
J. Borgström and B. Luttik (Eds.): Combined Workshop on Expressiveness in
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2013)
EPTCS ??, 2013, pp. 1–15, doi:10.4204/EPTCS.??.??

c© Gebler, Goriac & Mousavi
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.

Algebraic Meta-Theory of Processes with Data

Daniel Gebler
Department of Computer Science, VU University Amsterdam (VU),

De Boelelaan 1081a, NL-1081 HV Amsterdam, The Netherlands

Eugen-Ioan Goriac
ICE-TCS, School of Computer Science, Reykjavik University,

Menntavegur 1, IS-101, Reykjavik, Iceland

Mohammad Reza Mousavi
Center for Research on Embedded Systems (CERES), Halmstad University

Kristian IV:s väg 3, SE-302 50, Halmstad, Sweden

There exists a rich literature of rule formats guaranteeingdifferent algebraic properties for formalisms
with a Structural Operational Semantics. Moreover, there exist a few approaches for automatically
deriving axiomatizations characterizing strong bisimilarity of processes. To our knowledge, this lit-
erature has never been extended to the setting with data (e.g. to model storage and memory). We
show how the rule formats for algebraic properties can be exploited in a generic manner in the setting
with data. Moreover, we introduce a new approach for deriving sound and ground-complete axiom
schemata for a notion of bisimilarity with data, called stateless bisimilarity, based on intuitive auxil-
iary function symbols for handling the store component. We do restrict, however, the axiomatization
to the setting where the store component is only given in terms of constants.

1 Introduction

Algebraic properties capture some key features of programming and specification constructs and can
be used both as design principles (for the semantics of such constructs) as well as for verification of
programs and specifications built using them. When given thesemantics of a language, inferring proper-
ties such as commutativity, associativity and unit element, as well deriving sets of axioms for reasoning
on the behavioural equivalence of two processes constituteone of the cornerstones of process algebras
[7, 39] and play essential roles in several disciplines for behavioural modeling and analysis such as term
rewriting [6] and model checking [9].

For formalisms with a Structural Operational Semantics (SOS), there exists a rich literature on meta-
theorems guaranteeing key algebraic properties (commutativity [32], associativity [17], zero and unit
elements [4], idempotence [1], and distributivity [3]) by means of restrictions on the syntactic shape of the
transition rules. At the same time, for GSOS [13], a restricted yet expressive form of SOS specifications,
one can obtain a sound and ground-complete axiomatization modulo strong bisimilarity [2]. Supporting
some form of data (memory or store) is a missing aspect of these existing meta-theorems, which bars
applicability to the semantics of numerous programming languages and formalisms that do feature these
aspects in different forms.

In this paper we provide a natural and generic link between the meta-theory of algebraic properties
and axiomatizations, and SOS with data for which we considerthat one data state models the whole
memory. Namely, we move the data terms in SOS with data to the labels and instantiate them to closed
terms; we call this processcurrying. Currying allows us to apply directly the existing rule formats for
algebraic properties on the curried SOS specifications (which have process terms as states and triples of

http://dx.doi.org/10.4204/EPTCS.??.??
http://creativecommons.org
http://creativecommons.org/licenses/by-nc-nd/3.0/

2 Algebraic Meta-Theory of Processes with Data

the form (datum, label, datum) as labels). We also present a new way of automatically deriving sound
and ground-complete axiomatization schemas modulo strongbisimilarity for the curried systems for the
setting in which the data component is characterized by constants. It turns out that strong bisimilarity
for the curried SOS specification coincides with the notion of stateless bisimilarity in the original SOS
specifications with data. The latter notion is extensively studied in [31] and used, among others, in
[12, 20, 10, 11]. (This notion, in fact, coincides with the notion of strong bisimilarity proposed for
Modular SOS in [27, Section 4.1].) Hence, using the existingrule formats, we can obtain algebraic laws
for SOS specification with data that are sound with respect tostateless bisimilarity, as well as the weaker
notions of initially stateless bisimilarity and statebased bisimilarity, studied in [31].

Related work. SOS with data and store has been extensively used in specifying semantics of program-
ming and specification languages, dating back to the original work of Plotkin [36, 37]. Since then, several
pieces of work have been dedicated to providing a formalization for SOS specification frameworks al-
lowing one to include data and store and reason over it. The current paper builds upon the approach
proposed in [31] (originally published as [29]).

The idea of moving data from the configurations (states) of operational semantics to labels is rem-
iniscent of Modular SOS [26, 27], Enhanced SOS [18], the TileModel [19], and context-dependent-
behaviour framework of [16]. The idea has also been applied in instances of SOS specification, such
as those reported in [8, 10, 33]. The present paper contributes to this body of knowledge by presenting
a generic transformation from SOS specifications with data and store (as part of the configuration) to
Transition System Specifications [13, 22]. The main purposeof this generic transformation is to enable
exploiting the several existing rule formats defined on transition system specifications on the results of
the transformation and then, transform the results back to the original SOS specifications (with data and
store in the configuration) using a meaningful and well-studied notion of bisimilarity with data. Our
transformation is also inspired by the translation of SOS specifications of programming languages into
rewriting logic, see e.g., [24, 25].

Structure of the paper. The rest of this paper is organized as follows. In Section 2, we recall some
basic definitions regarding SOS specifications and behavioural equivalences. In Section 3, we present the
currying technique and formulate the theorem regarding thecorrespondence between strong and stateless
bisimilarity. In Section 4 we show how to obtain sound and ground-complete axiomatizations modulo
strong bisimilarity for those curried systems for which thedomain of the data component is a finite set
of constants. We apply the currying technique to Linda [15],a coordination language from the literature
chosen as case study in Section 5, and show how key algebraic properties of the operators defined in the
language semantics are derived. We conclude the paper in Section 6, by summarizing the results and
presenting some directions for future work.

2 Preliminaries

2.1 Transition Systems Specifications

We assume a multisorted signatureΣ with designated and distinct sortsP andD for processes and data,
respectively. Moreover, we assume infinite and disjoint sets of process variablesVP (typical members:
xP ,yP ,xPi

,yPi
. . .) and data variablesVD (typical members:xD,yD,xDi

,yDi
. . .), ranging over their

respective sortsP andD.

Gebler, Goriac & Mousavi 3

Process and data signatures, denoted respectively byΣP ⊆ Σ andΣD ⊆ Σ, are sets of function
symbols with fixed arities. We assume in the remainder that the function symbols inΣD take only
parameters of the sortΣD, while those inΣP can take parameters both fromΣP andΣD, as in practical
specifications of systems with data, process function symbols do take data terms as their parameters.

Terms are built using variables and function symbols by respecting their domains of definition. The
sets of open process and data terms are denoted byT(ΣP) andT(ΣD), respectively. Disjointness of
process and data variables is mostly for notational convenience. Function symbols from the process
signature are typically denoted byfP , gP , fPi

andgPi
. Process terms are typically denoted bytP , t′P ,

and tPi
. Function symbols from the data signature are typically denoted byfD,f ′D andfDi

, and data
terms are typically denoted bytD, t′D, andtDi

. The sets of closed process and data terms are denoted by
T (ΣP) andT (ΣD), respectively. Closed process and data terms are typicallydenoted byp,q,p′,pi,p′i
andd,e,d′,di,d′i, respectively. We denote process and data substitutions byσ, σ′, andξ, ξ′, respectively.
We call substitutionsσ : VP → T(ΣP) process substitutions andξ : VD → T(ΣD) data substitutions. A
substitution replaces a variable in an open term with another (possibly open) term. Notions of open and
closed and the concept of substitution are lifted to formulae in the natural way.

Definition 1 (Transition System Specification). Consider a signatureΣ and a set of labelsL (with
typical membersl, l′, l0, . . .). A positive transition formulais a triple (t, l, t′), wheret, t′ ∈ T(Σ) and

l ∈ L, written t
l
−→ t′, with the intended meaning: processt performs the action labeled asl and becomes

processt′.
A transition ruleis defined as a tuple(H,α), whereH is a set of formulae andα is a formula. The

formulae fromH are calledpremisesand the formulaα is called theconclusion. A transition rule is

mostly denoted by
H

α
and has the following generic shape:

(d)
{ti

lij
−→ tij | i ∈ I,j ∈ Ji}

t
l
−→ t′

,

whereI,Ji are sets of indexes,t, t′, ti, tij ∈ T(Σ), andlij ∈ L. A transition system specification(abbre-
viated TSS) is a tuple(Σ,L,R) whereΣ is a signature,L is a set of labels, andR is a set of transition
rules of the provided shape.

We extend the shape of a transition rule to handle process terms paired with data terms in the fol-
lowing manner:

(d’)
{(tPi

, tDi
)

lij
−→(tPij

, tDij
) | i ∈ I,j ∈ Ji}

(tP , tD)
l
−→ (t′P , t

′
D)

,

whereI,Ji are index sets,tP , t′P , tPi
, tPij

∈ T(ΣP), tD, t′D, tDi
, tDij

∈ T(ΣD), andlij ∈ L. A transition
system specification with datais a tripleT = (ΣP ∪ΣD,L,R) whereΣP andΣD are process and data
signatures respectively,L is a set of labels, andR is a set of transition rules handling pairs of process
and data terms.

Definition 2. Let T be a TSS with data. Aproof of a formulaφ from T is an upwardly branching tree
whose nodes are labelled by formulas such that

1. the root node is labelled byφ, and

4 Algebraic Meta-Theory of Processes with Data

2. if ψ is the label of a nodeq and the set{ψi | i ∈ I} is the set of labels of the nodes directly above

q, then there exist a deduction rule
{χi | i ∈ I}

χ
, a process substitutionσ, and a data substitution

ξ such that the application of these substitutions toχ gives the formulaψ, and for all i ∈ I, the
application of the substitutions toχi gives the formulaψi.

Note that by removing the data substitutionξ from above we obtain the definition for proof of a
formula from a standard TSS. The notationT ⊢ φ expresses that there exists a proof of the formulaφ
from the TSS (with data)T . WheneverT is known from the context, we will writeφ directly instead of
T ⊢ φ.

2.2 Bisimilarity

In this paper we use two notions of equivalence over processes, one for standard transition system spec-
ifications and one for transition system specifications withdata. Stateless bisimilarity is the natural
counterpart of strong bisimilarity, used in different formalisms such as [10, 11, 12, 20].

Definition 3 (Strong Bisimilarity [34]). Consider a TSST = (ΣP ,L,R). A relationR ⊆ T (ΣP)×

T (ΣP) is a strong bisimulationif and only if it is symmetric and∀p,q (p,q) ∈ R ⇒ (∀l,p′ p
l
−→p′ ⇒

∃q′ q
l
−→q′ ∧ (q,q′) ∈ R). Two closed termsp and q are strongly bisimilar, denoted byp↔T q if there

exists a strong bisimulation relationR such that(p,q) ∈R.

Definition 4 (Stateless Bisimilarity [31]). Consider a TSS with dataT = (ΣP ∪ΣD,L,R). A relation
Rsl ⊆ T (ΣP)×T (ΣP) is a stateless bisimulationif and only if it is symmetric and∀p,q (p,q) ∈ Rsl ⇒

∀d,l,p′,d′ (p,d)
l
−→ (p′,d′) ⇒ ∃q′ (q,d)

l
−→ (q′,d′)∧ (p′,q′) ∈ Rsl. Two closed process termsp and q are

stateless bisimilar, denoted byp↔T
sl q, if there exists a stateless bisimulation relationRsl such that

(p,q) ∈Rsl.

2.3 Rule Formats for Algebraic Properties

As already stated, the literature on rule formats guaranteeing algebraic properties is extensive. For the
purpose of this paper we show the detailed line of reasoning only for the commutativity of binary oper-
ators, while, for readability, we refer to the corresponding papers and theorems for the other results in
Section 5.

Definition 5 (Commutativity). Given a TSS and a binary process operatorf in its process signature,f
is calledcommutative w.r.t.∼, if the following equation is sound w.r.t.∼:

f(x0,x1) = f(x1,x0).

Definition 6 (Commutativity format [5]). A transition system specification over signatureΣ is in comm-

form format with respect to a set of binary function symbols COMM⊆ Σ if all its f -defining transition
rules withf ∈ COMM have the following form

(c)
{xj

lij
−→yij | i ∈ I}

f(x0,x1)
l
−→ t

wherej ∈ {0,1}, I is an arbitrary index set, and variables appearing in the source of the conclusion
and target of the premises are all pairwise distinct. We denote the set of premises of(c) byH and the

Gebler, Goriac & Mousavi 5

conclusion byα. Moreover, for each such rule, there exist a transition rule(c’) of the following form in
the transition system specification

(c’)
H ′

f(x′0,x
′
1)

l
−→ t′

and a bijective mapping (substitution)h̄ on variables such that

• h̄(x′0) = x1 and h̄(x′1) = x0,

• h̄(t′)∼cc t and

• h̄(h′) ∈H, for eachh′ ∈H ′,

where∼cc means equality up to swapping of arguments of operators in COMM in any context. Transition
rule (c’) is called thecommutative mirrorof (c).

Theorem 7 (Commutativity forcomm-form [5]). If a transition system specification is incomm-form

format with respect to a set of operators COMM, then all operators in COMM are commutative with
respect to strong bisimilarity.

2.4 Sound and ground-complete axiomatizations

In this section we recall several key aspects presented in [2], where the authors provide a procedure
for converting any GSOS language definition that disjointlyextends the language for synchronization
trees to a finite complete equational axiom system which characterizes strong bisimilarity over a disjoint
extension of the original language. It is important to note that we work with the GSOS format because
it guarantees that bisimilarity is a congruence and that thetransition relation is finitely branching [13].
For the sake of simplicity, we confine ourselves to the positive subset of the GSOS format; we expect the
generalization to the full GSOS format to be straightforward.

Definition 8 (Positive GSOS rule format). Consider a process signatureΣP . A positive GSOS ruleρ
overΣP has the shape:

(g)
{xi

lij
−→yij | i ∈ I,j ∈ Ji}

f(x1, . . . ,xn)
l
−→C[~x,~y]

,

where all variables are distinct,f is an operation symbol formΣP with arity n, I ⊆ {1, . . . ,n}, Ji finite
for eachi∈ I, lij andl are labels standing for actions ranging over a given set denoted byL, andC[~x,~y]
is aΣP -context with variables including at most thexi’s andyij ’s.

A finite tree termt is built according to the following grammar:

t ::= 0 | l.t (∀l ∈ L) | t+ t.

We denote this signature byΣBCCSP. Intuitively, 0 represents a process that does not exhibit any
behaviour,s+ t is the nondeterministic choice between the behaviours ofs andt, while l.t is a process
that first performs actionl and behaves liket afterwards. The operational semantics that captures this
intuition is given by the rules of BCCSP [21]:

l.x
l
−→ x

x
l
−→ x′

x+ y
l
−→ x′

y
l
−→ y′

x+ y
l
−→ y′

.

6 Algebraic Meta-Theory of Processes with Data

Definition 9 (Axiom System). Anaxiom(or equation) systemE over a signatureΣ is a set of equalities
of the formt = t′, wheret, t′ ∈ T(Σ). An equalityt = t′, for somet, t′ ∈ T(Σ), is derivable fromE,
denoted byE ⊢ t= t′, if and only if it is in the smallest congruence relation overΣ-terms induced by the
equalities inE.

We consider the axiom systemEBCCSPwhich consists of the following axioms:

x+ y = y+x x+x = x

(x+ y)+ z = x+(y+ z) x+0 = x .

Theorem 10([23]). EBCCSP is sound and ground-complete for bisimilarity onT (ΣBCCSP). That is, it
holds thatEBCCSP⊢ p= q if, and only if,p↔BCCSPq for any two ground termsp andq ∈ T (ΣBCCSP).

Definition 11 (Disjoint extension). A GSOS systemG′ is a disjoint extension of a GSOS systemG,
writtenG ⊑ G′, if the signature and the rules ofG′ include those ofG, andG′ does not introduce new
rules for operations inG.

In [2] it is elaborated how to obtain an axiomatization for a GSOS systemG that disjointly extends
BCCSP. For technical reasons the procedure involves initially transformingG into a new systemG′ that
conforms to a restricted version of the GSOS format, namedsmooth and distinctive. We avoid presenting
this restricted format, as the method proposed in Section 4 allows us to obtain the axiomatization without
the need to transform the initial systemG.

3 Currying Data

We apply the process of currying [40] known from functional programming to factor out the data from
the source and target of transitions and enrich the label to atriple capturing the data flow of the transition.
This shows that, for specifying behaviour and data of dynamic systems, the data may be freely distributed
over states (as part of the process terms) or system dynamics(action labels of the transition system),
providing a natural correspondence between the notions of stateless bisimilarity and strong bisimilarity.
An essential aspect of our approach is that the process of currying is a syntactic transformation defined
on transition system specifications (and not a semantic transformation on transition systems); this allows
us to apply meta-theorems from the meta-theory of SOS and obtain semantic results by considering the
syntactic shape of (transformed) SOS rules.

Definition 12 (Currying and Label Closure). Consider the TSS with dataT = (ΣP ∪ΣD,L,R) and

transition ruleρ ∈R of the shapeρ=
{(tPi

, tDi
)

lij
−→(tPij

, tDij
) | i ∈ I,j ∈ Ji}

(tP , tD)
l
−→ (t′P , t

′
D)

.

The curried versionof ρ is the ruleρc =
{tPi

(tDi
,lij ,tDij

)
−−−−−−−−→ tPij

| i ∈ I,j ∈ Ji}

tP
(tD ,l,t′D)
−−−−−→ t′P

. We further define

Rc = {ρc | ρ ∈R} andLc = {(tD, l, t
′
D) | l ∈ L, tD, t

′
D ∈ T(ΣD)}. Thecurried versionof T is defined

asT c = (ΣP ,L
c,Rc).

By ρcξ =
{tPi

(ξ(tDi
),lij ,ξ(tDij

))
−−−−−−−−−−−→ tPij

| i ∈ I,j ∈ Ji}

tP
(ξ(tD),l,ξ(t′D))
−−−−−−−−−→ t′P

we denote theclosed label versionof ρc with re-

spect to the closed data substitutionξ. By cl(ρc) we denote the set consisting of all closed label versions
of ρc, i.e. cl(ρc) = {ρcξ | ρ

c ∈ Rc, ξ is a closed data substitution}. We further define cl(Rc) = {cl(ρc) |

Gebler, Goriac & Mousavi 7

ρc ∈ Rc} and cl(Lc) = {(ξ(tD), l, ξ(t
′
D)) | (tD, l, t

′
D) ∈ L

c, ξ is a closed data substitution}. Theclosed
label versionof T c is cl(T c) = (ΣP ,cl(Lc),cl(Rc)).

Our goal is to reduce the notion of stateless bisimilarity between two closed process with data terms
to strong bisimilarity by means of currying the TSS with dataand closing its labels. The following
theorem states how this goal can be achieved.

Theorem 13. Given a TSST = (Σ,L,D) with data, for each two closed process termsp,q ∈ T (ΣP),
p↔T

sl q if, and only if,p↔cl(T c)q.

4 Axiomatizing GSOS with Data

In this section we provide an axiomatization schema for reasoning about stateless bisimilarity. We find it
easier to work directly with curried systems instead of systems with data because this allows us to adapt
the method introduced in [2] by considering the set of more complex labels that integrate the data, as
presented in Section 3.

It is important to note that we present the schema by considering that the signature for data terms,
ΣD, consists only of a finite set of constants. However, as we foresee a future extension to a setting
with arbitrary data terms, we choose to use the notation for arbitrary data terms instead of the one for
constants in some of the following definitions.

BCCSP is extended to a setting with data, BCCSPD. This is done by adding to the signature for
process termsΣBCCSPtwo auxiliary operators for handling the store, namedcheckandupdate, obtaining
a new signature,ΣBCCSPD . Terms overΣBCCSPD are build according to the following grammar:

tP ::= 0 | l.tP ∀l∈L | check(tD, tP) | update(tD, tP) | tP + tP .

Intuitively, operationcheck(tD, tP) makes sure that, before executing an initial action fromtP , the store
has the valuetD, andupdate(tD, tP) changes the store value totD after executing an initial action of
processtP . The prefix operation does not affect the store. We directly provide the curried set of rules
defining the semantics of BCCSPc

D.

l.xP
(xD,l,xD)
−−−−−−→ xP

xP
(xD ,l,x′

D
)

−−−−−−→ x′P

check(xD,xP)
(xD ,l,x′

D)
−−−−−−→ x′P

xP
(xD,l,x′

D
)

−−−−−−→ x′P

update(yD,xP)
(xD ,l,yD)
−−−−−−→ x′P

xP
(xD ,l,x′

D)
−−−−−−→ x′P

xP + yP
(xD,l,x′

D
)

−−−−−−→ x′P

yP
(xD ,l,x′

D)
−−−−−−→ y′P

xP + yP
(xD,l,x′

D
)

−−−−−−→ y′P

.

Definition 3 can easily be adapted to the setting of SOS systems with data that are curried.

Definition 14. Consider a TSST = (ΣP ∪ΣD,L,R), which means thatT c = (ΣP ,L
c,Rc). A relation

R ⊆ T (ΣP)× T (ΣP) is a strong bisimulationif and only if it is symmetric and∀p,q (p,q) ∈ R ⇒

∀d,l,d′,p′ p
(d,l,d′)
−−−−→p′ ⇒ ∃q′ q

(d,l,d′)
−−−−→q′ ∧ (q,q′) ∈ R. Two closed termsp and q are strongly bisimilar,

denoted byp↔T c

q if there exists a strong bisimulation relationR such that(p,q) ∈R.

8 Algebraic Meta-Theory of Processes with Data

The axiomatizationEBCCSPcD of strong bisimilarity over BCCSPcD, which is to be proven sound and
ground-complete in the remainder of this section, is given below:

xP + yP = yP +xP (n-comm)
xP +(yP + zP) = (xP + yP)+ zP (n-assoc)
xP +xP = xP (n-idem)
xP +0 = xP (n-zero)
check(xD,xP + yP) = check(xD,xP)+check(xD,yP) (nc)
update(xD,xP + yP) = update(xD,xP)+update(xD,yP) (nu)
check(xD,update(yD,xP)) = update(yD,check(xD,xP)) (cu)
update(xD,update(yD,xP)) = update(xD,xP) (uu)
check(d,check(d,xP)) = xP (∀d ∈ ΣD) (cc)
check(d,check(d′,xP)) = 0 (∀d,d′ ∈ ΣD,d 6= d′) (cc’)
l.xP =

∑

d∈ΣD
update(d,check(d, l.xP)) (lc)

Recall thatΣD is a finite set of constants, and, therefore, the right hand side of axiom (lc) has a finite
number of summands.

The following theorem is proved in the standard fashion.

Theorem 15(Soundness). For each two termss,t in T(ΣBCCSPc
D
) it holds that ifEBCCSPc

D
⊢ s= t then

s↔BCCSPc
D t.

We now introduce the concept of terms inhead normal form, which is essential for proving the
completeness of axiom systems.

Definition 16 (Head Normal Form). LetΣP be a signature such thatΣBCCSPc
D
⊆ΣP . A termt in T(ΣP)

is in head normal form(for short, h.n.f.) if

t=
∑

i∈I

update(t′Di,check(tDi, li.tPi)),

where, for everyi ∈ I, tDi, t
′
Di ∈ T(ΣD), tPi ∈ T(ΣD), li ∈ L. The empty sum(I = ∅) is denoted by the

deadlock constant0.

Lemma 17 (Head Normalization). For any termp in T (ΣBCCSPc
D
), there existsp′ in T (ΣBCCSPc

D
) in

h.n.f. such thatEBCCSPc
D
⊢ p= p′.

Proof. By induction on the number of symbols appearing inp. We proceed with a case distinction on
the head symbol ofp.
Base case

• p= 0; this case is vacuous, becausep is already in h.n.f.

Inductive step cases

• p is of the shapel.p′; then

p
def. p
= l.p′

(lc)
=

∑

d∈T (ΣD)update(d,check(d, l.p′)), which is in h.n.f.

• p is of the shapecheck(d′′,p′′); then

p
def. p
= check(d′′,p′′)

ind. hyp.
=

check(d′′,
∑

i∈I update(d′i,check(di, li.p′i)))
(nc)
=

∑

i∈I check(d′′,update(d′i,check(di, li.p′i)))
(cu)
=

∑

i∈I update(d′i,check(d′′,check(di, li.p′i)))
(cc,cc’)
=

∑

i∈I,di=d′′ update(d′i,check(di, li.p′i)),
which is in h.n.f.

Gebler, Goriac & Mousavi 9

• p is of the formupdate(d′′,p′′); then

p
def. p
= update(d′′,p′′)

ind. hyp.
= update(d′′,

∑

i∈I update(d′i,check(di, li.p′i)))
(nu)
=

∑

i∈I update(d′′,update(d′i,check(di, li.p′i)))
(uu)
=

∑

i∈I update(d′′,check(di, li.p′i)),
which is in h.n.f.

• p is of the formp0+p1; then

p
def. p
= p0+p1

ind. hyp.
=

∑

i∈I check(d′′,update(d′i,check(di, li.p′i))) +
∑

j∈J check(d′′,update(d′j ,check(dj , lj .p′j))) =
∑

k∈I∪J check(d′′,update(d′k,check(dk, lk.p′k))), which is in h.n.f.

Theorem 18 (Ground-completeness). For each two closed termsp,q ∈ T (ΣBCCSPc
D
), it holds that if

p↔BCCSPcDq, thenEBCCSPcD ⊢ p= q.

Proof. We assume, by Lemma 17 thatp,q are in h.n.f., define the functionheightas follows:

height(p) =







0 if p= 0
1+max(height(p1),height(p2)) if p= p1+p2
1+height(p′) if p= update(d′,check(d, l.p′)),

and prove the property by induction onM =max(height(p),height(q)).

Base case(M = 0) This case is vacuous, becausep= q = 0, soEBCCSPcD ⊢ p= q.

Inductive step case(M > 0) We proveEBCCSPc
D
⊢ p= q+p by arguing that every summand ofq is prov-

ably equal to a summand ofp. Let update(d′,check(d, l.q′)) be a summand ofq. By applying the rules

defining BCCSPcD, we deriveq
(d,l,d′)
−−−−→q′. Asq↔BCCSPc

Dp holds, it has to be the case thatp
(d,l,d′)
−−−−→p′ and

q′ ↔BCCSPc
Dp′ hold. Asmax(height(q′),height(p′)) <M , from the inductive hypothesis it results that

EBCCSPc
D
⊢ q′ = p′, henceupdate(d′,check(d, l.q′)) is provably equal toupdate(d′,check(d, l.p′)), which

is a summand ofp.
It follows, by symmetry, thatEBCCSPcD ⊢ q = p+ q holds, which ultimately leads to the fact that

EBCCSPc
D
⊢ p= q holds.

Consider a TSS with dataT = (ΣP ∪ΣD,L,R). For an operationf ∈ΣP , we denote byRf the set
of all rules definingf . All the rules inRf are in the GSOS format extended with the data component.
For the simplicity of presenting the axiomatization schema, we assume thatf only has process terms as
arguments, baring in mind that adding data terms is trivial.

When given a signatureΣP that includesΣBCCSPcD , the purpose of an axiomatization for a term
p ∈ T (ΣP) is to derive another termp′ such thatp↔T c

p′ andp′ ∈ T (ΣBCCSPcD).

Definition 19 (Axiomatization schema). Consider a TSST c = (ΣP ,L
c,Rc) such thatBCCSPcD ⊑ T c.

ByET c we denote the axiom system that extendsEBCCSPcD with the following axiom schema for every
operationf in T , parameterized over the vector of closed process terms~p in h.n.f.:

f(~p) =
∑

{

update(d′,check(d, l.C[~p, ~yP]))

∣

∣

∣

∣

∣

ρ=
H

f(~p)
(d,l,d′)
−−−−→ C[~p,~q]

∈ cl(Rc
f) and X(~p,ρ)

}

,

10 Algebraic Meta-Theory of Processes with Data

whereX is defined asX(~p,ρ) =
∧

pk∈~p
X

′(pk,k,ρ),

and X
′



pk,k,
{xPi

(di,lij ,d′ij)
−−−−−−→yPij

| i ∈ I,j ∈ Ji}

f(~p)
(d,l,d′)
−−−−→ C[~p,~q]



=

if k ∈ I then∀j∈Jk ∃p′,p′′ EBCCSPc
D
⊢ pk = update(d′kj,check(dk, lkj.p′))+p′′.

Intuitively, the axiom transformsf(~p) into a sum of closed terms covering all its execution possibil-
ities. We iterate, in order to obtain them, through the set off -defining rules and check if~p satisfies their
hypotheses by using the meta-operationX. X makes sure that, for a given rule, every component of~p
is a term with enough action prefixed summands satisfying thehypotheses associated to that component.
Note that the axiomatization is built in such a way that it always derives terms in head normal form. Also
note that the sum on the right hand side is finite because of ourinitial assumption that the signature for
data is a finite set of constants.

The reason why we conceived the axiomatization in this manner is of practical nature. Our past
experience shows that this type of schemas may bring terms totheir normal form faster than finite ax-
iomatizations. Aside this, we do not need to transform the initial system, as presented in [2].

Theorem 20. Consider a TSST c = (ΣP ,L
c,Rc) such thatBCCSPcD ⊑ T c. ET c is sound and ground-

complete for strong bisimilarity onT (ΣP).

Proof. It is easy to see that, because of the head normal form of the right hand side of every axiom, the
completeness of the axiom schema reduces to the completeness proof for bisimilarity onT (ΣBCCSPcD).

In order to prove the soundness, we denote, for brevity, the right hand side of the schema in Defini-
tion 19 byRHS.

Let us first prove that iff(~p) performs a transition then it can be matched byRHS. Consider a ruleρ∈

cl(Rc
f) that can be applied forf(~p): ρ =

{xi
(di,lij ,dij)
−−−−−−→yij | i ∈ I,j ∈ Ji}

f(~x)
(d,l,d′)
−−−−→C[~x,~y]

. Thenf(~p)
(d,lij ,d′)
−−−−−→C[~p,~q]

holds and, at the same time, all of the rule’s premises are met. This means thatpi is of the form
∑

j∈Ji
update(dij ,check(di, lij .pij))+p′ for somep′ andpij ’s. It is easy to see that all the conditions for

X are met, so(d, l,d′).C[~p,~q] is a summand ofRHS, and therefore it holds thatRHS
(di,lij ,dij)
−−−−−−→C[~p,~q],

witch matches the transition fromf(~p).
The proof for the fact thatf(~p) can match any of the transitions ofRHSis similar.

We end this section with the remark that the problem of extending the axiomatization schema to the
setting with arbitrary data terms is still open. The most promising solution we have thought of involves
using the infinite alternative quantification operation from [38]. This operation would us to define and
express head normal forms as (potentially) infinite sums, parameterized over data variables.

5 Case Study: The Coordination Language Linda

In what follows we present the semantics and properties of a core prototypical language.
The provided specification defines a structural operationalsemantics for the coordination language

Linda; the specification is taken from [31] and is a slight adaptation of the original semantics presented
in [14] (by removing structural congruences and introducing a terminating processǫ). Process constants
(atomic process terms) in this language areǫ (for terminating process),ask(u) andnask(u) (for checking
existence and absence of tupleu in the shared data space, respectively),tell(u) (for adding tupleu to the

Gebler, Goriac & Mousavi 11

space) andget(u) (for taking tupleu from the space). Process composition operators in this language
include nondeterministic choice (+), sequential composition (;) and parallel composition (‖). The data
signature of this language consists of a constant{} for the empty multiset and a class of unary function
symbols∪{u}, for all tuplesu, denoting the union of a multiset with a singleton multiset containing
tupleu. The operational state of a Linda program is denoted by(p,xD) wherep is a process term in the
above syntax andxD is a multiset modeling the shared data space.

The transition system specification defines one relation−→ and one predicate↓. Note that−→ is
unlabeled, unlike the other relations considered so far. Without making it explicit, we tacitly consider

the termination predicate↓ as a binary transition relation
↓
−→ with the pair(xP ,xD), wherexP andxD

are fresh yet arbitrary process and data variables, respectively.
Below we provide a table consisting of both the original and the curried and closed label versions of

the semantics of Linda on the left and, respectively, on the right.

(1)
(ǫ,xD) ↓

(1c)
ǫ ↓

(2)
(ask(u),xD ∪{u})−→ (ǫ,xD ∪{u})

(2c)
ask(u)

(d∪{u},−,d∪{u})
−−−−−−−−−−→ǫ

(3)
(tell(u),xD)→ (ǫ,xD ∪{u})

(3c)
tell(u)

(d,−,d∪{u})
−−−−−−−→ǫ

(4)
(get(u),xD ∪{u})→ (ǫ,xD)

(4c)
get(u)

(d∪{u},−,d)
−−−−−−−→ǫ

(5)
(nask(u),xD)→ (ǫ,xD)

[u /∈ xD] (5c)
nask(u)

(d,−,d)
−−−−→ǫ

[u /∈ d]

(6)
(xP ,xD) ↓

(xP + yP ,xD) ↓
(7)

(yP ,xD) ↓

(xP + yP ,xD) ↓
(6c)

xP ↓

xP + yP ↓
(7c)

y ↓

xP + yP ↓

(8)
(xP ,xD)→ (x′P ,xD

′)

(xP + yP ,xD)→ (x′P ,xD
′)

(8c)
xP

(d,−,d′)
−−−−−→x′P

xP + yP
(d,−,d′)
−−−−−→x′P

(9)
(yP ,xD)→ (y′P ,xD

′)

(xP + yP ,xD)→ (y′P ,xD
′)

(9c)
yP

(d,−,d′)
−−−−−→y′P

xP + yP
(d,−,d′)
−−−−−→y′P

(10)
(xP ,xD)→ (x′P ,xD

′)

(xP ; yP ,xD)→ (x′P ; yP ,xD
′)

(10c)
xP

(d,−,d′)
−−−−−→x′P

xP ; yP
(d,−,d′)
−−−−−→x′P ; yP

(11)
(xP ,xD) ↓ (yP ,xD)→ (y′P ,xD

′)

(xP ; yP ,xD)→ (y′P ,xD
′)

(11c)
xP ↓ yP

(d,−,d′)
−−−−−→y′P

xP ; yP
(d,−,d′)
−−−−−→y′P

(12)
(xP ,xD) ↓ (yP ,xD) ↓

(xP ; yP ,xD) ↓
(12c)

xP ↓ yP ↓

xP ; yP ↓

(13)
(xP ,xD)→ (x′P ,xD

′)

(xP ‖ yP ,xD)→ (x′ ‖ y,xD
′)

(13c)
xP

(d,−,d′)
−−−−−→x′P

xP || yP
(d,−,d′)
−−−−−→x′P || yP

12 Algebraic Meta-Theory of Processes with Data

(14)
(yP ,xD)→ (y′P ,xD

′)

(xP ‖ yP ,xD)→ (xP ‖ y′P ,xD
′)

(14c)
yP

(d,−,d′)
−−−−−→y′P

xP || yP
(d,−,d′)
−−−−−→xP || y′P

(15)
(xP ,xD) ↓ (yP ,xD) ↓

(xP ‖ yP ,xD) ↓
(15c)

xP ↓ yP ↓

xP ‖ yP ↓

In the curried SOS rules,d andd′ are arbitrary closed data terms, i.e., each transition rulegiven in
the curried semantics represents a (possibly infinite) number of rules for each and every particulard,d′ ∈
T (ΣD). It is worth noting that by using the I-MSOS framework [28] wecan present the curried system
without explicit labels at all as they are propagated implicitly between the premises and conclusion.

Consider transition rules(6c), (7c), (8c), and(9c); they are the only+ - defining rules and they fit in
the commutativity format of Definition 6. It follows from Theorem 7 that the equationx+ y = y+x is
sound with respect to strong bisimilarity in the curried semantics. Subsequently, following Theorem 13,
we have that the previously given equation is sound with respect to stateless bisimilarity in the original
semantics. (Moreover, we have that(x0 + x1,d) = (x1 + x2,d) is sound with respect to statebased
bisimilarity for all d ∈ T (ΣD).)

Following a similar line of reasoning, we get thatx || y = y || x is sound with respect to stateless
bisimilarity in the original semantics.

In addition, we derived the following axioms for the semantics of Linda, using the meta-theorems
stated in the third column of the table. The semantics of sequential composition in Linda is identical to the
sequential composition (without data) studied in Example 9of [17]; there, it is shown that this semantics
conforms to the ASSOC-DE SIMONE format introduced in [17] and hence, associativity of sequential
composition follows immediately. Also semantics of nondeterministic choice falls within the scope of
the ASSOC-DE SIMONE format (with the proposed coding of predicates), and hence,associativity of
nondeterministic choice follows (note that in [17] nondeterministic choice without termination rules is
treated in Example 1; moreover, termination rules in the semantics of parallel composition are discussed
in Section 4.3 and shown to be safe for associativity). Following a similar line of reasoning associativity
of parallel composition follows from the conformance of itsrules to the ASSOC-DE SIMONE format of
[17]. Idempotence for+ can be obtained, because rules(6c), (7c) and (8c), (9c) are choice rules [1,
Definition 40] and the family of rules(6c) to (9c) for all data termsd andd′ ensure that the curried
specification is in idempotence format with respect to the binary operator+. The fact thatǫ is unit
element for; is proved similarly as in [4], Example 10.

Property Axiom Meta-Theorem
Associativity for ; x ; (y ; z) = (x ; y) ; z Theorem 1 of[17]
Associativity for+ x+(y+ z) = (x+ y)+ z Theorem 1 of[17]
Associativity for || x || (y || z) = (x || y) || z Theorem 1 of[17]
Idempotence for+ x+x= x Theorem 42 of[1]
Unit element for; ǫ ; x= x Theorem 3 of[4]
Distributivity of + over ; (x+ y) ; z = (x ; y)+ (x ; z) Theorem 3 of[3]

We currently cannot derive an axiomatization for Linda because its semantics involves arbitrary data
terms, as opposed to a finite number of constants.

Gebler, Goriac & Mousavi 13

6 Conclusions

In this paper, we have proposed a generic technique for extending the meta-theory of algebraic properties
to SOS with data, memory or store. In a nutshell, the presented technique allows for focusing on the
structure of the process (program) part in SOS rules and ignoring the data terms in order to obtain
algebraic properties, as well as, a sound and ground complete set of equations w.r.t. stateless bisimilarity.
We have demonstrated the applicability of our method by means of the well known coordination language
Linda.

It is also worth noting that one can check whether a system is in the process-tyft format presented
in [30] in order to infer that stateless bisimilarity is a congruence, and if this is the case, then strong
bisimilarity over the curried system is also a congruence. Our results are applicable to a large body of
existing operators in the literature and make it possible todispense with several lengthy and laborious
soundness proofs in the future.

Our approach can be used to derive algebraic properties thatare sound with respect to weaker notions
of bisimilarity with data, such as initially stateless and statebased bisimilarity [31]. We do expect to
obtain stronger results, e.g., for zero element with respect to statebased bisimilarities, by scrutinizing
data dependencies particular to these weaker notions. We would like to study coalgebraic definitions of
the notions of bisimilarity with data (following the approach of [41]) and develop a framework for SOS
with data using the bialgebraic approach. Furthermore, it is of interest to check how our technique can
be applied to quantitative systems where non-functional aspects like probabilistic choice or stochastic
timing is encapsulated as data. We also plan to investigate the possibility of automatically deriving
axiom schemas for systems whose data component is given as arbitrary terms, instead of just constants.

Acknowledgements. We thank Luca Aceto, Peter Mosses, and Michel Reniers for their valuable com-
ments on earlier versions of the paper.

References

[1] Luca Aceto, Arnar Birgisson, Anna Ingólfsdóttir, Mohammad Reza Mousavi & Michel A. Reniers (2012):
Rule formats for determinism and idempotence. Science of Computer Programming77(7–8), pp. 889–907,
doi:10.1016/j.scico.2010.04.002.

[2] Luca Aceto, Bard Bloom & Frits W. Vaandrager (1994):Turning SOS rules into equations. Information and
Computation111, pp. 1–52, doi:10.1006/inco.1994.1040.

[3] Luca Aceto, Matteo Cimini, Anna Ingólfsdóttir, Mohammad Reza Mousavi & Michel A. Reniers (2011):
Rule Formats for Distributivity. In Adrian Horia Dediu, Shunsuke Inenaga & Carlos Martı́n-Vide, edi-
tors: Language and Automata Theory and Applications - 5th International Conference, LATA 2011, Tarrag-
ona, Spain, May 26–31, 2011. Proceedings, Lecture Notes in Computer Science6638, Springer, pp. 80–91,
doi:10.1007/978-3-642-21254-35.

[4] Luca Aceto, Matteo Cimini, Anna Ingólfsdóttir, Mohammad Reza Mousavi & Michel A. Reniers (2011):
SOS rule formats for zero and unit elements. Theoretical Computer Science412(28), pp. 3045–3071,
doi:10.1016/j.tcs.2011.01.024.

[5] Luca Aceto, Anna Ingolfsdottir, MohammadReza Mousavi &Michel A. Reniers (2009):Algebraic Proper-
ties for Free! Bulletin of the European Association for Theoretical Computer Science (BEATCS)99, pp.
81–104.

[6] Franz Baader & Tobias Nipkow (1999):Term Rewriting and All That. Cambridge University Press.

http://dx.doi.org/10.1016/j.scico.2010.04.002
http://dx.doi.org/10.1006/inco.1994.1040
http://dx.doi.org/10.1007/978-3-642-21254-3_5
http://dx.doi.org/10.1016/j.tcs.2011.01.024

14 Algebraic Meta-Theory of Processes with Data

[7] J.C.M. (Jos) Baeten, Twan Basten & Michel A. Reniers (2010): Process Algebra: Equational Theories of
Communicating Processes. Cambridge Tracts in Theoretical Computer Science, Cambrdige University Press.

[8] Jos C. M. Baeten & Jan A. Bergstra (1997):Process Algebra with Propositional Signals. Theoretical Com-
puter Science (TCS)177(2), pp. 381–405, doi:10.1016/S0304-3975(96)00253-8.

[9] Christel Baier & Joost-Pieter Katoen (2008):Principles of Model Checking. MIT Press.

[10] D. A. van Beek, Ka Lok Man, Michel A. Reniers, J. E. Rooda &Ramon R. H. Schiffelers (2006):Syn-
tax and consistent equation semantics of hybrid Chi. J. Log. Algebr. Program.68(1-2), pp. 129–210,
doi:10.1016/j.jlap.2005.10.005.

[11] D. A. van Beek, Michel A. Reniers, Ramon R. H. Schiffelers & J. E. Rooda (2007):Foundations of a
Compositional Interchange Format for Hybrid Systems. In Alberto Bemporad, Antonio Bicchi & Gior-
gio C. Buttazzo, editors:Proceedings of the 10th International Workshop on Hybrid Systems: Com-
putation and Control (HSCC’07), Lecture Notes in Computer Science4416, Springer, pp. 587–600,
doi:10.1007/978-3-540-71493-445.

[12] Jan A Bergstra & A. (Kees) Middelburg (2007):Synchronous cooperation for explicit multi-threading. Acta
Informatica44, pp. 525–569, doi:10.1007/s00236-007-0057-9.

[13] Bard Bloom, Sorin Istrail & Albert R. Meyer (1995):Bisimulation can’t be traced. J. ACM 42, pp. 232–268,
doi:10.1145/200836.200876.

[14] Antonio Brogi & Jean-Marie Jacquet (1998):On the Expressiveness of Linda-like Concurrent Languages.
Electr. Notes Theor. Comput. Sci.16(2), pp. 75–96, doi:10.1016/S1571-0661(04)00118-5.

[15] Nicholas Carriero & David Gelernter (1989):Linda in Context. Communications of the ACM32(4), pp.
444–459, doi:10.1145/63334.63337.

[16] Robert J. Colvin & Ian J. Hayes (2011):Structural Operational Semantics through Context-Dependent Be-
haviour. Journal of Logic and Algebraic Programming80(7), pp. 392–426, doi:10.1016/j.jlap.2011.05.001.

[17] Sjoerd Cranen, Mohammad Reza Mousavi & Michel A. Reniers (2008):A Rule Format for Associativity.
In Franck van Breugel & Marsha Chechik, editors:Proceedings of the 19th International Conference on
Concurrency Theory (CONCUR’08), Lecture Notes in Computer Science5201, Springer-Verlag, pp. 447–
461, doi:10.1007/978-3-540-85361-935.

[18] Pierpaolo Degano & Corrado Priami (2001):Enhanced operational semantics. ACM Computing Surveys
33(2), pp. 135–176, doi:10.1145/384192.384194.

[19] Fabio Gadducci & Ugo Montanari (2000):The Tile Model. In Gordon D. Plotkin, Colin Stirling & Mads
Tofte, editors:Proof, Language and Interaction: Essays in Honour of Robin Milner, MIT Press, Boston, MA,
USA, 2000, pp. 133–166.

[20] Vashti Galpin, Luca Bortolussi & Jane Hillston (2013):HYPE: Hybrid modelling by composition of flows.
Formal Asp. Comput.25(4), pp. 503–541, doi:10.1007/s00165-011-0189-0.

[21] R.J. van Glabbeek (2001):The Linear Time - Branching Time Spectrum I. The Semantics ofConcrete, Se-
quential Processes. In A. Ponse S.A. Smolka J.A. Bergstra, editor:Handbook of Process Algebra, Elsevier,
pp. 3–99, doi:10.1007/3-540-57208-26.

[22] Jan Friso Groote & Frits W. Vaandrager (1992):Structured Operational Semantics and Bisimulation As a
Congruence. Information and Computation100(2), pp. 202–260, doi:10.1016/0890-5401(92)90013-6.

[23] Matthew Hennessy & Robin Milner (1985):Algebraic laws for nondeterminism and concurrency. J. ACM
32(1), pp. 137–161, doi:10.1145/2455.2460.

[24] Narciso Martı́-Oliet & José Meseguer (2002):Rewriting Logic as a Logical and Semantic Framework. In
Dov M. Gabbay & Franz Guenthner, editors:Handbook of Philosophical Logic, 9, Kluwer Academic Pub-
lishers, 2002, pp. 1–87, doi:10.1007/978-94-017-0464-91.

[25] José Meseguer & Christiano Braga (2004):Modular Rewriting Semantics of Programming Languages. In
Charles Rattray, Savi Maharaj & Carron Shankland, editors:Proceedings of the 10th International Confer-

http://dx.doi.org/10.1016/S0304-3975(96)00253-8
http://dx.doi.org/10.1016/j.jlap.2005.10.005
http://dx.doi.org/10.1007/978-3-540-71493-4_45
http://dx.doi.org/10.1007/s00236-007-0057-9
http://dx.doi.org/10.1145/200836.200876
http://dx.doi.org/10.1016/S1571-0661(04)00118-5
http://dx.doi.org/10.1145/63334.63337
http://dx.doi.org/10.1016/j.jlap.2011.05.001
http://dx.doi.org/10.1007/978-3-540-85361-9_35
http://dx.doi.org/10.1145/384192.384194
http://dx.doi.org/10.1007/s00165-011-0189-0
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1016/0890-5401(92)90013-6
http://dx.doi.org/10.1145/2455.2460
http://dx.doi.org/10.1007/978-94-017-0464-9_1

Gebler, Goriac & Mousavi 15

ence on Algebraic Methodology and Software Technology (AMAST’04), Lecture Notes in Computer Science
3116, Springer-Verlag, Berlin, Germany, 2004, pp. 364–378, doi:10.1007/978-3-540-27815-329.

[26] Peter D. Mosses (2004):Exploiting Labels in Structural Operational Semantics. Fundam. Inform.60(1-4),
pp. 17–31.

[27] Peter D. Mosses (2004):Modular structural operational semantics. J. Log. Algebr. Program.60-61, pp.
195–228, doi:10.1016/j.jlap.2004.03.008.

[28] Peter D. Mosses & Mark J. New (2009):Implicit Propagation in Structural Operational Semantics. Electr.
Notes Theor. Comput. Sci.229(4), pp. 49–66, doi:10.1016/j.entcs.2009.07.073.

[29] Mohammad Reza Mousavi, Michel Reniers & Jan Friso Groote (2004):Congruence for SOS with Data. In:
Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04), IEEE Computer
Society Press, Los Alamitos, CA, USA, 2004, pp. 302–313, doi:10.1109/LICS.2004.1319625.

[30] Mohammad Reza Mousavi, Michel A. Reniers & Jan Friso Groote (2004):Congruence for SOS with Data.
In: LICS, pp. 303–312, doi:10.1109/LICS.2004.1319625.

[31] Mohammad Reza Mousavi, Michel A. Reniers & Jan Friso Groote (2005): Notions of Bisimulation
and Congruence Formats for SOS with Data. Information and Computation200(1), pp. 107–147,
doi:10.1016/j.ic.2005.03.002.

[32] Mohammad Reza Mousavi, Michel A. Reniers & Jan Friso Groote (2005):A syntactic commutativity format
for SOS. Inf. Process. Lett.93(5), pp. 217–223, doi:10.1016/j.ipl.2004.11.007.

[33] Scott Owens (2008):A Sound Semantics for OCamllight. In Sophia Drossopoulou, editor:ESOP, Lecture
Notes in Computer Science4960, Springer, pp. 1–15, doi:10.1007/978-3-540-78739-61.

[34] David Michael Ritchie Park (1981):Concurrency and Automata on Infinite Sequences. In Peter Deussen,
editor: Theoretical Computer Science, Lecture Notes in Computer Science104, Springer, pp. 167–183,
doi:10.1007/BFb0017309.

[35] Gordon D. Plotkin (1981):A structural approach to operational semantics. Technical Report DAIMI FN-19,
Computer Science Department, Aarhus University, Aarhus, Denmark.

[36] Gordon D. Plotkin (2004):The origins of structural operational semantics. Journal of Logic and Algebraic
Programming (JLAP)60, pp. 3–15, doi:10.1016/j.jlap.2004.03.009.

[37] Gordon D. Plotkin (2004):A structural approach to operational semantics. Journal of Logic and Algebraic
Progamming (JLAP)60, pp. 17–139. This article first appeared as [35].

[38] Michel A. Reniers, Jan Friso Groote, Mark B. van der Zwaag & Jos van Wamel (2002):Completeness of
TimedµCRL. Fundamenta Informaticae50(3-4), pp. 361–402.

[39] A. W. (Bill) Roscoe (2010):Understanding Concurrent Systems. Springer, doi:10.1007/978-1-84882-258-0.

[40] Christopher Strachey (2000):Fundamental Concepts in Programming Languages. Higher-Order and Sym-
bolic Computation13, pp. 11–49, doi:10.1023/A:1010000313106.

[41] Daniele Turi & Gordon D. Plotkin (1997):Towards a Mathematical Operational Semantics. In: LICS, IEEE
Computer Society, pp. 280–291, doi:10.1109/LICS.1997.614955.

http://dx.doi.org/10.1007/978-3-540-27815-3_29
http://dx.doi.org/10.1016/j.jlap.2004.03.008
http://dx.doi.org/10.1016/j.entcs.2009.07.073
http://dx.doi.org/10.1109/LICS.2004.1319625
http://dx.doi.org/10.1109/LICS.2004.1319625
http://dx.doi.org/10.1016/j.ic.2005.03.002
http://dx.doi.org/10.1016/j.ipl.2004.11.007
http://dx.doi.org/10.1007/978-3-540-78739-6_1
http://dx.doi.org/10.1007/BFb0017309
http://dx.doi.org/10.1016/j.jlap.2004.03.009
http://dx.doi.org/10.1007/978-1-84882-258-0
http://dx.doi.org/10.1023/A:1010000313106
http://dx.doi.org/10.1109/LICS.1997.614955

	Introduction
	Preliminaries
	Transition Systems Specifications
	Bisimilarity
	Rule Formats for Algebraic Properties
	Sound and ground-complete axiomatizations

	Currying Data
	Axiomatizing GSOS with Data
	Case Study: The Coordination Language Linda
	Conclusions

