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There exists arich literature of rule formats guarantedifigrent algebraic properties for formalisms
with a Structural Operational Semantics. Moreover, theist@ few approaches for automatically
deriving axiomatizations characterizing strong bisimifjaof processes. To our knowledge, this lit-
erature has never been extended to the setting with datat@ergodel storage and memory). We
show how the rule formats for algebraic properties can béoéep in a generic manner in the setting
with data. Moreover, we introduce a new approach for degigound and ground-complete axiom
schemata for a notion of bisimilarity with data, called skass bisimilarity, based on intuitive auxil-
iary function symbols for handling the store component. \Weestrict, however, the axiomatization
to the setting where the store componentis only given in serhtonstants.

1 Introduction

Algebraic properties capture some key features of progragnand specification constructs and can
be used both as design principles (for the semantics of soestrricts) as well as for verification of
programs and specifications built using them. When giverséneantics of a language, inferring proper-
ties such as commutativity, associativity and unit elemastwvell deriving sets of axioms for reasoning
on the behavioural equivalence of two processes constitugeof the cornerstones of process algebras
[7,[38] and play essential roles in several disciplines &rdvioural modeling and analysis such as term
rewriting [6] and model checking [9].

For formalisms with a Structural Operational Semantics$p@here exists a rich literature on meta-
theorems guaranteeing key algebraic properties (comivititdi32], associativity [17], zero and unit
elements[4], idempotence [1], and distributivity [3]) byens of restrictions on the syntactic shape of the
transition rules. At the same time, for GSQSI[13], a restdatet expressive form of SOS specifications,
one can obtain a sound and ground-complete axiomatizatamtulm strong bisimilarity[[2]. Supporting
some form of data (memory or store) is a missing aspect oktbgsting meta-theorems, which bars
applicability to the semantics of numerous programmingeges and formalisms that do feature these
aspects in different forms.

In this paper we provide a natural and generic link betweemibta-theory of algebraic properties
and axiomatizations, and SOS with data for which we condider one data state models the whole
memory. Namely, we move the data terms in SOS with data tcatheld and instantiate them to closed
terms; we call this procesaurrying. Currying allows us to apply directly the existing rule fats for
algebraic properties on the curried SOS specificationsofwhave process terms as states and triples of
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the form (datum, label, datum) as labels). We also preseetraway of automatically deriving sound
and ground-complete axiomatization schemas modulo sto@ngilarity for the curried systems for the
setting in which the data component is characterized bytaotss It turns out that strong bisimilarity
for the curried SOS specification coincides with the notibstateless bisimilarity in the original SOS
specifications with data. The latter notion is extensivelyded in [31] and used, among others, in
[12,[20,[10/11]. (This notion, in fact, coincides with thetina of strong bisimilarity proposed for
Modular SOS in[[2F7, Section 4.1].) Hence, using the existirlg formats, we can obtain algebraic laws
for SOS specification with data that are sound with respestateless bisimilarity, as well as the weaker
notions of initially stateless bisimilarity and statebdégsimilarity, studied in[[311].

Related work. SOS with data and store has been extensively used in spgcggimantics of program-
ming and specification languages, dating back to the ofiginek of Plotkin [36/37]. Since then, several
pieces of work have been dedicated to providing a formatimaor SOS specification frameworks al-
lowing one to include data and store and reason over it. Themupaper builds upon the approach
proposed in[31] (originally published &s [29]).

The idea of moving data from the configurations (states) efatonal semantics to labels is rem-
iniscent of Modular SOS [26, 27], Enhanced SQOS [18], the Wiedel [19], and context-dependent-
behaviour framework of [16]. The idea has also been apphieidstances of SOS specification, such
as those reported in][B, 110,133]. The present paper corgshatthis body of knowledge by presenting
a generic transformation from SOS specifications with dathstore (as part of the configuration) to
Transition System Specificatioris [13] 22]. The main purpddais generic transformation is to enable
exploiting the several existing rule formats defined ongiion system specifications on the results of
the transformation and then, transform the results badkemtiginal SOS specifications (with data and
store in the configuration) using a meaningful and well-&ddhotion of bisimilarity with data. Our
transformation is also inspired by the translation of SO&H#jgations of programming languages into
rewriting logic, see e.g., [24, 25].

Structure of the paper. The rest of this paper is organized as follows. In Sedtion € yecall some
basic definitions regarding SOS specifications and behealiequivalences. In Sectiéh 3, we present the
currying technique and formulate the theorem regardingtheespondence between strong and stateless
bisimilarity. In Sectiori’¥ we show how to obtain sound andugi>complete axiomatizations modulo
strong bisimilarity for those curried systems for which tt@main of the data component is a finite set
of constants. We apply the currying technique to Linda [A5jpordination language from the literature
chosen as case study in Secfidn 5, and show how key algelogierpes of the operators defined in the
language semantics are derived. We conclude the paper tio®i€; by summarizing the results and
presenting some directions for future work.

2 Preliminaries

2.1 Transition Systems Specifications

We assume a multisorted signatittevith designated and distinct sosand D for processes and data,
respectively. Moreover, we assume infinite and disjoing séfprocess variablegp (typical members:
xp,yp,Tp,,yp,...) and data variable¥p (typical members:xp,yp,zp,,yp,...), ranging over their
respective sort® andD.
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Process and data signatures, denoted respectivelHhy > andXp C X, are sets of function
symbols with fixed arities. We assume in the remainder thatfaimction symbols in-p take only
parameters of the so¥tp, while those inX p can take parameters both frop andXp, as in practical
specifications of systems with data, process function sysrimtake data terms as their parameters.

Terms are built using variables and function symbols byeesipg their domains of definition. The
sets of open process and data terms are denotét{ By ) andT(Xp), respectively. Disjointness of
process and data variables is mostly for notational coeves. Function symbols from the process
signature are typically denoted iy, gp, fp, andgp,. Process terms are typically denotedibyt’,,
andtp,. Function symbols from the data signature are typicallyotiesh by 1, f}, and fp,, and data
terms are typically denoted lay,,t/,, andtp,. The sets of closed process and data terms are denoted by
T(Xp) andT(Xp), respectively. Closed process and data terms are typidatipted byp, ¢, p’, p;. p!
andd,e,d',d;,d}, respectively. We denote process and data substitutions &y and¢, &', respectively.
We call substitutions : Vp — T(Xp) process substitutions agd Vp — T(Xp) data substitutions. A
substitution replaces a variable in an open term with amdffssibly open) term. Notions of open and
closed and the concept of substitution are lifted to formutethe natural way.

Definition 1 (Transition System SpecificatianConsider a signaturé: and a set of labeld. (with
typical members,!’,ly,...). A positive transition formulas a triple (¢,1,¢'), wheret,t € T(X) and
lel, writtentinf’, with the intended meaning: procesperforms the action labeled dg&nd becomes
process’.

A transition ruleis defined as a tupléH, «), whereH is a set of formulae and is a formula. The
formulae fromH are calledpremisesand the formulax is called theconclusion A transition rule is

H
mostly denoted by- and has the following generic shape:
«

lij . .
{ti—J>tij ’Z c [,] c JZ}
(d) ;

t Ly

wherel, J; are sets of indexes, t',¢;,t;; € T(X), andl;; € L. Atransition system specificatiqabbre-
viated TSS) is a tuple:, L, R) whereX is a signature,L is a set of labels, an® is a set of transition
rules of the provided shape.

We extend the shape of a transition rule to handle processstgraired with data terms in the fol-
lowing manner:

lij . .
(@) {(tPi’tDi) —J>(tPij7tDij) ’ iel,je Ji}
l M
(tp,tp)— (tp,tp)
wherel, J; are index setsip,tp,tp,,tp,; € T(Xp), tp,th,tp,,tp,; € T(Xp), andl;; € L. Atransition
system specification with dais.a triple 7 = (Xp UXp, L, R) whereX p and X, are process and data

signatures respectively, is a set of labels, an® is a set of transition rules handling pairs of process
and data terms.

Definition 2. Let7 be a TSS with data. Aroof of a formula¢ from 7 is an upwardly branching tree
whose nodes are labelled by formulas such that

1. the root node is labelled hy, and
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2. if 4 is the label of a node and the sef); | i € I'} is the set of labels of the nodes directly above
¢, then there exist a deduction ru , a process substitution, and a data substitution

X
& such that the application of these substitutionsytgives the formulap, and for alli € I, the
application of the substitutions tg; gives the formulay;.

Note that by removing the data substitutiorfrom above we obtain the definition for proof of a
formula from a standard TSS. The notatifn- ¢ expresses that there exists a proof of the formula
from the TSS (with datéj. Whenevef7 is known from the context, we will writedirectly instead of
TE o.

2.2 Bisimilarity

In this paper we use two notions of equivalence over prosesse for standard transition system spec-
ifications and one for transition system specifications wiidhia. Stateless bisimilarity is the natural
counterpart of strong bisimilarity, used in different falisms such as [10, 11, 12,120].

Definition 3 (Strong Bisimilarity [34]) Consider a TSF = (Xp,L,R). A relation R C T(Xp) X
T(Xp) is astrong bisimulationf and only if it is symmetric and/,, , (p,q) € R = (V) pi>p’ =

dy qi>q’ A (q,q') € R). Two closed termg and ¢ are strongly bisimilar denoted by <7 q if there
exists a strong bisimulation relatioR such that(p,q) € R.

Definition 4 (Stateless Bisimilarity [31]) Consider a TSS with datd = (XpUXp, L, R). A relation
Ry CT(Xp) xT(Xp) is astateless bisimulatioif and only if it is symmetric and,, , (p,q) € Rsi =

Vaip.a (D, d)i> (p',d) =3y (q,d)i> (¢',d)N(p',q") € Rg. Two closed process termsand ¢ are

stateless bisimilardenoted byp ﬁg q, If there exists a stateless bisimulation relatidy such that
(p7 q) S RSI-

2.3 Rule Formats for Algebraic Properties

As already stated, the literature on rule formats guaramjesgigebraic properties is extensive. For the
purpose of this paper we show the detailed line of reasonihgfor the commutativity of binary oper-
ators, while, for readability, we refer to the correspogdpapers and theorems for the other results in
Sectior{b.

Definition 5 (Commutativity) Given a TSS and a binary process operafan its process signaturef,
is calledcommutative w.r.t~, if the following equation is sound w.r:

f(zo,21) = f(x1,20).

Definition 6 (Commutativity format([5]) A transition system specification over signatbrés in comm-
form format with respect to a set of binary function symbols COMM if all its f-defining transition
rules with f € COMM have the following form

lij .
{xj—J>yij | ZEI}
(c)

f(fo,wl)gt

wherej € {0,1}, I is an arbitrary index set, and variables appearing in the reeuof the conclusion
and target of the premises are all pairwise distinct. We derbe set of premises ¢f) by H and the
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conclusion byn. Moreover, for each such rule, there exist a transition r{el¢ of the following form in
the transition system specification
Hl
©) ————

fap ) =
and a bijective mapping (substitutiofi)on variables such that

o hi(x() =z andh(x)) = xo,

e /i(t') ~.tand

e 1i(h') € H, for eachh’ € H’,

where~.. means equality up to swapping of arguments of operators iM®IOn any context. Transition
rule (¢) is called thecommutative mirroof (c).

Theorem 7 (Commutativity forcomm-form [B]). If a transition system specification is &mm-form
format with respect to a set of operators COMM, then all openisin COMM are commutative with
respect to strong bisimilarity.

2.4 Sound and ground-complete axiomatizations

In this section we recall several key aspects presented]imf2ere the authors provide a procedure
for converting any GSOS language definition that disjoirtkfends the language for synchronization
trees to a finite complete equational axiom system whichaciierizes strong bisimilarity over a disjoint
extension of the original language. It is important to noia twe work with the GSOS format because
it guarantees that bisimilarity is a congruence and thatrtingsition relation is finitely branching [13].
For the sake of simplicity, we confine ourselves to the pasgubset of the GSOS format; we expect the
generalization to the full GSOS format to be straightforvar

Definition 8 (Positive GSOS rule format)Consider a process signatudep. A positive GSOS rule
over X p has the shape:

lij . .
{xl—J>yw | ZEI,] S JZ}

I SN

where all variables are distinctf is an operation symbol fore p with arity n, I C {1,...,n}, J; finite
for eachi € 1, [;; andl are labels standing for actions ranging over a given set detbyL, andC/[Z, /]
is a X p-context with variables including at most thgs andy;;’s.

(@

A finite tree termt is built according to the following grammar:
tu=0[lt(VMlel)|t+t.

We denote this signature Bygccsp Intuitively, O represents a process that does not exhibit any
behaviour,s + t is the nondeterministic choice between the behavioursarfdt, while (.t is a process
that first performs actioh and behaves like afterwards. The operational semantics that captures this
intuition is given by the rules of BCCSP [21]:

Lot x+yi>w’ x+yi>y’
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Definition 9 (Axiom System) Anaxiom (or equation systemFE over a signature: is a set of equalities
of the formt = ¢/, wheret, ¢ € T(X). An equalityt = ¢, for somet,¢ € T(X), is derivable fromF,
denoted by i~ ¢ = ¢/, if and only if it is in the smallest congruence relation o¥eterms induced by the
equalities inE.

We consider the axiom systeBsccspwhich consists of the following axioms:

r+y=y+x r+r=x
(z+y)+z=x+(y+2) x+0=z.

Theorem 10([23]). Esccspis sound and ground-complete for bisimilarity @i{Xgccsp). That is, it
holds thatEgccsph p = ¢ if, and only if,p <BCCSPq for any two ground termg andq € T'(Xgccsp).

Definition 11 (Disjoint extension) A GSOS syster@’ is a disjoint extension of a GSOS systém
written G C &, if the signature and the rules 6} include those of7, and G’ does not introduce new
rules for operations irG.

In [2] it is elaborated how to obtain an axiomatization for @S systent- that disjointly extends
BCCSP. For technical reasons the procedure involvesligitransformingG into a new systend:’ that
conforms to a restricted version of the GSOS format, nasmeabth and distinctiveNVe avoid presenting
this restricted format, as the method proposed in Sectidlowsus to obtain the axiomatization without
the need to transform the initial systesh

3 Currying Data

We apply the process of currying [40] known from functionebgramming to factor out the data from
the source and target of transitions and enrich the labelrtpla capturing the data flow of the transition.
This shows that, for specifying behaviour and data of dycaystems, the data may be freely distributed
over states (as part of the process terms) or system dyndautsn labels of the transition system),
providing a natural correspondence between the notiongteless bisimilarity and strong bisimilarity.
An essential aspect of our approach is that the process wfiegris a syntactic transformation defined
on transition system specifications (and not a semantisfisamation on transition systems); this allows
us to apply meta-theorems from the meta-theory of SOS aradrob¢mantic results by considering the
syntactic shape of (transformed) SOS rules.

Definition 12 (Currying and Label Closure)Consider the TSS with data = (XpUXp,L,R) and
lij . .
{(tPNtDi) _]>(tPij’tDij) ‘ iel,je Ji}

l
(tp,tp) = (tp,tp)
{tr (tp,;lijtp;;)

transition rulep € R of the shape =

th‘j ’iG I7j € JZ}
tp (tp,Ltp) t,P
Re={p°|peR}and L ={(tp,l,t}y) |l € L, tp,t), € T(Xp)}. Thecurried versiorof T is defined
asT¢ = (p, L RE).
(€D, )il (D, ) clicl
By p¢ = 1 t{D”' liclje i} we denote thelosed label versioof p¢ with re-
((tp)LE(th)) ,
p—— Py
spect to the closed data substituti®nBy cl(p) we denote the set consisting of all closed label versions
of p¢, i.e. cl(p®) = {p¢ | p° € R, { is a closed data substitutign We further define ¢R¢) = {cl(p°) |

. We further define

The curried versionof p is the rule p¢ =




Gebler, Goriac & Mousavi 7

p¢ e R} and clLe) = {(&(tp),1,£(t))) | (tp,l,t}) € L, is a closed data substitutign Theclosed
label versiorof 7€ is cl(7°¢) = (Xp,cl(L°),cl(R)).

Our goal is to reduce the notion of stateless bisimilarityneen two closed process with data terms
to strong bisimilarity by means of currying the TSS with datad closing its labels. The following
theorem states how this goal can be achieved.

Theorem 13. Given a TSY = (X, L, D) with data, for each two closed process termg € T'(Xp),
p2 qif, and only if,p 97 ).

4 Axiomatizing GSOS with Data

In this section we provide an axiomatization schema forariag about stateless bisimilarity. We find it
easier to work directly with curried systems instead ofeyst with data because this allows us to adapt
the method introduced in 2] by considering the set of monalex labels that integrate the data, as
presented in Sectidd 3.

It is important to note that we present the schema by corisglié¢hat the signature for data terms,
Y p, consists only of a finite set of constants. However, as west® a future extension to a setting
with arbitrary data terms, we choose to use the notationruitrary data terms instead of the one for
constants in some of the following definitions.

BCCSP is extended to a setting with data, BCgSHhis is done by adding to the signature for
process term&gccsptwo auxiliary operators for handling the store, nansbdckandupdate obtaining
a new signaturelgccsp,. Terms ovelgccsp, are build according to the following grammar:

tp=0|ltp YL ‘ CheCKtD,tp) ‘ updatétp,tp) ‘ tp+tp.

Intuitively, operationchecKtp,tp) makes sure that, before executing an initial action ftgmthe store
has the valuep, andupdatétp,tp) changes the store value tp after executing an initial action of
processp. The prefix operation does not affect the store. We direathvide the curried set of rules
defining the semantics of BCC@P

(SCD7I7SU/D) / (Z’D7I7SE/D) /
(:BDvlv’ED) (:BD’l’xlD) ("ED7l7yD) /
lap 22000 4 checKzp,zp) —L% 2, updatéyp,zp) —2% o,
(ID7l7"E(D) / ("EDJ#’E/D) /
rp » Tp yp — Yp
("EDJ’:EID) / ("EDJ’:EID) / '
zp+yp ——Loah  zptyp —5yh

Definition[3 can easily be adapted to the setting of SOS syssteith data that are curried.

Definition 14. Consider a TSS = (X¥pUZXp, L,R), which means thal © = (X p, L¢,R¢). A relation

R CT(Xp)xT(Xp) is astrong bisimulationif and only if it is symmetric an®/, , (p,q) € R =

d,l,d’ d,l,d’ .
Vaid p puﬁ)' =y ng’ A(q,q") € R. Two closed termg and ¢ are strongly bisimilar

denoted by 7 ¢ if there exists a strong bisimulation relatidd such that(p, ¢) € R.
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The axiomatizationEBccsp]»D of strong bisimilarity over BCCSE, which is to be proven sound and
ground-complete in the remainder of this section, is givelouw:

Tp+yp = yptxp (n-comm)
xp+(yp+zp) = (zp+yp)+zp (n-assoc)
rp+xp = xp (n-idem)
zp+0 = zp (n-zero)
checKzp,zp+yp) = checKzp,xzp)+checkzp,yp) (nc)
updatéxp,xp +yp) = updatéxp,xp)+updatéxp,yp) (nu)
checKxp,updatéyp,zp)) = updatdyp,checKzp,zp)) (cu)
updatéxp,updatdyp,zp)) = updatdzp,xp) (uu)
checKd, checKd,zp)) = zp (VdeXp) (cc)
checKd, checKd',zp)) =0 (Vd,d' € ¥p,d#d) (cc’)
l.xp = D 4ex,, Updatdd,checkd,l.zp)) (Ic)

Recall that:  is a finite set of constants, and, therefore, the right hathelafi axiom (Ic) has a finite
number of summands.
The following theorem is proved in the standard fashion.

Theorem 15(Soundness)For each two terms, ¢ in T(EBCCS%) it holds that ifEBCCSpcD Fs=tthen
BCCSP:
S Dt.
We now introduce the concept of termshead normal formwhich is essential for proving the
completeness of axiom systems.

Definition 16 (Head Normal Form)Let > p be a signature such théthcgpcD CYp. Atermtin T(Xp)
is in head normal forngfor short, h.n.f.) if

t= updatét),,checktp;,litp;)),
iel
where, for every € I, tp;,t},, € T(Xp), tp; € T(Xp), l; € L. The empty surtd = () is denoted by the
deadlock constar.

Lemma 17 (Head Normalization) For any termp in T(EBCCS%), there existg’ in T(EBCCSPD) in
h.n.f. such thatgccsp, Fp = P

Proof. By induction on the number of symbols appearingin We proceed with a case distinction on
the head symbol af.
Base case

e p = 0; this case is vacuous, becaysis already in h.n.f.
Inductive step cases
e pis of the shapé.p’; then
p "LPy © et (s ) Updated, checKd, 1.p')), which is in h.n.f.
e pis of the shapehecKd”,p"); then
de:f.p CheCKd//,p//) ind.:hyp.
checKd”, Y., updatdd,, checKd;, 1;.p}))) & .., checkd”, updatdd,, checKd;,1;.p})))
>"ie; updatdd;, checKd”, checkd;, i.p))) =) 3., o updatdd;, checKd;.1;.p,)).
which is in h.n.f.

(cu)
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e pis of the formupdatéd”, p”); then
LY updatdd”,p”) " updatdd”, Y, ., updatdd;, checkd;,L;.p))) &

5., updatéd”, updatdd!, checkd;, 1;.p}))) &) 3, updated”, checKd:,l;.p.)),
which is in h.n.f.

e pis of the formpg + p; then

D detp Dpo +p1 nd._hyp- > .crcheckKd” updated;,checkd;,l;.p;))) +

>_jescheckd” updated;, checKd;, l;.p}))) =
checKd” updatdd, ,checKdy,l.p}))), which is in h.n.f.
keluJ k k

O

Theorem 18 (Ground-completeness)or each two closed termg,q € T'(Xgccse, ), it holds that if
p PSP, thenEgcese, Fp = g.

Proof. We assume, by Lemnmall7 that are in h.n.f., define the functidmeightas follows:

0 ifp=0
heightp) = ¢ 1+ max(heigh{p,),heightps2)) if p=p1+p2
1+ heightp’) if p=updatéd’,checKd,l.p’)),

and prove the property by induction di = max(heigh{p), heightq)).
Base cas¢)M = 0) This case is vacuous, becayse ¢ = 0, so Egccsp, - p = ¢.

Inductive step cas@l/ > 0) We proveEgccsp, - p = ¢+ p by arguing that every summand @fs prov-

ably equal to a summand pf Letupdatdd’,checKd,l.q')) be a summand of. By applying the rules

defining BCCSPR,, we deriveg M)q’. As g +BCCSPhp holds, it has to be the case IWMp/ and

¢’ <BCCShy hold. Asmax(height(q’), heightp’)) < M, from the inductive hypothesis it results that
Egcese, ¢ =p', henceupdatdd’,checKd, .q")) is provably equal taipdatéd’, checkd, I.p")), which
is a summand ap.

It follows, by symmetry, thattgccse, - ¢ = p+ ¢ holds, which ultimately leads to the fact that
EBCCSF‘B = pP=q holds. Ol

Consider a TSS with datd = (X pUXp, L, R). For an operatiorf € ¥ p, we denote by ; the set
of all rules definingf. All the rules inR ; are in the GSOS format extended with the data component.
For the simplicity of presenting the axiomatization schemea assume that only has process terms as
arguments, baring in mind that adding data terms is trivial.

When given a signatur& p that includesEBccng, the purpose of an axiomatization for a term
p € T(Sp) is to derive another terml such thap 7" p’ andp’ € T'(Zaccsp, )-

Definition 19 (Axiomatization schema)Consider a TS = (X p, L¢,R¢) such thatBCCSF, C T*.
By E7- we denote the axiom system that extefgscsp, with the following axiom schema for every
operationf in 7, parameterized over the vector of closed process tgrimg.n.f.:

H
id) .. < cl(R}) and /(17,/7)}.
EE— C[pvq_]

f) =3 {update(d/,checl(d,l.C[ﬁ, yp)) | p=
f (D)
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wherev is defined as v/ (p,p) = A\, c5 V' Pk, %, p),
(d’H’LJ7 )
elicl,
and v’ pmk,{xpg(d)ly: [iehjedit) _
f(p) ——=Clp.q

if kel thenvjeJk E|p P EBCCSP Fpr= update(dkj,Checl(dk,lkj.p’)) —I—p”.

Intuitively, the axiom transformg (p) into a sum of closed terms covering all its execution poksibi
ities. We iterate, in order to obtain them, through the set-defining rules and check jf satisfies their
hypotheses by using the meta-operation v' makes sure that, for a given rule, every componerj of
is a term with enough action prefixed summands satisfyindpyipetheses associated to that component.
Note that the axiomatization is built in such a way that ita derives terms in head normal form. Also
note that the sum on the right hand side is finite because dhdial assumption that the signature for
data is a finite set of constants.

The reason why we conceived the axiomatization in this maimef practical nature. Our past
experience shows that this type of schemas may bring terrtieibonormal form faster than finite ax-
iomatizations. Aside this, we do not need to transform thtealrsystem, as presented [ [2].

Theorem 20. Consider a TS = (Xp, L¢,R¢) such thaBCCSF, C T¢. Er- is sound and ground-
complete for strong bisimilarity oft’(Xp).

Proof. It is easy to see that, because of the head normal form ofghéhliand side of every axiom, the
completeness of the axiom schema reduces to the completerees for bisimilarity on7'(YXgccse, )-
Let us first prove that if () performs a transition then it can be matchedyS Consider a rule €
yij |t €1,j€Ji} (d,lij,d’)
(d7l7 )
>~ jes; updated,;,checKd;, lij.pi;)) +p’ for somep’ andp;;’s. Itis easy to see that all the conditions for
witch matches the transition frorf(p).

In order to prove the soundness, we denote, for brevity, it hand side of the schema in Defini-
(di lij,dij
- Thenf(p) ———Cp.q]
[ (&) ——CIZ,7]
(di lij,dij)
The proof for the fact thaf (7) can match any of the transitions RHSis similar. O

cl(R§) that can be applied fof (p): p =

tion[I9 byRHS
holds and, at the same time, all of the rule’s premises are mats means thap; is of the form
v are met, sdd,l,d’).C[p,q] is a summand oRHS and therefore it holds th&®HS————= C[p, g,

We end this section with the remark that the problem of extenthe axiomatization schema to the
setting with arbitrary data terms is still open. The mosipging solution we have thought of involves
using the infinite alternative quantification operatiomifr{88]. This operation would us to define and
express head normal forms as (potentially) infinite sumgrpaterized over data variables.

5 Case Study: The Coordination Language Linda

In what follows we present the semantics and properties of@rototypical language.

The provided specification defines a structural operatieaalantics for the coordination language
Linda; the specification is taken fromn [31] and is a slight@dton of the original semantics presented
in [14] (by removing structural congruences and introdga@rterminating procesy. Process constants
(atomic process terms) in this language af®r terminating processgask «) andnaskw) (for checking
existence and absence of tuplén the shared data space, respectivelf)(«) (for adding tupleu to the
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space) andjet(«) (for taking tupleu from the space). Process composition operators in thisubgey
include nondeterministic choicerf, sequential composition)(and parallel composition|f. The data
signature of this language consists of a consfarfor the empty multiset and a class of unary function
symbolsU{u}, for all tuplesu, denoting the union of a multiset with a singleton multisehtaining
tupleu. The operational state of a Linda program is denote@pby ) wherep is a process term in the
above syntax andp is a multiset modeling the shared data space.

The transition system specification defines one relatierand one predicat¢. Note that— is
unlabeled, unlike the other relations considered so fath®t making it explicit, we tacitly consider

the termination predicaté as a binary transition relatiodts with the pair(zp,zp), wherexp andzp
are fresh yet arbitrary process and data variables, regpkgct

Below we provide a table consisting of both the original amel¢urried and closed label versions of
the semantics of Linda on the left and, respectively, onitiig.r

(6)

(2)

(1)

(67wD) i

(asku),zp U{u}) = (e,zp U{u})

3)

(tell(u),zp)— (e,xp U{u})

(4)

(gel(u), rpU {u}) - (67 xD)

) rask) 2p) = cap) L F 27
(zp,zp) (yp,zp) |
(xp+yp,xp) | (xp+yp,zp) |

(7)

(zp,2p) = (¥)p,2p")
(QJ'P + yP7$D) — (ZE{P)*’L’D/)

(yp,xp)— (Yp,2D")
(xP + yP7$D) — (yj!)7$D/)

(Q:P, l'D) — (x,Pa l‘D/)
(zp;yp,zp)— (2 ;yp,xp’)

(10)

(zp,zp){ (yp,2p) = (yp,2D’)
(zp;yp,zp)— (Yp,rD')

(xp,zp)l (yp,7p) |
(rpsyp,zp) |

(11)

(12)

(xp,zp)— (zp,xD")
(zp | yp,2p)— (2" || y,2p")

(13)

(1c) )

(2¢) m—o
k() T,

(3c)

tell(u) L,

(4c)

gel(u) (dU{u}v_ 7d) €

(5c) [u ¢ d]

nasku) @=d,

zpl Yl
c) — c) —
zp+ypl rp+ypl

(dv_vdl) /
rp————Tp
(dv_vd/) /
rp+yp——2p
(d7_7d/) /
yp—Yp
(d7_7d/) /
rptyp——Yp
(d7_7d/) /

(8c)




12 Algebraic Meta-Theory of Processes with Data

(dv_vd,)

/ / /
(14) (yPaxD)_NyPﬂUD/) : (14,) yPUyP
(@r lyp-20)= (@ |[y/p20) ep llyp = ap |y
(15) (xP,xD)\L (ypaxD)\l/ (150) $P\L yP\L
(zp [lyp,zp) } zp || yp |

In the curried SOS rules] andd’ are arbitrary closed data terms, i.e., each transitiongivien in
the curried semantics represents a (possibly infinite) murobrules for each and every particuta!’ €
T(Xp). Itis worth noting that by using the I-MSOS framework [28] wen present the curried system
without explicit labels at all as they are propagated inmiidetween the premises and conclusion.

Consider transition rule®.), (7.), (8.), and(9.); they are the only- - defining rules and they fit in
the commutativity format of Definitionl6. It follows from Theem[T that the equation+y =y +z is
sound with respect to strong bisimilarity in the curried seiics. Subsequently, following Theorén 13,
we have that the previously given equation is sound witheetsip stateless bisimilarity in the original
semantics. (Moreover, we have thaty + z1,d) = (z1 + z2,d) is sound with respect to statebased
bisimilarity for alld € T'(Xp).)

Following a similar line of reasoning, we get that| y = vy || « is sound with respect to stateless
bisimilarity in the original semantics.

In addition, we derived the following axioms for the semestof Linda, using the meta-theorems
stated in the third column of the table. The semantics ofeetipl composition in Linda is identical to the
sequential composition (without data) studied in Exampbé [A7]; there, it is shown that this semantics
conforms to the AsocDE SIMONE format introduced in[[17] and hence, associativity of sedjaé
composition follows immediately. Also semantics of nomuetinistic choice falls within the scope of
the AssocDE SIMONE format (with the proposed coding of predicates), and heassociativity of
nondeterministic choice follows (note that in [17] nondetmistic choice without termination rules is
treated in Example 1; moreover, termination rules in theas#ios of parallel composition are discussed
in Section 4.3 and shown to be safe for associativity). koilg a similar line of reasoning associativity
of parallel composition follows from the conformance ofritdes to the AsoGDE SIMONE format of
[17]. Idempotence for can be obtained, because rulés), (7.) and (8.), (9.) are choice rules |1,
Definition 40] and the family of ruleg6.) to (9.) for all data termsi andd’ ensure that the curried
specification is in idempotence format with respect to theaty operator+. The fact thate is unit
element for, is proved similarly as in [4], Example 10.

Property Axiom Meta-Theorem
Associativity for ; xi(y;2)=(x;y);2 Theorem 1 ofl17]
Associativity for+ z+(y+z)=(r+y)+z | Theorem 1ofl7
Associativity for || z||(yllz)=(x]ly)]l =z Theorem 1 ofl17]
Idempotence fo#r- rHr=ux Theorem 42 ofJ]
Unit element for; €;r=u Theorem 3 of4]
Distributivity of + over ; | (x+y);z= (z;y)+ (z;z) | Theorem 3 of3]

We currently cannot derive an axiomatization for Linda hesegits semantics involves arbitrary data
terms, as opposed to a finite number of constants.
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6 Conclusions

In this paper, we have proposed a generic technique for @ixtgthe meta-theory of algebraic properties
to SOS with data, memory or store. In a nutshell, the predeteiehnique allows for focusing on the
structure of the process (program) part in SOS rules andrilggahe data terms in order to obtain
algebraic properties, as well as, a sound and ground coergaéebf equations w.r.t. stateless bisimilarity.
We have demonstrated the applicability of our method by meéthe well known coordination language
Linda.

It is also worth noting that one can check whether a system ke process-tyft format presented
in [30] in order to infer that stateless bisimilarity is a gonence, and if this is the case, then strong
bisimilarity over the curried system is also a congruencar @sults are applicable to a large body of
existing operators in the literature and make it possibldispense with several lengthy and laborious
soundness proofs in the future.

Our approach can be used to derive algebraic propertieartagbund with respect to weaker notions
of bisimilarity with data, such as initially stateless andtsbased bisimilarity [31]. We do expect to
obtain stronger results, e.g., for zero element with resjmestatebased bisimilarities, by scrutinizing
data dependencies particular to these weaker notions. Wilike to study coalgebraic definitions of
the notions of bisimilarity with data (following the appiadaof [41]) and develop a framework for SOS
with data using the bialgebraic approach. Furthermors, df interest to check how our technique can
be applied to quantitative systems where non-functiongéets like probabilistic choice or stochastic
timing is encapsulated as data. We also plan to investidgetepossibility of automatically deriving
axiom schemas for systems whose data component is givebitaigrterms, instead of just constants.

Acknowledgements. We thank Luca Aceto, Peter Mosses, and Michel Reniers farvhkiable com-
ments on earlier versions of the paper.
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