System Validation:
 Extensions of Hennessy-Milner Logic

Mohammad Mousavi and Jeroen Keiren

General Overview

Limitations of Hennessy-Milner Logic

- Properties like "the system is deadlocked" require reasoning about all actions
- Properties of infinite depth cannot be expressed, for example:

Limitations of Hennessy-Milner Logic

- Properties like "the system is deadlocked" require reasoning about all actions
- Properties of infinite depth cannot be expressed, for example:
- all reachable states satisfy φ

$$
\operatorname{lnv}(\varphi)=\varphi \wedge[\operatorname{true}] \varphi \wedge[\operatorname{true}][\operatorname{true}] \varphi \wedge \cdots
$$

Limitations of Hennessy-Milner Logic

- Properties like "the system is deadlocked" require reasoning about all actions
- Properties of infinite depth cannot be expressed, for example:
- all reachable states satisfy φ

$$
\operatorname{Inv}(\varphi)=\varphi \wedge[\operatorname{true}] \varphi \wedge[\operatorname{true}][\operatorname{true}] \varphi \wedge \cdots
$$

- there is a reachable state which satisfies φ

$$
\operatorname{Pos}(\varphi)=\varphi \vee\langle\text { true }\rangle \varphi \vee\langle\text { true }\rangle\langle\text { true }\rangle \varphi \vee \cdots
$$

Extending HML to Sets of Actions

For $A=\left\{a_{1}, \cdots, a_{n}\right\} \subseteq$ Act with $n \geq 1$

- $\langle A\rangle \varphi$ denotes $\left\langle a_{1}\right\rangle \varphi \vee \cdots \vee\left\langle a_{n}\right\rangle \varphi$ and $\langle\emptyset\rangle \varphi=$ false

Extending HML to Sets of Actions

For $A=\left\{a_{1}, \cdots, a_{n}\right\} \subseteq$ Act with $n \geq 1$

- $\langle A\rangle \varphi$ denotes $\left\langle a_{1}\right\rangle \varphi \vee \cdots \vee\left\langle a_{n}\right\rangle \varphi$ and $\langle\emptyset\rangle \varphi=$ false
- $[A] \varphi$ denotes $\left[a_{1}\right] \varphi \wedge \cdots \wedge\left[a_{n}\right] \varphi$ and $[\emptyset] \varphi=$ true

Action formula
A described using the following syntax $(a \in A c t)$:

$$
A, B::=\text { false } \mid \text { true }|a| \bar{A}|A \cup B| A \cap B
$$

where $\bar{A}=A c t \backslash A$, true matches all actions, false matches no action.

Typical Formulas

- the process is deadlocked

Typical Formulas

- the process is deadlocked

> [true]false

Typical Formulas

- the process is deadlocked
[true]false
- the process can execute some action

Typical Formulas

- the process is deadlocked
[true]false
- the process can execute some action

$$
\langle\text { true }\rangle \text { true }
$$

Typical Formulas

- the process is deadlocked
[true]false
- the process can execute some action

$$
\langle\text { true }\rangle \text { true }
$$

- a must happen next

Typical Formulas

- the process is deadlocked
[true]false
- the process can execute some action

$$
\langle\text { true }\rangle \text { true }
$$

- a must happen next

$$
\langle a\rangle \text { true } \wedge[\bar{a}] \text { false }
$$

Typical Formulas

- the process is deadlocked
[true]false
- the process can execute some action

$$
\langle\text { true }\rangle \text { true }
$$

- a must happen next

$$
\langle a\rangle \text { true } \wedge[\bar{a}] \text { false }
$$

- φ holds after every step

Typical Formulas

- the process is deadlocked
[true]false
- the process can execute some action

$$
\langle\text { true }\rangle \text { true }
$$

- a must happen next

$$
\langle a\rangle \text { true } \wedge[\bar{a}] \text { false }
$$

- φ holds after every step

$$
[\text { true }] \varphi \wedge\langle\text { true }\rangle \text { true }
$$

Regular Hennessy-Milner Logic

Idea: use regular expressions inside modalities

- $\langle\varepsilon\rangle \varphi=[\varepsilon]=\varphi$

Regular Hennessy-Milner Logic

Idea: use regular expressions inside modalities

- $\langle\varepsilon\rangle \varphi=[\varepsilon]=\varphi$
- $\left\langle\beta_{1} \cdot \beta_{2}\right\rangle \varphi=\left\langle\beta_{1}\right\rangle\left\langle\beta_{2}\right\rangle \varphi$
- $\left[\beta_{1} \cdot \beta_{2}\right] \varphi=\left[\beta_{1}\right]\left[\beta_{2}\right] \varphi$

Regular Hennessy-Milner Logic

Idea: use regular expressions inside modalities

- $\langle\varepsilon\rangle \varphi=[\varepsilon]=\varphi$
- $\left\langle\beta_{1} \cdot \beta_{2}\right\rangle \varphi=\left\langle\beta_{1}\right\rangle\left\langle\beta_{2}\right\rangle \varphi$
- $\left[\beta_{1} \cdot \beta_{2}\right] \varphi=\left[\beta_{1}\right]\left[\beta_{2}\right] \varphi$
- $\left\langle\beta_{1}+\beta_{2}\right\rangle \varphi=\left\langle\beta_{1}\right\rangle \varphi \vee\left\langle\beta_{2}\right\rangle \varphi$
- $\left[\beta_{1}+\beta_{2}\right] \varphi=\left[\beta_{1}\right] \varphi \wedge\left[\beta_{2}\right] \varphi$

Regular Hennessy-Milner Logic

Idea: use regular expressions inside modalities

- $\langle\varepsilon\rangle \varphi=[\varepsilon]=\varphi$
- $\left\langle\beta_{1} \cdot \beta_{2}\right\rangle \varphi=\left\langle\beta_{1}\right\rangle\left\langle\beta_{2}\right\rangle \varphi$
- $\left[\beta_{1} \cdot \beta_{2}\right] \varphi=\left[\beta_{1}\right]\left[\beta_{2}\right] \varphi$
- $\left\langle\beta_{1}+\beta_{2}\right\rangle \varphi=\left\langle\beta_{1}\right\rangle \varphi \vee\left\langle\beta_{2}\right\rangle \varphi$
- $\left[\beta_{1}+\beta_{2}\right] \varphi=\left[\beta_{1}\right] \varphi \wedge\left[\beta_{2}\right] \varphi$
- $\left\langle\beta_{1}^{*}\right\rangle \varphi=\varphi \vee\left\langle\beta_{1}\right\rangle\left\langle\beta_{1}^{*}\right\rangle \varphi$

Regular Hennessy-Milner Logic

Idea: use regular expressions inside modalities

- $\langle\varepsilon\rangle \varphi=[\varepsilon]=\varphi$
- $\left\langle\beta_{1} \cdot \beta_{2}\right\rangle \varphi=\left\langle\beta_{1}\right\rangle\left\langle\beta_{2}\right\rangle \varphi$
- $\left[\beta_{1} \cdot \beta_{2}\right] \varphi=\left[\beta_{1}\right]\left[\beta_{2}\right] \varphi$
- $\left\langle\beta_{1}+\beta_{2}\right\rangle \varphi=\left\langle\beta_{1}\right\rangle \varphi \vee\left\langle\beta_{2}\right\rangle \varphi$
- $\left[\beta_{1}+\beta_{2}\right] \varphi=\left[\beta_{1}\right] \varphi \wedge\left[\beta_{2}\right] \varphi$
- $\left\langle\beta_{1}^{*}\right\rangle \varphi=\varphi \vee\left\langle\beta_{1}\right\rangle\left\langle\beta_{1}^{*}\right\rangle \varphi$
- $\left[\beta_{1}^{*}\right] \varphi=\varphi \wedge\left[\beta_{1}\right]\left[\beta_{1}^{*}\right] \varphi$

Limitations of HML revisited

Formulas for properties that cannot be expressed in HML

- the scientist always produces a publication after drinking two coffees in a row

$$
\left[\text { true }{ }^{*} \cdot \text { coffee } \cdot \text { coffee }\right](\langle\text { pub }\rangle \text { true } \wedge[\overline{p u b}] \text { false })
$$

Limitations of HML revisited

Formulas for properties that cannot be expressed in HML

- the scientist always produces a publication after drinking two coffees in a row

$$
\left[\text { true }{ }^{*} \cdot \text { coffee } \cdot \text { coffee }\right](\langle\text { pub }\rangle \text { true } \wedge[\overline{p u b}] \text { false })
$$

- the scientist never drinks beer

$$
\text { [true* } \cdot \text { beer]false }
$$

Limitations of HML revisited

Formulas for properties that cannot be expressed in HML

- the scientist always produces a publication after drinking two coffees in a row

$$
\left[\text { true }{ }^{*} \cdot \text { coffee } \cdot \text { coffee }\right](\langle\text { pub }\rangle \text { true } \wedge[\overline{p u b}] \text { false })
$$

- the scientist never drinks beer

$$
\text { [true* } \cdot \text { beer]false }
$$

- $\operatorname{Inv}(\varphi)$

$$
\left[\text { true }{ }^{*}\right] \varphi
$$

Limitations of HML revisited

Formulas for properties that cannot be expressed in HML

- the scientist always produces a publication after drinking two coffees in a row

$$
\left[\text { true }{ }^{*} \cdot \text { coffee } \cdot \text { coffee }\right](\langle\text { pub }\rangle \text { true } \wedge[\overline{p u b}] \text { false })
$$

- the scientist never drinks beer

$$
\text { [true* } \cdot \text { beer]false }
$$

- $\operatorname{Inv}(\varphi)$

$$
\left[\text { true }{ }^{*}\right] \varphi
$$

- $\operatorname{Pos}(\varphi)$

$$
\left\langle\text { true }^{*}\right\rangle \varphi
$$

Limitations of regular HML

Using regular HML we still cannot express some intuitive properties:

- all computations inevitably reach a state which satisfies φ
- for some execution φ holds everywhere

Limitations of regular HML

Using regular HML we still cannot express some intuitive properties:

- all computations inevitably reach a state which satisfies φ
- for some execution φ holds everywhere

Why not use recursion?

- $\operatorname{Inev}(\varphi)$ expressed by $X \stackrel{\text { def }}{=} \varphi \vee[$ true $] X$
- $\operatorname{Safe}(\varphi)$ expressed by $X \stackrel{\text { def }}{=} \varphi \wedge\langle$ true $\rangle X$

Summary

- Allowing sets inside modalities \Longrightarrow more compact formulas
- Regular HML allows describing properties of infinite depth
- Some desirable properties cannot be described using regular HML

General Overview

Thank you very much.

