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Limitations of Hennessy-Milner Logic

I Properties like “the system is deadlocked” require reasoning about all actions
I Properties of infinite depth cannot be expressed, for example:

I all reachable states satisfy ϕ

Inv(ϕ) = ϕ ∧ [true]ϕ ∧ [true][true]ϕ ∧ · · ·

I there is a reachable state which satisfies ϕ

Pos(ϕ) = ϕ ∨ 〈true〉ϕ ∨ 〈true〉〈true〉ϕ ∨ · · ·
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Extending HML to Sets of Actions

For A = {a1, · · · , an} ⊆ Act with n ≥ 1

I 〈A〉ϕ denotes 〈a1〉ϕ ∨ · · · ∨ 〈an〉ϕ and 〈∅〉ϕ = false

I [A]ϕ denotes [a1]ϕ ∧ · · · ∧ [an]ϕ and [∅]ϕ = true

Action formula
A described using the following syntax (a ∈ Act):

A,B ::= false | true | a | A | A ∪ B | A ∩ B

where A = Act \ A, true matches all actions, false matches no action.
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Typical Formulas

I the process is deadlocked

[true]false

I the process can execute some action

〈true〉true

I a must happen next

〈a〉true ∧ [a]false

I ϕ holds after every step

[true]ϕ ∧ 〈true〉true
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Regular Hennessy-Milner Logic

Idea: use regular expressions inside modalities

I 〈ε〉ϕ = [ε] = ϕ

I 〈β1 · β2〉ϕ = 〈β1〉〈β2〉ϕ
I [β1 · β2]ϕ = [β1][β2]ϕ

I 〈β1 + β2〉ϕ = 〈β1〉ϕ ∨ 〈β2〉ϕ
I [β1 + β2]ϕ = [β1]ϕ ∧ [β2]ϕ

I 〈β∗1〉ϕ = ϕ ∨ 〈β1〉〈β∗1〉ϕ
I [β∗1 ]ϕ = ϕ ∧ [β1][β∗1 ]ϕ
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Limitations of HML revisited

Formulas for properties that cannot be expressed in HML

I the scientist always produces a publication after drinking two coffees in a row

[true∗ · coffee · coffee](〈pub〉true ∧ [pub]false)

I the scientist never drinks beer

[true∗ · beer ]false

I Inv(ϕ)
[true∗]ϕ

I Pos(ϕ)
〈true∗〉ϕ
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Limitations of regular HML

Using regular HML we still cannot express some intuitive properties:

I all computations inevitably reach a state which satisfies ϕ

I for some execution ϕ holds everywhere

Why not use recursion?

I Inev(ϕ) expressed by X
def
= ϕ ∨ [true]X

I Safe(ϕ) expressed by X
def
= ϕ ∧ 〈true〉X
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Summary

I Allowing sets inside modalities =⇒ more compact formulas

I Regular HML allows describing properties of infinite depth

I Some desirable properties cannot be described using regular HML
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Thank you very much.
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