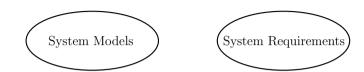
System Validation: Weak Behavioral Equivalences

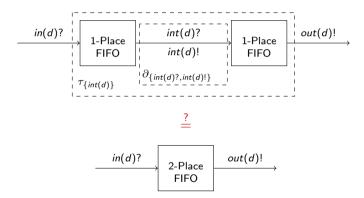
Mohammad Mousavi and Jeroen Keiren

General Overview



Motivation

Verifying two-place buffer



Weak Equivalences

▶ Internal actions should be invisible to the outside world

Weak Equivalences Idea

- ▶ Internal actions should be invisible to the outside world
- $\triangleright \tau$: The collective name for all invisible actions

Weak Equivalences

- ▶ Internal actions should be invisible to the outside world
- $\triangleright \tau$: The collective name for all invisible actions
- Adapt behavioral equivalence to neglect τ

Trace Equivalence

Traces of a State

For state $t \in S$, Traces(t) is the minimal set satisfying:

- 1. $\epsilon \in Traces(t)$
- 2. $\sqrt{\ } \in \mathit{Traces}(t)$ when $t \in T$
- 3. $a\sigma \in Traces(t)$ when $t \stackrel{a}{\rightarrow} t'$, and $\sigma \in Traces(t')$

Trace Equivalence

For states t, t', t is trace equivalent to t' iff Traces(t) = Traces(t').

Weak Trace Equivalence

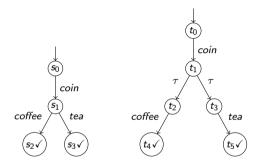
Weak Traces of a State

For state $t \in S$, WTraces(t) is the minimal set satisfying:

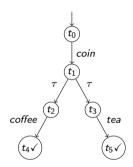
- 1. $\epsilon \in WTraces(t)$
- 2. $\sqrt{\in WTraces(t)}$ when $t \in T$
- 3. $a\sigma \in WTraces(t)$ when $t \stackrel{a}{\rightarrow} t'$, $(a \neq \tau)$ and $\sigma \in WTraces(t')$
- 4. $\sigma \in WTraces(t)$ when $t \xrightarrow{\tau} t'$ and $\sigma \in WTraces(t')$

Weak Trace Equivalence

```
For states t, t', t is trace equivalent to t' iff WTraces(t) = WTraces(t')Traces(t) = Traces(t').
```



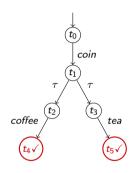
- 1. $\epsilon \in WTraces(t)$,
- 2. $\sqrt{\in WTraces(t)}$ when $t \in T$,
- 3. $a\sigma \in WTraces(t)$ when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in WTraces(t')$,
- 4. $\sigma \in WTraces(t)$ when $t \xrightarrow{\tau} t'$ and $\sigma \in WTraces(t')$.



- 1. $\epsilon \in WTraces(t)$,
- 2. $\sqrt{\in WTraces(t)}$ when $t \in T$,
- 3. $a\sigma \in WTraces(t)$ when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in WTraces(t')$,
- 4. $\sigma \in WTraces(t)$ when $t \xrightarrow{\tau} t'$ and $\sigma \in WTraces(t')$.

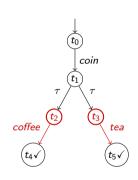
What are $WTraces(s_0)$ and $WTraces(t_0)$?

 \blacktriangleright WTraces(t_4) = WTraces(t_5) = { ϵ , $\sqrt{}$ },



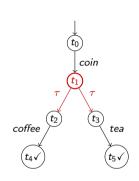
- 1. $\epsilon \in WTraces(t)$,
- 2. $\sqrt{\in WTraces(t)}$ when $t \in T$,
- 3. $a\sigma \in WTraces(t)$ when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in WTraces(t')$.
- 4. $\sigma \in WTraces(t)$ when $t \xrightarrow{\tau} t'$ and $\sigma \in WTraces(t')$.

- $WTraces(t_4) = WTraces(t_5) = \{\epsilon, \sqrt{\}},$
- ▶ $WTraces(t_2) = \{\epsilon, coffee, coffee_{1}\}, WTraces(t_3) = \{\epsilon, tea, tea_{1}\}, tea_{2}\}$



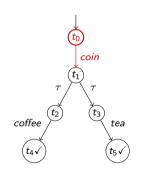
- 1. $\epsilon \in WTraces(t)$,
- 2. $\sqrt{\in WTraces(t)}$ when $t \in T$,
- 3. $a\sigma \in WTraces(t)$ when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in WTraces(t')$.
- 4. $\sigma \in WTraces(t)$ when $t \xrightarrow{\tau} t'$ and $\sigma \in WTraces(t')$.

- \blacktriangleright WTraces $(t_4) = WTraces(t_5) = \{\epsilon, \sqrt{\}},$
- ▶ $WTraces(t_2) = \{\epsilon, coffee, coffee_{1}\}, WTraces(t_3) = \{\epsilon, tea, tea_{1}\},$
- WTraces $(t_1) = \{\epsilon, coffee, tea, coffee \sqrt{, tea \sqrt{}}\}$



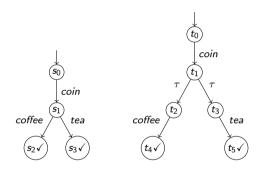
- 1. $\epsilon \in WTraces(t)$,
- 2. $\sqrt{\in WTraces(t)}$ when $t \in T$,
- 3. $\mathbf{a}\sigma \in WTraces(t)$ when $t \stackrel{\mathbf{a}}{\rightarrow} t'$ and $\sigma \in WTraces(t')$,
- 4. $\sigma \in WTraces(t)$ when $t \xrightarrow{\tau} t'$ and $\sigma \in WTraces(t')$.

- $WTraces(t_1) = \{\epsilon, coffee, tea, coffee \sqrt{, tea} \sqrt{\}},$
- ▶ $WTraces(t_0) = \{\epsilon, coin, coin coffee, coin tea, coin coffee \sqrt{, coin tea} \sqrt{\}}.$



Weak Trace Equivalence

Observation



Moral of the Story: Weak Trace equivalence is too coarse

Weak Bisimulations

- 1. Mimic a-transition by same transition possibly with (stuttering) τ -transitions before and/or after
- 2. τ -transition can be mimicked by remaining in same state (making no transition)

Weak Bisimulation

Strong Bisimulation

 $R \subseteq S \times S$ is strong bisimulation iff for $s, t \in S$ s.t. s R t, and $a \in Act$:

- ▶ if $s \stackrel{a}{\rightarrow} s'$ then
- ▶ if $s \in T$ then $t \in T$.

Weak Bisimulation

Weak Bisimulation

 $R \subseteq S \times S$ is weak bisimulation iff for $s, t \in S$ s.t. s R t, and $a \in Act$:

- ▶ if $s \stackrel{a}{\rightarrow} s'$ then
 - $ightharpoonup a = \tau$ and s' R t, or
- ▶ if $s \in T$ then $\exists_{t' \in S} t \xrightarrow{\tau} {}^*t'$ and $t' \in T$.

Branching Bisimulation

Strong Bisimulation

 $R \subseteq S \times S$ is strong bisimulation iff for $s, t \in S$ s.t. s R t, and $a \in Act$:

- ▶ if $s \stackrel{a}{\rightarrow} s'$ then
- ▶ if $s \in T$ then $t \in T$.

Branching Bisimulation

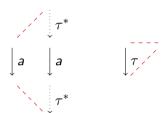
Branching Bisimulation

 $R \subseteq S \times S$ is branching bisimulation iff for $s, t \in S$ s.t. s R t, and $a \in Act$:

- ▶ if $s \stackrel{a}{\rightarrow} s'$ then
 - $ightharpoonup a = \tau$ and s' R t, or
- ▶ if $s \in T$ then $\exists_{t' \in S} t \xrightarrow{\tau} *t'$ and $t' \in T$.

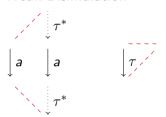
Weak vs. Branching Bisimulation

Weak Bisimulation



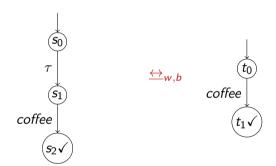
Weak vs. Branching Bisimulation

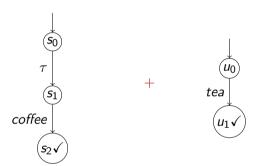
Weak Bisimulation

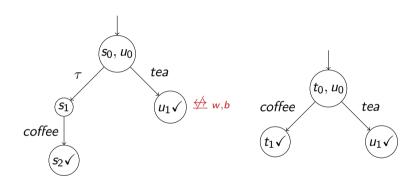


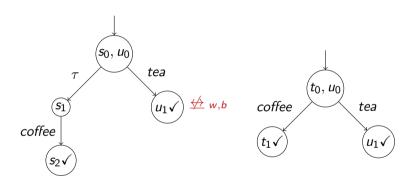
Branching Bisimulation











Observation

Weak- and branching bisimulation are not preserved under choice

Root Condition

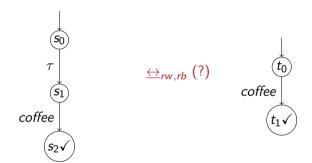
Basic Idea

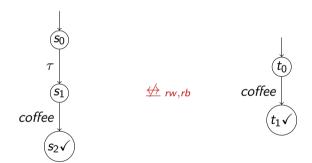
For a branching (or weak) bisimulation to be a congruence with respect to choice, the first τ -transition should be mimicked by a τ transition.

Rootedness

Two state s, t are rooted branching bisimilar if

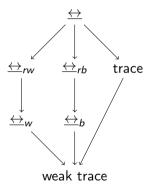
- ▶ there exists a branching bisimulation relation *R* such that *s R t* and
- if $s \stackrel{a}{\to} s'$ then there is $t' \in S$ s.t. $t \stackrel{a}{\to} t'$ and $s' \leftrightarrow_b t'$, and
- if $t \stackrel{a}{\to} t'$ then there is $s' \in S$ s.t. $s \stackrel{a}{\to} s'$ and $s' \leftrightarrow_b t'$, and



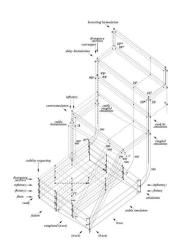


Van Glabbeek's Spectrum

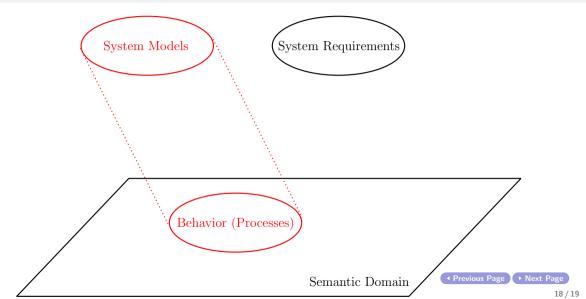
The Treated Part



Van Glabbeek's Spectrum



General Overview



Thank you very much.