System Validation:
 Describing Sequential Processes

Mohammad Mousavi and Jeroen Keiren

General Overview

Alternative composition

Alternative composition

Alternative composition

Axioms

$$
\begin{array}{ll}
\text { A1 } & x+y=y+x \\
\text { A2 } & x+(y+z)=(x+y)+z \\
\text { A3 } & x+x=x
\end{array}
$$

- Syntax $p+q$
- Intuition the process behaves as either p or q

Write $x \subseteq y$ for $x+y=y$.

Alternative composition

Axioms

$$
\begin{array}{ll}
\text { A1 } & x+y=y+x \\
\text { A2 } & x+(y+z)=(x+y)+z \\
\text { A3 } & x+x=x
\end{array}
$$

- Syntax $p+q$
- Intuition the process behaves as either p or q

Write $x \subseteq y$ for $x+y=y$.

Sequential composition

Sequential composition

- Syntax p•q
- Intuition the process behaves as p and upon termination of p, as q.

Sequential composition

- Syntax p• q
- Intuition the process behaves as p and upon termination of p, as q.

Axioms

$$
\begin{array}{ll}
\text { A4 } & (x+y) \cdot z=x \cdot z+y \cdot z \\
\text { A5 } & (x \cdot y) \cdot z=x \cdot(y \cdot z)
\end{array}
$$

Example

Example

Example

$$
\begin{gathered}
\text { coin } \cdot(\text { coffee }+ \text { tea }) \\
A 1, A 3 \\
= \\
(\text { coin } \cdot(\text { coffee }+ \text { tea }))+(\text { coin } \cdot(\text { tea }+ \text { coffee }))
\end{gathered}
$$

Deadlock

Deadlock

- Syntax δ
- Intuition a process that cannot do anything but let time pass

$$
a \cdot \delta
$$

Deadlock

- Syntax δ
- Intuition a process that cannot do anything but let time pass

$$
a \cdot \delta
$$

Axioms

$$
\begin{array}{ll}
\text { A6 } & x+\delta=x \\
\text { A7 } & \delta \cdot x=\delta
\end{array}
$$

Deadlock

- Syntax δ
- Intuition a process that cannot do anything but let time pass

$$
a \cdot \delta
$$

Axioms

$$
\begin{array}{ll}
\text { A6 } & x+\delta=x \\
\text { A7 } & \delta \cdot x=\delta
\end{array}
$$

Conditional operator

$$
(n<42) \rightarrow a \diamond b
$$

Conditional operator

$$
(n<42) \rightarrow a \diamond b
$$

- Syntax $c \rightarrow p \diamond q$, where c is of type Bool
- Intuition if c holds, behave as p, otherwise as q

Conditional operator

$$
(n<42) \rightarrow a \diamond b
$$

- Syntax $c \rightarrow p \diamond q$, where c is of type Bool
- Intuition if c holds, behave as p, otherwise as q

Axioms

Cond1	true $\rightarrow x \diamond y=x$
Cond2	false $\rightarrow x \diamond y=y$
THEN	$c \rightarrow x=c \rightarrow x \diamond \delta$

Conditional operator

$$
(n<42) \rightarrow a \diamond b
$$

- Syntax $c \rightarrow p \diamond q$, where c is of type Bool
- Intuition if c holds, behave as p, otherwise as q

Axioms

Sum operator

Sum operator

- Syntax $\sum_{d: D} X(d)$
- Intuition generalize alternative composition: may behave as $X(d), \sum_{\text {for: Nazth }}$ num $(2 * v)$; value d of type D

Sum operator

- Syntax $\sum_{d: D} X(d)$
- Intuition generalize alternative composition: may behave as $X(d)$, forf: Neatch $^{\text {num }}$ ($2 * v$); value d of type D

Axioms

$$
\text { SUM1 } \quad \sum_{d: D} x=x
$$

$$
\text { SUM3 } \quad \sum_{d: D} X(d)=X(e)+\sum_{d: D} X(d)
$$

$$
\begin{aligned}
& \text { Y(d) }
\end{aligned}
$$

$$
\text { SUM4 } \quad \sum_{d: D}(X(d)+Y(d))=\sum_{d: D} X(d)+\sum_{d: D} Y(d)
$$

$$
\text { SUM5 }\left(\sum_{d: D} X(d)\right) \cdot y=\sum_{d: D} X(d) \cdot y
$$

Example

One time usable buffer, with messages of type Message

$$
\sum_{m: M e s s a g e} \operatorname{read}(m) \cdot \text { forward }(m)
$$

Example

One time usable buffer, with messages of type Message

$$
\sum_{m: M e s s a g e} \operatorname{read}(m) \cdot \text { forward }(m)
$$

Problem How to handle repetition?

Recursion

Define set of equations with variables as left hand side:

$$
P=x
$$

where x a process, that can refer to variables such as P

Recursion

Define set of equations with variables as left hand side:

$$
P=x
$$

where x a process, that can refer to variables such as P

- allows definition of infinite processes
- can store data in parameters

Example

Reusable 1-place FIFO buffer, with messages of type Message

$$
\text { Buffer }=\sum_{m: \text { Message }} \operatorname{read}(m) \cdot \text { forward }(m) \cdot \text { Buffer }
$$

Example

Reusable 1-place FIFO buffer, with messages of type Message

$$
\text { Buffer }=\sum_{m: \text { Message }} \operatorname{read}(m) \cdot \text { forward }(m) \cdot \text { Buffer }
$$

```
or, in mCRL2:
    sort Message;
    act read,forward: Message;
    proc Buffer = sum m: Message . read(m) . forward(m) . Buffer;
    init Buffer;
```


Example

Infinite queue

$$
\begin{aligned}
\text { Queue }(I: L i s t(\text { Message }) & =\sum_{m: M e s s a g e} \operatorname{read}(m) \cdot \text { Queue }(I \triangleleft m) \\
& +(I \neq[] \rightarrow \text { forward }(\text { head }(I)) \cdot \text { Queue }(\text { tail }(I))
\end{aligned}
$$

Example

Infinite queue

$$
\begin{aligned}
\text { Queue }(I: \text { List }(\text { Message }) & =\sum_{m: \text { Message }} \operatorname{read}(m) \cdot \text { Queue }(I \triangleleft m) \\
& +(I \neq[] \rightarrow \text { forward }(\text { head }(I)) \cdot \text { Queue }(\text { tail }(I))
\end{aligned}
$$

Example

Infinite queue

$$
\begin{aligned}
\text { Queue }(I: \text { List }(\text { Message }) & =\sum_{m: M e s s a g e} \operatorname{read}(m) \cdot \text { Queue }(I \triangleleft m) \\
& +(I \neq[] \rightarrow \text { forward }(\text { head }(I)) \cdot \operatorname{Queue}(\text { tail }(I))
\end{aligned}
$$

or, in mCRL2:
sort Message;
act read,forward: Message;
proc Queue(1: List(Message)) =
sum m: Message . read (m). Queue (l <l m)
$+(1 \quad!=[])->$ forward (head (l)) . Queue(tail(l));
init Queue([]);

Thank you very much.

