System Validation:
 Describing (Multi-)actions

Mohammad Mousavi and Jeroen Keiren

General Overview

From Processes to Their Algebra

Motivation

- Graphical representation is monstrously big

From Processes to Their Algebra

Motivation

- Graphical representation is monstrously big
- Manipulating and analyzing the graphical representation is virtually impossible

From Processes to Their Algebra

Motivation

- Graphical representation is monstrously big
- Manipulating and analyzing the graphical representation is virtually impossible

Solution
Use a compact textual presentation and algebraic rules for manipulating them

Actions

- Atomic building blocks of processes
- May represent:
- internal activities
- sending messages
- receiving messages
- the result of a synchronization
- May take parameters, typically denoted by $a(d)$ of any Abstract Data Type

Actions

Examples

- act rcv_coin: Euro; rcv_coin(one_euro)

Actions

Examples

- act rcv_coin: Euro; rcv_coin(one_euro)
- act snd_number,rcv_number: Nat; snd_number(1)

Actions

Examples

- act rcv_coin: Euro; rcv_coin(one_euro)
- act snd_number,rcv_number: Nat; snd_number (1)
- act ack_number: Bool \# Nat; ack_number(true, 42)

Actions

Examples

- act rcv_coin: Euro; rcv_coin(one_euro)
- act snd_number,rcv_number: Nat; snd_number(1)
- act ack_number: Bool \# Nat; ack_number(true, 42)

Note

Actions are not functions or procedures, in the programming languages' sense

Multi-Actions

- A number of actions happening at the same time receive $(d) \mid$ send (d)

Multi-Actions

- A number of actions happening at the same time receive $(d) \mid$ send (d)
- Types of multi-actions:

Multi-Actions

- A number of actions happening at the same time receive $(d) \mid$ send (d)
- Types of multi-actions:
- τ internal (invisible) action

Multi-Actions

- A number of actions happening at the same time receive $(d) \mid$ send (d)
- Types of multi-actions:
- τ internal (invisible) action
- a unparameterised action

Multi-Actions

- A number of actions happening at the same time receive $(d) \mid$ send (d)
- Types of multi-actions:
- τ internal (invisible) action
- a unparameterised action
- $a(\vec{d})$ action with parameters

Multi-Actions

- A number of actions happening at the same time receive $(d) \mid$ send (d)
- Types of multi-actions:
- τ internal (invisible) action
- a unparameterised action
- $a(\vec{d})$ action with parameters
- $\alpha \mid \beta$ composite multi-action consisting of α and β

Basic Axioms for Multi-Actions

Axioms for multi-actions used in reasoning about processes

$$
\begin{array}{ll}
\text { MA1 } & \alpha|\beta=\beta| \alpha \\
\text { MA2 } & (\alpha \mid \beta)|\gamma=\alpha|(\beta \mid \gamma) \\
\text { MA3 } & \alpha \mid \tau=\alpha
\end{array}
$$

Example
receive $(d)|\operatorname{send}(d)=\operatorname{send}(d)| \operatorname{receive}(d) \mid \tau$ by MA1 and MA3

Reasoning about multi-actions

Modelling of communication requires reasoning rules for multi-actions.

Reasoning about multi-actions

Modelling of communication requires reasoning rules for multi-actions.

Example
If send \mid receive communicate to comm we need rules to do transformation

Reasoning about multi-actions

Modelling of communication requires reasoning rules for multi-actions.

Example

If send \mid receive communicate to comm we need rules to do transformation

Auxiliary operators:

- Removal of multi-actions $\alpha \backslash \beta$

Reasoning about multi-actions

Modelling of communication requires reasoning rules for multi-actions.

Example
If send \mid receive communicate to comm we need rules to do transformation

Auxiliary operators:

- Removal of multi-actions $\alpha \backslash \beta$
- Inclusion between multi-action $\alpha \sqsubseteq \beta$

Reasoning about multi-actions

Modelling of communication requires reasoning rules for multi-actions.

Example
If send \mid receive communicate to comm we need rules to do transformation

Auxiliary operators:

- Removal of multi-actions $\alpha \backslash \beta$
- Inclusion between multi-action $\alpha \sqsubseteq \beta$
- Stripping data off $\underline{\alpha}$

Axioms for Removal of Multi-Actions $\alpha \backslash \beta$

```
MD1 \(\quad \tau \backslash \alpha=\tau\)
MD2 \(\alpha \backslash \tau=\alpha\)
MD3 \(\alpha \backslash(\beta \mid \gamma)=(\alpha \backslash \beta) \backslash \gamma\)
MD4 \(\quad(a(d) \mid \alpha) \backslash a(d)=\alpha\)
MD5 \(\quad(a(d) \mid \alpha) \backslash b(e)=a(d) \mid(\alpha \backslash b(e)) \quad\) if \(a \not \equiv b\) or \(d \not \approx e\)
```


Example

- $(\operatorname{send}(d)|\operatorname{error}| \operatorname{receive}(d)) \backslash(\operatorname{send}(d) \mid$ receive $(d))=$ error
- $a \backslash a=\tau$

Axioms for Inclusion of Multi-Actions $\alpha \sqsubseteq \beta$

$$
\begin{array}{ll}
\text { MS1 } & \tau \sqsubseteq \alpha=\text { true } \\
\text { MS2 } & a \sqsubseteq \tau=\text { false } \\
\text { MS3 } & a(d)|\alpha \sqsubseteq a(d)| \beta=\alpha \sqsubseteq \beta \\
\text { MS4 } & a(d)|\alpha \sqsubseteq b(e)| \beta=a(d) \mid(\alpha \backslash b(e)) \sqsubseteq \beta \quad \text { if } a \not \equiv b \text { or } d \not \approx e
\end{array}
$$

Example

- $a(1) \sqsubseteq a(1) \mid b(2)=$ true
- $a(1) \sqsubseteq b(2)=$ false

Multi-Actions

Axioms for Stripping Data Off Multi-Actions $\underline{\alpha}$

MAN1	$=\tau$
MAN2	$\frac{a(d)}{\alpha \mid \beta}=a$
MAN3	$\underline{\alpha \mid \beta} \mid \underline{\beta}$

Example

$$
\left.\frac{\text { ack_number }(\text { true }, 42) \mid \text { error }}{} \stackrel{\text { MAN3 }}{=} \stackrel{\text { MAN2 }}{=} \frac{\text { ack_number }(\text { true }, 42)}{\text { ack_number } \mid \text { error }} \right\rvert\, \text { error }
$$

Example

Show using the axioms that $(b \mid a(d)) \backslash a(d)=b$

$$
(b \mid a(d)) \backslash a(d)
$$

Example

Show using the axioms that $(b \mid a(d)) \backslash a(d)=b$

$$
(b \mid a(d)) \backslash a(d)
$$

MA1 $\alpha|\beta=\beta| \alpha$

Example

Show using the axioms that $(b \mid a(d)) \backslash a(d)=b$

$$
(b \mid a(d)) \backslash a(d) \stackrel{M A 1}{=}(a(d) \mid b) \backslash a(d)
$$

MA1 $\alpha|\beta=\beta| \alpha$

Example

Show using the axioms that $(b \mid a(d)) \backslash a(d)=b$

$$
(b \mid a(d)) \backslash a(d) \stackrel{M A 1}{=}(a(d) \mid b) \backslash a(d)
$$

MD4 $\quad(a(d) \mid \alpha) \backslash a(d)=\alpha$

Example

Show using the axioms that $(b \mid a(d)) \backslash a(d)=b$

$$
\begin{gathered}
(b \mid a(d)) \backslash a(d) \stackrel{M A 1}{=}(a(d) \mid b) \backslash a(d) \\
\stackrel{M D 4}{=} b
\end{gathered}
$$

MD4 $\quad(a(d) \mid \alpha) \backslash a(d)=\alpha$

General Overview

Thank you very much.

