panels,
labels, text boxes, combo-boxes, check-boxes, etc.). Nevertheless some differences
also exist; an example is the radio group. In .NET Windows Forms, a radio group is
created by a set of System.Window.Forms.RadioButton instances belonging
to the same visual container. However, in Forms migration it is also necessary to
allow the creation of radio groups that have no visual relation, i.e., they can be chil-
dren of different containers and still act as a group of mutual exclusive radio buttons.
In general, .NET framework provides richer pre-defined controls for better user inter-
action, e.g.:

• Data grids with scrolling/column sorting
• Calendar date pickers

The major semantic gap to be solved is to correctly map Oracle Forms multi-record
display to a data grid preserving the associated interaction behaviour (validations,
triggers, etc.). For instance, .NET data grids need to be extended with new column
types (e.g., Combo Boxes) and corresponding event validation (the validate
event) on data grid cells. Also, there is no direct mapping between Oracle Forms
REQUIRED property and .NET control validation mechanisms. Hence, suitable ex-
tensions to the .NET control classes should also be provided for such Oracle Forms
properties.

4.2 Data Organization

Oracle uses the data block concept to represent simple data (items) or data collec-
tions (table rows) that may be mapped to database entities. By using this concept, a
lot of database read/write/commit behaviour is pre-defined in Oracle Forms without
writing too many lines of code. This was one of the basics of 4GL applications,
which results in minimum coding effort when following the typical patterns of
Forms applications.

The major semantic gap to be solved is to ensure that access and management of
data is done in a simple and uniform way, consistent with the original semantics and
allowing an easy mapping of PL/SQL instructions (PL/SQL is Oracle’s SQL lan-
guage, with additional language constructs). For example, in Forms applications di-
rect calls to database stored procedures are allowed (Listing 1) and, in fact, are a
common practice. In .NET this is not possible and therefore a suitable mechanism
must be devised (e.g., wrapping as in Listing 2) for accommodating this. The same
applies to the Oracle cursors that are not present in .NET.

266 L. Andrade et al.

Listing 1. PL/SQL Call to a Stored Procedure

Listing 2. A Wrapper for the Stored Procedure and the Respective Invocation in .NET

4.3 Events

Oracle provides the Trigger concept. Triggers are events that are propagated up the
object hierarchy as a chain of responsibility. In .NET the event concept is also pro-
vided but event propagation is flat, i.e., all event handlers of an event are fired and
there is no event propagation from a child component to its parent component. The
existing ‘alphabet’ of events used in Oracle is significantly different from the ones
available in .NET, although some similarities may be found.

The semantic gap to bridge here is to define a correct mapping between both sets
of available events, in a way that preserves most of the original semantics. By se-
mantics here we mean ‘when’ the event happens, and its ‘purpose’. For instance,
Oracle Forms triggers can be organized in two categories: Model Triggers, fired by
operations made on data or by data manipulation operations (ON-POPULATE-
DETAILS, ON-COMMIT, ON-INSERT, ON-DELETE) and View Triggers, fired
by user interaction at the UI level (WHEN-BUTTON-PRESSED, WHEN-NEW-
BLOCK-INSTANCE, WHEN-NEW-ITEM-INSTANCE). Adequate mappings for
.NET, such as the definition of such events, the event handlers and the event regis-
tration code together with the corresponding method signatures, must therefore be
devised.

public class StoredProcedures {
public static NullableDecimal GetNewEmployeeId() {

IDataCommand cmd =
DbManager.DataAccessFactory.CreateDataCommand
("GET_NEW_EMPLOYEE_ID", DbManager.DataBaseFactory);

cmd.AddReturnParameter(typeof(NullableDecimal));

cmd.Execute();

object _retVal = cmd.GetReturnValue();
return _retVal == DBNull.Value ? NullableDecimal.Null
: Convert.ToDecimal(_retVal);
}

}

//.NET invocation for previous stored procedure wrapper
 Model.EmpCreate.Empno = StoredProcedures.GetNewEmployeeId();

:EMP_CREATE.EMPNO := GET_NEW_EMPLOYEE_ID;

 Forms2Net - Migrating Oracle Forms to Microsoft .NET 267

The mapping should be complete when semantic preservation is guaranteed, and
partial when semantics are not the same. Partial here means that the mapping is
provided as a possibility that should be completed during the manual ‘completion’
phase by a Forms2Net user. As an example consider the navigation between the
several components of a Form (Next-Block, Previous-Block, Next-Item, etc.). It is
common to have handlers for these operation triggers that just prevent the operation
from execution or display an error message (e.g., forbid the navigation from block B1
to block B2).

.NET applications don’t use this kind of navigation restrictions. If such behaviour
is required, the conditions to enable/disable the relevant controls, must be performed
in the code completion phase. Finally, some events are also discarded during the
process. This aspect is closely related to the following one.

4.4 Behaviour

Oracle Forms runtime has a huge set of runtime features and implicit behaviour. An
example of this is the behaviour associated with Execute and Commit actions that
loads / saves the data being edited in the forms according to the form block types and
definitions. Only some of these features are present by default in .NET framework.
Some others are not relevant because .NET applications have different patterns of
behaviour. For instance, validation of data in Oracle Forms is done in a complex way,
with several levels of validation (item, block, form) that occur when some actions are
taken. Standard validations in .NET applications are simpler, performed on single
controls, when editing is finished.

Furthermore, in some cases, a Forms application may have a lot of code that over-
rides, controls and disables Oracle Forms implicit behaviour.

Mapping the behaviour correctly between the two approaches is the most challeng-
ing semantic gap to solve. This is typically where some rules and conversion tables
may be used, but human effort is required in the migration process to check or com-
plete the automated conversion.

4.5 Language

PL/SQL control constructs are not so different from C# constructs. The SQL part is
what makes the difference, including embedded database operations (queries, cursors,
etc). One of the gaps to be solved is correctly migrating all the SQL code instructions
into corresponding ones using the .NET databases access infrastructure. However, the
major semantic gap to be solved is the ability to work with null values on every
PL/SQL data type (numbers, dates, booleans, etc.), that has no counterpart in .NET
Framework 1.1. In .NET 1.1, data types (decimal, boolean, integer, etc.) do not accept
null values. The only type that has this ability is string. Oracle Forms code is written
with the implicit existence of null, and a straightforward transformation for C# code
will not have the same behaviour, without adding lots of constraints and different
rules. Therefore, the concept of Nullable type should be introduced to cope with this
semantic gap. However, .NET Framework 2.0 has support for Nullable types through
the System.Nullable<T> generic. For migration tools, such as Forms2Net, this

268 L. Andrade et al.

implies a strategic decision: either change the current code generation to incorporate
such a feature or just alter the current implementation of the Nullable types support
library (for instance, via inheriting from the .NET Nullbale generics). In other words,
a decision has to be made on whether to abandon a support library and hence the
corresponding support for Visual Studio 2003 or continue with the support library and
support for VS 2003.

Another gap is that Oracle Forms has support for object inheritance. Objects can
inherit from other objects defined in the same module or from objects defined in a
different module. However, .NET does not support multiple inheritance. One solution
is to deal with inheritance at the module level and only support one base module for
each module being converted. The conversion tool user can then configure the base
modules for the modules being converted. Then, during the module conversion, an
object is considered as inherited if it was inherited from the module’s base module.
This implies that any objects inherited from a different module will not be considered
as inherited.

5 Forms2Net Design Principles and Strategies

Before describing how Forms2Net deals with the semantic gap between the two plat-
forms in the next section, it is necessary to describe the design principles enforced
throughout Forms2Net and the solution strategies adopted. Three design principles
were adopted:

• 100% Pure .NET Code. The generated code should be pure .NET code fol-
lowing Microsoft’s Best Practices. It should only bridge the semantic gap
problems with solutions that are 100% based on .NET Framework.

• Preserve the code structure as much as possible. Although the converted
application architecture has significant differences, the structure of the origi-
nal code units should be preserved as much as possible to keep the functional
model of the original application and to ease comprehending the converted
code.

• Do not impose key conversion decisions upon the user. Keep it simple. If
there are several possible alternatives to a particular semantic gap problem,
the program maintainers should decide what to do. This is very important be-
cause some semantic gap problems may require minor changes to be made
and it is important to allow the future developers to choose how to perform
them so that the final result is the desired one.

The semantic gap problems were generally addressed by the following four differ-
ent but related strategies:

• Well Defined Target Architecture.
• Semantic Oriented Migration.
• Well Documented Migration Process
• Lightweight Support Libraries.

 Forms2Net - Migrating Oracle Forms to Microsoft .NET 269

5.1 Well Defined Target Architecture

Having a well-defined target architecture simplifies the code conversion process as it
allows having well-defined conversion rules for certain objects, code patterns, and
semantic gap problems. Although being different from the original, the target archi-
tecture adopted by Forms2Net was defined so that most of the concepts existing in the
original application could be represented. The main objective was to build a semantic
map or bridge between the original application architecture and the target architec-
ture. However, this does not mean that there are one-to-one mappings between the
artefacts of the original and target architectures. On the contrary, most mappings are
one-to-many which means that an artefact in the original architecture is represented in
the target architecture by two or more artefacts, their relations and their behaviour.
Forms2Net adopts a target architecture based on the Model-View-Controller pattern
[3], with some additional concepts that are particular to Forms applications.

5.2 Semantic-Oriented Migration

Semantic-oriented migration means that Forms2Net does not focus only on the con-
version of PL/SQL code into .NET. It works on a semantic level by taking into ac-
count the target architecture. Also, Forms2Net was designed so that specific plug-ins
can be developed to convert specific code constructs. The following further illustrates
these points:

• Original artefacts are converted and rearranged in order to fit in the
target architecture. The conversion process works from a model of the tar-
get architecture created from the original application, i.e., the first conversion
step is to map the original architecture model into the target one.

• Certain code patterns are recognized and transformed into more
adequate code patterns. For instance, PL/SQL code routines are analysed
and depending on the manipulated blocks and Oracle Forms built-ins, the
converted routines are parameterized in order to reduce the dependencies
between the code and the model, allowing the business logic to be easily
identified and isolated.

• Conversion of Oracle Forms runtime built-in calls can be performed on
one-by-one basis. By using the extensible architecture of .NET, it is possible
to develop new plug-ins to convert a particular usage of a particular Oracle
Forms built-in. Since the number of Oracle Forms built-ins is very high, the
extensible architecture of Forms2Net allows built-ins conversions to be dealt
with in an incremental way, starting with the most used built-ins and adding
new conversions when necessary.

5.3 Well Documented Migration Process

Every time the semantic gap cannot be solved or when there are several alternatives to
solve a particular problem, comments are generated in the code that point out to the
user the possible directions to be taken. These comments have links to a generated

270 L. Andrade et al.

migration guide specific for each form. This generated migration guide is customized
for the converted forms and the specific issues encountered in the original code, and
refers to the more generic documentation that is distributed with the tool.

By promoting a well-documented migration process, Forms2Net avoids imposing
sensitive migration decisions on the user, and at the same time eases the code comple-
tion process by supplying code comments and a migration guide that help the user
perform the necessary code changes.

5.4 Lightweight Support Libraries

Forms2Net supplies two lightweight support libraries that the converted code uses to
help reduce the semantic gap and preserve the original code structure:

• Application Data Layer Library. ADO.NET is a set of .NET Framework
classes containing the data access technologies used to manipulate databases
through specific ADO.NET providers. This library is built on top of
ADO.NET to allow code to be independent of the provider. It provides sev-
eral other features like:

o Simple classes to perform database operations: select/update/delete
commands, cursor operations, etc.

o Alternative interfaces to make the converted database manipulation code
simpler (less verbose) while maintaining its original structure;

o Manipulation of database null values in a transparent way

• Application Support Library is a set of utility classes that help reduce the
semantic gap when there is not an alternative in the .NET Framework and
when the solution to the problem is straightforward. It is composed mostly of
user interface components that extend .NET Windows Forms Framework;
and most of them are components that any user of .NET Windows Forms
will eventually need. It is possible to find different flavours and implementa-
tions on the World Wide Web for these components, supplied by third party
vendors or even as open-source code. The library uses .NET Windows Forms
extension mechanisms (class inheritance or IExtenderProviders im-
plementations) to extend .NET Windows Forms native controls.

6 Architectural Centric Conversion in Forms2Net

Forms2Net follows a 4-phases architectural centric conversion approach:

• Target Architecture Definition. This phase defines the architectural ele-
ments, their characteristics and relations.

• Architectural Mapping. In this phase, an architectural mapping of the
source application elements into the target architecture is performed.
Original application elements are rearranged and mapped into the target
architecture according to specific rules.

 Forms2Net - Migrating Oracle Forms to Microsoft .NET 271

• Artefacts Generation. In this phase, all the static architectural elements like
models and views and all their components are generated into the target plat-
form (Windows Forms).

• PL/SQL code conversion. In this phase all PL/SQL code existing in Forms’
triggers and program units is converted into .NET taking into account their
localization in the target architecture.

6.1 Target Architecture Definition

Forms2Net provides an architecture based on the well-known MVC (Model-View-
Controller) pattern [3]. Forms2Net MVC architecture for migrated Oracle Forms
applications decouples data access, business logic, and data presentation in a well-
organized and scalable structure, mapping Oracle Forms concepts into core .NET
framework concepts, using Microsoft’s best practices.

Fig. 3. MVC Architecture Targeted by Forms2Net

Using the MVC model as in Figure 3, the resulting application’s design minimizes
the interdependencies among the different parts. The role of each element in the MVC
model architecture adopted by Forms2Net is described below.

• The Model component maintains and manages the information manipulated
by the form. It manages the communication with the database, using Data-
sets1 to store the data.

• The View component’s role is visualizing the model state. It is responsible
for handling user interaction.

1 The DataSet is a component of the ADO.NET architecture, which is an in-memory cache of

data retrieved from a data source. It consists of a collection of DataTable objects that you can
relate to each other with DataRelation objects.

272 L. Andrade et al.

• The Controller is responsible for the relation and coordination between the
other two components, as well as for the form’s functional interface:
o It manages user interactions by mapping user actions and events into ap-

plication responses.
o It translates the actions within the view to actions performed on the

model.

Note that although the MVC architecture is the only target architecture currently
supported by Forms2Net as an architectural centric migration tool, other architectures
could be supported as well.

6.2 Architectural Mapping

In this phase, Oracle Forms objects of the source application are mapped into the
target architecture. Table 2 shows some examples of how Oracle Forms objects are
mapped into the target MVC architecture. Note that some of the mappings are one-to-
many. For instance, each Oracle Forms Block is mapped into one model and one
controller. The model maintains the block’s state, whereas the converted code for the
block’s triggers and all of its items’ triggers resides in the controller.

6.3 Artefacts Generation

In this phase architectural artefacts are generated into the target platform. Table 2
shows some of the mapping into .NET Windows Forms platform. Forms2Net
is designed to be independent of the target platform. For each artefact there is a
configured generator. Different platforms are supported by configuring different
sets of generators. At the present moment generators exist for both Windows
Forms and Web Forms platforms although only Windows Forms generators
are available commercially. Also, Forms2Net design allows using different genera-
tors for the same kind of artefacts. For instance, this allows having generators
for Microsoft .NET Windows Forms controls or generators for third-party .NET
Controls suites.

6.4 PL/SQL Code Conversion

At this phase, all PL/SQL code is converted into .NET code. This conversion is not
limited to language translation; it also applies some reengineering techniques in order
to obtain better quality and higher conversion rate2:

• Code routines Parameterization. In Oracle Forms, a block item can be ref-
erenced anywhere in PL/SQL code (trigger, program unit, etc.). To reduce as

2 In order to associate as much as possible the percentage of conversion with the effort needed

to manually complete the application, the conversion rate measure adopted by Forms2Net is
the percentage of the number of Oracle objects (e.g., interface items, Forms, triggers, proper-
ties, built-ins etc) that are supported for a given application and not the lines of code or num-
ber of Forms converted.

 Forms2Net - Migrating Oracle Forms to Microsoft .NET 273

much as possible references to the Model objects, Forms2Net uses control
flow analysis to parameterize the generated services methods and controller
methods.

• Code pattern recognition and transformation. Certain code patterns are
recognized in the original code and transformed into code patterns that are
more suitable for .NET. Listings 3 and 4 illustrate a transformation of a
block iteration pattern.

Table 2. The Architectural Mapping of Oracle Forms Objects into The Target MVC Architec-
ture and The Native Target Objects of .NET Windows Forms Platform

.NET Code Replacement Oracle
Forms
Object Model View Controller

Window System.Windows.Forms
.Form subclass

Windows Controller
class

Canvas System.Windows.Form.
UserControl subclass

UserControl
Controller class

Block .NET Model class If the block has multiple
records, a Data grid will be
generated.

Controller class with
all the block’s and
item’s triggers

Item Properties of the Model
class (columns of DataSet
table if the block is data-
based)

Instances of .NET Framework
System.Windows.Forms
.Control class

Form
Module

A .NET Model class that
aggregates all the block
models.
ADO .NET typed DataSet
with all the DataTables,
relations for all database
blocks defined in the
converted Form module.

 Controller with all
the form triggers.
This is the base class
for all the Window’s
Controllers

Relation DataRelation in the
DataSet

 Master detail
coordination logic

Program
Units

Methods in a service class

Triggers Event registration and event
handlers that call the
correspondent Controller
methods

A method for each
trigger to be called
by event handlers
from view classes.

LOV IExtenderProvider component
that associates a ChooseValue
form to each control (item)
that has a LOV property

...

274 L. Andrade et al.

FUNCTION CALCULATE_REVENUES RETURN NUMBER IS
 total number;
BEGIN
 if :system.current_block != 'ord' then
 go_block('ord');
 end if;
 FIRST_RECORD;
 LOOP
 EXIT WHEN (:SYSTEM.LAST_RECORD = 'TRUE');
 total := total + GET_ORDER_COST(:ord.ordid);
 NEXT_RECORD;
 END LOOP;
 return total;
END;

Listing 3. Original PL/SQL Code for Iterating over The Records of a Block

FUNCTION CALCULATE_REVENUES RETURN NUMBER IS
 total number;
BEGIN
 if :system.current_block != 'ord' then
 go_block('ord');
 end if;
 FIRST_RECORD;
 LOOP
 EXIT WHEN (:SYSTEM.LAST_RECORD = 'TRUE');
 total := total + GET_ORDER_COST(:ord.ordid);
 NEXT_RECORD;
 END LOOP;
 return total;
END;

Listing 4. The Equivalent Converted C# .NET Code of a Block

7 Related Work

Software transformation is a multifaceted problem, with many applications and also
many challenges, not just on the technical side but also on planning, management and
risk-control side [12]. The specific version addressed here is language and architec-
ture transformation, where not only the application will move to a different language
and platform, but also its architecture has to significantly change to adapt to the archi-
tectural model of the target platform. Architecture transformation is a challenging
problem, especially when the gap between the source and target architectures is wide.
In this case, as Klusener et al. [4] explain is their discussion of architectural modifica-
tions to deployed software, the changes (transformations in our case) need to happen
at system-wide level rather than on a per-function or per-module basis. This makes
the problem harder and requires creating and possibly integrating advanced

 Forms2Net - Migrating Oracle Forms to Microsoft .NET 275

and sophisticated transformation tools. Realizing this need, The Object Management
Group (OMG) created and Architecture-Driven Modernization (ADM) Task Force
(ADMTF) to create a set of standards to facilitate the interoperability of moderniza-
tion tools. These interoperability standards are being established in a series of
meta-models that facilitate the collection, analysis, refactoring and transformation of
existing systems [8].

Having decided on the need for a certain type of transformation, one faces the issue
of automated versus manual transformation. Or in more the precise words, the issues
of availability of transformation tools, the cost of building such tools, the cost of
transformation and the quality of the produced code. Klusener et al. [4] discuss and
compare automated vs. manual transformations. They conclude that for any non-
trivial transformation project, automation is vital to success, but the issue is how
much automation is needed and at what cost. Baxter et al. [2] discuss the requirements
of building robust automated tools for “practical scalable software evolution”, as they
describe it. They present their effort and approach in building DMS, a generic trans-
formation environment and tool generator.

8 Conclusions

This paper presented Forms2Net, a tool for transforming Oracle Forms applications to
.NET applications that use Windows Forms. The paper gave an overview of Oracle
Forms platform, the motivations for transformation, the semantic gap between both
platforms, the design principles and solution strategies adopted, and finally a general
overview of Forms2Net implementation. It is important to draw some useful lessons
from this experience.

First, despite the similarities of the two platforms, significant semantic differences
exist. This makes transformation complex in the sense that there is a considerable
effort involved in building an automated conversion tool. Moreover, it is important
for similar transformation problems to focus on bridging the semantic gap using se-
mantic transformations rather than trying to just find syntactic mappings between
elements of both platforms. It is expected that some manual transformation will still
be needed. Our experience advocates the Klusener et al. [4] view that:

"A fully automatic solution is not always feasible, and it is sometimes not cost-
effective. For instance, a modification problem that involves heuristics to determine
affected parts of the system often necessitates interactive steps for approval by main-
tenance programmers. In an extreme case, the automation could be restricted to the
generation of a report, which is then applied by maintenance staff in a manual man-
ner. To this end, special interactive tool support can be provided such that program-
mers basically walk through the generated report and navigate to the affected code
locations without ado. Similarly, there is a tension between handling less frequent or
highly complex idioms by specific, manual changes per occurrence rather than pro-
viding a general rule for the underlying code pattern(s). The decision how much
automation is necessary and whether generic modification rules are required has to
be made while relating to the technical analysis of the problem at hand, and to the
drivers for the project."

276 L. Andrade et al.

Second, several code generation techniques and technologies are available in the
market or in the open-source community. In a complex process like Forms2Net mi-
grations, one should not rely only on one technique. One should have a master driver
for the generation, but then use the most appropriate technique in each situation. Ex-
ternal generation configuration and a plug-in architecture for generators are also ad-
visable solutions.

Third, one should give great attention to designing the target architectural model.
On a process like this, the architecture model of a generated application is one of the
most important issues, not only because it is the centre of the process, but also be-
cause it is the base or stable component of the final solution.

Fourth, invest in pattern recognition facilities. A migrated application has a much
higher level of quality and satisfaction to the clients when the final result looks like it
was ‘written’ in the target language and is able to use the language constructs in a
‘natural’ way. This can be highly improved using pattern detection and influencing
the generation process according to those patterns.

Lastly, developers like to have control over the code that they will be in charge of.
Whenever transformation rules are not clear, i.e., there is no solution or there are
multiple-solutions, Forms2Net reports the case in the generated code and gives its
user the choice of deciding what to do.

Acknowledgements

The authors like to thank the reviewers for their thorough reviews, detailed feedback
and invaluable advice and comments. We also like to thank the editors for the great
effort they put in editing and producing this volume.

References

1. ATX Software, Forms2Net. Available at http://forms2net.atxsoftware.com/
2. Baxter, I., Pidgeon, P., Mehlich, M.: DMS: Program Transformations for Practical Scal-

able Software Evolution. Proceedings of the International Conference on Software Engi-
neering. IEEE Press (2004)

3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.: Pattern-Oriented Software Ar-
chitecture, Vol. 1: A System of Patterns. John Wiley & Sons (1996)

4. Klusener, A., Lämmel R., Verhoef, C.: Architectural Modifications to Deployed Software.
Science of Computer Programming, Vol. 54, Issue 2-3 (2005) 143-211

5. Microsoft Patterns and Practices Center: Application Blocks and Libraries. Available at
http://msdn.microsoft.com/practices/AppBlocks/default.aspx

6. Microsoft: Solution Guide for Migrating Oracle on UNIX to SQL Server on Windows,
Chapter 17 - Developing: Applications - Migrating Oracle Forms. Microsoft TechNet
(2005)

7. Mossienko, M.: Automated Cobol to Java recycling. Proceedings of the 7th European Con-
ference on Software Maintenance and Reengineering (CSMR), IEEE Computer Society
(2003) 40-50

 Forms2Net - Migrating Oracle Forms to Microsoft .NET 277

8. Object Management Group (OMG): Architecture-Driven Modernization Scenarios (2006).
Available at http://adm.omg.org/adm_info.htm.

9. Oracle: Oracle Forms Developer's Guide, Release 4.5. Oracle Corporation (1994)
10. Seacord, R., Plakosh, D., Lewis, G.: Modernizing Legacy Systems: Software Technolo-

gies, Engineering Processes, and Business Practices. Addison Wesley (2003)
11. Sneed, H.: Risks Involved in Reengineering Projects. Proceedings of the 6th Working

Conference on Reverse Engineering (WCRE), IEEE Computer Society (1999) 204-211
12. Ulrich, W.: Legacy Systems: Transformation Strategies. Prentice Hall (2002)
13. Zoufaly, F., Dermody, P.: Issues & Challenges Facing Oracle Forms to J2EE Evolution.

Available at SearchWebServices.com (2003)

	Introduction
	An Overview of Oracle Forms Applications
	Why Convert Oracle Forms Applications to .NET?
	The Semantic Gap
	Interface Elements
	Data Organization
	Events
	Behaviour
	Language

	Forms2Net Design Principles and Strategies
	Well Defined Target Architecture
	Semantic-Oriented Migration
	Well Documented Migration Process
	Lightweight Support Libraries

	Architectural Centric Conversion in Forms2Net
	Target Architecture Definition
	Architectural Mapping
	Artefacts Generation
	PL/SQL Code Conversion

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

