System Validation:
 Weak Behavioral Equivalences

Mohammad Mousavi and Jeroen Keiren

General Overview

Motivation

Verifying two-place buffer

Weak Equivalences

Idea

- Internal actions should be invisible to the outside world

Weak Equivalences

Idea

- Internal actions should be invisible to the outside world
- τ : The collective name for all invisible actions

Weak Equivalences

Idea

- Internal actions should be invisible to the outside world
- τ : The collective name for all invisible actions
- Adapt behavioral equivalence to neglect τ

Trace Equivalence

```
Traces of a State
For state \(t \in S\), \(\operatorname{Traces}(t)\) is the minimal set satisfying:
    1. \(\epsilon \in \operatorname{Traces}(t)\)
    2. \(\sqrt{ } \in \operatorname{Traces}(t)\) when \(t \in T\)
    3. \(a \sigma \in \operatorname{Traces}(t)\) when \(t \xrightarrow{a} t^{\prime}, \quad\) and \(\sigma \in \operatorname{Traces}\left(t^{\prime}\right)\)
```

```
Trace Equivalence For states \(t, t^{\prime}, t\) is trace equivalent to \(t^{\prime}\) iff \(\operatorname{Traces}(t)=\operatorname{Traces}\left(t^{\prime}\right)\).
```


Weak Trace Equivalence

Weak Traces of a State

For state $t \in S, W \operatorname{Traces}(t)$ is the minimal set satisfying:

1. $\epsilon \in W \operatorname{Traces}(t)$
2. $\sqrt{ } \in W \operatorname{Traces}(t)$ when $t \in T$
3. $a \sigma \in W \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime},(a \neq \tau)$ and $\sigma \in W \operatorname{Traces}\left(t^{\prime}\right)$
4. $\sigma \in W \operatorname{Traces}(t)$ when $t \xrightarrow{\tau} t^{\prime}$ and $\sigma \in W \operatorname{Traces}\left(t^{\prime}\right)$

Weak Trace Equivalence

For states t, t^{\prime}, t is trace equivalent to t^{\prime} iff
$W \operatorname{Traces}(t)=W \operatorname{Traces}\left(t^{\prime}\right) \operatorname{Traces}(t)=\operatorname{Traces}\left(t^{\prime}\right)$.

Weak Traces

Example

Weak Traces

Example

1. $\epsilon \in W \operatorname{Traces}(t)$,
2. $\sqrt{ } \in W \operatorname{Traces}(t)$ when $t \in T$,
3. $a \sigma \in W \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime}$ and $\sigma \in W \operatorname{Traces}\left(t^{\prime}\right)$,
4. $\sigma \in W \operatorname{Traces}(t)$ when $t \xrightarrow{\tau} t^{\prime}$ and $\sigma \in W \operatorname{Traces}\left(t^{\prime}\right)$.
What are W Traces $\left(s_{0}\right)$ and W Traces $\left(t_{0}\right)$?

Weak Traces

Example

1. $\epsilon \in W \operatorname{Traces}(t)$,
2. $\sqrt{ } \in W \operatorname{Traces}(t)$ when $t \in T$,
3. $a \sigma \in W \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime}$ and $\sigma \in W \operatorname{Traces}\left(t^{\prime}\right)$,
4. $\sigma \in W \operatorname{Traces}(t)$ when $t \xrightarrow{\tau} t^{\prime}$ and $\sigma \in W \operatorname{Traces}\left(t^{\prime}\right)$.
What are W Traces $\left(s_{0}\right)$ and W Traces $\left(t_{0}\right)$?

- $W \operatorname{Traces}\left(t_{4}\right)=W \operatorname{Traces}\left(t_{5}\right)=\{\epsilon, \sqrt{ }\}$,

Weak Traces

Example

1. $\epsilon \in W \operatorname{Traces}(t)$,
2. $\sqrt{ } \in W \operatorname{Traces}(t)$ when $t \in T$,
3. $a \sigma \in W \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime}$ and $\sigma \in W \operatorname{Traces}\left(t^{\prime}\right)$,
4. $\sigma \in W \operatorname{Traces}(t)$ when $t \xrightarrow{\tau} t^{\prime}$ and $\sigma \in W \operatorname{Traces}\left(t^{\prime}\right)$.
What are W Traces $\left(s_{0}\right)$ and W Traces $\left(t_{0}\right)$?

- $W \operatorname{Traces}\left(t_{4}\right)=W \operatorname{Traces}\left(t_{5}\right)=\{\epsilon, \sqrt{ }\}$,
- $W \operatorname{Traces}\left(t_{2}\right)=\{\epsilon$, coffee, coffee $\sqrt{ }\}, W \operatorname{Traces}\left(t_{3}\right)=\{\epsilon$, tea, tea $\sqrt{ }\}$,

Weak Traces

Example

1. $\epsilon \in W \operatorname{Traces}(t)$,
2. $\sqrt{ } \in W \operatorname{Traces}(t)$ when $t \in T$,
3. $a \sigma \in W \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime}$ and $\sigma \in W \operatorname{Traces}\left(t^{\prime}\right)$,
4. $\sigma \in W \operatorname{Traces}(t)$ when $t \xrightarrow{\tau} t^{\prime}$ and $\sigma \in W \operatorname{Traces}\left(t^{\prime}\right)$.
What are W Traces $\left(s_{0}\right)$ and W Traces $\left(t_{0}\right)$?

- $W \operatorname{Traces}\left(t_{4}\right)=W \operatorname{Traces}\left(t_{5}\right)=\{\epsilon, \sqrt{ }\}$,
- $W \operatorname{Traces}\left(t_{2}\right)=\{\epsilon$, coffee, coffee $\sqrt{ }\}, W \operatorname{Traces}\left(t_{3}\right)=\{\epsilon$, tea, tea $\sqrt{ }\}$,
- $\operatorname{WTraces}\left(t_{1}\right)=\{\epsilon$, coffee, tea, coffee $\sqrt{ }$, tea $\sqrt{ }\}$,

Weak Traces

Example

1. $\epsilon \in W \operatorname{Traces}(t)$,
2. $\sqrt{ } \in W \operatorname{Traces}(t)$ when $t \in T$,
3. $a \sigma \in W \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime}$ and $\sigma \in W \operatorname{Traces}\left(t^{\prime}\right)$,
4. $\sigma \in W \operatorname{Traces}(t)$ when $t \xrightarrow{\tau} t^{\prime}$ and $\sigma \in W \operatorname{Traces}\left(t^{\prime}\right)$.
What are W Traces $\left(s_{0}\right)$ and W Traces $\left(t_{0}\right)$?

- WTraces $\left(t_{1}\right)=\{\epsilon$, coffee, tea, coffee $\sqrt{ }$, tea $\sqrt{ }\}$,
- WTraces $\left(t_{0}\right)=\{\epsilon$, coin, coin coffee, coin tea, coin coffee $\sqrt{ }$, coin tea $\sqrt{ }\}$.

Weak Trace Equivalence

Observation

$W \operatorname{Traces}\left(s_{0}\right)=W \operatorname{Traces}\left(t_{0}\right)=\{\epsilon$, coin, coin coffee, coin tea, coin coffee $\sqrt{ }$, coin tea $\sqrt{ }\}$
Moral of the Story: Weak Trace equivalence is too coarse

Weak Bisimulations

1. Mimic a-transition by same transition possibly with (stuttering) τ-transitions before and/or after
2. τ-transition can be mimicked by remaining in same state (making no transition)

Weak Bisimulation

Strong Bisimulation

$R \subseteq S \times S$ is strong bisimulation iff
for $s, t \in S$ s.t. $s R t$, and $a \in A c t$:

- if $s \xrightarrow{a} s^{\prime}$ then
- $\exists \quad t^{\prime} \in S$ s.t. $t \quad \xrightarrow{a} \quad t^{\prime}$ and $s^{\prime} R t^{\prime}$,
- if $s \in T$ then $t \in T$.
and vice versa.

Weak Bisimulation

Weak Bisimulation

$R \subseteq S \times S$ is weak bisimulation iff
for $s, t \in S$ s.t. $s R t$, and $a \in A c t$:

- if $s \xrightarrow{a} s^{\prime}$ then
- $a=\tau$ and $s^{\prime} R t$, or
- $\exists_{t_{1}^{\prime}, t_{2}^{\prime}, t^{\prime} \in S}$ s.t. $t \xrightarrow{\tau}{ }^{*} t_{1}^{\prime} \xrightarrow{a} t_{2}^{\prime} \xrightarrow{\tau}{ }^{*} t^{\prime}$ and $s^{\prime} R t^{\prime}$,
- if $s \in T$ then $\exists_{t^{\prime} \in S} t \xrightarrow{\tau}{ }^{*} t^{\prime}$ and $t^{\prime} \in T$.
and vice versa.

Branching Bisimulation

Strong Bisimulation

$R \subseteq S \times S$ is strong bisimulation iff
for $s, t \in S$ s.t. $s R t$, and $a \in A c t$:

- if $s \xrightarrow{a} s^{\prime}$ then

$$
\forall \quad t^{\prime} \in S \text { s.t. } t \quad \xrightarrow{a} t^{\prime} \quad \text { and } s^{\prime} R t^{\prime}
$$

- if $s \in T$ then $t \in T$.
and vice versa.

Branching Bisimulation

Branching Bisimulation

$R \subseteq S \times S$ is branching bisimulation iff for $s, t \in S$ s.t. $s R t$, and $a \in A c t$:

- if $s \xrightarrow{a} s^{\prime}$ then
- $a=\tau$ and $s^{\prime} R t$, or
- $\exists_{t_{1}^{\prime}, t^{\prime} \in S}$ s.t. $t \xrightarrow{\tau}{ }^{*} t_{1}^{\prime} \xrightarrow{a} t^{\prime}, s R t_{1}^{\prime}$ and $s^{\prime} R t^{\prime}$,
- if $s \in T$ then $\exists_{t^{\prime} \in S}{ }^{\tau}{ }^{*} t^{\prime}$ and $t^{\prime} \in T$.
and vice versa.

Weak vs. Branching Bisimulation

Weak vs. Branching Bisimulation

Weak Bisimulation

Branching Bisimulation

Weak Bisimulations and Choice

Weak Bisimulations and Choice

Weak Bisimulations and Choice

Weak Bisimulations and Choice

Weak Bisimulations and Choice

Observation

Weak- and branching bisimulation are not preserved under choice

Root Condition

Basic Idea

For a branching (or weak) bisimulation to be a congruence with respect to choice, the first τ-transition should be mimicked by a τ transition.

Rootedness

Two state s, t are rooted branching bisimilar if

- there exists a branching bisimulation relation R such that $s R t$ and
- if $s \xrightarrow{a} s^{\prime}$ then there is $t^{\prime} \in S$ s.t. $t \xrightarrow{a} t^{\prime}$ and $s^{\prime} \overleftrightarrow{\leftrightarrow}_{b} t^{\prime}$, and
- if $t \xrightarrow{a} t^{\prime}$ then there is $s^{\prime} \in S$ s.t. $s \xrightarrow{a} s^{\prime}$ and $s^{\prime} \overleftrightarrow{\leftrightarrow}_{b} t^{\prime}$, and

Weak Bisimulations and Choice

Weak Bisimulations and Choice

Van Glabbeek's Spectrum

The Treated Part

Van Glabbeek's Spectrum

General Overview

Thank you very much.

