Input-Output Conformance Testing
Based on Featured Transition Systems

Harsh Beohar
Center for Research on Embedded Systems
Halmstad University, Sweden
harsh.beohar@hh.se

ABSTRACT

We extend the theory of input-output conformance testing
to the setting of software product lines. In particular, we
allow for input-output featured transition systems to be used
as the basis for generating test suites and test cases. We
introduce refinement operators both at the level of models
and at the level of test suites that allow for projecting them
into a specific product configuration (or a product sub-line).
We show that the two sorts of refinement are consistent and
lead to the same set of test-cases.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal Methods; D.2.5 [Software Engineering]:
Testing and Debugging

Keywords

Model based testing, Input-output conformance testing, Soft-
ware product lines, Input-output featured transition systems

1. INTRODUCTION
1.1 Motivation

Software Product Lines (SPLs) have become common prac-
tice in software development and have been proven effective
in mass production and customization of software. There
have been several attempts to provide a structured discipline
for testing SPLs. However, it appears from recent surveys
[4, 5, 8, 7] that several fundamental approaches to model-
based testing (based on finite state machines and labeled
transition systems) are not yet fully adapted to and adopted
in this domain. The theory of Input-Output Conformance
(I0CO) [11], is one such fundamental approach, which uses
labeled transition systems for model-based testing. We are
not aware of any prior work in adapting the theory of IOCO
to cater for variability in SPLs. The present paper addresses
this gap by extending IOCO to the setting of SPLs. To

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’14 March 24-28, 2014, Gyeongju, Korea.

Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

Mohammad Reza Mousavi
Center for Research on Embedded Systems
Halmstad University, Sweden
m.r.mousavi@hh.se

this end, we propose Input-Output Featured Transition Sys-
tems (IOFTSs) as simple yet expressive behavioral models of
SPLs and adapt the traditional IOCO theory to allow for us-
ing IOFTS (instead of plain input-output transition system
models) as test models for model-based testing. We define
the test suite and the test cases that are generated from an
IOFTS, which can be used for checking conformance. We
define two notions of refinement, one at the level of IOFTSs
and another one at the level of test suites, that allow for
focusing on particular sets of features and eventually on a
particular product. We show that these two refinements in-
teract nicely, in that they lead to the same set of test cases.

1.2 Running Example

To illustrate the concepts throughout the paper, we for-
malize various aspects of the following SPL (due to Asirelli
et al. [2]) and study its testing in the remainder of this paper.

Ezample 1. We model an SPL for vending machines, which
accept one-Euro coins (1e) exclusively for the European mar-
ket and one-Dollar coins (1d) exclusively for the American
market. Then, a user can between sugar or nosugar, after
which the user is allowed to choose a beverage among coffee,
tea, and cappuccino. Furthermore, the following three con-
straints must hold on each product. First, coffee must be
offered by each and every variant of this product line. Sec-
ond, cappuccino is served only by the European machines
and whenever cappuccino is served, a ring-tone must ring.
Third, tea is an optional feature for both markets.

1.3 Organization

In Section 2, we define the notion of input-output featured
transition systems as our basic modeling language. In Sec-
tion 3, a notion of refinement is proposed that allows for
projecting the SPL behavior into the behavior of a product
or a product sub-line. In Section 4, we define the notions
of test suite and test case. In Section 5, a notion of refine-
ment is given on test suites, which allows for deriving more
specific test suites from the more generic ones. In the same
section, we show that the above-mentioned notions of re-
finement (i.e., on models and test suites) are consistent in
that they lead to the same set of test cases. In Section 5,
we also show that the intensional and extensional notions
of conformance testing coincide, i.e., non-conformance can
always be established by means of running test-cases. In
Section 6, we conclude the paper and present directions for
future research.

.
@)

dl, _____

Ld] —» 1 b1 [}

Figure 1: Vending machine feature diagram [2].

2. INPUT-OUTPUT FEATURED TRANSITION

SYSTEMS

Feature diagrams [6, 10] have been used to model vari-
ability constraints in SPLs using a graphical notation. A
feature diagram represents all valid products of an SPL in
terms of features that are arranged hierarchically. Usually,
feature diagrams are represented by a directed acyclic graph,
of which each node is a feature. There are different kinds
of edges between a parent node (feature) and its children
(sub-features), namely, the ones representing the mandatory
sub-features, and the others representing the optional sub-
features. Furthermore, a feature diagram can specify three
additional type of constraints on features:

1. Alternative relationship, i.e., the designated sub-features

can never be simultaneously present in any product.

2. Exclude relationship, i.e., different features at different
levels of hierarchy can never be simultaneously present
in any product.

3. Require relationship, i.e., if a feature is present in a
product, the related feature should also be present in
the same product.

Ezample 2. Consider the feature diagram depicted in Fig-
ure 1 [2], which represents the features and the feature con-
straints of Example 1. In this diagram every machine must
consist of features machine (m), coin (o), and beverage (b)
and may comprise an optional feature ring-tone (r). The coin
feature is further decomposed into two alternative features
euro (e) and dollar (d). Furthermore, Figure 1 also specifies
that cappuccino (p) requires ring-tone (r), which is denoted
by a uni-directional dashed line and cappuccino is absent in
the machine that takes dollars, which is represented by a
bi-directional dashed line.

A feature diagram only specifies the structural aspects
of variability in an SPL; however, to formally analyze the
behavior of an SPL, we follow the approach of [3] in an-
notating the transitions of a labeled transition system with
logical constraints on the presence or absence of features;
the features used in such logical constraints are assumed to
be already specified in a feature diagram. We slightly ex-
tend the featured transition system of [3] to cater for the
distinction between input and output actions. This is a nec-
essary ingredient for extending the theories of testing, and
particularly IOCO, to this setting.

Let B = {T, L} be the set of Boolean constants and let
B(F) be the set of all propositional formulae generated by
interpreting the elements of the set I’ as propositional vari-
ables. For instance, in the context of Example 2, formula
e A\ —d asserts the presence of euro coin and the absence of
dollar coin. We let ¢, ¢’ range over the set B(F).

Definition 1. A input-output featured transition system
(IOFTS) is a 6-tuple (S, s, A, F, T, A), where

1. S is the set of states,
2. s € S is the initial state,

3. Ar = Az W Ao W {7} is the set of actions, where Az
and Ao are disjoint sets of input and output actions,
respectively, and 7 is the silent (internal) action,

4. Fis a set of features,

5. T C Sx A xB(F) x S is the transition relation satis-
fying the following condition (for every si,s2 € S,a €
A, 0,9 € B(F)):

(s1,a,,82) €T A (s1,a,¢',82) €T = o= ¢,
6. A C{X: F — B} is a set of product configurations.

We write s <, s to denote an element (s,a,p,s’) € T
and drop the subscript ¢ whenever it is clear from the con-
text. Graphically, we denote the initial state of an IOFTS
by an incoming arrow with no source state and we refer to an
IOFTS by its initial state. Following the standard notation,
we denote the reachability relation by —» C S x A* x S,
inductively defined as follows:

g T (el a
sms s s s2s s s atT

£ a oa
s—»s s —» s s —» s
The set of reachable states from a state s by a trace o € A*
is denoted by Reach(s,o) = {s’ | s % s’}. Furthermore, we

fix Reach(s) = {s' | 35 s » s’}

Ezample 3. Consider the FTS in Figure 2(a) with the as-
sociated feature constraints defined in the following way.

Transitions | ¢ _
Te Transitions
81— S2 € cappuccino
1d d §g ——— S
51 52 ringatone
coffee p=r
So — S5 C
tea remaining transitions | m
S2 — Sg t

In Figure 2(a), inputs and outputs are prefixed with symbols
7 and !, respectively. The transition labeled with !ringatone,
T stands for two transitions. The set of product configu-
rations of the IOFTS is the following set of 10 products
specified by the feature diagram of Example 2 [1]:

A ={{m,o,b,c,e},{m,0,b,c,e,r},{m,o0,b,c,e,t},
{m,o0,b,c,e,t,r},{m,0,b,c,e,p,r},{m,o0,b,c,d},
{m,o0,b,c,d,r},{m,o0,b,c,d,t},
{m,o0,b,c,d,t,r},{m,0,b,c,e, p,r, t}}.

3. REFINEMENT OF MODELS

In [3], a family of operators, parameterized by product
configuration, have been introduced to project an FTS into
a labeled transition system describing the behavior of a spe-
cific product. In this paper, we generalize this approach by
defining a family of product derivation operators (parame-
terized by feature constraints), which project the behavior
of an IOFTS into another IOFTS representing a selection of
products (a product sub-line).

71e,71d

?nosugar

?cappuccin
“?cappuccino 7coffee
!pour
sugar

!poursuggz—)

!poursugar ‘

7takecup

Iringatone,
T

Ipourcoffee

(a) The vending machine product line.

)
—
?le

sugar ?nosugar

?
§)
?cappuccin
?coffee ?cappuccino “?coffee
1
!pour
sugar

S S

?takecup

(b) The behavior of all products in European
market that do not serve tea.

Figure 2: IOFTSs of the vending machine example [2].

Definition 2. Given a feature constraint ¢ and an IOFTS
T = (S,s,A-, F,T,A), the projection operator A, (7T) in-
duces an IOFTS (S, Ay (s), Ars, F, T',A"), where

1. 8" ={A,(s") | s € S} is the set of states,
2. A,(s) is the initial state,

3. A;s = A- U {8} is the set of actions, where ¢ is the
special action label modeling quiescence [11],

4. T’ is the smallest relation satisfying:

s inp/ s
D AEAANNE(pAY))
Ay(s) i><PA<P’ A«P(S/)

(1)

A={AeA|XAEpAQ(s, M)} A#D
5
Ap(s) Zon(Vaex N Dols)
where the predicate Q(s, \) is defined as

(2)

Vsl a0 (s inp/ s Aha€AoU {7-}) = A~ Q.

5. A" ={\ e A |) ¢} is the set of product configura-
tions.

In the above-given rules A = ¢, denotes that valuation A
of features satisfies feature constraint ¢. Intuitively, rule (1)
describes the behavior of those valid products that satisfy
the feature constraint ¢ in addition to the original anno-
tation of the transition emanating from s. Rule (2) mod-
els quiescence (the absence of outputs and internal actions)
from the state A,(s). Namely, it specifies that the projec-
tion with respect to ¢ is quiescent, when there exists a valid
product A that satisfies ¢ and is quiescent, i.e., cannot per-
form any output or internal transition. Quiescence at state
s for a feature constraint A is formalized using the predicate

Q(s, A), which states that from state s there is no output or
silent transition with a constraint satisfied by A. In the con-
clusion of the rule, a § self-loop is specified and its constraint
holds when ¢ holds and at least the feature constraint of one
quiescent valid product holds.

The ability to observe quiescence is crucial in defining the
input-output conformance relation between a specification
and an implementation (see Section 4). The way it is de-
fined in rule (2) is essential in the top-down testing method-
ology prescribed by the refinement relation: one can start
with a more generic test suite and move on to more specific
test suites using the refinement operator and the test results
using the more generic test suite remain sound with respect
to the more specific test suite.

Ezample 4. Consider the vending machine product line
and suppose we are interested in analyzing the behavior of
all products in the European markets that do not serve tea.
This can be formulated as A, (s1), where ¢ = leA—t and s;
is the initial state in Figure 2(a). The behavior induced by
this feature constraint is given in Figure 2(b). Notice that
the one-dollar (1d) transition does not occur at state s1 in
Figure 2(b) even though this constraint is unspecified in .

In the sequel, we use the phrase “a feature specification
A, (s)” to mean an IOFTS (Reach(Ay(s)), Ay(s), As, F, T,
A). Henceforth, we work only with feature specifications.
We interpret the original IOFTS of Definition 1 as At (so);
this has the implicit advantage of always including quies-
cence in appropriate states. We end this section by the fol-
lowing proposition which relates the traces in the refined
specification to those of the original (more generic) specifi-
cation. As a corollary, it follows that the set of traces of a
refined feature specification is a subset of the traces of the
more generic specification.

Proposition 1. Tf Appr(8) =% Apngr(s') and o € A* then
Ap(s) = Ap(s).

Proor. Straightforward by induction on o, since for any
product configurations X of the feature specification A, n 7 (s)
we have A\ Ep A’ = Ao, O

4. TEST SUITE AND TEST CASES

The ioco testing theory [11] formalizes model-based test-
ing in terms of a conformance relation between a model and
a system under test (SUT). This relation can be checked by
constantly providing the SUT with inputs that are deemed
relevant by the model (expressed as an IOTS: input-output
labeled transition system) and observing outputs from the
SUT and comparing them with the possible outputs pre-
scribed by the model. The ioco theory is based on the testing
assumption that the behavior of the system under test can
be expressed by an IOTS, which is unknown to the tester. In
addition to the above-sketched extensional definition of ioco,
there is an equivalent intensional definition, which relies on
comparing the traces of the underlying IOTSs.

In what follows, we first extend the intensional notion of
conformance between any two feature specifications (Defini-
tion 4). Then, using the concept of test suite (Definition 5),
we give an extensional definition of the class of test cases for
a given specification A,(s).

To formally define both the intensional and the exten-
sional notion of input-output conformance (ioco), we require
the notion of suspension traces [11] in an IOFTS. Informally,
a suspension trace is a trace that may also contain quies-
cence.

Definition 3. The set of suspension traces of a feature
specification A, (s) is defined as:

Straces(Ay(s)) = {0 € As™ | T Ap(s) = Au(s)}.

Intuitively, the ioco relation asserts that the experiments
derived from a feature specification (i.e, suspension traces
of the specification) and executed on the implementation
under test, result in outputs that are always allowed by the
specification.

Definition 4. An implementation modeled as a feature
specification A,/ (s") is input-output conforming to a spec-
ification modeled as a feature specification A,(s), denoted
Ay (s) Cioco Ayr(s'), iff

out(Reach(A,/(s"),0)) C out(Reach(Ay(s), 7)),

for every suspension trace o € Straces(A,(s)), where out(X)
denotes the set of output enabled from the states in the set
X, ie., out(X) ={a € Ao U {6} | Fsex,«r s —= §'}.

Conventionally, test cases are defined as deterministic input-

output labeled transition systems having finite number of
states (with no structure) and certain restrictions on the
transitions (see [11, Definition 10]). In this paper, we de-
fine them operationally in the sense of [9] by endowing a
structure on the states (see Definition 5). This allows for
generating a test suite for a product line and refining it into
test suites for more specific sub-lines (and eventually gener-
ating test cases for a specific product).

Definition 5. The test suite for an IOFTS (Reach(A,(s)),
Ay(s), Ars, F, T, A) is an IOFTS (XU{pass, fail}, (Xo, €), 4s,
F,T',A), where

L X ={({s'| Ap(s) 2 Ay(s")},0) | o € Straces(s)} is
the set of states and {pass, fail} is the set of so-called
verdict states [11],

2. (Xo,¢) is the initial state of the test suite, where Xq =
{s" [Ag(s) = Ap(s)},
3. As is the set of actions, and

4. the transition relation 7" is defined as the smallest
relation satisfying the following rules.

a€ Ao U {0}
(X,0) = (Y,0')
(X,0) %, pass

(X,0),(Y,0a) € X
(X,0) =, (Y, 0a)

3)

(X,0) 7Z><p pass
a € Ao U{d}

(X,0) L, fail

a € Ao U{d}

pass in,, pass
fail %, fail

Intuitively, the test suite for a feature specification is an
IOFTS (possibly with an infinite number of states) which
contains all the possible test cases that can be generated.
Rule (3) states that if X and Y are nonempty sets of reach-
able states from s (under feature restriction ¢) with the
suspension traces o and oa, respectively, then there exists
a transition of the form (X, o) 2, (Y, 0a) in the test suite.
Rules (4) and (5) model, respectively, the successful and the
unsuccessful observation of outputs and quiescence. Note
that input actions are not included in rules (4) and (5) be-
cause the implementation is assumed to be input-enabled
[11]; hence, they are only covered in rule (3). Rule (6) states
that the verdict states contain self-loop for every output ac-
tion and quiescence.

Ezample 5. Recall the feature specification A, (s1) given
in Figure 2(a). An illustration of the test suite (up to depth
2) for the specification A, (s1) is shown in Figure 3. The

edge ({s1},¢) 29, fail in Figure 3 denotes the transition
({s1},€) % fail for every output a € Ao.

5] 5] 5
IﬁSQL 1do) ,}({81}76) 6({52}7 1ed)
e pass pass pass
%, s /0 s 0 sl 0
e ({s2},1d) 4 ({5,},¢) & ({SQL le)

o - %
8 \} AOM/ %
BRENNY AO fail o [

Figure 3: Test suite of the vending machine

The following properties are immediate from the rules given
in Definition 5.

Lemma 1. If (X, 0) LS (Y,0") then o = o0’.

Lemma 2. Let (Xo,€) be the initial state of the test suite
generated from a feature specification A, (s). If (Xo,¢) =
(X,0) then Vo Ay(s) = Ay(s)) & s € X.

Lemma 3. Let (Xo, €) be the initial state of the test suite
generated from a feature specification A, (s). If Ay(s) 2
A, (s") for some s’ then Ix (Xo,e) = (X,0) As € X.

Lemma 4. If (X, 0) LS (Y,0') and (X, 0) LS (Z,0") then
Y =727

PROOF. Proof of all the above-given lemmata is straight-
forward by induction on the corresponding trace (¢’ in Lem-
mata 1 and 4 and ¢ in Lemmata 2 and 3). [

Next, we formalise the intuition that a test case is a finite
projection of a test suite, plus the restriction that at each
moment of time at most one input can be fed into the system
under test.

Definition 6. Given a test suite 7 with initial state (Xo, €),
the set of test cases of T up depth n, denoted by t,(T), is
an IOFTS, of which the transition relation is the minimal
relation satisfying both the following deduction rules,

a

(X,0) B, (Y, o)A |o'| <n
tn(X,0) o ta(Y,0")

(7)

(X,0) 5, YA (Y = pass VY = fail)
tn(X,0) B, Y

(8)

and the following Tretmans’ restrictions:

1. For any reachable state X such that ¢,(Xo,e) —» &,
either init(X) = {a} U Ap (for some a € Az) or
init(X) = Ao U{d}, where init(X) = {a | Iy ¥ = V}.

2. For any reachable state X such that ¢,(Xo,&) —» &,
if ¥ & pass then Vy X &) =) = pass.

A test case of depth n for a feature specification A,(s) is
tn(Xo,), where (Xo,€) is the initial state of the test suite
generated from Ay (s).

Ezample 6. Recall the feature specification A, (s1) from
Figure 2(a). A test case of depth 1 generated from the test
suite of the feature specification A, (s1) is shown in Figure 4.

pass
) 5)
({s2}, 1d) 49 ({51},) 118 ({52}, 1e)
7 e
Ao fail o

Figure 4: A test case of the vending machine

Proposition 2. A test case is always deterministic and ApU
{6}-enabled.

Proposition 3. A test case has no cycles except those in
the verdict states pass and fail.

Next, we show that the intensional and the extensional no-
tions of testing coincides. To do so, we recall the definition
of the synchronous parallel composition operator] that al-
lows us to model a test run on an implementation (cf. [11]).

This synchronous parallel composition operator || is defined
over a test suite and an IOFTS (the implementation under
test) as follows. Note that the calligraphic letters X,) in
the following rules range over the states of a test suite.

X5Y A s) B A() acA
XA (s) =1 V]Au(s)

9)

Ay(s) o Aw(sl)
XAp(s) =1 XNAL(s)

(10)

X5V A(s) D AL
XA (s) 21 VIAL(S)

By having a notion of running a test suite on a feature spec-
ification (representing the behavior of the implementation
under test), we can now define what it means for a feature
specification to pass (fail) a test suite. Informally, a test
suite is passed by a feature specification if and only if no in-
teraction between the test suite and the feature specification
leads to the fail verdict state.

(11)

Definition 7. Let (Xo,€) be the initial state of the test
suite generated from a feature specification A, (s). A feature
specification A,/ (s") passes the test suite (Xo,e) iff

Voeas s x (Xo,&)|Ap () 2 XA, (s") = X # fail

Next we prove that the intensional and the extensional char-
acterization of the Cioco relation coincide, i.e., Cioco can
always be checked by means of the generated test suite.

Theorem 1. Let (Xo,e) be the initial state of the test
suite generated from a feature specification A, (s). Then,
Ay (3) Cioco Ay (s") iff A/ (s") passes the test suite (Xo, €).

PROOF SKETCH. (<) Suppose the feature specification
A (s") passes the test suite (Xo,). Then, we show by con-
tradiction that A, (s) Cioco Ay (s') holds. Assume that a €
out(Reach(A,/(s'),0)) and let a ¢ out(Reach(Ay(s),0)),
for some o € Straces(A,(s)),a € Ao U {d}. Then,

35// (X(),EH|A(P/(S/) i% fail—HAw(SN).

But, A,/ (s") passes the test suite; hence, a contradiction.

(=) Suppose Ay(s) Cioco Ay (s”). Then we prove by
contradiction that the feature specification A,/ (s") passes
the test suite (Xo,¢). Wlog', let Ix (Xo,e)]Au(s)) >
(X,0)]A, (s1) = fail]| A, (s), for some 0,51, 55,0 € Ao U
{6}. Clearly, o € Straces(Ay(s)), a ¢ out(Reach(A,(s),
0)), and a € out(Reach(A, (s'),0)). But Ay(s) Cioco
A (s") implies that

out(Reach(A, (s"),0)) C out(Reach(A,(s), o))

which again leads to a contradiction. [

5. REFINEMENT OF TEST SUITES

In this section, we define the notion of refinement on test
suites, to project them into more specific product sub-lines
and eventually into products. As the main result of this
section, we show that the two notion of refinements (the
one on IOFTS as models defined in Section 2 and the other

!"Without loss of generality

defined in this section) are consistent. More precisely, we
show that restricting a test suite of the feature specification
A,(s) by a feature constraint ¢’ is isomorphic to the test
suite of the feature specification A,y ().

Definition 8. Two states X and) are isomorphic, de-
noted X = Y, if there exists a bijection f : Reach(X) —
Reach(Y) such that f preserves the transition structure, i.e.,

le,XgeReach(X),a X1 i> X & f(Xl) i) f(XQ)

Nest, we introduce the projection operator Af, that re-
stricts the behavior of the test suite of the feature specifica-
tion Ay (s) by ¢’

Definition 9. Let (XU{pass, fail}, (Xo,¢), As, F, T, A) be
the test suite generated from a feature specification Ay (s).
For a feature constraint ¢’, the test-projection operator Afp/ (0)
induces an IOFTS

(AL/(X) U {pass, fail}, AL/ (Xo,), As, F, T',A"),

where the transition relation 7” is defined as the smallest
relation satisfying the following rules.

(X7 J) i><P (Ya Ul)
I AEAANEY)
AL(X,0) 5 AL(Y, o)

(12)

a€ Ao US§
A;/(X, O’) ihp AZ/(Y, O'I)
AL/(X,0) % pass

a€ Ao U6
AL/(X,0) £, pass
AL/(X,0) < fail

13)

a € Ap U{d}
pass iw pass
fail %, fail

(15)

The component A’ is defined as A’ = {A € A | A = ¢}

Intuitively, rule (12) states that if an a-transition can be
executed in the test suite for the specification A, (s) (i.e.,
(X,0) % (Y,0a)) and there exists a product configuration
in the test suite that satisfies ¢’ then the a-transition can
be executed in the restricted test suite. Rules (13) and (14)
model the successful and the unsuccessful observations of
outputs and quiescence, respectively.

‘We now prove some properties on the restricted test suite
of the specification A,(s) under ¢’. Lemma 5 is similar to
Lemma 4, which states that a unique state is always reach-
able for every trace in the restricted test suite.

Lemma 5. Let X be the initial state of a test suite. If
A;,(Xo,s) it A:‘a, (X,0) and Afp, (Xo,e) 2 A;, (Y, o) then

PROOF. Direct from Lemma 4. [

Lemma 6 states that any reachable state in the test suite of
the specification A a,(s) is a subset of a reachable state
in the restricted test suite (see Figure 5 for an illustration,
where the subset relationship is indicated by a partition).

Lemma 6. Let Xo and X{, be the initial states of the test
suites generated from A, (s) and A,n,r(s), respectively. If

(X,e) = (X, 0) then Iy AL, (Xo,e) —» AL (Y,0)AX CY.

A;/(X()"?) A;,(}C 0)

Figure 5: An illustration of Lemma 6, where X, and
X{ are the initial states of the test suites generated
from A,(s) and A, (), respectively.

test suite generation

A(p S (X07 5)
A ()J JAZ/)
Apng(5) (X0, €) = AL(Xo,)

test suite generation

Figure 6: An illustration of Theorem 2

ProOF. We prove this lemma by induction on o. We
identify the following cases:

1. Let 0 = &. We need to show that X{ C Xo.

s' € Xg (Assumption)
= Apngr (8) S Apnagr () (Lemma 2)

= Ay(s) = Ay(s)) (Proposition 1)
= s € Xo (Lemma 2) .

2. Let o # ¢. Suppose (X§,e) 2 (X,0) = (X', 0a). By
the induction hypothesis we have

Iy AL (Xo,e) - AL(Y,0) AN X C Y.
Furthermore, by construction of sets X, X’ we have

351€X752€X’AW\¢’ (51) % AWAW/(SQ)
=s €Y A ALP(S1) i) AW(SQ)
(X CY and Proposition 1)

= 3y (Y,0") 5 (Y, 0'a) A sz € Y/(Lemma 3)
=3y AL(Y,0') 5 AL(Y',0'a) (12).

Next, we need to show that X’ C Y. Let s5 € X', for
some sh € S. Then there is a transition A,/ (s1) —
Ay (85), for some s1 € X. And from Proposition 1
we get Ap(s1) = Ay(sh). But, X C Y and from
Lemma 2 we have s5 € Y'; whence, X' CY’. O

Lemma 7. Let (Xo, €) be the initial state of the test suite
generated from a feature specification Ay (s). If AL, (Xo,¢)

= AL/(X,0) then o € Straces(A ny (s)).

PROOF. Suppose A;/(Xo, e) % A'jp,(X7 o). Then by con-
struction of X we have 3yrcx Aungr () = Apnyr(s). Thus,
o € Straces(Agnyr(s)). O

We are now ready to prove the main result (Figure 6) of
this section which states restricting a test suite leads to an
isomorphic test suite by restricting a feature specification.

Theorem 2. Let (Xo,¢) and (X§,) be the initial states
of the test suites generated from A, (s) and A,ny(s), re-
spectively. Then, A;,(Xo,s) ~ (Xj, €).

ProOOF. To show this isomorphism, we define the function
[Reach(A}, (Xo,e)) — Reach(Xg,) as follows:
t .
f(AL(X,0)) = (Y,0) if

A;/(Xo,E) -U» Afp/(Xv U) A (XIOve) -U» (Y7 O-);

f(pass) = pass; and f(fail) = fail. The function f is well-
defined follows from Lemma 4. The injectivity of f follows
from Lemma 5. Furthermore, f is surjective follows from
Lemmas 4 and 6.

Next, we show that f preserves the transition structure.
Let X & Y, for some X, € Reach(Af, (Xo,¢)). The case
when X is either pass or fail is trivial. However, the inter-
esting case is when X = A, (X, o). We further identify the
following cases:

1. Let Y = A%, (Y,0'). Then, from Lemma 7 we know
that o’ € Straces(Ap,n,(s)); thus, there exists Y’
such that (Xo,¢) % (Y',0"). Hence, f(Y) = (Y', o).
For the converse, suppose f(X) % (Y',o’), for some
(Y', o) € Reach(Xo,e). Using Lemmas 5 and 6 we
have f(Y) = (Y',0’), for some Y € Reach(Xo, ¢).

2. Let Y = pass. Then,
X % pass
& Iy X 5 AL(Y, o)
& FX) S FAL(Y,0))
& f(X) % pass

(rule (13))
(Case 1)

(rule (4)).

3. Let Y = fail. Suppose otherwise f(X) 2 pass. Then,
from rule (4) we know that there exists Y’ o’ such that
f(X) % (Y, 0'). And by Lemma 6 we have 3 X =
(Y,0). But, X % fail; hence, a contradiction.

a

For the converse, suppose X % pass and f(X) %
fail. Then, from rule (13) we know that there exists

Y,0' such that X < A%, (Y,0'). And from Case 1 we
know that f(X) % f(Y,0'), which again leads to a
contradiction because f(X) % fail. [

Corollary 1. Let (Xo,e) be the initial state of the test

suite generated from Ay (s). If (Xo, &) Ayr (s') = fail]| A (')

then, for every ¢’, we have
A(tp/ (Xo, E)HAW’ (S/) —U» fail]|A¢,u (S),

PRrOOF. The result follows directly from the fact that
A%, (Xo,e) = fail, whenever (Xo,e) =» fail. O

6. CONCLUSIONS

In this paper, we extended the notion of input-output con-
formance testing to the setting of software product lines, by
allowing for models that are annotated with feature con-
straints. Such models are called input-output featured tran-
sition systems. In addition to the theory of conformance
testing, we defined notions of refinement both on models
and on test suites that allow for projecting, respectively, the
behavior and the test suites into a specific set of features
and eventually into a specific product.

We have two main items in our research agenda in this
area: we would like to extend our theoretical framework
to allow for coordinated and incremental testing of various

products such that the effort in testing common features is
factored out as much as possible. Secondly, we would like to
implement our theoretical framework and perform empirical
research on its effectiveness and efficiency.

Acknowledgments

We would like to thank anonymous reviewers for their in-
sightful comments.

7. REFERENCES

[1] P. Asirelli, M. H. Beek, A. Fantechi, and S. Gnesi. A
compositional framework to derive product line
behavioural descriptions. In Leveraging Applications of
Formal Methods, Verification and Validation.
Technologies for Mastering Change, volume 7609 of
LNCS, pages 146-161. Springer, 2012.

[2] P. Asirelli, M. H. ter Beek, S. Gnesi, and A. Fantechi.
Formal description of variability in product families.
In Proc. of 15th International Software Product Line
Conference, pages 130-139. IEEE, 2011.

[3] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans,
A. Legay, and J.-F. Raskin. Featured transition
systems: Foundations for verifying variability-intensive
systems and their application to LTL model checking.
IEEE Trans Software Eng (TSE), 2012.

[4] P. A. da Mota Silveira Neto, I. do Carmo Machado,

J. D. McGregor, E. S. de Almeida, and S. R.

de Lemos Meira. A systematic mapping study of
software product lines testing. Inf. Softw. Technol.,
53(5):407-423, 2011.

[5] E. Engstrom and P. Runeson. Software product line
testing - a systematic mapping study. Information &
Software Technology, 53(1):2-13, 2011.

[6] K. Kang, S. Cohen, J. Hess, W. Novak, and
S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, 1990.

[7] B. P. Lamancha, M. P. Usaola, and M. P. Velthius.
Systematic review on software product line testing. In
Software and Data Technologies, volume 170 of
Comm. in Computer and Information Science, pages
58-T1. Springer, 2013.

[8] S. Oster, A. Wiibbeke, G. Engels, and A. Schiirr.
Model-based software product lines testing survey. In
Model-based Testing for Embedded Systems, pages
339-381. CRC Press, 2011.

[9] G. D. Plotkin. A Structural Approach to Operational
Semantics. Technical Report DAIMI FN-19,
University of Aarhus, 1981.

[10] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux.
Feature diagrams: A survey and a formal semantics.
In Proc. of the 14th IEEE International Conference on
Requirements Engineering, pages 136-145. IEEE, 2006.

[11] J. Tretmans. Model based testing with labelled
transition systems. In Formal Methods and Testing,
volume 4949 of LNCS, pages 1-38. Springer, 2008.

