
Model Learning and Model-Based Testing

Bernhard K. Aichernig1, Wojciech Mostowski2, Mohammad Reza Mousavi2,3,
Martin Tappler1, and Masoumeh Taromirad2

1 Institute of Software Technology
Graz University of Technology, Austria

2 Centre for Research on Embedded Systems
Halmstad University, Sweden
3 Department of Informatics,
University of Leicester, UK

Abstract. We present a survey of the recent research efforts in inte-
grating model learning with model-based testing. We distinguished two
strands of work in this domain, namely test-based learning (also called
test-based modeling) and learning-based testing. We classify the results
in terms of their underlying models, their test purpose and techniques,
and their target domains.

1 Introduction

On one hand, learning (functional or behavioral) models of software and com-
puter systems (e.g., hardware, communication protocols) has been studied exten-
sively in the past two decades. Various machine learning techniques [Mit97,Alp14]
have been adopted to this domain and new domain-specific techniques have been
developed for model learning (cf. the chapters on (Extended) Finite Stat Ma-
chine learning in this volume).

On the other hand, testing has been the dominant verification and quality
assurance technique in industrial practice. Traditionally, testing has been an
unstructured and creative effort in which requirements and domain knowledge
is turned into a set of test cases, also called a test suite, while trying to cover
various artifacts (such as requirements, design, or implementation code). Model-
based testing (MBT) [UPL12,UL07] is a structured approach to testing in which
the testing process is driven by a model (e.g., defining the correct behavior of the
system under test, or specifying the relevant interactions with the environment).

The focus of the present paper is precisely in the intersection of the above-
mentioned two fields: learning (functional or behavioral) models and model-
based testing. In this intersection fall two types of research:

1. test-based learning : various (active) learning techniques make queries to the
to-be-learned system in order to verify a learning hypothesis. Such queries
can be tests that are generated from a learned model. We refer to this strand
of work as test-based learning or test-based modeling [MNRS04,Tre11].



2

2. learning-based testing : models are cornerstones of model-based testing; how-
ever, complete and up-to-date models hardly ever exist. Learning can hence
be used to create and complement models for model-based testing. We refer
to this category of work as learning-based testing [MS11].

To structure our survey of the field we focus on the following classification
criteria:

1. Types of models: different types of models have been learned and have
been used for model-based testing. We distinguish the following categories
of models: predicates and functions, and logical structures (such as Kripke
structures, cf. the chapter on logic-based learning in this volume), finite
state machines (including their variants and extensions, cf. the chapters on
FSM and Extended FSM learning, as well as learning-based testing in this
volume), and labeled transition systems. The distinction between variants
of these models is not always well-defined and there are several property-
preserving translations among them. However, this classification gives us a
general overview and a measure of matching between different learning and
testing techniques.

2. Types of testing: requirement-based and conformance testing are the most
prominent uses of model-based testing. However, other types of model-based
testing have also been considered in combination with learning; these include:
integration testing, performance testing, and security testing.

3. Domain: test-based learning and model-based testing have been applied to
various domains, such as embedded systems, network protocols, and web
services. If a research result considers a particular application domain, we
classify the result in terms of the domain, as well.

The rest of this paper is organized as follows. In Section 2, an overview
of model-based testing is provided. In Section 3, the basic ideas behind model
learning and their relation to testing are presented. In Section 4, we review
the types of models that have been used in integrating learning and testing and
survey the different pieces of research related to each type of model. In Section 5,
we classify the test purposes and testing techniques that have been considered
in combination with learning. In Section 6, we review the domains to which the
combination of testing and learning has been applied. Finally, we conclude the
survey in Section 7 by pointing out some of the open challenges in this domain.

2 Model-Based Testing

Model-based testing (MBT) is a structured testing technique in which models
are used to guide the testing process. Specification test models can, for example,
describe the input-output functionality of a unit (function, class, module, or
component) [HRD07,MN10], specify the state-based behavior of a unit [UL07]
or a system [VT14], or sequences of interactions with graphical user interface
[YCM09]. Ideally such specification models have a mathematical underpinning,



3

i.e., have a formal semantics; such formal models include algebraic properties,
finite state machines, and labeled transition systems. Once specification test
models are in place, much of the testing process can be mechanized thanks to
various MBT techniques and algorithms.

Fig. 1. An Overview of Model-Based Testing [ARM16,UPL12]

Figure 1 presents a general overview of MBT theory and practice. The under-
lying assumption of MBT is the existence of a formalization of the requirements
in the form of a specification test model. This is a highly non-trivial assumption;
models are often absent or incomplete in practice. Learning is a technique that
can help reinstate the underlying assumption of MBT.

To put MBT on firm formal grounds, a common assumption is that the be-
havior of the implementation under test can be described by some (unknown)
model with the same mathematical underpinning as the specification test model.
This enables grounding the theory of MBT in a mathematical definition of a
conformance relation between the specification model and the purported imple-
mentation model.

One of the most important ingredients of a practical MBT approach is a
test-case generation algorithm that can automatically generate a test suite (a
set of test cases) from the specification model (in an online or offline manner),
taking into account the specified test goals. Then using a mechanized adapter
the generated abstract test suite can be translated into concrete test cases that
are executed on the system under test (which is traditionally considered to be a
black box). The results of the test execution are then compared with the results
prescribed by the specification test model.

The formal notion of conformance and the conformance testing algorithm are
linked through soundness and completeness theorems. Soundness states that con-
formance testing never rejects a conforming implementation and exhaustiveness



4

states that conformance testing is able to reject all non-conforming implementa-
tions. A sound and exhaustive conformance testing algorithm is called complete.

Fig. 2. Creating Models for Model-Based Testing

Specification test models can be learned from (reference) implementations
and validated or verified by the domain experts, e.g., by manual inspection or
model checking (as well as equivalence checking tools); Figure 2 illustrates this
process. Also incomplete or outdated models can be augmented or corrected
(possibly with user feedback) using learning techniques.

Since the scope of this paper is the combination of model-based testing and
learning, we only explore the part of the literature that serves at least one of
the following two categories of purposes (cf. the chapter on testing stateless
black-box programs in this volume for a complementary survey):

1. Model-based test-based learning, i.e., the use of model-based testing as a
teaching mechanism in learning models, or

2. Learning-based model-based testing, i.e., the use of learning techniques to
come up with models (of specification or implementation) in the model-based
testing process.

3 Learning

In this section, we review the main ideas concerning model learning and their
connections to (model-based) testing. We mainly consider active automata learn-



5

ing in the minimally adequate teacher (MAT) framework as introduced by An-
gluin [Ang87], since it shares clear common grounds with testing; for other ma-
chine learning techniques (some of which are also used in combination with
model-based testing), we refer to [Mit97,Alp14].

Generally, this framework requires the existence of a teacher (called MAT)
with which the learner interacts in order to learn (1) how accurate the currently
learned model is and (2) how the system reacts to some new patterns that are of
interest for improving the model. To this end, the MAT must be able to answer
two respective types of queries: (1) equivalence queries, which check whether the
currently learned model is an accurate model of the system under learning and
(2) membership queries, which provide the system reaction to specified patterns
of input. This setup is shown in Figure 3. In fact, it illustrates an instantiation
of this framework for black-box systems. Since ideal equivalence queries usually
cannot be implemented, they have to approximated via model-based testing.
Failing tests serve as counterexamples in such implementations, while the learned
model and the system under learning are considered equivalent if they agree
on all executed tests. The relationship between learning and testing is detailed
further below.

Teacher

Model-
Based
Testing
Tool

System
Under

Learning

Learning
Algorithm

Equivalence Query

(Hypothesis Model)

Yes / Counterexample

Perform Tests

All Pass /

Failed Test

Output Query

Query Output

Reset + Inputs

Outputs

Outputs Reset + Inputs

Fig. 3. Learning setup in the MAT framework. Figure adapted from a figure in
[SMVJ15].

In the original L∗ algorithm by Angluin, a deterministic finite automaton
(DFA) representing an initially unknown regular language is learned. Member-
ship queries correspond to the question whether some string is in the target
language. In equivalence queries, the learner asks whether the language of a
hypothesized DFA is equivalent to the target language.

These queries enable the learner to follow a two-step procedure in which it
gains knowledge by posing membership queries. If there is sufficient information
to create a hypothesis, an equivalence query is issued. The teacher either answers



6

yes, signaling that learning is finished, or it responds with a counterexample
to equivalence. Such a counterexample is then processed by the learner which
eventually starts another round of learning.

Several variations of this general learning process have been proposed. All
of them have in common that two types of queries are posed in an interleaved
and iterative manner. As an example, consider learning of Mealy-machine mod-
els [Nie03,MNRS04,SG09]: instead of posing membership queries, the learner
asks output queries [SG09], i.e., it asks for a sequence of outputs produced in
response to a sequence of inputs. Analogously to L∗, equivalence queries are is-
sued whereby a counterexample is a string of inputs for which the system under
learning (SUL) and the current hypothesis produce different outputs.

3.1 Relation between Learning and Testing

Early work relating testing and program inference predates Angluin’s L∗ al-
gorithm. Weyuker [Wey83] proposed a program-inference-based test-adequacy
criterion. She points out the importance of distinguishing between test-selection
criteria and test-adequacy criteria. The latter should be used to assess if a pass-
ing test set contains sufficient data. For that she proposes to infer a program
from a test set and deem it adequate if the inferred program is equivalent to both
program and specification. Noting that checking equivalence is in general unde-
cidable, she suggest that equivalence checks may be approximated by testing as
is usually done for equivalence queries in active automata learning.

More recently, Berg et al. [BGJ+05] discussed the relationship between con-
formance testing and active automata learning, referred to as regular inference.
Basically, both techniques try to gain information about a black-box system
based on a limited number of observations, but with different goals. One tech-
nique solves a checking problem and the other a synthesis problem. They showed
that a conformance test suite for a model m provides enough information to
learn a model isomorphic to m. Conversely, observations made during learning
a model m form a conformance test suite for m. This resembles the intuition
behind Weyuker’s work [Wey83]: a test set should contain information to infer
a program equivalent to the original program.

Aside from the theoretical relationship, they referred to another connection
between learning and testing. Since equivalence oracles do not exist in general,
they can be approximated by conformance testing (as shown in Figure 3). Hence,
in practice a testing problem has to be solved each time an equivalence query
is issued. Two examples of commonly used equivalence testing methods are the
W-method [Vas73,Cho78] and partial W-method [FvBK+91], the latter aiming
at improving efficiency. Both of these have for instance been implemented in the
automata-learning library LearnLib [IHS15].

3.2 Test Case Selection vs. Query Minimization

Since exhaustive model-based testing is usually infeasible, it is necessary to se-
lect a subset of test cases based on some user-specified criterion [UPL12]. In



7

other words, the number of tests has to be reduced. Because of the relation-
ship described above, it can be concluded that a reduction of queries is re-
quired for learning as well. There are several possibilities for implementing such
measures. Most importantly, abstraction is essential for learning to be feasible.
While abstraction is mostly done manually, techniques have been developed to
derive abstraction automatically through counterexample-guided abstraction re-
finement [AHK+12,Aar14,HSM11]. In addition to that, we give three examples
for ways to reduce the number of tests required for learning.

Algorithmic Adaptations. Following the work of Angluin [Ang87], short-
comings of the L∗ algorithm have been identified and optimizations have been
developed. A well-known example of such an optimization is the adapted coun-
terexample processing proposed by Rivest and Schapire [RS93]. They extract
a single suffix from a counterexample which distinguishes states in the current
hypothesis. As a result, the observation table size and thereby the required mem-
bership queries are reduced.

Equivalence Testing Optimisations. Well-known methods for conformance
testing are the W-method [Vas73,Cho78] and partial W-method [FvBK+91].
Thus, they may be used to check whether the current hypothesis is equivalent to
the SUL. However, they suffer from two drawbacks. Firstly, they assume a known
upper bound on the number of states of the SUL. Since we consider black-box
systems, we cannot know such a bound. Furthermore, their complexity grows
exponentially in the difference of the number of states of hypothesis and SUL.
This makes the application in industrial scenarios impractical. Alternative ways
of selecting tests should thus be considered. The ZULU challenge [CdlHJ09]
called for solutions to this issue. Competing approaches were only allowed to
pose a limited number of membership queries/tests. This resembles a setting in
which the cost of test execution matters and equivalence has to be checked via
testing.

Howar et al. [HSM10] describe that a different interpretation of equivalence
queries is necessary in this case. Rather than testing for equivalence, it is neces-
sary to find counterexamples fast. This is a reasonable approach, as learning is
inherently incomplete anyway, because of its relation to black-box testing. Fur-
thermore, they discuss their approaches to selecting test cases which are based
on heuristics. They consider hypotheses to be evolving, i.e. testing is not started
from scratch once a new hypothesis is constructed. Additionally, they base their
test selection on the improved counterexample handling [RS93], combined with
randomization.

Efficient equivalence testing has been addressed by Smeenk et al. [SMVJ15] as
well. Since their SUL is too large for testing with the W-method, they developed
a randomized conformance testing technique. It is based on a method for finding
adaptive distinguishing sequences described by Lee and Yannakakis [LY94]. In
addition to that, they selected a subset of the original alphabet which they
tested more thoroughly. This is done to ensure that specific sequences relevant



8

to the initialization of the considered application are covered although it would
be unlikely to select them otherwise.

Another randomized conformance testing technique for automata learning
has been presented in [AT17a]. It addresses coverage by mutation-based test-case
selection whereby the applied mutations are tailored to the specifics of learning.
Furthermore, stochastic equivalence checking has for instance been applied in
learning-based testing to measure convergence [MN15].

Purely random testing, without taking heuristics into account, is a viable
option as well. It has successively been used for experiments with the tool
Tomte [AHK+12,AFBKV15]. However, Aarts et al. [AKT+14] also point out
that while being effective in most cases, random testing may also fail if the
probability of reaching some state is low. Still, quantitative analysis of learned
models, e.g. giving some confidence for the correctness of the models, are mostly
lacking. This is despite early work discussing such ideas [Ang87,RS93].

Domain-Specific Optimisations. Another important insight is that the in-
clusion of knowledge about the application domain can increase learning perfor-
mance. This has for instance been shown by Hungar et al. [HNS03], who applied
techniques such as partial-order reduction methods to reduce the number of
queries. Another example of a domain-specific optimization is the modification
of the W-method by de Ruiter and Poll [dRP15].

3.3 State Merging Techniques

A prominent alternative to learning in the MAT framework is learning via state
merging. State merging techniques infer models from given samples, that is, se-
quences of symbols. This is usually done passively, i.e. without interaction with
a teacher. Prominent examples are the RPNI algorithm [OG92] and ALER-
GIA [CO94]. In a first step, state merging techniques generally build a prefix
tree acceptor (PTA) from the given samples. They then iteratively check nodes
in the tree for compatibility and merge them if they are compatible. The tree
is transformed into a finite automaton through this procedure. Depending on
the actual algorithm, different techniques are used for the steps in this generic
procedure and different types of models are created.

In the case of RPNI for instance, a deterministic finite automaton is inferred
and samples are split into negative and positive samples. Furthermore, the PTA
is built from positive samples while negative samples are used to check whether
two nodes may be merged. ALERGIA requires only positive samples to learn a
probabilistic finite automaton. Therefore, it augments the PTA with frequencies
and bases its compatibility check on a statistical test.

The QSM algorithm is an interactive state-merging algorithm with mem-
bership queries [DLDvL08]. Hence, it is a query-driven State-Merging DFA in-
duction technique. The induction process starts by constructing an initial DFA
covering all positive scenarios only. The induced DFA is then successively gener-
alized under the control of the available negative scenarios and newly generated



9

scenarios classified by the end-user (membership queries). This generalization
is carried out by successively merging well-selected state pairs of the initial au-
tomaton.

4 Models

In this section, we provide an overview of the kind of models that have been
learned for testing. Most of the work concentrates on different types of finite
state machines and labeled transition systems. Some researchers have considered
other models, e.g. for stateless systems.

4.1 Finite State Machines

In [AKT+12,AKT+14], the authors use a combination of automata learning
techniques to learn a model of the implementation, which is then compared to
a reference specification model using equivalence checking techniques,.

In [LGS06a], the authors use an approach based on L∗ to learn Mealy ma-
chines, which is extended and more thoroughly described in [SG09]. Other work
considers more expressive versions of Mealy machines [LGS06b,SLG07a], which
include parameters for actions, predicates over input parameters and allow for
observable non-determinism.

Margaria et al. [MNRS04] optimized the L* algorithm for generalized Mealy
machines, i.e. Mealy machines that may produce a sequence of outputs rather
than exactly one output in response to a single input. They report significant
performance gains as compared to learning DFA models.

In [CHJS14,CHJS16], Cassel et al. consider generating models from test
cases and present a framework for generating a class of EFSM models, called
register automata, from black-box components using active automata learning.
They introduce an extension to the L* algorithm called SL* (for Symbolic L* ).
However, they do not explicitly mention any particular testing technique. They
only suggest using conformance testing in hypothesis validation (i.e., providing
counterexamples). The SL* algorithm is available as an extension to Learn-
Lib [IHS15], namely RaLib.

Ipate et al. [ISD15] propose an approach which, given a state-transition
model of a system (EFSM), constructs an approximate automaton model and
a test suite for the system. The approximate model construction relies on a
variant of Angluins automata learning algorithm, adapted to finite cover au-
tomata [CSY99]. In parallel with automata construction, they incrementally
generate conformance test suites for the investigated models, using the W-
method [Cho78] adapted to bounded sequences. These test suites are used to
find counterexamples in the learning process. Their approach is presented and
implemented in the context of the Event-B modeling language [DIMS12,DIS12].

Arts et al. [AT10] automatically extract finite state machines from sets of
unit tests using an FSM inference technique, namely StateChum [WBHS07].
Then, the inferred FSMs are used to provide feedback on the adequacy of the



10

set of tests and to develop properties for testing state-based systems. They use
QuickCheck for testing and thus, consider generating QuickCheck properties.
An FSM model is incrementally extracted from the test suite as it evolves.

In [RMSM09] a method for learning-based testing is presented, where the
alphabet of the system under learning is progressively extended during the pro-
cess based on previous interactions. This extension, and the knowledge gained
about the system is used to further derive test cases. The method uses classic
deterministic Mealy machines and the LearnLib for learning, and it is showcased
with the Mantis Bug Tracker case study.

Relying on a heuristic approach to model inference, Schulze et al. [SLBW15]
discussed an model-based testing supported by model generation. They propose
to generate a model from manually created test cases in order to generate further
tests from this model which possibly find undetected issues. In the case study,
they report on manual effort for GUI testing a web-based system.

4.2 Labeled Transition Systems

Hagerer et al. [HHNS02] presented a technique called regular extrapolation for
learning labeled transition systems (LTS) with inputs and outputs. For testing
purposes, labels and states may have additional observations, i.e. parameters and
attributes. Their technique starts with a set of abstract traces, either gathered
passively via log-files or actively via testing. These traces are merged into a
tree and then states with equivalent observations, i.e. equivalent attributes, are
merged. Furthermore, a user may specify independence relations in order to
simplify the model via partial order reduction. Model checking is used to verify
if the learned model satisfies a set of Linear Temporal Logic (LTL) specifications.

Hungar et al. [HNS03] used the L* algorithm to learn LTS models with inputs
and outputs that are input-enabled and input-deterministic. Several optimiza-
tions for reducing the number of membership queries are presented, most notably
the application of partial-order reduction techniques that exploit domain-specific
independence and symmetry properties.

Walkinshaw et al. [WDG09] introduce a reverse-engineering technique which
infers state machines, in the form of LTS, from implementations. They use active
state-merging techniques [DLDvL08] for learning a model based on program ex-
ecutions and model-based testing in refining the hypothesis model. The learning
process starts with an initially small set of execution traces, based on which an
initial hypothesis model is constructed. Then, iteratively, a given MBT frame-
work automatically generates tests from the hypothesis model which are exe-
cuted in the program. Any test conflicting the expected behavior by the model
would restart the process to construct a refined hypothesis model. The process
iterates until no more conflicts can be found by testing. For model inference,
they use StateChum, developed by the authors [WBHS07], and use QuickCheck
for MBT [AHJW06].

Walkinshaw et al. [WBDP10] use the technique introduced in [WDG09] and
propose inductive testing to increase functional coverage in the absence of a
complete specification.



11

Tretmans [Tre11] discusses both learning-based testing as well as testing-
based learning. It is rightfully noted that intermixing the two directions is dan-
gerous due to a risk of a circular dependency in the resulting testing process.
Most approaches by Tretmans, employ ioco-based conformance testing methods,
and they treat both deterministic and non-deterministic models given as Mealy
machines. The learning process is delegated to the LearnLib suite with custom
extensions to facilitate better learning, Volpato and Tretmans [VT14] extend
the Angluin’s L* algorithm to work with non-determinism in input-output la-
beled transition systems. The ioco-based testing methodology is implemented
in the TorXakis tool [TB03] and employs random model exploration to gener-
ate tests. The learning approach is further improved in subsequent work [VT15]
which weakens assumptions related to the completeness of information obtained
during learning. An important improvement is that the new approach does not
require exhaustive equivalence checks.

Groz et al. [GLPS08] present inference of k-quotients of FSMs, but also of
input output transition systems (IOTSs). They address the composition IOTSs
and asynchronous communication between components. The latter is accounted
for by introducing queues modeled by IOTSs.

4.3 Other Models

Meinke and Sindhu [MS11] apply the learning-based testing paradigm to reactive
systems and present an incremental learning algorithm for Kripke structures.

For stateless behavior, predicates and functions provide a natural abstrac-
tion for the input-output functionality of programs. In [BG96], inductive pro-
gram learning (and inductive logic programming) is used to learn the behavior
of programs; the technique is used to generate adequate tests in order to dis-
tinguish the program under test from all other alternative programs that can
be learned. In [HRD07], algebraic specifications of Java programs are learned.
In [Mei04,MN10], functional models of numerical software are learned and the
learned models are used for automatic generation of unit tests.

Walkinshaw and Fraser presented Test by Committee, test-case generation
using uncertainty sampling [WF17]. The approach is independent of the type
of model that is inferred and an adaption of Query By Committee, a technique
commonly used in active learning. In their implementation, they infer several
hypotheses at each stage via genetic programming, generate random tests and
select those tests which lead to the most disagreement between the inferred hy-
potheses. In contrast to most other works considered, their implementation infers
non-sequential programs. It infers functions mapping from numerical inputs to
single outputs. Papadopoulos and Walkinshaw also considered similar types of
programs, but in a more general learning-based testing setting [PW15]. There-
fore, they presented the Model-Inference driven Testing (MINTEST) framework
which they also instantiated and evaluated.



12

5 Test Purposes and Types of Testing

5.1 Behavioral Conformance Testing

Behavioral conformance testing is a common form of model-based testing, in
which tests are generated in order to establish whether the behavior of the
implementation under test is “equivalent” to that of the specification model,
according to a well-defined notion of equivalence. Typically behavioral confor-
mance testing is integrated with model-learning in that the specification test
models are learned and are subsequently used for generating a conformance test
suite [VT15,ASV10]. However, in [AKT+14], an alternative integration is also
explored. Namely, model learning is used to learn both a model of a reference
implementation and the implementation under test and then equivalence check-
ing tools are used to check the equivalence between the two learned model. This
way conformance checking is performed in an intensional manner by comparing
models rather than by generating test cases from the specification model and
executing test cases on the implementation.

A case study following a similar approach is presented in [TAB17]. However,
instead of comparing to the model of a reference implementation, learned mod-
els of implementations are compared among each other. Detected differences
are considered to point to possible bugs which should be analyzed manually.
Experiments involving five implementations of the MQTT protocol revealed 18
errors in all but one of the implementations. The system HVLearn described by
Sivakorn et al. [SAP+17] follows a similar approach. It learns DFA-models of
SSL/TLS hostname verification implementations via the KV algorithm [KV94].
Given learned models, HVLearn is able to list unique differences between pairs
models and additionally provides analysis capabilities for single models. The au-
thors reported that they found eight previously unknown unique RFC violations
by comparing inferred models. Another example using a similar technique in
the security domain is SFADiff [ASJ+16]. In contrast to the other approaches,
it learns symbolic finite automata (SFA) and is able to find differences between
pairs of sets of programs, e.g., for fingerprinting or creating evasion attacks
against security measures. It has been evaluated in case studies considering TCP
state machines, web application firewalls and parsers in web browsers.

These approaches to conformance testing between implementations can in
general not guarantee exhaustiveness. In other words, if models are found to be
equivalent this does neither imply that the implementations are equivalent nor
that the implementations are free of errors. In testing of complex systems, how-
ever, the reverse will often hold, i.e. there will be differences. These may either
help to extend the learned models in case learning introduced the differences,
or may point to actual differences between systems. The discussed case studies
showed that such differences can be exploited in practice, e.g., to find bugs.

5.2 Requirements-based Testing

With the introduction of black box checking, Peled et al. [PVY99] pioneered a
line of research combining learning, black-box testing and formal verification.



13

In order to check whether a black-box system satisfies some formally-defined
property, a model is learned with Angluin’s L∗-algorithm and the property is
checked on this model. If a counterexample is found, it either shows that the
property is violated or it is spurious and can be used to extend the model. To
avoid false positives, conformance testing as described by Vasilevskii [Vas73] and
Chow [Cho78] is also used to extend the model, i.e., to implement equivalence
queries.

Following that, several optimisations and variations have been proposed.
Adaptive model checking [GPY02a,GPY02b] optimizes black box checking by
using a model of the system which is assumed to be inaccurate but relevant.
Another early developed variation is grey-box checking [EGPQ06], which con-
siders a setting in which a system is composed of some completely-specified com-
ponents and some black-box systems. With regard to testing, the VC-method
[Vas73,Cho78] and other conformance testing approaches, taking the grey-box
setting into account, are used and compared.

Adaptive model-checking combined with assume-guarantee verification has
also been considered for the verification of composed systems [HK08]. Fur-
thermore, another variation of adaptive model-checking has been described by
Lai et al. [LCJ06]. They use genetic algorithms instead of L∗ in order to learn a
system model. Their results show promising performance for prefix-closed lan-
guages.

Meinke and Sindhu [MS11] applied the learning-based testing paradigm to
reactive systems and present an incremental learning algorithm for Kripke struc-
tures. Here, an intermediate learned model is model checked against a temporal
specification in order to produce a counter-example input stimulus. The SUT
is then tested with this input. If the resulting output satisfies the specification,
then this new input-output pair is integrated into the model. Otherwise, a fault
has been found and the algorithm terminates.

Following ideas of black box checking, a testing approach for stochastic sys-
tems is presented in [AT17b]. It focuses on reachability properties and basically
infers testing strategies which optimize the probability of observing certain out-
puts. This is done via iterated model-inference, strategy generation via proba-
bilistic model-checking, and property-directed sampling, i.e. testing, of the SUT.

5.3 Security Testing

Based on black box checking [PVY99], Shu and Lee had described an approach
to learning-based security testing [SL07]. Instead of checking more general prop-
erties, they try to find violations of security properties in the composition of
learned models of components. In following work, they presented a combination
of learning and model-based fuzz testing and considered both active and pas-
sive model inference [SHL08]. This approach is more extensively described in
[HSL08] with a focus on passive model inference. For this purpose they detail
their state-merging-based inference approach, discuss the type of fuzz functions
and the coverage criteria they used. Additionally, they provide a more exhaustive
evaluation.



14

The compositional approach is also taken in [ORT+07], where several meth-
ods are used to study the security of cryptographic protocols, where learning by
testing black-box implementations is one of the techniques employed. The secrecy
and authenticity properties are then checked on both the protocol specifications
and the actual implementations through the learned model of the implementa-
tion.

Hossen et al. [HGOR14] presented an approach to model inference specifically
tailored to security testing of web applications. The approach is based on the
Z-quotient algorithm [PLG+14].

Cho et al. [CBP+11] developed a security testing tool called MACE. This
tool combines the learning of a Mealy machine with concolic execution of the
source code in order to explore the state space of protocol implementations
more efficiently. Here, the learning algorithm guides the concolic execution in
order to gain more control over the search process. When applied to four server
applications, MACE could detect seven vulnerabilities.

5.4 Integration Testing

Tackling the issue that complex systems commonly integrate third-party com-
ponents without specification, Li et al. [LGS06a] proposed a learning-based ap-
proach to integration testing. They follow an integrated approach in which they
learn models of components from tests and based on the composition of these
models, they generate integration tests. The execution of such tests may even-
tually lead to an update of the learned models if discrepancies are detected.
Integration testing thus serves also as equivalence oracle. In following work,
Li, Shahbaz and Groz [LGS06b,SLG07a,SLG07b] extended their learning-based
integration testing approach to more expressive models. These models also ac-
count for data, through the introduction of parameters for actions and predi-
cates over input parameters. Additionally, they also allow for observable non-
determinism [SLG07a,SLG07b].

Groz et al. present an alternative approach to inference of component mod-
els [GLPS08]. Instead of learning each component model separately, they infer a
k-quotient of the composed system and by projection they infer component mod-
els. With an initial model at hand, they perform a reachability analysis to detect
compositional problems. If a detected problem can be confirmed, they warn that
a problem exists, otherwise they refine the inferred models if the problem could
not be confirmed. Testing is stopped when no potential compositional problem
can be found.

In a similar setting as [LGS06a] and using the same algorithm, Shahbaz et
al. [SPK07] described an approach to detect feature interaction in an integrated
system. Basically, they infer models of components by testing, and execute the
same tests of the composed system again. If the observations in the second phase
do not conform to the inferred models, a feature interaction is detected.

Based on their previous works, Shahbaz and Groz [SG14] present an approach
for analyzing and testing black-box components by combining model learning



15

and MBT techniques. The procedure starts by learning each component’s (par-
tial) behavioral model and composing them as a product. The product is then
fed to a model-based test case generator. The tests are then applied on the real
system. Any discrepancies between the learned models and the system’s real be-
havior counts as counterexample for the learned models, to be used to refine the
models. For a more extensive discussion of learning-based integration testing,
see also the corresponding chapter in the volume.

In [KMMV16] a test-based learning approach is devised, where an already
specified system under test is executed to find and record deviations from that
specification. Based on the collection of these deviations, a fault-model is learned,
which is then used to perform model-based testing with QuickCheck [AHJW06]
for the discovery of similar faults in other implementations. Being a prelimi-
nary work, it uses classic deterministic Mealy machines in the learning process
with the LearnLib implementation. The models utilized in this approach are rich
state-based models with full support for predicates. It falls into the integration
testing category in that overall goal of the work is to test implementations com-
posed of different versions of components, some of which may exhibit deviations
from the reference model.

5.5 Regression Testing

Hagerer et al. [HHNS02] and Hungar et al. [HNS03] consider regression testing
as a particularly fruitful application scenario for model learning. With the pos-
sibility of automatically maintaining models during the evolution of a system
regression testing could be largely improved.

Regression testing and learning is also related in [LS14], however, in a slightly
different fashion and not directly connected to model learning. Namely, machine-
learning techniques are used to identify, select, and prioritize tests for regression
testing based on test results from previous iterations and test meta-data.

Selection and extension of test cases, consequently leading to the refinement
of the software model used for MBT, is also considered in [GS16]. Additional
tests are recorded from the Exploratory Testing process [MSB11] and checked to
be covered in the existing MBT model. If they are not, the model undergoes a
refinement procedure to include the new execution traces. This can be classified
as expert supported continuous learning process to build an MBT model.

5.6 Performance Testing

Adamis et al. proposed an approach to passively learn FSM models from confor-
mance test logs to aid performance testing [AKR15]. Since the learned models
may be inaccurate, manual postprocessing is required.

5.7 GUI Testing

Choi et al. described Swifthand a passive-learning-based testing tool for user
interfaces of Android apps [CNS13]. They interleave learning and testing: (1)



16

they use the learned model to steer testing to previously unexplored states and
(2) refine the model based on test observations. Their test selection strategy
aims at minimizing the number of restarts, the most time-consuming action in
the considered domain, while maximizing (code) coverage. The evaluation shows
that Swifthand outperforms L∗-based and random testing.

6 Domain

Model learning and model-based testing has been applied to many different
domains with different characteristics. In this section, we provide an overview of
such application domains.

6.1 Embedded Systems

Embedded systems are a very suitable application domain for model learning
and model-based testing; they often have a confined interaction with the envi-
ronment through an interface. One of the earliest application of such techniques
to the embedded system domain has been the application of model learning
to telephone systems with large legacy subsystems [HHNS02,HNS03]. Meinke
and Sindhu [MS11] applied their learning algorithm to a cruise control and an
elevator controller.

Test-based learning (based on a variant of the well-known FSM-based test-
ing, called the W-method) has been applied in [SMVJ15] to learn an industrial
embedded control software.

The combination of learning and testing has also been applied in the auto-
motive domain. In [KMMV16], the basic ideas about learning faulty behavior of
AUTOSAR components is explored in order to predict possible failures in com-
ponent integration. In [KMR] learning-based testing is applied to testing ECU
applications.

6.2 Network and Security Protocols

Another application area often explored in the context of learning and testing is
that of security protocols and protocol implementations. Using the abstraction
technology described in [AHK+12] and Mealy machines learned through Learn-
Lib, [FBJV16] reports on learning different TCP stack implementations. Instead
of for testing, the learned models are used for model checking to verify proper-
ties of these implementations in an off-line fashion. A similar case study carried
out in a security setting focused on SSH implementations [FBLP+17]. Model
checking the learned models of different implementations revealed minor viola-
tions of the standard but no security-critical issues. In [MCWKK09], the learned
protocols are used as an input for fuzzing tools in order to reveal security vul-
nerabilities. Learning-based fuzz testing has also been applied for the Microsoft
MSN instant messaging protocol [SHL08,HSL08]. Furthermore, learning-based
testing of security protocols is addressed in [SL07] as well.



17

The authors of [MCWKK09] learned a number of malware, text-based and
binary protocols using some domain-specific and heuristic-based learning tech-
niques. Aarts, Kuppens, Tretmans, Vaandrager and Verwer [AKT+12,AKT+14]
combined various learning techniques to learn and test the bounded re-trans-
mission protocol and Fiterau-Brostean, Janssen, Vaandrager [FBJV14] extended
this work to fragments of TCP. Walkinshaw et al. [WBDP10] applied their in-
ductive testing approach to explore the behavior of the Linux TCP stack.

Test-based learning has been extensively used to learn models of differ-
ent sorts of smart-card based applications. Being black-box systems and typ-
ically specified using imprecise language, test-based learning helped to devise
more precise models of such applications. In particular, the models of a bio-
metric passport and a bank card have been produced this way, see [ASV10]
and [AdRP13], respectively. In both works, a suitable data abstraction between
the learning alphabet and the actual system inputs and output had to be devel-
oped to facilitate the learning process. This led to the development of Tomte, a
framework for automated data abstraction for the purpose of real system learn-
ing [AHK+12,Aar14]. The learned model produced [ASV10] was also compared
to the manually developed model for the conformance testing of the Dutch bio-
metric passport [MPS+09].

6.3 Web Services

Raffelt et al. applied dynamic testing on web applications [RMSM08]. More con-
cretely, they described a test environment Webtest, combining traditional testing
methods, like record-and-replay, and dynamic testing. The latter provides ben-
efits such as systematic exploration and model extrapolation, while the former
eases dynamic testing by defining possible input actions.

Bertolino, Inverardi, Pelliccione, and Tivoli [BIPT09] used test-based learn-
ing (based on finite state machines) to learn the behavioral interfaces for web
services.

6.4 Biological Systems

Biological systems have been recently studied as instances of reactive systems
[BFFK09]. This provides the prospect of using models of reactive and hybrid
systems to replace in vivo and in vitro experiments on living organisms and cells
with in silico experiments (e.g., replacing the experiments with model checking or
model-based testing) [BFFH14,Col14]. In [AL13], test-based learning is used to
learn hybrid automata models of biological systems (cell models). In [MHR+06],
automata learning technique is integrated with requirement-driven engineering
to create and improve models of biological systems.

7 Conclusions

Learning-based testing is an active research area that has produced impressive
results despite being a relatively young discipline. Different systems in various



18

critical domains have been tested successfully including controllers, communi-
cation protocols, web applications, mobile apps and smart cards. Every year
new algorithms, techniques and tools are proposed in order to learn and test
increasingly complex systems.

The prevailing concern in the domain of model-learning (in the context of
testing) is the scalability and applicability to real systems. For such applica-
tions, abstraction techniques for input and output data are needed to support
the learning process. The researchers are actively looking into automating this
process, which in many cases is still manual and requires either domain-specific
knowledge, or apriori knowledge about the system under test. Several discussed
papers either mention this as an issue, or provide some solution for it.

Another open issue surfacing in the described works is the treatment of richer
models, both in the context of learning and testing. For example, stochastic
models, or models that consider time or system dynamics. Such rich models
bring new challenges in both research domains, moreover, they underline the
scalability issues mentioned above.

Completeness (or a quantified approximation thereof) is another major con-
cern in this domain. A property of algorithms in the MAT framework is “that
a learned model is either complete and correct, or not correct at all” [VT15].
Note that in this context, correctness expresses that the learned model and the
system under learning agree on all possible inputs. In [VT15], this property has
been dropped by learning an over- and an underapproximation and preserving
ioco-conformance during learning. In other words, there are two learned models
which may not agree with the system under learning on all inputs but which are
in a conformance relation with the system. However, such an adaptation may not
be possible for all types of models. Steffen et al. [SHM11] also mention this prop-
erty, stating that it must be accepted and that incompletely learned models may
still provide benefits in certain scenarios, e.g., for test-case generation [HHNS02].

Scenarios like black-box checking [PVY99] on the other hand suffer from in-
completeness4. They can guarantee that a verified property either holds or the
number of states of the system is larger than an assumed upper bound. More
quantitative measures of correctness would be useful for this type of verification
such that, e.g., statistical guarantees could be given with a certain confidence.
Although already early work discussed such matters, there has not been much
research in this direction. In fact, Angluin considered learning without equiva-
lence queries in a stochastic setting in her seminal paper [Ang87]. Furthermore,
Rivest & Schapire also gave probabilities for learning the correct model [RS93].
Despite its practical usefulness, recent work usually does not assign probabili-
ties or confidence levels to the learning result, also in case stochastic (testing)
strategies are applied.

Testing has always been a challenge due to (1) its incompleteness by nature,
(2) the lack of good specifications and (3) by its high demand for resources. With
the growing complexity of the systems-under-tests this process is not going to be
easier. Learning-based testing offers an opportunity to master this complexity

4 The authors also briefly discuss stochastic properties of Mealy machines, though.



19

with modern learning-based techniques. It represents a natural evolution of test-
ing: with the trend of our environment becoming “smarter”, e.g. smart homes,
smart cars, smart production, smart energy, our testing process needs to be
smart as well. We are seeing the advent of smart testing.

Acknowledgments.

The insightful comments of Karl Meinke and Neil Walkinshaw on an earlier draft
led to improvements and are gratefully acknowledged.

The work of B. K. Aichernig and M. Tappler was supported by the TU Graz
LEAD project “Dependable Internet of Things in Adverse Environments”. The
work of M. R. Mousavi and M. Taromirad has been partially supported by the
Swedish Research Council (Vetenskapsradet) award number: 621-2014-5057 (Ef-
fective Model-Based Testing of Concurrent Systems) and the Strategic Research
Environment ELLIIT. The work of M. R. Mousavi has also been partially sup-
ported by the Swedish Knowledge Foundation (Stiftelsen for Kunskaps- och
Kompetensutveckling) in the context of the AUTO-CAAS HöG project (number:
20140312).

References

Aar14. Fides Aarts. Tomte: bridging the gap between active learning and real-
world systems. PhD thesis, Department of Computer Science, 2014.

AdRP13. Fides Aarts, Joeri de Ruiter, and Erik Poll. Formal models of bank cards
for free. In Proceedings of the 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation Workshops, ICSTW ’13,
pages 461–468, Washington, DC, USA, 2013. IEEE Computer Society.

AFBKV15. Fides Aarts, Paul Fiterău-Broştean, Harco Kuppens, and Frits W. Vaan-
drager. Learning register automata with fresh value generation. In Mar-
tin Leucker, Camilo Rueda, and Frank D. Valencia, editors, Theoretical
Aspects of Computing - ICTAC 2015 - 12th International Colloquium
Cali, Colombia, October 29-31, 2015, Proceedings, volume 9399 of Lec-
ture Notes in Computer Science, pages 165–183. Springer, 2015.

AHJW06. Thomas Arts, John Hughes, Joakim Johansson, and Ulf T. Wiger. Test-
ing telecoms software with QuviQ QuickCheck. In Marc Feeley and
Philip W. Trinder, editors, Proceedings of the 2006 ACM SIGPLAN
Workshop on Erlang, Portland, Oregon, USA, September 16, 2006, pages
2–10. ACM, 2006.

AHK+12. Fides Aarts, Faranak Heidarian, Harco Kuppens, Petur Olsen, and
Frits W. Vaandrager. Automata learning through counterexample guided
abstraction refinement. In Dimitra Giannakopoulou and Dominique
Méry, editors, FM 2012: Formal Methods: 18th International Symposium,
Paris, France, August 27-31, 2012. Proceedings, pages 10–27, Berlin, Hei-
delberg, 2012. Springer Berlin Heidelberg.

AKR15. Gusztáv Adamis, Gábor Kovács, and György Réthy. Generating per-
formance test model from conformance test logs. In Joachim Fischer,
Markus Scheidgen, Ina Schieferdecker, and Rick Reed, editors, SDL 2015:



20

Model-Driven Engineering for Smart Cities - 17th International SDL Fo-
rum, Berlin, Germany, October 12-14, 2015, Proceedings, volume 9369
of Lecture Notes in Computer Science, pages 268–284. Springer, 2015.

AKT+12. Fides Aarts, Harco Kuppens, Jan Tretmans, Frits W. Vaandrager, and
Sicco Verwer. Learning and testing the bounded retransmission protocol.
In Jeffrey Heinz, Colin de la Higuera, and Tim Oates, editors, Proceed-
ings of the Eleventh International Conference on Grammatical Inference,
ICGI 2012, University of Maryland, College Park, USA, September 5-8,
2012, volume 21 of JMLR Proceedings, pages 4–18. JMLR.org, 2012.

AKT+14. Fides Aarts, Harco Kuppens, Jan Tretmans, Frits W. Vaandrager, and
Sicco Verwer. Improving active mealy machine learning for protocol con-
formance testing. Machine Learning, 96(1-2):189–224, 2014.

AL13. Rasmus Ansin and Didrik Lundberg. Automated inference of excitable
cell models as hybrid automata, 2013. Bachelor Thesis, School of Com-
puter Science and Communication, KTH Stockholm.

Alp14. Ethem Alpaydin. Introduction to Machine Learning, Third Edition. MIT
Press, 2014.

Ang87. Dana Angluin. Learning regular sets from queries and counterexamples.
Inf. Comput., 75(2):87–106, November 1987.

ARM16. Arend Aerts, Michel A. Reniers, and Mohammad Reza Mousavi. Model-
based testing of cyber-physical systems. In Houbing Song, Danda B.
Rawat, Sabina Jeschke, and Christian Brecher, editors, Cyber-Physical
Systems Foundations, Principles and Applications, chapter 19, pages
287–304. Elsevier, 2016.

ASJ+16. George Argyros, Ioannis Stais, Suman Jana, Angelos D. Keromytis, and
Aggelos Kiayias. SFADiff: Automated evasion attacks and fingerprint-
ing using black-box differential automata learning. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-
28, 2016, pages 1690–1701. ACM, 2016.

ASV10. Fides Aarts, Julien Schmaltz, and Frits W. Vaandrager. Inference and
abstraction of the biometric passport. In Tiziana Margaria and Bernhard
Steffen, editors, Leveraging Applications of Formal Methods, Verification,
and Validation: 4th International Symposium on Leveraging Applications,
ISoLA 2010, Heraklion, Crete, Greece, October 18-21, 2010, Proceedings,
Part I, pages 673–686, Berlin, Heidelberg, 2010. Springer Berlin Heidel-
berg.

AT10. Thomas Arts and Simon Thompson. From test cases to FSMs: augmented
test-driven development and property inference. In Proceedings of the 9th
ACM SIGPLAN workshop on Erlang, Erlang ’10, 2010.

AT17a. Bernhard K. Aichernig and Martin Tappler. Learning from faults: Mu-
tation testing in active automata learning - mutation testing in active
automata learning. In Clark Barrett, Misty Davies, and Temesghen Kah-
sai, editors, NASA Formal Methods - 9th International Symposium, NFM
2017, Moffett Field, CA, USA, May 16-18, 2017, Proceedings, volume
10227 of Lecture Notes in Computer Science, pages 19–34, 2017.

AT17b. Bernhard K. Aichernig and Martin Tappler. Probabilistic black-box
reachability checking. In Runtime Verification - 17th International Con-
ference, RV 2017, Seattle, USA, September 13-16, 2017, Proceedings,
2017. In press.



21

BFFH14. Nicola Bonzanni, K. Anton Feenstra, Wan Fokkink, and Jaap Heringa.
Petri nets are a biologist’s best friend. In Francois Fages and Carla Pi-
azza, editors, Proceedings of th First International Conference on Formal
Methods in Macro-Biology (FMMB 2014), volume 8738 of Lecture Notes
in Computer Science, pages 102–116. Springer, 2014.

BFFK09. Nicola Bonzanni, K. Anton Feenstra, Wan Fokkink, and Elzbieta Krep-
ska. What can formal methods bring to systems biology? In Cavalcanti
and Dams [CD09], pages 16–22.

BG96. Francesco Bergadano and Daniele Gunetti. Testing by means of inductive
program learning. ACM Trans. Softw. Eng. Methodol., 5(2):119–145,
1996.

BGJ+05. Therese Berg, Olga Grinchtein, Bengt Jonsson, Martin Leucker, Harald
Raffelt, and Bernhard Steffen. On the correspondence between confor-
mance testing and regular inference. In Maura Cerioli, editor, Fundamen-
tal Approaches to Software Engineering, 8th International Conference,
FASE 2005, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005,
Proceedings, volume 3442 of Lecture Notes in Computer Science, pages
175–189. Springer, 2005.

BI11. Marco Bernardo and Valérie Issarny, editors. Formal Methods for Eter-
nal Networked Software Systems - 11th International School on Formal
Methods for the Design of Computer, Communication and Software Sys-
tems, SFM 2011, Bertinoro, Italy, June 13-18, 2011. Advanced Lectures,
volume 6659 of Lecture Notes in Computer Science. Springer, 2011.

BIPT09. Antonia Bertolino, Paola Inverardi, Patrizio Pelliccione, and Massimo
Tivoli. Automatic synthesis of behavior protocols for composable web-
services. In Hans van Vliet and Valérie Issarny, editors, Proceedings of
the 7th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2009, Amsterdam, The Netherlands, August 24-
28, 2009, pages 141–150. ACM, 2009.

CBP+11. Chia Yuan Cho, Domagoj Babić, Pongsin Poosankam, Kevin Zhijie Chen,
Edward XueJun Wu, and Dawn Song. MACE: model-inference-assisted
concolic exploration for protocol and vulnerability discovery. In Proceed-
ings of the 20th USENIX conference on Security. USENIX Association,
2011.

CD09. Ana Cavalcanti and Dennis Dams, editors. FM 2009: Formal Meth-
ods, Second World Congress, Eindhoven, The Netherlands, November 2-
6, 2009. Proceedings, volume 5850 of Lecture Notes in Computer Science.
Springer, 2009.

CdlHJ09. David Combe, Colin de la Higuera, and Jean-Christophe Janodet. Zulu:
An interactive learning competition. In Anssi Yli-Jyrä, András Kor-
nai, Jacques Sakarovitch, and Bruce W. Watson, editors, Finite-State
Methods and Natural Language Processing, 8th International Workshop,
FSMNLP 2009, Pretoria, South Africa, July 21-24, 2009, Revised Se-
lected Papers, volume 6062 of Lecture Notes in Computer Science, pages
139–146. Springer, 2009.

CHJS14. Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. Learning
extended finite state machines. In Dimitra Giannakopoulou and Gwen
Salaün, editors, Software Engineering and Formal Methods: 12th Interna-



22

tional Conference, SEFM 2014, Grenoble, France, September 1-5, 2014.
Proceedings, pages 250–264, Cham, 2014. Springer International Publish-
ing.

CHJS16. Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. Active
learning for extended finite state machines. Formal Aspects of Comput-
ing, 28(2):233–263, 2016.

Cho78. T. S. Chow. Testing software design modeled by finite-state machines.
IEEE Trans. Softw. Eng., 4(3):178–187, May 1978.

CNS13. Wontae Choi, George C. Necula, and Koushik Sen. Guided GUI test-
ing of android apps with minimal restart and approximate learning. In
Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes, editors,
Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages & Applications, OOP-
SLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31,
2013, pages 623–640. ACM, 2013.

CO94. Rafael C. Carrasco and José Oncina. Learning stochastic regular gram-
mars by means of a state merging method. In Rafael C. Carrasco and
José Oncina, editors, Grammatical Inference and Applications, Second
International Colloquium, ICGI-94, Alicante, Spain, September 21-23,
1994, Proceedings, volume 862 of Lecture Notes in Computer Science,
pages 139–152. Springer, 1994.

Col14. Pieter Collins. Model-checking in systems biology - from micro to macro.
In Francois Fages and Carla Piazza, editors, Proceedings of the First
International Conference on Formal Methods in Macro-Biology (FMMB
2014), volume 8738 of Lecture Notes in Computer Science, pages 1–22.
Springer, 2014.

CSY99. Cezar Câmpeanu, Nicolae Sântean, and Sheng Yu. Minimal cover-
automata for finite languages. In Automata Implementation: Third Inter-
national Workshop on Implementing Automata, WIA’98, Revised Papers,
volume 1660, pages 43–56. Springer Berlin Heidelberg, 1999.

DIMS12. Ionut Dinca, Florentin Ipate, Laurentiu Mierla, and Alin Stefanescu.
Learn and test for Event-B – A Rodin plugin. In John Derrick, John S.
Fitzgerald, Stefania Gnesi, Sarfraz Khurshid, Michael Leuschel, Steve
Reeves, and Elvinia Riccobene, editors, Abstract State Machines, Alloy,
B, VDM, and Z - Third International Conference, ABZ 2012, Pisa, Italy,
June 18-21, 2012. Proceedings, volume 7316 of Lecture Notes in Com-
puter Science, pages 361–364. Springer, 2012.

DIS12. Ionut Dinca, Florentin Ipate, and Alin Stefanescu. Model learning and
test generation for Event-B decomposition. In Tiziana Margaria and
Bernhard Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation. Technologies for Mastering Change - 5th In-
ternational Symposium, ISoLA 2012, Heraklion, Crete, Greece, October
15-18, 2012, Proceedings, Part I, volume 7609 of Lecture Notes in Com-
puter Science, pages 539–553. Springer, 2012.

DLDvL08. Pierre Dupont, Bernard Lambeau, Christophe Damas, and Axel van
Lamsweerde. The QSM algorithm and its application to software be-
havior model induction. Applied Artificial Intelligence, 22(1-2):77–115,
2008.

dRP15. Joeri de Ruiter and Erik Poll. Protocol state fuzzing of TLS implementa-
tions. In Jaeyeon Jung and Thorsten Holz, editors, 24th USENIX Secu-



23

rity Symposium, USENIX Security 15, Washington, D.C., USA, August
12-14, 2015., pages 193–206. USENIX Association, 2015.

EGPQ06. Edith Elkind, Blaise Genest, Doron A. Peled, and Hongyang Qu. Grey-
box checking. In Najm et al. [NPD06], pages 420–435.

FBJV14. Paul Fiterău-Broştean, Ramon Janssen, and Frits W. Vaandrager. Learn-
ing fragments of the TCP network protocol. In Frédéric Lang and
Francesco Flammini, editors, Formal Methods for Industrial Critical Sys-
tems - 19th International Conference, FMICS 2014, Florence, Italy,
September 11-12, 2014. Proceedings, volume 8718 of Lecture Notes in
Computer Science, pages 78–93. Springer, 2014.

FBJV16. Paul Fiterău-Broştean, Ramon Janssen, and Frits W. Vaandrager. Com-
bining model learning and model checking to analyze TCP implementa-
tions. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided
Verification: 28th International Conference, CAV 2016, Toronto, ON,
Canada, July 17-23, 2016, Proceedings, Part II, pages 454–471, Cham,
2016. Springer International Publishing.

FBLP+17. Paul Fiterău-Broştean, Toon Lenaerts, Erik Poll, Joeri de Ruiter,
Frits W. Vaandrager, and Patrick Verleg. Model learning and model
checking of SSH implementations. In Proceedings 24th International
SPIN Symposium on Model Checking of Software, 13-14 July 2017, Santa
Barbara, California, 2017. In press.

FvBK+91. Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek, Mokhtar
Amalou, and Abderrazak Ghedamsi. Test selection based on finite state
models. IEEE Trans. Softw. Eng., 17(6):591–603, June 1991.

GLPS08. Roland Groz, Keqin Li, Alexandre Petrenko, and Muzammil Shahbaz.
Modular system verification by inference, testing and reachability anal-
ysis. In Kenji Suzuki, Teruo Higashino, Andreas Ulrich, and Toru
Hasegawa, editors, Testing of Software and Communicating Systems,
20th IFIP TC 6/WG 6.1 International Conference, TestCom 2008, 8th
International Workshop, FATES 2008, Tokyo, Japan, June 10-13, 2008,
Proceedings, volume 5047 of Lecture Notes in Computer Science, pages
216–233. Springer, 2008.

GPY02a. Alex Groce, Doron A. Peled, and Mihalis Yannakakis. Adaptive model
checking. In Joost-Pieter Katoen and Perdita Stevens, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 8th Inter-
national Conference, TACAS 2002, Held as Part of the Joint European
Conference on Theory and Practice of Software, ETAPS 2002, Grenoble,
France, April 8-12, 2002, Proceedings, volume 2280 of Lecture Notes in
Computer Science, pages 357–370. Springer, 2002.

GPY02b. Alex Groce, Doron A. Peled, and Mihalis Yannakakis. AMC: an adap-
tive model checker. In Ed Brinksma and Kim Guldstrand Larsen, edi-
tors, Computer Aided Verification, 14th International Conference, CAV
2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings, volume 2404
of Lecture Notes in Computer Science, pages 521–525. Springer, 2002.

GS16. Ceren Şahin Gebizli and Hasan Sözer. Automated refinement of mod-
els for model-based testing using exploratory testing. Software Quality
Journal, pages 1–27, 2016.

HGOR14. Karim Hossen, Roland Groz, Catherine Oriat, and Jean-Luc Richier. Au-
tomatic model inference of web applications for security testing. In Sev-
enth IEEE International Conference on Software Testing, Verification



24

and Validation, ICST 2014 Workshops Proceedings, March 31 - April 4,
2014, Cleveland, Ohio, USA, pages 22–23. IEEE Computer Society, 2014.

HHNS02. Andreas Hagerer, Hardi Hungar, Oliver Niese, and Bernhard Steffen.
Model generation by moderated regular extrapolation. In International
Conference on Fundamental Approaches to Software Engineering, Lec-
ture Notes in Computer Science, pages 80–95. Springer, 2002.

HK08. Pham Ngoc Hung and Takuya Katayama. Modular conformance test-
ing and assume-guarantee verification for evolving component-based soft-
ware. In 15th Asia-Pacific Software Engineering Conference (APSEC
2008), 3-5 December 2008, Beijing, China, pages 479–486. IEEE Com-
puter Society, 2008.

HNS03. Hardi Hungar, Oliver Niese, and Bernhard Steffen. Domain-specific op-
timization in automata learning. In Warren A. Hunt Jr. and Fabio
Somenzi, editors, Computer Aided Verification, 15th International Con-
ference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings, vol-
ume 2725 of Lecture Notes in Computer Science, pages 315–327. Springer,
2003.

HRD07. Johannes Henkel, Christoph Reichenbach, and Amer Diwan. Discovering
documentation for Java container classes. IEEE Trans. Software Eng.,
33(8):526–543, 2007.

HSL08. Yating Hsu, Guoqiang Shu, and David Lee. A model-based approach to
security flaw detection of network protocol implementations. In Proceed-
ings of the 16th annual IEEE International Conference on Network Pro-
tocols, 2008. ICNP 2008, Orlando, Florida, USA, 19-22 October 2008,
pages 114–123. IEEE Computer Society, 2008.

HSM10. Falk Howar, Bernhard Steffen, and Maik Merten. From ZULU to RERS
- lessons learned in the ZULU challenge. In Tiziana Margaria and Bern-
hard Steffen, editors, Leveraging Applications of Formal Methods, Verifi-
cation, and Validation - 4th International Symposium on Leveraging Ap-
plications, ISoLA 2010, Heraklion, Crete, Greece, October 18-21, 2010,
Proceedings, Part I, volume 6415 of Lecture Notes in Computer Science,
pages 687–704. Springer, 2010.

HSM11. Falk Howar, Bernhard Steffen, and Maik Merten. Automata learning
with automated alphabet abstraction refinement. In Ranjit Jhala and
David A. Schmidt, editors, Verification, Model Checking, and Abstract
Interpretation - 12th International Conference, VMCAI 2011, Austin,
TX, USA, January 23-25, 2011. Proceedings, volume 6538 of Lecture
Notes in Computer Science, pages 263–277. Springer, 2011.

IHS15. Malte Isberner, Falk Howar, and Bernhard Steffen. The open-source
LearnLib - A framework for active automata learning. In Daniel Kroening
and Corina S. Pasareanu, editors, Computer Aided Verification - 27th
International Conference, CAV 2015, San Francisco, CA, USA, July 18-
24, 2015, Proceedings, Part I, volume 9206 of Lecture Notes in Computer
Science, pages 487–495. Springer, 2015.

ISD15. Florentin Ipate, Alin Stefanescu, and Ionut Dinca. Model learning and
test generation using cover automata. Comput. J., 58(5):1140–1159, 2015.

KMMV16. Sebastian Kunze, Wojciech Mostowski, Mohammad Reza Mousavi, and
Mahsa Varshosaz. Generation of failure models through automata
learning. In Workshop on Automotive Systems/Software Architectures
(WASA’16), pages 22–25. IEEE Computer Society, April 2016.



25

KMR. Hojat Khosrowjerdi, Karl Meinke, and Andreas Rasmusson. Automated
behavioral requirements testing for automotive ECU applications. Sub-
mitted, 2016.

KV94. Michael J. Kearns and Umesh V. Vazirani. An Introduction to Compu-
tational Learning Theory. MIT Press, Cambridge, MA, USA, 1994.

LCJ06. Zhifeng Lai, S. C. Cheung, and Yunfei Jiang. Dynamic model learning
using genetic algorithm under adaptive model checking framework. In
Sixth International Conference on Quality Software (QSIC 2006), 26-28
October 2006, Beijing, China, pages 410–417. IEEE Computer Society,
2006.

LGS06a. Keqin Li, Roland Groz, and Muzammil Shahbaz. Integration testing
of components guided by incremental state machine learning. In Phil
McMinn, editor, Testing: Academia and Industry Conference - Practice
And Research Techniques (TAIC PART 2006), 29-31 August 2006, Wind-
sor, United Kingdom, pages 59–70. IEEE Computer Society, 2006.

LGS06b. Keqin Li, Roland Groz, and Muzammil Shahbaz. Integration testing of
distributed components based on learning parameterized I/O models. In
Najm et al. [NPD06], pages 436–450.

LS14. Remo Lachmann and Ina Schaefer. Towards efficient and effective test-
ing in automotive software development. In Erhard Plödereder, Lars
Grunske, Eric Schneider, and Dominik Ull, editors, 44. Jahrestagung der
Gesellschaft für Informatik, Informatik 2014, Big Data - Komplexität
meistern, 22.-26. September 2014 in Stuttgart, Deutschland, volume 232
of Lecture Notes in Informatics, pages 2181–2192. GI, 2014.

LY94. David Lee and Mihalis Yannakakis. Testing finite-state machines: State
identification and verification. IEEE Trans. Computers, 43(3):306–320,
1994.

MCWKK09. Paolo Milani Comparetti, Gilbert Wondracek, Christopher Krügel, and
Engin Kirda. Prospex: Protocol specification extraction. In 30th IEEE
Symposium on Security and Privacy (S&P 2009), 17-20 May 2009, Oak-
land, California, USA, pages 110–125. IEEE Computer Society, 2009.

Mei04. Karl Meinke. Automated black-box testing of functional correctness us-
ing function approximation. SIGSOFT Softw. Eng. Notes, 29(4):143–153,
July 2004.

MHR+06. Tiziana Margaria, Michael G. Hinchey, Harald Raffelt, James L. Rash,
Christopher A. Rouff, and Bernhard Steffen. Completing and adapt-
ing models of biological processes. In Yi Pan, Franz J. Rammig, Hart-
mut Schmeck, and Mauricio Solar, editors, Proceedings of the IFIP 19th
World Computer Congress on Biologically Inspired Cooperative Comput-
ing, pages 43–54, Boston, MA, 2006. Springer US.

Mit97. Tom M. Mitchel. Machine Learning. McGraw Hill, 1997.
MN10. Karl Meinke and Fei Niu. A learning-based approach to unit testing of

numerical software. In Alexandre Petrenko, Adenilso da Silva Simão,
and José Carlos Maldonado, editors, Testing Software and Systems -
22nd IFIP WG 6.1 International Conference, ICTSS 2010, Natal, Brazil,
November 8-10, 2010. Proceedings, volume 6435 of Lecture Notes in Com-
puter Science, pages 221–235. Springer, 2010.

MN15. Karl Meinke and Peter Nycander. Learning-based testing of distributed
microservice architectures: Correctness and fault injection. In Domenico
Bianculli, Radu Calinescu, and Bernhard Rumpe, editors, Software Engi-
neering and Formal Methods - SEFM 2015 Collocated Workshops: ATSE,



26

HOFM, MoKMaSD, and VERY*SCART, York, UK, September 7-8,
2015, Revised Selected Papers, volume 9509 of Lecture Notes in Com-
puter Science, pages 3–10. Springer, 2015.

MNRS04. Tiziana Margaria, Oliver Niese, Harald Raffelt, and Bernhard Steffen.
Efficient test-based model generation for legacy reactive systems. In
High-Level Design Validation and Test Workshop, 2004. Ninth IEEE In-
ternational, pages 95–100. IEEE, 2004.

MPS+09. Wojciech Mostowski, Erik Poll, Julien Schmaltz, Jan Tretmans, and
Ronny Wichers Schreur. Model-based testing of electronic passports.
In Maŕıa Alpuente, Byron Cook, and Christophe Joubert, editors, For-
mal Methods for Industrial Critical Systems 2009, Proceedings, volume
5825 of Lecture Notes in Computer Science, pages 207–209. Springer,
November 2009.

MS11. Karl Meinke and Muddassar A. Sindhu. Incremental learning-based test-
ing for reactive systems. In Martin Gogolla and Burkhart Wolff, edi-
tors, Tests and Proofs - 5th International Conference, TAP 2011, Zurich,
Switzerland, June 30 - July 1, 2011. Proceedings, volume 6706 of Lecture
Notes in Computer Science, pages 134–151. Springer, 2011.

MSB11. Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software
Testing. Wiley Publishing, 3rd edition, 2011.

Nie03. Oliver Niese. An integrated approach to testing complex systems. PhD
thesis, Dortmund University of Technology, 2003.

NPD06. Elie Najm, Jean-François Pradat-Peyre, and Véronique Donzeau-Gouge,
editors. Formal Techniques for Networked and Distributed Systems
- FORTE 2006, 26th IFIP WG 6.1 International Conference, Paris,
France, September 26-29, 2006, volume 4229 of Lecture Notes in Com-
puter Science. Springer, 2006.

OG92. Jose Oncina and Pedro Garcia. Identifying regular languages in polyno-
mial time. In Advances in Structural and Syntactic Pattern Recognition.
Volume 5 of Series in Machine Perception and Artificial Intelligence,
pages 99–108. World Scientific, 1992.

ORT+07. Martijn Oostdijk, Vlad Rusu, Jan Tretmans, R. G. de Vries, and T. A. C.
Willemse. Integrating verification, testing, and learning for cryptographic
protocols. In Jim Davies and Jeremy Gibbons, editors, Integrated Formal
Methods: 6th International Conference, IFM 2007, Oxford, UK, July 2-
5, 2007. Proceedings, pages 538–557, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

PLG+14. Alexandre Petrenko, Keqin Li, Roland Groz, Karim Hossen, and Cather-
ine Oriat. Inferring approximated models for systems engineering. In
15th International IEEE Symposium on High-Assurance Systems Engi-
neering, HASE 2014, Miami Beach, FL, USA, January 9-11, 2014, pages
249–253. IEEE Computer Society, 2014.

PVY99. Doron A. Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box
checking. In Jianping Wu, Samuel T. Chanson, and Qiang Gao, edi-
tors, Formal Methods for Protocol Engineering and Distributed Systems,
FORTE XII / PSTV XIX’99, IFIP TC6 WG6.1 Joint International Con-
ference on Formal Description Techniques for Distributed Systems and
Communication Protocols (FORTE XII) and Protocol Specification, Test-
ing and Verification (PSTV XIX), October 5-8, 1999, Beijing, China, vol-
ume 156 of IFIP Conference Proceedings, pages 225–240. Kluwer, 1999.



27

PW15. Petros Papadopoulos and Neil Walkinshaw. Black-box test generation
from inferred models. In Rachel Harrison, Ayse Basar Bener, and Burak
Turhan, editors, 4th IEEE/ACM International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering, RAISE 2015,
Florence, Italy, May 17, 2015, pages 19–24. IEEE Computer Society,
2015.

RMSM08. Harald Raffelt, Tiziana Margaria, Bernhard Steffen, and Maik Merten.
Hybrid test of web applications with Webtest. In Tevfik Bultan and Tao
Xie, editors, Proceedings of the 2008 Workshop on Testing, Analysis,
and Verification of Web Services and Applications, held in conjunction
with the ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2008), TAV-WEB 2008, Seattle, Washington, USA,
July 21, 2008, pages 1–7. ACM, 2008.

RMSM09. Harald Raffelt, Maik Merten, Bernhard Steffen, and Tiziana Margaria.
Dynamic testing via automata learning. STTT, 11(4):307–324, 2009.

RS93. Ronald L. Rivest and Robert E. Schapire. Inference of finite automata
using homing sequences. Inf. Comput., 103(2):299–347, 1993.

SAP+17. Suphannee Sivakorn, George Argyros, Kexin Pei, Angelos D. Keromytis,
and Suman Jana. HVLearn: Automated black-box analysis of hostname
verification in SSL/TLS implementations. In 2017 IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017,
pages 521–538. IEEE Computer Society, 2017.

SG09. Muzammil Shahbaz and Roland Groz. Inferring Mealy machines. In
Cavalcanti and Dams [CD09], pages 207–222.

SG14. Muzammil Shahbaz and Roland Groz. Analysis and testing of black-box
component-based systems by inferring partial models. Software Testing,
Verification, and Reliability, 24(4):253–288, 2014.

SHL08. Guoqiang Shu, Yating Hsu, and David Lee. Detecting communication
protocol security flaws by formal fuzz testing and machine learning.
In Kenji Suzuki, Teruo Higashino, Keiichi Yasumoto, and Khaled El-
Fakih, editors, Formal Techniques for Networked and Distributed Systems
- FORTE 2008, 28th IFIP WG 6.1 International Conference, Tokyo,
Japan, June 10-13, 2008, Proceedings, volume 5048 of Lecture Notes in
Computer Science, pages 299–304. Springer, 2008.

SHM11. Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to active
automata learning from a practical perspective. In Bernardo and Issarny
[BI11], pages 256–296.

SL07. Guoqiang Shu and David Lee. Testing security properties of protocol im-
plementations - a machine learning based approach. In 27th IEEE Inter-
national Conference on Distributed Computing Systems (ICDCS 2007),
June 25-29, 2007, Toronto, Ontario, Canada, page 25. IEEE Computer
Society, 2007.

SLBW15. Christoph Schulze, Mikael Lindvall, Sigurthor Bjorgvinsson, and Robert
Wiegand. Model generation to support model-based testing applied on
the NASA DAT web-application - an experience report. In 26th IEEE In-
ternational Symposium on Software Reliability Engineering, ISSRE 2015,
Gaithersbury, MD, USA, November 2-5, 2015, pages 77–87. IEEE Com-
puter Society, 2015.

SLG07a. Muzammil Shahbaz, Keqin Li, and Roland Groz. Learning and inte-
gration of parameterized components through testing. In Alexandre Pe-
trenko, Margus Veanes, Jan Tretmans, and Wolfgang Grieskamp, editors,



28

Testing of Software and Communicating Systems, 19th IFIP TC6/WG6.1
International Conference, TestCom 2007, 7th International Workshop,
FATES 2007, Tallinn, Estonia, June 26-29, 2007, Proceedings, volume
4581 of Lecture Notes in Computer Science, pages 319–334. Springer,
2007.

SLG07b. Muzammil Shahbaz, Keqin Li, and Roland Groz. Learning parameterized
state machine model for integration testing. In 31st Annual International
Computer Software and Applications Conference, COMPSAC 2007, Bei-
jing, China, July 24-27, 2007. Volume 2, pages 755–760. IEEE Computer
Society, 2007.

SMVJ15. Wouter Smeenk, Joshua Moerman, Frits W. Vaandrager, and David N.
Jansen. Applying automata learning to embedded control software.
In Michael Butler, Sylvain Conchon, and Fatiha Zäıdi, editors, Formal
Methods and Software Engineering - 17th International Conference on
Formal Engineering Methods, ICFEM 2015, Paris, France, November 3-
5, 2015, Proceedings, volume 9407 of Lecture Notes in Computer Science,
pages 67–83. Springer, 2015.

SPK07. Muzammil Shahbaz, Benôıt Parreaux, and Francis Klay. Model inference
approach for detecting feature interactions in integrated systems. In
Lydie du Bousquet and Jean-Luc Richier, editors, Feature Interactions
in Software and Communication Systems IX, International Co nference
on Feature Interactions in Software and Communication Systems, ICFI
2007, 3-5 September 2007, Grenoble, France, pages 161–171. IOS Press,
2007.

TAB17. Martin Tappler, Bernhard K. Aichernig, and Roderick Bloem. Model-
based testing iot communication via active automata learning. In 2017
IEEE International Conference on Software Testing, Verification and
Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017, pages 276–
287, 2017.

TB03. Jan Tretmans and Ed Brinksma. TorX: Automated model-based testing.
In A. Hartman and K. Dussa-Ziegler, editors, First European Conference
on Model-Driven Software Engineering, pages 31–43, December 2003.

Tre11. Jan Tretmans. Model-based testing and some steps towards test-based
modelling. In Bernardo and Issarny [BI11], pages 297–326.

UL07. Mark Utting and Bruno Legeard. Practical Model-Based Testing - A
Tools Approach. Morgan Kaufmann, 2007.

UPL12. Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy
of model-based testing approaches. Software Testing, Verification and
Reliability, 22(5):297–312, August 2012.

Vas73. M. P. Vasilevskii. Failure diagnosis of automata. Cybernetics, 9(4):653–
665, 1973.

VT14. Michele Volpato and Jan Tretmans. Active learning of nondeterministic
systems from an IOCO perspective. In Tiziana Margaria and Bernhard
Steffen, editors, Leveraging Applications of Formal Methods, Verification
and Validation. Technologies for Mastering Change - 6th International
Symposium, ISoLA 2014, Imperial, Corfu, Greece, October 8-11, 2014,
Proceedings, Part I, volume 8802 of Lecture Notes in Computer Science,
pages 220–235. Springer, 2014.

VT15. Michele Volpato and Jan Tretmans. Approximate active learning of non-
deterministic input output transition systems. ECEASST, 72, 2015.



29

WBDP10. Neil Walkinshaw, Kirill Bogdanov, John Derrick, and Javier Paris. In-
creasing functional coverage by inductive testing: A case study. In
Alexandre Petrenko, Adenilso Simão, and José Carlos Maldonado, ed-
itors, Testing Software and Systems: 22nd IFIP WG 6.1 International
Conference, ICTSS 2010, Natal, Brazil, November 8-10, 2010. Proceed-
ings, pages 126–141, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

WBHS07. Neil Walkinshaw, Kirill Bogdanov, Mike Holcombe, and Sarah Salahud-
din. Reverse engineering state machines by interactive grammar in-
ference. In 14th Working Conference on Reverse Engineering (WCRE
2007), 28-31 October 2007, Vancouver, BC, Canada, pages 209–218.
IEEE Computer Society, 2007.

WDG09. Neil Walkinshaw, John Derrick, and Qiang Guo. Iterative refinement
of reverse-engineered models by model-based testing. In Cavalcanti and
Dams [CD09], pages 305–320.

Wey83. Elaine J. Weyuker. Assessing test data adequacy through program infer-
ence. ACM Trans. Program. Lang. Syst., 5(4):641–655, 1983.

WF17. Neil Walkinshaw and Gordon Fraser. Uncertainty-driven black-box test
data generation. In 2017 IEEE International Conference on Software
Testing, Verification and Validation, ICST 2017, Tokyo, Japan, March
13-17, 2017, pages 253–263, 2017.

YCM09. Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. Sikuli: using GUI
screenshots for search and automation. In Proceedings of the 22nd annual
ACM symposium on User interface software and technology, pages 183–
192. ACM, 2009.


	Model Learning and Model-Based Testing

