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Abstract—To test a Software Product Line (SPL), the test arti-

facts and the techniques must be extended to support variability.

In general, when new SPL products are developed, more tests

are generated to cover new or modified features. A dominant

source of extra effort for such tests is the concretization of

newly generated tests. Thus, minimizing the amount of new non-

concretized tests required to perform conformance testing on

new products reduces the overall test effort. In this paper, we

propose a test reuse strategy for conformance testing of SPL

products that aims at reducing test effort. We use incremental

test generation methods based on finite state machines (FSMs) to

maximize test reuse. We combine these methods with a selection

algorithm used to identify non-redundant concretized tests. We

illustrate our strategy using examples and a case study with an

embedded mobile SPL. The results indicate that our strategy can

save up to 36% of test effort in comparison to current test reuse

strategies for the same fault detection capability.

I. INTRODUCTION

Software Product Lines (SPLs) address variability by cap-
turing various software features in an organized structure.
The delta-oriented approach [16] is a software product line
engineering approach, where the SPL is designed in terms of
a core module and a set of delta modules. The core module is
a set of features for a basic product and the delta modules
add, remove, or modify features from the core module to
design new products. Changing the specification of a product
or deploying a similar product may require substantial effort
for conformance testing. We study this problem in the context
of Model-Based Testing (MBT), where models are used to
steer the test process effort with the goal of making it more
structured and more efficient.

One important step in the MBT test process is concretiza-
tion of abstract test cases [24]. Generated abstract tests are
augmented with concrete implementation-specific data mak-
ing them executable in the system under test. Checking the
conformance of an SPL product requires extra effort for each
new test that needs to be concretized. According to case
studies [24], [11], the cost to manually concretize a test case is
several times (around 200) greater than the cost of executing
the same concretized test. To tackle this problem, adapters
can be developed to automate the concretization process.
However, the adapters often need to be modified for new
versions/products. For example, systems that constantly evolve
(e.g., graphical user interface systems) cannot afford to update

adapters of each new version of the system, which often takes
more time than manually testing the system [6].

In this paper, we propose a test reuse strategy named
Incremental Regression-based Testing for Software Product
Lines (IRT-SPL) that aims at reducing the test effort of newly
designed SPL products by reducing the number of new tests
that need to be concretized for conformance testing. To this
end, we maximize the reuse of tests by processing concretized
tests of all old products and incrementing some of them to
obtain a small set of tests to concretize. We use finite state
machines as test models, which are fundamental semantic
models for reactive systems [2].

The contributions of this paper are: (i) the test reuse strategy,
(ii) the test case selection algorithm, and (iii) their practical
evaluation against other common approaches using an SPL
case study. Figure 1 presents an overview of contributions. We
improve the reuse of tests by incrementing existing concretized
tests from all old products for the new behavior. In this figure,
Product 5 is the one that is recently developed and hence,
new test cases need to be generated and concretized for its
test suite. To this end, we defined a new test case selection
and reuse strategy that takes the set of all generated test cases
into account and using this information, steers the test case
generation algorithm to generate a minimal increment on the
readily concretized sequences. An experimental evaluation of
our proposed strategy was conducted using a case study for
the embedded Mobile Media SPL [10]. The obtained results
show that our strategy can save up to 36% of test effort for
24 products with typical concretization effort estimated from
the literature.

The remainder of this paper is organized as follows. Section
2 presents some preliminary notions and concepts regarding
SPLs and FSMs. Section 3 presents our test reuse strategy
and the selection algorithm. Section 4 provides the results
of our experimental study for the embedded Mobile Media
SPL. Section 5 discusses the related work, and finally, Section
6 concludes the paper and presents the directions for future
work.

II. BACKGROUND

In this section, we present basic definitions regarding SPLs,
FSMs and some of their test properties, and finally, the
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Fig. 2. AGM Feature Model (adapted from [21]).

concretization effort analysis.

A. Software Product Lines

A feature is an atomic unit used to differentiate the products
of an SPL. Let F be the set of features. The feature structure
can be represented by a feature diagram [20]. In a feature
diagram, some notational conventions are used to represent
commonalities and variabilities of an SPL (e.g., mandatory,
optional, and alternative features). A product configuration p
is defined by a set of features p ✓ F that the conjunction
of literals expressed as boolean variables satisfies all feature
constraints. To illustrate the concepts throughout the paper, we
use the following SPL.

Example 1. The Arcade Game Maker (AGM) [21] can
produce arcade games with different game rules. Figure 2
shows the feature diagram of AGM. There are three alternative
features for the game rule (Brickles, Pong, and Bowling) and
one optional feature (Save) to save the game.

B. Finite State Machines

FSMs, as defined below, have been traditionally used for
modeling and model-based testing different types of reactive
hardware [14] and software systems [13], [12], [26].

Definition 1. FSM Model. An FSM M is a 7-tuple
(S, s0, I, O,D, �,�), where S is a finite set of states with the
initial state s0, I is a finite set of inputs, O is a finite set of
outputs, D ✓ S ⇥ I is a specification domain, � : D ! S is
a transition function, and � : D ! O is an output function.

A tuple (s, x) 2 D determines uniquely a defined transition
of M . A sequence ↵ = x1, ..., xk,↵ 2 I⇤ is a defined input
sequence at state s 2 S, if there exist states s1, ..., sk+1 2 S,
where s = s1 such that (si, xi) 2 D and �(si, xi) = si+1,
for all 1  i  k. Notation ⌦(s) is used to denote all defined
input sequences for state s 2 S and ⌦M denotes ⌦(s0). We
extend the transition function from input symbols to defined
input sequences, including the empty sequence ", assuming
�(s, ") = s for s 2 S. Given a set C ✓ ⌦(s) \ ⌦(s0), states
s and s0 are C-equivalent if �(s, �) = �(s0, �) for all � 2
C. Otherwise, if there exists a sequence � 2 C such that
�(s, �) 6= �(s0, �), then s and s0 are C-distinguishable.

According to Definition 1, M is deterministic. If D = S⇥I ,
then M is a complete FSM; otherwise, it is a partial FSM.
An FSM M is said to be initially connected, if for each state
s 2 S, there exists an input sequence ↵ 2 ⌦M , such that
�(s0,↵) = s, ↵ is called a transfer sequence for state s.
Unreachable states need to be removed to make the FSM valid
for test case generation. An FSM M is minimal (or reduced),
if every pair of distinct states s, s0 2 S can be distinguished
by a set C ✓ ⌦(s) \ ⌦(s0).

Example 2. There are six possible product configurations that



can be derived from the AGM FM. The FSM M3 of the
third configuration is shown in Figure 3. This test model is
an abstracted version of the design model where observable
events are represented by inputs and the correspondent outputs.
The inputs are in-game commands, while the outputs 0 and
1 are abstract captured responses. We selected the Pong[N]
rule and discarded the Save[S] option. It is straightforward to
check that M3 is a deterministic, complete, initially connected
and minimal FSM.
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Fig. 3. FSM of the third product configuration of AGM.

C. Test Properties

In this paper, we adapt the P method, a test generation
method based on fault domain for FSMs [22]. We use the
notion of test suite completeness with respect to a given fault
domain and sufficiency conditions based on convergence and
divergence properties introduced in [22].

Given sequences ↵,�, � 2 I⇤, a sequence ↵ is prefix of a
sequence �, denoted by ↵  �, if � = ↵�, for some sequence
�, and � is a suffix of �. A sequence ↵ is proper prefix of
�,↵ < �, if � = ↵! for some ! 6= ". We denote by pref (�)
the set of prefixes of �, i.e. pref (�) = {↵|↵  �}. For a
set of sequences A, pref (A) is the union of pref (�) for all
� 2 A. If A =pref (A), then we say that A is prefix-closed.
Moreover, we say that a sequence ↵ 2 A is maximal in A if
there is no sequence � 2 A such that ↵ is a proper prefix of
�.

Definition 2. [22] Test case and test suite. A defined input
sequence of FSM M is called a test case of M . A test suite
of M is a finite prefix-closed set of test cases of M .

A set C ✓ ⌦M is a state cover for an FSM M if, for
each state s 2 S, there exist sequences ↵ 2 C such that
�(s0,↵) = s. The set C ✓ ⌦M covers a transition (s, x)
when there exist sequences ↵ 2 C such that �(s0,↵) = s and
↵x 2 C. The set C is a transition cover (for M ) if it covers
every defined transition of M . A set of sequences is initialized
if it contains the empty sequence.

Throughout this paper, we assume that M =
(S, s0, I, O,D, �,�) and N = (Q, q0, I, O

0, D0,�,⇤)
are a specification and an implementation, respectively.
Moreover, n is the number of states of M . We denote by =
the set of all deterministic FSMs (different from M ) with the
same input alphabet as M for which all sequences in ⌦M are
defined, i.e. for each N 2 = it holds that ⌦M ✓ ⌦N . The set
= is called a fault domain for M and =n is the set of FSMs
from = with n states.

The distinguishability of FSMs is defined as the correspond-
ing relation of their initial states. Thus, test cases are assumed
to be applied in the initial state. Given a test suite T , k
FSMs are T -equivalent if for every test case of T all k FSMs
return the same output sequence. Let N 2 = and =(T ) be
the subset from = such that N and M are T -equivalent, and
=n(T ) = =n\=(T ) be the set of FSMs from = in which are
T -equivalent to M and have at most n states.

The main results from [22] establish the full fault coverage
criterion based on convergence and divergence properties.
Convergent test cases reach the same state of M , while
divergent test cases reach different states in M . A test suite
T is n-complete for an FSM M with n states if T contains
a specific convergence-preserving transition cover set for M .
Two convergent test cases of T satisfy the convergence-
preserving property if they are convergent in all FSMs of
the set =n(T ). When a test suite T is n-complete for an
FSM M (satisfies the full fault coverage criterion), then, by
executing T we are capable of detecting all faults in any FSM
implementation N 2 =n(T ).

There exist several methods to generate n-complete test
suites [5], [17], [22]. For example, the P method [22] uses
two input parameters: a deterministic, initially connected, and
minimal FSM M ; and an initial test suite T . The initial set
T can be empty, and new test cases are added/incremented (if
necessary) until an n-complete test suite for M is produced.
Therefore, the P method checks if all implementations N 2
=n can be distinguished from M using T , and decides if more
sequences need to be added to T . Experimental evaluation
indicates that the P method often results in smaller n-complete
test suites compared with other methods [8].

The reuse of test cases is important to save test effort in
several domains that develop similar systems. In this paper,
we demonstrate how this can be exploited in the testing of
SPLs.

D. Concretization Effort

Given a new product configuration to test, first, we check
the changed behavior to ensure that they behave as intended
by concretizing and executing a set of new test cases. Then,
to ensure that the unchanged behavior was not affected by
modifications we execute a set of test cases to retest such
behavior.

Definition 3. Test case and test suite size. The size of a test
case ↵ 2 I⇤ denoted by |↵| is calculated by the number of
inputs that it contains, i.e., |↵| = k,↵ = x1, ..., xk. Similarly,
|T | is the size of a test suite T calculated by the sum of all
test cases plus the reset operation for each maximal test case,
i.e., |T | =

P
(|↵|+ 1),↵ 2 T, @�2T • � = ↵� ^ � 6= ".

Example 3. Given a test suite T = {a, b, c ; a, c} the size of
T is |T | = (|a, b, c|+ 1) + (|a, c|+ 1) = 7.

Definition 4. Test effort. The effort to test a new product
configuration is the sum of test cases that have to be executed
plus those that have to be concretized times a value x (manual



concretization value over execution), i.e., e↵ort= (concrete⇤
x) + execution.

Case studies [24], [11] show that the value x is around
200. Execution cost is calculated based on the number of test
cases that have to be executed for both changed and unchanged
behavior. Concretization cost is calculated from new test cases.

Definition 5. Execution and concretization costs. Given a
prefix-closed test suite T , a set of new test cases NT ✓ T and
a set of concretized test cases D = T\{NT}, the execution
cost is equivalent to the size of |T |, i.e., execution = |T |. The
concretization cost is calculated from new test cases ↵ 2 NT
that have to be concretized. If a proper prefix � of a new
test case ↵ = ��, � 6= " was already concretized before, i.e.,
� 2 D, then we reuse � and the concretization cost is the sum
of the size of all suffixes �, i.e., concrete =

P
|�|.

Example 4. Given a test suite T = pref {a, b, c ; a, c ; a, d}
and a subset of new test cases NT = {a, d}, the concretization
cost is concrete = |d| = 1.

III. TESTING PRODUCTS INCREMENTALLY

In this section, we present our test reuse strategy and the
selection algorithm.

A. Test Reuse Strategy
The Incremental Regression-based Testing for Software

Product Lines (IRT-SPL) strategy was inspired by earlier ap-
proaches in this domain [22], [25], [3], [15] and developed to
improve the reuse of tests cases to reduce concretization effort.
We use incremental test generation methods (to increment
concretized tests) for full fault coverage criterion explained in
Section II-C. Figure 4 (a) presents the main steps of IRT-SPL.

Given a new product configuration p 2 F that require
testing, to check its conformance we design the test model
as an FSM M , obtain all defined test cases D ✓ ⌦M that
were concretized in old products, and execute the following
sequence of steps and conditions:

Step 1: Process all defined test cases of D to find divergent,
convergent, and convergence-preserving test cases [22]. Also,
initialize the set of new test cases NT = ?.

Condition 1: Is set D n-complete for M? When the answer
is false, move to Step 2; otherwise, copy D to set T and move
to Step 3.

Step 2: Increment test cases using a test generation method.
Incremental test generation methods use a cost calculation that
decides which new test case gives a small increment based on
test cases of D. Thus, we used the P method [22] for this
step. New test cases are incremented from D and put in NT ,
resulting in an n-complete test suite T = D [NT .

Step 3: Obtain test cases using our selection algorithm.
Execute the selection algorithm using M and T as parameters,
obtain the n-complete test suite S ✓ T and return R = S�NT
as the set of selected concretized test cases and NT as the set
of non-concretized test cases.

In general, incremental test case generation algorithms
check available test cases that can be incremented. Sometimes

two equivalent test cases (with the same size for a given test
criteria) can be used to increment and generate a new test case.
Selecting one of such tests might result in a larger/smaller
test suite at the end of the process. Thus, we pick the first
test case (greedy) as generating a minimal test suite (even by
incrementing test cases) can lead to an exponential number of
situations.

B. Selection Algorithm

The selection algorithm proposed was developed on the last
step of our IRT-SPL strategy. Given an FSM M , an n-complete
test suite T for M , and an initialized convergence-preserving
transition cover set O ✓ T , we select non-redundant test cases
of O to obtain the n-complete test suite S ✓ T . Set O is
the one that controls model coverage regarding the full fault
coverage which might contain redundant tests. Each test in O
requires a set of tests cases in T to maintain the set property
considering M . Thus, we select a subset G ✓ O resulting set
S ✓ T .

The main steps are:
Step 1: Identify all redundant test cases. All test cases of

O that cover each transition of M are identified. Also, the
resulting test suite S and set G ✓ O are initialized.

Condition 1: Is set S n-complete for M? The set G ✓ O
must be a transition cover set with a convergence-preserving
property [22]. When the answer is true, return S; otherwise,
move to Step 2.

Step 2: Select one transition t of M . Only transitions not
covered by G are selected. Select a test case a 2 O\G that
covers t. Sometimes there are several redundant test cases
in O that cover t. Then, select the test case that gives the
smallest increment of test cases for S. For equivalent test cases
(which lead to the same size) we just select the first in the line
(greedy).

Step 3: Given a test case a from Step 2, identify the set
of related test cases E ✓ T required to cover t. Then, a is
included in G and E in S.

Theorem 1. Given an n-complete test suite T for an FSM
M , the selection algorithm terminates with an n-complete test
suite S ✓ T .

An extended version of this paper with the proof and
detailed analysis on the selection algorithm can be found
elsewhere.

Example 5. Assume that two products were already tested for
Brickles, with and without the Save option. Figure 5 shows
four test case sets generated by IRT-SPL for the third product
presented in Example 2: (a) defined test cases D for M3

that were already concretized before; (b) n-complete test suite
T for M3 generated by P method by incrementing D; (c)
a selected n-complete test suite S ✓ T for M3 generated
by our selection algorithm; and (d) test case set R for retest
unchanged behavior. Test cases were simplified for readability
and each input corresponds to: (i) SG - Start; (ii) PS - Pause;
(iii) EX - Exit; and (iv) SV - Save.
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1  PS,EX
2  PS,PS,EX
3  EX,PS,EX
4  SV,PS,EX
5  SG,PS,PS,EX
6  SG,EX,PS,EX
7  SG,SV,PS,EX
8  SG,SG,PS,EX
9  SG,PS,EX,PS,EX
10 SG,PS,SG,PS,EX
11 SG,PS,SV,EX,PS,EX,SG,PS,EX
12 SG,SV,SV,PS,EX,PS,EX,SV,PS,EX

1  PS,EX
2  PS,PS,EX
3  EX,PS,EX
4  SV,PS,EX
5  SG,PS,PS,EX
6  SG,EX,PS,EX
7  SG,SV,PS,EX
8  SG,SG,PS,EX
9  SG,PS,EX,PS,EX
10 SG,PS,SG,PS,EX
11 SG,PS,SV,EX,PS,EX,SG,PS,EX
12 SG,SV,SV,PS,EX,PS,EX,SV,PS,EX
13 SG,PS,PS,PS

(a) (b)

1 PS,EX
2 EX,PS,EX
3 SG,SG,PS
4 SG,PS,PS,EX
5 SG,EX,PS,EX
6 SG,PS,SG,PS
7 SG,PS,EX,PS,EX
8 SG,PS,PS,PS

1 PS,EX
2 EX,PS,EX
3 SG,SG,PS
4 SG,PS,PS,EX
5 SG,EX,PS,EX
6 SG,PS,SG,PS
7 SG,PS,EX,PS,EX

(d)(c)

Fig. 5. Test case sets: (a) defined test cases D for M3; (b) n-complete test
suite T for M3; (c) selected n-complete test suite S for M3; and (d) test
case set R for retest unchanged behavior.

Note that the difference between (a) and (b) is the addition
of Line 13 on (b) and only the last inputs are in bold. Since
all four test case sets are prefix-closed, every prefix is also a
test case to be counted. Notice that the prefix SG,PS, PS of
Line 13 (b) is already present on Line 5 as a prefix that can be
reused. On (c), the algorithm to select concretized test cases is
executed using as input M3 and (b), such that it keeps new test
cases and reduce the test cases set of (a) as some of them are

redundant to cover the unchanged behavior. Thus, the set of
new test cases is composed by Line 8 (c) (i.e., SG,PS,PS,PS)
and the test case set for the retest is (d).

The effort required to check the conformance of p3 using
M3 and IRT-SPL is calculated by e↵ort= (concrete ⇤ x) +
execution. Assuming that x = 10, we have the set of new test
cases NT = {SG,PS, PS, PS}, the reduced test suite S is
Figure 5 (c), execution = |S| = 37, concrete = |{PS}| = 1,
resulting in e↵ort= (1 ⇤ 10) + 37 = 47.

IV. EXPERIMENTAL STUDY

To evaluate the applicability of IRT-SPL and the reuse
efficiency of our selection algorithm, we conducted a study
to compare the effort required to test new products to other
test case reuse strategies. Our research question is: How much
test effort can be saved using IRT-SPL to test a set of new SPL
products compared to existing test case reuse strategies?

A. Experimental Setup

The setup of our experiment consists of designing several
SPL products in different orders and comparing the total effort
required to test all products. We compare the effort of IRT-
SPL to other reuse strategies found in the literature. A survey
on some approaches [7], [19], [4], [25], [3], [15] showed two
generic reuse strategies, which are described as follows:

1) The first reuse strategy TSPL was named after the FSM-
TSPL approach from Capellari et al. [3]. They only reuse
test cases of the last product for conformance testing of
a new product where they increment test cases.

2) The second reuse strategy DIATP was named after the
Delta-oriented Incremental Architecture-based Testing
Process found in the approach of Lochau et al. [15].
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They reuse test cases of all previous products selecting
test cases to verify the unchanged behavior of the new
product, but they generate new test cases for the changed
behavior without the increment of test cases.

To obtain a fair comparison on the effort of our strategy, TSPL,
and DIATP we setup similar environments also using the P
method for TSPL and DIATP.

The embedded camera Mobile Media SPL [10] was used
to compare all three reuse strategies. The Mobile Media
SPL contains several features, such as photo manipulation,
music, and videos on mobile devices which results in total 56
product configurations where we selected 24 relevant product
configurations. Figure 6 (a) presents the feature diagram with
three Or features (Photo(MP), Music(MM), and Video(MV))
and three optional (Favourites(F), Copy Media(CM), and SMS
Transfer(SMS)) used to characterize all possible configurations
of the SPL. Figure 6 (b) presents 24 configurations of Mobile
Media used to design corresponding products. Note that each
product of the order 1 to 24 increases the number of features
compared to the previous products.

For each product, an FSM was modeled with varying
number of states from three to six, and with fixed eight inputs
and two outputs. All FSMs share some properties: complete,
deterministic, reduced, and initially connected.

B. Analysis of Results and Discussion
The collected data from the experiments is shown in Fig-

ure 7. The variable x is the manual concretization value
(from literature x = 200) from the effort formula e↵ort=
(concrete ⇤ x) + execution presented in Section II-D. On (a)
and (b) we have the derivation of products with an increasing
number of features when x = 10 and x = 100, respectively.
We pick values 10 and 100 to check how it scales for low

and high values of x. On (c) and (d) we have the derivation
of products with decreasing number of features when x = 10
and x = 100, respectively. Finally, on (e) and (f) we have the
derivation of products with a random number of features when
x = 10 and x = 100, respectively.

We noticed that the total effort required to test the Mobile
Media SPL vary according to the value x. First, noticed that
for our case study the effort saving percentage when x = 100
and x = 200 is approximately the same and when x is below
10 our approach does not provide significant saving. Also, the
number of newly designed products should be considered as
for few products there is no significant difference of effort
bellow 4 product configurations. Moreover, only a few design
product random orders were considered and relatively small
feature models. These are threats to validity of this study.

Our approach assumes new products to be similar to old
ones. In the worst case scenario, the new product to be
tested is completely different from any product developed
before. However, in the SPL approach, this is unlikely as
commonalities are propagated throughout the entire family.

In summary, we conclude that our approach provides effort
savings starting from 5% when we have more than 4 product
configurations and the x value is over 10 and goes up to 36%
when we have 24 product configurations and the x value is
over 100 compared to other test reuse strategies.

The random order the time to execute every strategy de-
pends on the complexity of the P method. Traditional test case
generation methods for the full fault coverage that use FSMs
as test models (e.g. W [5], HSI [17]) are not incremental.
Thus, they cannot increment test cases for new specifications
based on old test cases to improve reuse. However, generated
new test cases can be compared to old test cases for reuse
resulting in a weaker reuse strategy as some of these new test
cases may be equivalent to existing old test cases.

Our experiment has been limited mostly to flat FSMs with
few states and few new products. One of the issues regarding
the P method is the increasing time required to generate test
cases based on the number of states times inputs plus the size
of the test input set to start with. Both of these issues (few
subjects and time) are threats to the validity of our results for
real-world cases. We plan to mitigate these threats by analyz-
ing some realistic case studies as a benchmark for our future
research. Realistic FSMs use hierarchy to sustain scalability.
Thus, an extension of FSM-based test generation methods for
full fault coverage is required. We plan to investigate this
further in the near future.

V. RELATED WORK

Much recent research has been devoted to developing ef-
ficient testing techniques for SPLs by exploiting variability
in a systematic manner; we refer to [9], [18], [23] for recent
surveys of the field.

There are several incremental test approaches [7], [19], [25],
[3], [1], [28], [27] devoted to generating, reusing, and optimiz-
ing test suites for SPLs. El-Fakih et al. [7] adapted FSM-based
test generation methods for conformance testing that allow
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the generation of test cases only for the modified parts of
an evolving specification. Pap et al. [19] extended their work
and designed a bounded incremental algorithm that maintains
two sets based on the HSI method [17]. They utilize existing
test cases of the previous version of the system to generate
test cases for the modified version. Similarly, Capellari et al.
[3] explored the FSM-based Testing of SPLs (FSM-TSPL)
testing strategy where the P method is used to design new
test cases based on the last product derived. Uzuncaova et al.

[25] also developed an incremental test generation approach
that uses SAT-based analysis to develop tests suites for every
product of an SPL, while Baller and Lochau [1] focused on test
suite optimization. Moreover, recent delta-oriented approaches
[16], [15], [26] developed regression-based SPL approaches to
design and reuse test artifacts.

In contrast to current approaches, our work introduces a
test reuse strategy focused on reducing test effort of a set
of new SPL products. We analyze concretized test cases of



derived products to generate a small set of new test cases to
concretize for conformance testing. To our knowledge, there
is no proposal that reuse test cases from all previous products
to reduce concretization effort for new SPL products using
incremental test case generation methods.

VI. CONCLUSION

This paper proposed a test reuse strategy named Incremental
Regression-based Testing for Software Product Lines (IRT-
SPL) that aims at reducing test effort on checking conformance
of several SPL products. Test cases of previously designed
products can be efficiently reused for a newly designed product
using incremental test case generation methods to reduce
the number of required test cases for concretization. We
assume that manual concretization of test cases (as seen in
some case studies [24], [11]) is several times (around 200)
more expensive than executing the same test case. Thus, the
effort required to test a new product is directly related to
concretization costs.

Finite State Machines were used to represent the abstract
behavior of the products as test models. To maximize reuse
of test cases, all test cases that were concretized before are
analyzed and some of them are selected to retest the unchanged
behavior of the new product under test. Thus, our strategy also
contains a selection algorithm to perform the selection of non-
redundant concretized test cases.

To illustrate our strategy, we used examples and a case
study of an embedded Mobile Media SPL [10]. The results
indicate that our approach can save 5% up to 36% test effort
for 24 selected products when the manual concretization cost
is 10 up to 100 times, respectively, more expensive than
execution compared to current test reuse strategies for the same
fault detection capability. We found out that the effort saving
percentage stabilizes after 100 times for small specifications
due to the small number of tests cases for retest.

The problem and the approach described above are inspired
by a similar problem and approach in regression testing.
Regression testing concerns testing software evolution in time
(in versions) while SPL testing is about testing software
evolution in space (in features) [9]. Hence, we believe our
approach will also be applicable to regression testing. As
future work, we plan to investigate test models with hierarchy
and adapt test generation methods for such models to handle
scalability problems. Also, we intend to investigate more
studies regarding formal representations of SPLs to perform
incremental reuse of test artifacts.
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