System Validation: Describing (Multi-)actions

Mohammad Mousavi and Jeroen Keiren

General Overview

From Processes to Their Algebra

Motivation

► Graphical representation is monstrously big

From Processes to Their Algebra

Motivation

- Graphical representation is monstrously big
- ▶ Manipulating and analyzing the graphical representation is virtually impossible

From Processes to Their Algebra

Motivation

- Graphical representation is monstrously big
- Manipulating and analyzing the graphical representation is virtually impossible

Solution

Use a compact textual presentation and algebraic rules for manipulating them

Actions

- Atomic building blocks of processes
- May represent:
 - ► internal activities
 - sending messages
 - receiving messages
 - ▶ the result of a synchronization
- \blacktriangleright May take parameters, typically denoted by a(d) of any Abstract Data Type

act rcv_coin: Euro;
rcv_coin(one_euro)

```
act rcv_coin: Euro;
rcv_coin(one_euro)

act snd_number,rcv_number: Nat;
snd_number(1)
```

```
    act rcv_coin: Euro;

        rcv_coin(one_euro)
    act snd_number,rcv_number: Nat

        snd_number(1)
    act ack_number: Bool # Nat;

        ack_number(true, 42)
```

```
act rcv_coin: Euro;
rcv_coin(one_euro)

act snd_number,rcv_number: Nat
snd_number(1)

act ack_number: Bool # Nat;
ack_number(true, 42)
```

Note

Actions are not functions or procedures, in the programming languages' sense

► A number of actions happening at the same time receive(d) | send(d)

- ► A number of actions happening at the same time receive(d) | send(d)
- ► Types of multi-actions:

- ➤ A number of actions happening at the same time receive(d) | send(d)
- ► Types of multi-actions:
 - ightharpoonup au internal (invisible) action

- A number of actions happening at the same time receive(d) | send(d)
- ► Types of multi-actions:
 - ightharpoonup au internal (invisible) action
 - a unparameterised action

- ► A number of actions happening at the same time receive(d) | send(d)
- ► Types of multi-actions:
 - ightharpoonup au internal (invisible) action
 - a unparameterised action
 - \rightarrow $a(\vec{d})$ action with parameters

- ► A number of actions happening at the same time receive(d) | send(d)
- ► Types of multi-actions:
 - ightharpoonup au internal (invisible) action
 - a unparameterised action
 - $ightharpoonup a(\vec{d})$ action with parameters
 - $\alpha \mid \beta$ composite multi-action consisting of α and β

Basic Axioms for Multi-Actions

Axioms for multi-actions used in reasoning about processes

MA1
$$\alpha \mid \beta = \beta \mid \alpha$$

MA2 $(\alpha \mid \beta) \mid \gamma = \alpha \mid (\beta \mid \gamma)$
MA3 $\alpha \mid \tau = \alpha$

Example $receive(d) \mid send(d) = send(d) \mid receive(d) \mid \tau$ by MA1 and MA3

Modelling of communication requires reasoning rules for multi-actions.

Modelling of communication requires reasoning rules for multi-actions.

Example

If send | receive communicate to comm we need rules to do transformation

Modelling of communication requires reasoning rules for multi-actions.

Example

If send | receive communicate to comm we need rules to do transformation

Auxiliary operators:

▶ Removal of multi-actions $\alpha \setminus \beta$

Modelling of communication requires reasoning rules for multi-actions.

Example

If send | receive communicate to comm we need rules to do transformation

Auxiliary operators:

- ▶ Removal of multi-actions $\alpha \setminus \beta$
- ▶ Inclusion between multi-action $\alpha \sqsubseteq \beta$

Modelling of communication requires reasoning rules for multi-actions.

Example

If send | receive communicate to comm we need rules to do transformation

Auxiliary operators:

- ▶ Removal of multi-actions $\alpha \setminus \beta$
- ▶ Inclusion between multi-action $\alpha \sqsubseteq \beta$
- Stripping data off $\underline{\alpha}$

Axioms for Removal of Multi-Actions $\alpha \setminus \beta$

```
MD1 \tau \setminus \alpha = \tau

MD2 \alpha \setminus \tau = \alpha

MD3 \alpha \setminus (\beta \mid \gamma) = (\alpha \setminus \beta) \setminus \gamma

MD4 (a(d) \mid \alpha) \setminus a(d) = \alpha

MD5 (a(d) \mid \alpha) \setminus b(e) = a(d) \mid (\alpha \setminus b(e)) if a \not\equiv b or d \not\approx e
```

Example

- $(send(d)|error|receive(d))\setminus (send(d)|receive(d)) = error$
- $ightharpoonup a \setminus a = \tau$

Axioms for Inclusion of Multi-Actions $\alpha \sqsubseteq \beta$

```
MS1 \tau \sqsubseteq \alpha = true

MS2 a \sqsubseteq \tau = false

MS3 a(d) \mid \alpha \sqsubseteq a(d) \mid \beta = \alpha \sqsubseteq \beta

MS4 a(d) \mid \alpha \sqsubseteq b(e) \mid \beta = a(d) \mid (\alpha \setminus b(e)) \sqsubseteq \beta if a \not\equiv b or d \not\approx e
```

Example

- ► $a(1) \sqsubseteq a(1)|b(2) = true$
- ▶ $a(1) \sqsubseteq b(2) = false$

Axioms for Stripping Data Off Multi-Actions $\underline{\alpha}$

MAN1
$$\underline{\tau} = \tau$$

MAN2 $\underline{a(d)} = a$
MAN3 $\underline{\alpha \mid \beta} = \underline{\alpha} \mid \underline{\beta}$

Example

$$\frac{ack_number(true, 42) \mid error}{\stackrel{MAN3}{=}} \frac{ack_number(true, 42) \mid error}{ack_number \mid error}$$

$$(b \mid a(d)) \setminus a(d)$$

$$(b \mid a(d)) \setminus a(d)$$

MA1
$$\alpha \mid \beta = \beta \mid \alpha$$

$$(b \mid a(d)) \setminus a(d) \stackrel{MA1}{=} (a(d) \mid b) \setminus a(d)$$

MA1
$$\alpha \mid \beta = \beta \mid \alpha$$

$$(b \mid a(d)) \setminus a(d) \stackrel{MA1}{=} (a(d) \mid b) \setminus a(d)$$

MD4
$$(a(d) | \alpha) \setminus a(d) = \alpha$$

$$(b \mid a(d)) \setminus a(d) \stackrel{MA1}{=} (a(d) \mid b) \setminus a(d)$$

$$\stackrel{MD4}{=} b$$

MD4
$$(a(d) | \alpha) \setminus a(d) = \alpha$$

General Overview

Thank you very much.