
Complete IOCO Test Cases:
A Case Study

Sofia Costa Paiva
Instituto de Ciências Matemáticas e de

Computação
Universidade de São Paulo

São Carlos, Brazil

Adenilso Simao
Instituto de Ciências Matemáticas e de

Computação
Universidade de São Paulo

São Carlos, Brazil

Mahsa Varshosaz
Centre for Research on Embedded Systems

School of Information Technology
Halmstad University, Sweden

Mohammad Reza Mousavi
Centre for Research on Embedded Systems

School of Information Technology
Halmstad University, Sweden

ABSTRACT
Input/Output Transition Systems (IOTSs) have been widely
used as test models in model-based testing. Traditionally,
input output conformance testing (IOCO) has been used to
generate random test cases from IOTSs. A recent test case
generation method for IOTSs, called Complete IOCO, ap-
plies fault models to obtain complete test suites with guar-
anteed fault coverage for IOTSs. This paper measures the
efficiency of Complete IOCO in comparison with the tradi-
tional IOCO test case generation implemented in the JTorX
tool. To this end, we use a case study involving five spec-
ification models from the automotive and the railway do-
mains. Faulty mutations of the specifications were produced
in order to compare the efficiency of both test generation
methods in killing them. The results indicate that Com-
plete IOCO is more efficient in detecting deep faults in large
state spaces while IOCO is more efficient in detecting shal-
low faults in small state spaces.

CCS Concepts
•Software and its engineering → Software testing
and debugging; Software verification and validation;
Empirical software validation;

Keywords
Conformance testing, Input output conformance (IOCO),
Complete input output conformance, Mealy input output
transition systems, fault models

1. INTRODUCTION
Model-Based Testing (MBT) overcomes some of the chal-

lenges in software testing by automatically generating test

A-TEST ’2016 Seattle, USA

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

cases from behavioral models such as Finite State Machine
(FSM) and Input/Output Transition System (IOTS) [4, 8].
IOTSs have been widely used both in the research commu-
nity and in industry as test models. IOTSs are more expres-
sive than FSMs, especially when dealing with nondetermin-
ism. They also provide a richer notion of conformance [8].
Contrary to FSMs, IOTSs impose no restriction on the se-
quence of inputs and outputs and can reach a state in which
no output action is produced [17].

MBT for IOTSs was proposed by Tretmans [17], who es-
tablished the Input/Output Conformance (IOCO) testing
theory. This theory checks if an implementation conforms to
a given specification by checking the inclusion of the imple-
mentation outputs in those of the specification. This check
is only performed after executing the specification traces,
allowing for the possibility of specifying partial test models.
Tretmans also proposed a widely used algorithm for test case
generation from IOTSs. This algorithm produces a test suite
in a nondeterministic way, meaning that the proven com-
pleteness result is more of theoretical importance than of
practical value. In IOCO, the interaction between the tester
and system under test is synchronous. However, in practice,
many interactions are based on asynchronous communica-
tion or exchange of messages through buffers and can be
modeled as queues.

In [13], the W-method from FSMs [5] has been adapted
for a class of IOTSs, named Mealy IOTSs [13]. This class
requires quiescence (i.e., absence of outputs) to be reached
before the inputs are provided; therefore, problems related
to the communication between testers and implementations
can be eliminated. This method, called Complete IOCO,
generates complete test suites for a specification IOTS with
respect to a fault domain that contains all implementation
IOTSs with at most as many states as the specification. The
notion of test completeness, called n-completeness, has been
reformulated from the corresponding FSM methods [15] to
the IOTS model.

The aim of this paper is to measure the efficiency of Com-
plete IOCO [13], an offline and deterministic test generation
method, in comparison with the nondeterministic and on-
line method of IOCO [17] as implemented in the JTorX tool
[1]. To this end, we use the well-known ETCS Ceiling Speed
Monitor benchmark from the railway domain [3, 2], as well

as the Body Comfort System [11] and the Turn Indicator
Lights [14] from the automotive domain. For these case
studies, we produce a set of mutants, within a fault domain,
as their incorrect implementations. We then apply the two
techniques by applying the respective test case generation
algorithms, gathering execution time and fault classification
data, and analyzing them. The results point out that both
methods reveal all faults seeded in the mutants. The results
also indicate that Complete IOCO is more efficient in detect-
ing deeper faults in larger state spaces, since these faults are
difficult to reach with the random exploration of JTorX.

This paper is structured as follows. Section 2 presents an
overview of (Complete) IOCO test case generation. Section
3 presents the specifications used in the case study. Section
4 reports the methodology used for the case study and Sec-
tion 5 presents and analyzes the results. Finally, Section 6
concludes and points out future directions.

2. FROM MEALY IOTSS TO TEST CASES
In our context, systems are modelled by Input/Output

Transition Systems (IOTS), defined in terms of states and
transitions labelled by input and output actions. In this
section, we give a brief overview of the relevant concepts
for IOTS-based testing. This includes a brief overview of
IOTSs, as well as IOCO and Complete IOCO test case gen-
eration algorithms.

2.1 IOTSs and Mealy IOTSs
An IOTS M is a quintuple 〈S, I,O, h, s0〉, where S is a set

of states, I and O are disjoint sets of input and output ac-
tions, respectively, h ⊆ S×(I∪O∪{δ})×S is the transition
relation, with the symbol δ /∈ (I ∪ O) denoting quiescence
(lack of output), and s0 ∈ S is the initial state. Figure 1a
presents an example of IOTS, where I={?button}, O= {!cof-
fee, !tea} and 1 is the initial state. The symbol ? precedes
inputs and the ! precedes outputs. The set of inputs and
outputs enabled at an state s are, respectively, denoted by
inp(s) and out(s). A quiescent state s, a state without out-
put actions, is denoted as δ(s). In Figure 1, quiescent states
are designated by adding the δ-transitions.

A sequence of actions u ∈ (I ∪ O ∪ {δ})∗ of IOTS M
from state s1 ∈ S is a defined trace, if there exists a path
(s1, a1, s2)(s2, a2, s3)... (sn, an, sn+1) such that u = (a1, ...,
an). The set of all traces defined for state s is denoted by
tr(s). We use tr(T) to denote the set of traces from states in
T ⊆ S. We denote the empty trace by ε. T -after-U denotes
the set of states reached from states in T ⊆ S when traces
in U are executed. State s ∈ S is quiescent if no output (or
internal action) is enabled in s. We use Squiescent to denote
the set of all quiescent states in IOTS M. In Figure 1b, states
s0 and s1 are quiescent. An IOTS is input-complete if all
inputs are enabled in quiescent states; an IOTS is input-
enabled if in each and every state all inputs are enabled,
possibly after some internal transitions.

Mealy IOTSs [16, 13] behave similarly to deterministic
Mealy machines in that they only receive inputs in quiescent
states. This is an important class of IOTSs because several
results from IOTS- and FSM-based testing theories, such as
the use of fault domains, converge on this class of IOTSs.
An IOTS is Mealy if inp(s) 6= ∅⇔ out(s) = ∅, i.e., an input
is enabled only in quiescent states [16]. Figure 1b presents
an example of Mealy IOTS, that shows input-completeness
in quiescent states s0 and s1. An important concept in

Figure 1: Different classes of IOTS [13]

(a) IOTS (b) Mealy IOTS

Mealy IOTSs is bridge trace: given an input, a bridge trace
is the sequence of outputs until reaching a quiescent state.
A bridge trace for the IOTS in Figure 1b is θ(s0, ?a) =!1.

2.2 Test Case Generation in IOCO
Input/Output Conformance (ioco) testing theory [17] for-

mally checks if an implementation conforms to a given spec-
ification. The test hypothesis assumes that implementa-
tions can be modeled by an input-complete IOTS, allowing
the formalization of conformance notion. Given two IOTSs
S and I, representing respectively the specification and a
given implementation, we write I ioco S if, for each trace
α ∈ tr(I), we have out(I-after-α) ⊆ out(S-after-α).

Tretmans [17] proposed one of the most widely used al-
gorithms for test case generation from IOTSs [8, 17, 20, 19,
12]. It is a recursive and non-deterministic algorithm [9,
1]. For each recursive step, it chooses among three possi-
bilities: (i) ending the test case with the verdict pass; (ii)
applying any input allowed by the specification which can
be interrupted by an output arrival; or (iii) waiting for an
output and checking it, or concluding the implementation
is in quiescence. It is proven in [17, 18] that this process is
exhaustive, i.e., it is guaranteed to fail all non-conforming
implementations; however, this exhaustiveness result does
not define any upper bound on the recursive application of
the process: exhaustiveness in IOCO is hence, a theoretical
rather than a practical issue, since it does not come up with
a finite test suite.

2.3 Test Case Generation in Complete IOCO
Fault domain is a concept used in FSM-based testing to

guarantee the fault coverage of test suites [4, 10]. FSM-
based methods address the problem of generating complete
test suites, which build upon certain assumptions about test
models and possible implementation faults [5, 6]. IOCO
does not apply this concept, because there are no standard
fault models for IOTSs as in FSM-based testing [8]. Hi-
erons [7] demonstrated that implementation relations for
asynchronous communications are undecidable, leading to
several consequences such as the impossibility of applying
fault domains. However, Hierons showed that implementa-
tion relations are decidable for some classes of IOTSs, such
as Alternating IOTSs. Simao [16] proposes a generalization
of Alternating IOTSs, called Mealy IOTSs, which pave the
way for defining a general fault model for IOTSs.

Paiva and Simao [13] proposed a reformulation of the W-
method for FSMs [5] to IOTSs; their method aims at gener-

ating complete test suites with complete fault coverage for
a given fault domain and is targeted at the class of Mealy
IOTS. Adopting this class of IOTSs as test models implies
that one can avoid the distortion caused by asynchronous
channels in testing, since in Mealy IOTSs an input is pro-
vided only if all outputs have been observed and quiescence
is reached (i.e., all communication channels are known to
be empty). The fault domain defined for this method con-
tains all implementation IOTSs with at most as many quies-
cent states as the specification, covering output and transfer
faults.

In order to define Complete IOCO for Mealy IOTSs, Mealy
IOTS specifications should satisfy the following properties:

• non-oscillating: the Mealy IOTS contains no cycle la-
beled only with outputs;

• observable: its transition relation must be a function;

• output-deterministic: for each non-quiescent state, at
most one transition must be labeled with an output;

• minimal: any two distinct states must be distinguish-
able;

• initially-connected: each state must be reachable from
the initial state.

Complete IOCO generates test cases for every possible
transition fault in the specification. To this end, it uses
the transition cover set and the characterization set, briefly
introduced below. The sequences comprising these sets then
generate complete test suites in a bounded number of steps.
Complete IOCO consists of three major steps:

1. Generation of transition cover set (also called test tree
[5]) using breadth first search: this set comprises se-
quences that visit each and every quiescent state.

2. Generation of characterization set: This set contains
input sequences that produce different outputs for each
pair of quiescent states.

3. Concatenation of reset operation, with sequences from
the transition cover and the characterization sets: The
reliable reset operation, that moves the execution to
its initial state, is concatenated along with sequences
from the transition cover and the characterization sets;
the resulting outputs produced by the specification is
recorded, which is to be compared with that of the
implementation during test execution.

Complete IOCO for Mealy IOTSs is deterministic and the
process is repeatable, in contrast to IOCO. The test suite
generated by the algorithm detects all faults in the fault
domain. A case study, presented in [13] illustrated the feasi-
bility of the method. However, more empirical studies with
real specifications are needed to evaluate and measure the
efficiency of this testing method.

3. SPECIFICATIONS
We have used the specifications of the following Cyber-

Physical Systems for our study:

• Ceiling Speed Monitoring with Service Brake Interven-
tion (SBI) and Emergency Brake Intervention (EBI)
[3, 2],

Figure 2: SBI model

• Turn Indicator Lights (TIL) [14], and

• Standard Exterior Mirror Component (EM) and Stan-
dard Alarm System Component (AS) of The Body
Comfort System [11].

The remainder of this section briefly describes each specifi-
cation model.

3.1 Ceiling Speed Monitor
The ETCS Ceiling Speed Monitor (CSM) [3, 2] is part of

the European standard specification for train control sys-
tems. In this specification, two configurations of a train are
possible: a train must have an Emergency Brake (EB) fea-
ture and additionally, it may also have a Service Brake (SB)
feature. The idea is that a train without the service brake
feature must use the emergency brake feature to decrease the
speed regardless of the situation, whereas the train with the
service brake feature must use the emergency brake feature
only in an emergency situation [3].

If the CSM detects an over-speeding threshold, then the
Service Brake is triggered, if a Service Brake is available.
Otherwise, the Emergency Brake is triggered. From SB, it
is possible to return to Normal if the speed decreases after
the intervention. When the train continues its acceleration,
the Emergency Brake is triggered.

We have separated these two possible configurations in
two different IOTSs - SBI (with Service Brake Intervention)
and EBI (with Emergency Brake Intervention). The dis-
crete inputs represent the conditions that trigger the action,
defined in [2]. The outputs are the results provided by the
specification. If a train is in a normal status and detects an
overspeeding threshold, then the status changes to Warn-
ing, and if the speed continues increasing, then the emer-
gency/service brake is fired. The conditions that trigger
actions according to [2] are presented in Table 1.

Figures 2 and 3 show the IOTS specifications of SBI and
EBI, respectively.

3.2 Turn Indicator Lights
A model of turn indicator lights in Mercedes vehicles was

presented in [14], which covers the functionality of left/right
turn indication, emergency flashing, crash flashing, theft
flashing and open/close flashing. The behavior model that
comprises these functionalities is shown in Figure 4. The in-
puts in this model denote both discrete inputs (by pushing
the turn indicator levers) as well as timing triggers.

Table 1: Guard conditions of CSM specification model

Conditions for SBI Conditions for EBI

c0 Vest ≤ VMRSP Vest ≤ VMRSP

c1 Vest > VMRSP Vest > VMRSP

c2 Vest ≤ VMRSP Vest ≤ VMRSP

c3 Vest > VMRSP + dVWarning(VMRSP) Vest > VMRSP + dVWarning(VMRSP)
c4 Vest < VMRSP + dVWarning(VMRSP) ∧

Vest < VMRSP + dVEBI(VMRSP)
Vest < VMRSP + dVWarning(VMRSP) ∧
Vest < VMRSP + dVSBI(VMRSP)

c5 Vest > VMRSP + dVEBI(VMRSP) Vest > VMRSP + dVSBI(VMRSP)
c6 (Vest ≤ VMRSP ∧ a) ∨ Vest = 0 Vest > VMRSP + dVEBI(VMRSP)
c7 - (Vest ≤ VMRSP ∧ a) ∨ Vest = 0

Figure 3: EBI model

Figure 4: Turn Indicator Lights model

The system specifies the following behavior: upon recep-
tion of a turn indication message (?c1) with positive on-
duration, for the indicator lamp, the output power is set
to 100%. The lamp should be automatically switched off
when the on-duration elapses and a timer is set for that. If
the lamp is switched on and a new command arrives, the
on-duration timer is set again and the lamp remains in its
active state. A new turn indication message (?c2) can switch
off the lamp interrupting the on-status.

3.3 Body Comfort Systems
The Body Comfort System [11] is a case study from the

automotive domain, describing the internal locks and sig-
nals of a vehicle model. The different software components
of this system implement reactive control tasks interacting

with each other and with the environment via input signals
provided by sensors and output signals emitted to actuators.
We have used the specification of two components of this sys-
tem: Standard Exterior Mirror Component (EM) and Stan-
dard Alarm System Component (AS). The AS Component
controls the activation/deactivation of the alarm system as
well as the triggering of the alarm and the EM Component
controls the mirror movement [11]. The behavior of these
components are represented in the IOTSs in Figure 5 and 6,
respectively.

The initial state of AS model (AS activated off) activates
the alarm system and disables the monitoring. The alarm
system can be deactivated (as deactivated) and reactivated
again (as deactivated). The alarm monitoring of the alarm
system is enabled (as active on) if the car is locked by using
the car key (key pos lock). If the car is unlocked (key pos-
unlock) then the active system is disabled (as active off).

If an alarm is detected (as alarm detected) and the alarm
monitoring is enabled (AS on), then the alarm is triggered
(as alarm on). The triggered alarm is stopped (as alarm off
), if either the car is unlocked (key pos unlock), or the alarm
time elapses (time alarm elapsed) sending a silent alarm
(alarm was detected) [11].

The EM model specifies the behavior of the exterior mir-
ror position adjustment. The upper, upper left, upper right,
lower, lower left, lower right, left, right, and pending posi-
tion of the mirror is represented by the corresponding states
EM top, EM top left, EM top right, EM bottom, EM bot-
tom left, EM bottom right, EM hor left, EM hor right, and
EM hor pending. The pending position (EM hor pending)
is the initial window position. From the initial state, the ex-
terior mirror moves down (em mv down), up (em mv up),
right (em mv right), or left (em mv left), based on the cor-
responding movement command (em but down, em but up,
em but right and em but left, respectively). The mirror
stops moving in the corresponding direction if the mirror
reaches (em pos top, em pos bottom, em pos left, em pos-
right) one of its end positions. Based on its current position,

the mirror is able to move towards the prior directions until
a new end position is reached [11].

4. CASE STUDY
In order to evaluate the effectivenss and the efficiency of

Complete IOCO, we conducted a case study with specifi-
cation models specified in the previous section. We use
the JTorx implementation [1] of IOCO as a reference for
our comparison with Complete IOCO. We note that Mealy
IOTSs were expressive enough to capture all specification

Figure 5: Exterior Mirror Component model

Figure 6: Alarm System Component model

models of the previous section and hence, both methods are
applicable to them.

The following steps summarize the methodology used in
this study:

• Preparation of faulty versions of specifications: A set
of 20 faulty mutants for each specification model was
produced. We seeded one fault in each mutant, which
could either be a transfer fault or an output fault.

To obtain the faulty versions of specifications, the fol-
lowing methodology was adopted: from the initial state
of the unfolded specification tree, for each level of the
tree, a random transition was selected to be seeded
with a transfer fault (change the target state). In
the same way, a random transition was selected to be
seeded with an output fault (change the input/output
label). Then, the output and transfer faults are equally
distributed.

• Test suite generation with IOCO (JTorX): Each mu-
tant and IOTS specification were represented in the
GRAPHML format. We ran 50 times the specifica-
tion against each mutant in JTorX until the mutant

is killed. We have limited the upper-bound of each
execution in 60 seconds. We registered the total num-
ber of steps until killed the mutant, i.e., the number
of (input or output) actions executed until detect the
fault.

• Test suite generation with Complete IOCO: We have
produced a test suite for each specification model us-
ing our prototype tool for Complete IOCO for Mealy
IOTSs based on the algorithm presented in [13]. For
each specification, we executed 50 times the test suite
against each mutant version and observed if the mu-
tant is killed in the end. It turned out that all mutants
could be killed (due to the completeness of the method)
within the time limit of 60 seconds. In each execution,
the sequence of test cases execution was randomly se-
lected.

• Analysis of results: All mutants were killed by both
methods; hence, we focused on their comparative ef-
ficiency. We measured 2 data points to compare the
efficiency of the methods in finding faults: the depth

Figure 7: Results for SBI specification

Figure 8: Results for EBI specification

level of the fault in each mutant and the average num-
ber of steps until the mutant is killed.

5. ANALYSIS OF THE RESULTS

5.1 Results
Figures 7, 8, 9, 10 and 11 show the obtained results for

each specification model. The horizontal (x) axis indicates
each mutant in an increasing order of fault depth (regard-
ing the unfolded specification tree level) and the vertical (y)
axis indicates the average number of steps taken to kill the
mutant. All mutants were killed by both JTorX and Com-
plete IOCO and the upper-bound limit was not reached,
thus, it was not possible to compare the relative effective-
ness. Hence, we focused on efficiency in the remainder of
this section.

The results indicate that the mutants with faults in larger
state spaces and in a deeper level of the state space can be
detected by Complete IOCO more efficiently. Otherwise, for
smaller specifications, i.e., specifications with a shallow state
space and short traces, IOCO (JTorx) outperforms Com-
plete IOCO. SBI and EBI models have a large state space
and hence, Complete IOCO is more efficient than JTorX in

Figure 9: Results for TIL specification

Figure 10: Results for EM specification

Figure 11: Results for AS specification

their cases, as seen in Figures 7 and 8. TIL model may
be seeded with deep faults, but its state space is relatively
small. Thus, it is more efficient for JTorX to detect the
faults in this model, as seen in Figure 9. Likewise, in the EM
model, although the state space is large, the faults are al-
ways at the shallower depth, i.e., the traces are short. Hence,
IOCO (JTorX) was more efficient to detect the faults in this
model, as seen in Figure 10. AS model is deeper than EM
model, but it has a few number of traces and the results
indicate that JTorX is more efficient to detect faults in this
model. Furthermore, the order of test cases execution is a
bias in detect faults.

This results point out W-method more efficient in detect
faults in more deeper levels and in models that has a num-
ber of traces. Therefore, for larger and deeper specifications
(large traces) W-method can obtain good results and guar-
anteed fault coverage. At the same way, JTorX can be more
efficient to detect faults in plain levels and in models that
has a few number of traces, because it is easier to traverse all
traces. Thus, Complete IOCO, a deterministic and offline
method, can be more efficient than the traditional IOCO
method (online and nondeterministic) in some situations.

5.2 Threats to validity
Our results are naturally dependent on the choice of our

case study. By varying among different sorts of examples,
we tried to mitigate this threat. We intend to study a larger
set of examples in the future to further address this issue.

We only considered the depth of faults and the size (the
branching degree) of the specification as the relevant pa-
rameters in our research thesis. We can consider alternative
ways of characterizing faults and compare the two methods
based on these alternative classifications.

IOCO uses a random seed to steer the test-case genera-
tion, while the sequence of test cases in complete IOCO is
typically fixed in the algorithm. Our results, hence, may be
sensitive to the fixed order implemented in our prototype for
Complete IOCO. Randomizing this order can mitigate this

threat to the validity of our results.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we compared the efficiency of the Complete

IOCO and the IOCO test case generation methods in detect-
ing faults. We considered specification models inspired by
industrial cases to obtain realistic results. Faulty mutants of
the specifications were produced in order to compare the effi-
ciency of the two test generation methods. Complete IOCO
is a deterministic and repeatable test generation method, in
contrast to JTorX that implements the ioco theory, which is
non-deterministic.

The results point out that both methods revealed all faults
seeded in our mutants. The results indicate that Complete
IOCO is more efficient in detecting deeper faults in large
state spaces, since this kind of fault is difficult to reach with
the nondeterministic algorithm of JTorX.

As future work, we plan to apply this study with different
kind of specifications, i.e., specifications with different char-
acteritics regarding to traces number and size. Moreover,
we intend to investigate the priorization of test cases in the
execution of test suites in order to gain more insight about
the performance of Complete IOCO.

Acknowledgments
The research of S. C. Paiva and A. Simao have been sup-
ported by Sao Paulo Research Foundation (Grants 2012/
09650-5 and 2012/02232-3), Coordination for the Improve-
ment of Higher Education Personnel and National Counsel
of Technological and Scientific Development. The work of
Mohammad Reza Mousavi has been partially supported by
the Swedish Research Council award number: 621-2014-5057
(Effective Model-Based Testing of Concurrent Systems) and
the Swedish Knowledge Foundation (Stiftelsen for Kunskaps-
och Kompetensutveckling) in the context of the AUTO-
CAAS HöG project (number: 20140312).

7. REFERENCES
[1] A. Belinfante. JTorX: A Tool for On-Line

Model-Driven Test Derivation and Execution. In Proc.
of TACAS’10, vol. 6015 of LNCS, pages 266–270.
Springer, 2010.

[2] C. Braunstein, A. E.. Haxthausen, W.-l.. Huang,
F. Hübner, J. Peleska, U. Schulze, and L. Vu Hong.
Complete model-based equivalence class testing for
the etcs ceiling speed monitor. In Proc. of SEFM, vol.
8829 of LNCS, pages 380–395. Springer, 2014.

[3] C. Braunstein, J. Peleska, U. Schulze, F. Hübner,
W.-l.. Huang, A. E.. Haxthausen, and L. Vu Hong. A
SysML test model and test suite for the ETCS ceiling
speed monitor. Work Package 4 OETCS/WP4/CSM –
01/00, University of Bremen, 2014.

[4] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and
A. Pretschner. Model-Based Testing of Reactive
Systems. vol. 3472 of LNCS. Springer, 2005.

[5] T. S. Chow. Testing Software Design Modeled by
Finite-State Machines. IEEE TSE, 4(3):178–187, 1978.

[6] S. Fujiwara, G. von Bochmann, F. Khendek,
M. Amalou, and A. Ghedamsi. Test Selection Based on
Finite State Models. IEEE TSE, 17(6):591–603, 1991.

[7] R. M. Hierons. Implementation Relations for Testing
Through Asynchronous Channels. The Computer
Journal, pages 107–122, 2012.

[8] R. M. Hierons, K. Bogdanov, J. P. Bowen,
R. Cleaveland, J. Derrick, J. Dick, M. Gheorghe,
M. Harman, K. Kapoor, P. Krause, G. Lüttgen,
A. J. H. Simons, S. Vilkomir, M. R. Woodward, and
H. Zedan. Using Formal Specifications to Support
Testing. ACM Computing Surveys, 41(2):9:1–9:76,
2009.

[9] C. Jard and T. Jéron. TGV: Theory, Principles and
Algorithms. STTT, 7(4):297–315, 2005.

[10] D. Lee and M. Yannakakis. Principles and methods of
testing finite state machines - a survey. Proceedings of
the IEEE, 84(8):1090–1123, 1996.

[11] S. Lity, R. Lachmann, M. Lochau, and I. Schaefer.
Delta-oriented software product line test models - the
body comfort system case study. Technical Report
2012-07, TU Braunschweig, 2013.

[12] N. Noroozi, R. Khosravi, M. Mousavi, and
T. Willemse. Synchronizing Asynchronous
Conformance Testing. In Proc. of SEFM’11, volume
7041 of LNCS, pages 334–349. Springer, 2011.

[13] S. C. Paiva and A. Simao. Generation of complete test
suites from Mealy Input/Output Transition Systems.
Formal Aspects of Computing, 28(1):65–78, 2016.

[14] J. Peleska, A. Honisch, F. Lapschies, H. Loding,
H. Schmid, P. Smuda, E. Vorobev, and C. Zahlten. A
real-world benchmark model for testing concurrent
real-time systems in the automotive domain. In Proc.
of ICTSS’11, vol. 1, pages 146–161, Springer, 2011.

[15] A. Simao and A. Petrenko. Checking Completeness of
Tests for Finite State Machines. IEEE Transactions
on Computers, 59(8):1023–1032, 2010.

[16] A. Simao and A. Petrenko. Generating Asynchronous
Test Cases from Test Purposes. Information and
Software Technology, 53(11):1252–1262, 2011.

[17] J. Tretmans. Model Based Testing with Labelled
Transition Systems. In FORTEST ’08, vol. 4949 of
LNCS, pp. 1–38, Springer, 2008.

[18] M. van der Bijl and F. Peureux. I/O-automata Based
Testing. In Model-Based Testing of Reactive Systems,
vol. 3472 of LNCS, pp. 173–200. Springer 2005.

[19] M. Weiglhofer and B. Aichernig. Unifying Input
Output Conformance. vol. 5713 of LNCS, pp. 181–201.
Springer, 2010.

[20] M. Weiglhofer and F. Wotawa. Asynchronous
Input-Output Conformance Testing. In Proc. of
COMPSAC’09, vol. 1, pp. 154–159, 2009.

