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Motivating Example
Advanced Coffee Machine
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Generic Concepts

Data types

I Classes: sorts

I Elements: constructors

I Operations: maps

I Rules governing operations: equations
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Example
Euro Sort

sort Euro;

cons zero, fifty cents,
one euro, more: Euro;
% constants: constructors with no parameter

map eq: Euro × Euro → Bool;
plus: Euro × Euro → Euro;

var e:Euro;
eqn eq(e, e)= true; (1)

eq(zero, one euro)= false; (2)
eq(one euro, zero)= false; (3)
. . .
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Example
Euro Sort (Cont’d)

sort Euro;

var e: Euro;
eqn plus(e,zero)= e;

plus(zero,e)= e;
plus(fifty cents,fifty cents)= one euro;
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Example
Natural

sort Natural;

cons zero: Natural;
succ: Natural → Natural;

map eq: Natural × Natural → Bool;
var i, j: Natural;
eqn eq(i, i)= true; (1)

eq(zero, succ(i))= false; (2)
eq(succ(i), zero)= false; (3)
eq(succ(i), succ(j))= eq(i,j); (4)
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Built-In Types

I Booleans: true, false, conjunction (&&), disjunction (||), negation (!),
implication (=>), equality (==), quantifiers and much more.

I (Positive) Natural numbers: successor (succ), equality (==), maximum and
minimum (max and min), addition (+), multiplication (*), division (div),
modulo (mod) and much more.

I Integers: similar to above, predecessor (pred), minus (-), absolute (abs) and
much more.

I Reals

I Typecast: Pos2Nat, Nat2Pos, Int2Nat, etc.
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Structured Types

I Syntax:
sort St = struct elm a

?is a

| elm b

?is b

|
f(s : S)

?is f

sort St
cons elm a, elm b: St;

f: St → St;

I Built-in recognizers

I Built-in equations for recognizers: provably different constructors

I Built-in equality, inequality and if-then-else maps

9 / 13



Previous Page Next Page

Structured Types

I Syntax:
sort St = struct elm a?is a | elm b?is b |

f(s : S)?is f

I Built-in recognizers
map is a, is b, is f: St → Bool;

I Built-in equations for recognizers: provably different constructors

I Built-in equality, inequality and if-then-else maps

9 / 13



Previous Page Next Page

Structured Types

I Syntax:
sort St = struct elm a?is a | elm b?is b |

f(s : S)?is f

I Built-in recognizers
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var s :St;
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is a(elm b)= false;
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Constructed Types
Lists

I Syntax: sort lst = List(St);

I List enumeration: [elements] (comma separated)

I Built-in equality and inequality, i-th element (l .i).

I Several built-in constructs and maps: cons (| >), concatenation (++), length
(#), member (in), head (head), tail (tail) and many more.
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Constructed Types
Sets and Bags

I Syntax: sort S = Set(St);

I Set enumeration: {a, b, . . .}
I Bag enumeration: {a : 3, b : 2, . . .}
I Several built-in constructs and maps

I Type casts: Set2Bag and Bag2Set
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Thank you very much.
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