System Validation: Bisimulation

Mohammad Mousavi and Jeroen Keiren

General Overview

Bisimulation

$R \subseteq S \times S$ is strong bisimulation iff
for $s, t \in S$ s.t. $s R t$, and $a \in A c t$:

- if $s \xrightarrow{a} s^{\prime}$ then $\exists_{t^{\prime} \in S}$ s.t. $t \xrightarrow{a} t^{\prime}$ and $s^{\prime} R t^{\prime}$,
- if $t \xrightarrow{a} t^{\prime}$ then $\exists_{s^{\prime} \in S}$ s.t. $s \xrightarrow{a} s^{\prime}$ and $s^{\prime} R t^{\prime}$,
- $s \in T$ iff $t \in T$.

Bisimulation

$R \subseteq S \times S$ is strong bisimulation iff
for $s, t \in S$ s.t. $s R t$, and $a \in A c t$:

- if $s \xrightarrow{a} s^{\prime}$ then $\exists_{t^{\prime} \in S}$ s.t. $t \xrightarrow{a} t^{\prime}$ and $s^{\prime} R t^{\prime}$,
- if $t \xrightarrow{a} t^{\prime}$ then $\exists_{s^{\prime} \in S}$ s.t. $s \xrightarrow{a} s^{\prime}$ and $s^{\prime} R t^{\prime}$,
- $s \in T$ iff $t \in T$.

Bisimulation

$R \subseteq S \times S$ is strong bisimulation iff
for $s, t \in S$ s.t. $s R t$, and $a \in A c t$:

- if $s \xrightarrow{a} s^{\prime}$ then $\exists_{t^{\prime} \in S}$ s.t. $t \xrightarrow{a} t^{\prime}$ and $s^{\prime} R t^{\prime}$,
- if $t \xrightarrow{a} t^{\prime}$ then $\exists_{s^{\prime} \in S}$ s.t. $s \xrightarrow{a} s^{\prime}$ and $s^{\prime} R t^{\prime}$,
- $s \in T$ iff $t \in T$.

Bisimulation

$R \subseteq S \times S$ is strong bisimulation iff
for $s, t \in S$ s.t. $s R t$, and $a \in A c t$:

- if $s \xrightarrow{a} s^{\prime}$ then $\exists_{t^{\prime} \in S}$ s.t. $t \xrightarrow{a} t^{\prime}$ and $s^{\prime} R t^{\prime}$,
- if $t \xrightarrow{a} t^{\prime}$ then $\exists_{s^{\prime} \in S}$ s.t. $s \xrightarrow{a} s^{\prime}$ and $s^{\prime} R t^{\prime}$,
- $s \in T$ iff $t \in T$.

Bisimulation

$R \subseteq S \times S$ is strong bisimulation iff
for $s, t \in S$ s.t. $s R t$, and $a \in A c t$:

- if $s \xrightarrow{a} s^{\prime}$ then $\exists_{t^{\prime} \in S}$ s.t. $t \xrightarrow{a} t^{\prime}$ and $s^{\prime} R t^{\prime}$,
- if $t \xrightarrow{a} t^{\prime}$ then $\exists_{s^{\prime} \in S}$ s.t. $s \xrightarrow{a} s^{\prime}$ and $s^{\prime} R t^{\prime}$,
- $s \in T$ iff $t \in T$.

Bisimulation

$R \subseteq S \times S$ is strong bisimulation iff
for $s, t \in S$ s.t. $s R t$, and $a \in A c t$:

- if $s \xrightarrow{a} s^{\prime}$ then $\exists_{t^{\prime} \in S}$ s.t. $t \xrightarrow{a} t^{\prime}$ and $s^{\prime} R t^{\prime}$,
- if $t \xrightarrow{a} t^{\prime}$ then $\exists_{s^{\prime} \in S}$ s.t. $s \xrightarrow{a} s^{\prime}$ and $s^{\prime} R t^{\prime}$,
- $s \in T$ iff $t \in T$.

Bisimulation

Example
$\forall_{s R t}$

- $s \xrightarrow{a} s^{\prime} \Longrightarrow \exists_{t^{\prime} \in S} t \xrightarrow{a} t^{\prime}$ and $s^{\prime} R t^{\prime}$, and vice versa,
- $s \in T \Longleftrightarrow t \in T$.

Bisimulation

Example
$\forall_{s R t}$

- $s \xrightarrow{a} s^{\prime} \Longrightarrow \exists_{t^{\prime} \in S} t \xrightarrow{a} t^{\prime}$ and $s^{\prime} R t^{\prime}$, and vice versa,
- $s \in T \Longleftrightarrow t \in T$.

Bisimulation

Example
$\forall_{s R t}$
$\triangleright s \xrightarrow{a} s^{\prime} \Longrightarrow \exists_{t^{\prime} \in S} t \xrightarrow{a} t^{\prime}$ and $s^{\prime} R t^{\prime}$, and vice versa,

- $s \in T \Longleftrightarrow t \in T$.

Bisimulation

Example
$\forall_{s R t}$

- $s \xrightarrow{a} s^{\prime} \Longrightarrow \exists_{t^{\prime} \in S} t \xrightarrow{a} t^{\prime}$ and $s^{\prime} R t^{\prime}$, and vice versa,
- $s \in T \Longleftrightarrow t \in T$.

Bisimulation

Example
$\forall_{s R t}$

- $s \xrightarrow{a} s^{\prime} \Longrightarrow \exists_{t^{\prime} \in S} t \xrightarrow{a} t^{\prime}$ and $s^{\prime} R t^{\prime}$, and vice versa,
$\Delta s \in T \Longleftrightarrow t \in T$.

Bisimulation

```
An Exercise
```


Bisimulation

An Exercise

Intermezzo
Specifying LTSs in mCRL2

mCRL2 specification:
act coin, coffee, tea;
proc $s 0=$ coin . s1;
s1 = coffee + tea;
init so;

Intermezzo
Specifying LTSs in mCRL2
mCRL2 specification:

```
act coin, coffee, tea;
proc t0 = coin . t1 +
            coin . t2 +
            coin . delta;
    t1 = coffee;
    t2 = tea;
init t0;
```


Comparing LTSs in mCRL2

mcrl22lps Transformation into linear process form
Ips21ts Transformation into labeled transition systems
Itsgraph Draw the LTS (suitable for small)
Itscompare Checking for behavioral equivalences

Motivation

Verifying two-place buffer

Thank you very much.

