
System Validation:
Defining Abstract Data Types

Mohammad Mousavi and Jeroen Keiren

Previous Page Next Page

General Overview

System Models System Requirements

Semantic Domain

Behavior (Processes)

2 / 13

Previous Page Next Page

Motivating Example
Advanced Coffee Machine

s0

s1

s2

s5

coin(50ct)

coin(50ct)

coin(1eur)

tea

coffee

tea

return(50ct)

tea

3 / 13

Previous Page Next Page

Generic Concepts

Data types

I Classes: sorts

I Elements: constructors

I Operations: maps

I Rules governing operations: equations

4 / 13

Previous Page Next Page

Generic Concepts

Data types

I Classes: sorts

I Elements: constructors

I Operations: maps

I Rules governing operations: equations

4 / 13

Previous Page Next Page

Generic Concepts

Data types

I Classes: sorts

I Elements: constructors

I Operations: maps

I Rules governing operations: equations

4 / 13

Previous Page Next Page

Example
Euro Sort

sort Euro;

cons zero, fifty cents,
one euro, more: Euro;
% constants: constructors with no parameter

map eq: Euro × Euro → Bool;
plus: Euro × Euro → Euro;

var e:Euro;
eqn eq(e, e)= true; (1)

eq(zero, one euro)= false; (2)
eq(one euro, zero)= false; (3)
. . .

5 / 13

Previous Page Next Page

Example
Euro Sort

sort Euro;
cons zero, fifty cents,

one euro, more: Euro;
% constants: constructors with no parameter

map eq: Euro × Euro → Bool;
plus: Euro × Euro → Euro;

var e:Euro;
eqn eq(e, e)= true; (1)

eq(zero, one euro)= false; (2)
eq(one euro, zero)= false; (3)
. . .

5 / 13

Previous Page Next Page

Example
Euro Sort

sort Euro;
cons zero, fifty cents,

one euro, more: Euro;

% constants: constructors with no parameter

map eq: Euro × Euro → Bool;
plus: Euro × Euro → Euro;

var e:Euro;
eqn eq(e, e)= true; (1)

eq(zero, one euro)= false; (2)
eq(one euro, zero)= false; (3)
. . .

5 / 13

Previous Page Next Page

Example
Euro Sort

sort Euro;
cons zero, fifty cents,

one euro, more: Euro;

% constants: constructors with no parameter

map eq: Euro × Euro → Bool;
plus: Euro × Euro → Euro;

var e:Euro;
eqn eq(e, e)= true; (1)

eq(zero, one euro)= false; (2)
eq(one euro, zero)= false; (3)
. . .

5 / 13

Previous Page Next Page

Example
Euro Sort (Cont’d)

sort Euro;

var e: Euro;
eqn plus(e,zero)= e;

plus(zero,e)= e;
plus(fifty cents,fifty cents)= one euro;

6 / 13

Previous Page Next Page

Example
Euro Sort (Cont’d)

sort Euro;
var e: Euro;
eqn plus(e,zero)= e;

plus(zero,e)= e;

plus(fifty cents,fifty cents)= one euro;

6 / 13

Previous Page Next Page

Example
Euro Sort (Cont’d)

sort Euro;
var e: Euro;
eqn plus(e,zero)= e;

plus(zero,e)= e;
plus(fifty cents,fifty cents)= one euro;

6 / 13

Previous Page Next Page

Example
Natural

sort Natural;

cons zero: Natural;
succ: Natural → Natural;

map eq: Natural × Natural → Bool;
var i, j: Natural;
eqn eq(i, i)= true; (1)

eq(zero, succ(i))= false; (2)
eq(succ(i), zero)= false; (3)
eq(succ(i), succ(j))= eq(i,j); (4)

7 / 13

Previous Page Next Page

Example
Natural

sort Natural;
cons zero: Natural;

succ: Natural → Natural;

map eq: Natural × Natural → Bool;
var i, j: Natural;
eqn eq(i, i)= true; (1)

eq(zero, succ(i))= false; (2)
eq(succ(i), zero)= false; (3)
eq(succ(i), succ(j))= eq(i,j); (4)

7 / 13

Previous Page Next Page

Example
Natural

sort Natural;
cons zero: Natural;

succ: Natural → Natural;
map eq: Natural × Natural → Bool;

var i, j: Natural;
eqn eq(i, i)= true; (1)

eq(zero, succ(i))= false; (2)
eq(succ(i), zero)= false; (3)
eq(succ(i), succ(j))= eq(i,j); (4)

7 / 13

Previous Page Next Page

Example
Natural

sort Natural;
cons zero: Natural;

succ: Natural → Natural;
map eq: Natural × Natural → Bool;
var i, j: Natural;
eqn eq(i, i)= true; (1)

eq(zero, succ(i))= false; (2)
eq(succ(i), zero)= false; (3)
eq(succ(i), succ(j))= eq(i,j); (4)

7 / 13

Previous Page Next Page

Built-In Types

I Booleans: true, false, conjunction (&&), disjunction (||), negation (!),
implication (=>), equality (==), quantifiers and much more.

I (Positive) Natural numbers: successor (succ), equality (==), maximum and
minimum (max and min), addition (+), multiplication (*), division (div),
modulo (mod) and much more.

I Integers: similar to above, predecessor (pred), minus (-), absolute (abs) and
much more.

I Reals

I Typecast: Pos2Nat, Nat2Pos, Int2Nat, etc.

8 / 13

Previous Page Next Page

Built-In Types

I Booleans: true, false, conjunction (&&), disjunction (||), negation (!),
implication (=>), equality (==), quantifiers and much more.

I (Positive) Natural numbers: successor (succ), equality (==), maximum and
minimum (max and min), addition (+), multiplication (*), division (div),
modulo (mod) and much more.

I Integers: similar to above, predecessor (pred), minus (-), absolute (abs) and
much more.

I Reals

I Typecast: Pos2Nat, Nat2Pos, Int2Nat, etc.

8 / 13

Previous Page Next Page

Built-In Types

I Booleans: true, false, conjunction (&&), disjunction (||), negation (!),
implication (=>), equality (==), quantifiers and much more.

I (Positive) Natural numbers: successor (succ), equality (==), maximum and
minimum (max and min), addition (+), multiplication (*), division (div),
modulo (mod) and much more.

I Integers: similar to above, predecessor (pred), minus (-), absolute (abs) and
much more.

I Reals

I Typecast: Pos2Nat, Nat2Pos, Int2Nat, etc.

8 / 13

Previous Page Next Page

Built-In Types

I Booleans: true, false, conjunction (&&), disjunction (||), negation (!),
implication (=>), equality (==), quantifiers and much more.

I (Positive) Natural numbers: successor (succ), equality (==), maximum and
minimum (max and min), addition (+), multiplication (*), division (div),
modulo (mod) and much more.

I Integers: similar to above, predecessor (pred), minus (-), absolute (abs) and
much more.

I Reals

I Typecast: Pos2Nat, Nat2Pos, Int2Nat, etc.

8 / 13

Previous Page Next Page

Built-In Types

I Booleans: true, false, conjunction (&&), disjunction (||), negation (!),
implication (=>), equality (==), quantifiers and much more.

I (Positive) Natural numbers: successor (succ), equality (==), maximum and
minimum (max and min), addition (+), multiplication (*), division (div),
modulo (mod) and much more.

I Integers: similar to above, predecessor (pred), minus (-), absolute (abs) and
much more.

I Reals

I Typecast: Pos2Nat, Nat2Pos, Int2Nat, etc.

8 / 13

Previous Page Next Page

Structured Types

I Syntax:
sort St = struct elm a

?is a

| elm b

?is b

|
f(s : S)

?is f

sort St
cons elm a, elm b: St;

f: St → St;

I Built-in recognizers

I Built-in equations for recognizers: provably different constructors

I Built-in equality, inequality and if-then-else maps

9 / 13

Previous Page Next Page

Structured Types

I Syntax:
sort St = struct elm a?is a | elm b?is b |

f(s : S)?is f

I Built-in recognizers
map is a, is b, is f: St → Bool;

I Built-in equations for recognizers: provably different constructors

I Built-in equality, inequality and if-then-else maps

9 / 13

Previous Page Next Page

Structured Types

I Syntax:
sort St = struct elm a?is a | elm b?is b |

f(s : S)?is f

I Built-in recognizers

I Built-in equations for recognizers: provably different constructors
var s :St;
eqn is a(elm a)= true;

is a(elm b)= false;
is a(f(s))= false;
. . .

I Built-in equality, inequality and if-then-else maps

9 / 13

Previous Page Next Page

Structured Types

I Syntax:
sort St = struct elm a?is a | elm b?is b |

f(s : S)?is f

I Built-in recognizers

I Built-in equations for recognizers: provably different constructors

I Built-in equality, inequality and if-then-else maps

9 / 13

Previous Page Next Page

Constructed Types
Lists

I Syntax: sort lst = List(St);

I List enumeration: [elements] (comma separated)

I Built-in equality and inequality, i-th element (l .i).

I Several built-in constructs and maps: cons (| >), concatenation (++), length
(#), member (in), head (head), tail (tail) and many more.

10 / 13

Previous Page Next Page

Constructed Types
Lists

I Syntax: sort lst = List(St);

I List enumeration: [elements] (comma separated)

I Built-in equality and inequality, i-th element (l .i).

I Several built-in constructs and maps: cons (| >), concatenation (++), length
(#), member (in), head (head), tail (tail) and many more.

10 / 13

Previous Page Next Page

Constructed Types
Lists

I Syntax: sort lst = List(St);

I List enumeration: [elements] (comma separated)

I Built-in equality and inequality, i-th element (l .i).

I Several built-in constructs and maps: cons (| >), concatenation (++), length
(#), member (in), head (head), tail (tail) and many more.

10 / 13

Previous Page Next Page

Constructed Types
Lists

I Syntax: sort lst = List(St);

I List enumeration: [elements] (comma separated)

I Built-in equality and inequality, i-th element (l .i).

I Several built-in constructs and maps: cons (| >), concatenation (++), length
(#), member (in), head (head), tail (tail) and many more.

10 / 13

Previous Page Next Page

Constructed Types
Sets and Bags

I Syntax: sort S = Set(St);

I Set enumeration: {a, b, . . .}
I Bag enumeration: {a : 3, b : 2, . . .}
I Several built-in constructs and maps

I Type casts: Set2Bag and Bag2Set

11 / 13

Previous Page Next Page

Constructed Types
Sets and Bags

I Syntax: sort S = Set(St);

I Set enumeration: {a, b, . . .}

I Bag enumeration: {a : 3, b : 2, . . .}
I Several built-in constructs and maps

I Type casts: Set2Bag and Bag2Set

11 / 13

Previous Page Next Page

Constructed Types
Sets and Bags

I Syntax: sort S = Bag(St)

I Set enumeration: {a, b, . . .}
I Bag enumeration: {a : 3, b : 2, . . .}

I Several built-in constructs and maps

I Type casts: Set2Bag and Bag2Set

11 / 13

Previous Page Next Page

Constructed Types
Sets and Bags

I Syntax: sort S = Bag(St)

I Set enumeration: {a, b, . . .}
I Bag enumeration: {a : 3, b : 2, . . .}
I Several built-in constructs and maps

I Type casts: Set2Bag and Bag2Set

11 / 13

Previous Page Next Page

Constructed Types
Sets and Bags

I Syntax: sort S = Bag(St)

I Set enumeration: {a, b, . . .}
I Bag enumeration: {a : 3, b : 2, . . .}
I Several built-in constructs and maps

I Type casts: Set2Bag and Bag2Set

11 / 13

Previous Page Next Page

General Overview

System Models System Requirements

Semantic Domain

Behavior (Processes)

12 / 13

Previous Page Next Page

Thank you very much.

13 / 13

	Motivation
	Generic Concepts
	Other Facilities
	Built-In Types
	Structured Types
	Constructed Types

