
Formal Modeling of Evolving Self-Adaptive Systems

Narges Khakpoura, Saeed Jalilia, Carolyn Talcottb, Marjan Sirjanic,d,
MohammadReza Mousavie

aTarbiat Modares University, Tehran, Iran
bSRI International, Menlo Park, California

cReykjavk University, Reykjavk, Iceland
dUniversity of Tehran and IPM, Tehran, Iran

eEindhoven University of Technology, Eindhoven, The Netherlands

Abstract

In this paper, we present a formal model, named PobSAM (Policy-based Self-
Adaptive Model), for developing and modeling self-adaptive evolving systems.
In this model, policies are used as a mechanism to direct and adapt the behavior
of self-adaptive systems. A PobSAM model is a collection of autonomous man-
agers and managed actors. The managed actors are dedicated to the functional
behavior while the autonomous managers govern the behavior of managed actors
by enforcing suitable policies. A manager has a set of configurations including
two types of policies: governing policies and adaptation policies. To adapt sys-
tem behavior in response to the changes, the managers switch among different
configurations. We employ the combination of an algebraic formalism and an
actor-based model to specify this model formally. Managed actors are expressed
by an actor model. Managers are modeled as meta-actors whose configurations
are described using a multi-sorted algebra called CA. We provide an opera-
tional semantics for PobSAM using labeled transition systems. Furthermore,
we provide behavioral equivalence of different sorts of CA in terms of splitting
bisimulation and prioritized splitting bisimulation. Equivalent managers send
the same set of messages to the actors. Using our behavioral equivalence theory,
we can prove that the overall behavior of the system is preserved by substituting
a manager by an equivalent one.

1. Introduction

Motivation Increasingly, software systems are subjected to adaptation at run-
time due to changes in the operational environments and user requirements.
Adaptation is classified into two broad categories: structural adaptation and

Email addresses: nkhakpour@modares.ac.ir (Narges Khakpour),
sjalili@modares.ac.ir (Saeed Jalili), clt@cs.stanford.edu (Carolyn Talcott),
msirjani@ut.ac.ir (Marjan Sirjani), m.r.mousavi@tue.nl (MohammadReza Mousavi)

Preprint submitted to Elsevier May 24, 2011

behavioral adaptation [21]. While structural adaptation aims to adapt the be-
havior by changing the system’s architecture, behavioral adaptation focuses on
modifying the functionalities of the computational entities.

There are several challenges in designing and developing self-adaptive sys-
tems. Flexibility is a main concern to achieve adaptation. Due to the fact that
today’s systems steadily become larger, more heterogeneous, and long-lived,
they must have the ability to continuously evolve and grow even in situations
unknown during development time. Hence, flexible and scalable approaches are
required for developing today’s complex and evolving software-intensive systems,
since hard-coded mechanisms make tuning and adapting long-run systems com-
plicated. Recently, the use of policies has been given attention as a powerful
mechanism to achieve flexibility in adaptive and autonomous systems which al-
low one to “dynamically” specify the requirements in terms of high level goals.
A policy is a rule describing under which condition a specified subject must (can
or cannot) do an action on a specific object. There are numerous academic and
industrial approaches that use policies for managing and adapting the system
behavior, e.g., [1, 34] propose architectures for engineering autonomic comput-
ing systems, also policies are used as a mechanism to trigger the adaptation in
[5, 16, 17, 20, 15].

Due to the fact that self-adaptive systems are often complex systems with
a great degree of autonomy, it is more difficult to ensure that a self-adaptive
system behaves as intended and avoids undesirable behavior. Hence, one of the
main concerns in developing self-adaptive systems is providing mechanisms to
ensure that the system is operating correctly, where model-driven approaches
and formal methods can play a key role.

Generally, proposed formal methods for dynamic adaptation mainly focus
on the structural changes of adaptive systems (e.g., see [13]). Fewer formal ap-
proaches are concerned with the behavioral changes of adaptive systems and
developing flexible model-driven approaches to design and develop evolving
adaptive systems. Zhang et al. [40] proposed a model-driven approach using
Petri Nets for developing adaptive programs. The program consists of a set of
steady-state programs and adaptation is done by switching among the steady-
state programs. They also presented a model-checking approach for verification
of adaptive programs [41, 39] in which an extension of LTL with an “adapt” op-
erator was used to specify the adaptation requirements. Furthermore, authors
in [32, 2] proposed a framework named MARS which uses labeled state transi-
tion systems directly at a low level of abstraction to model and verify embedded
adaptive systems. A MARS module has a set of configurations and adaptation is
done by changing the active configuration. All the proposed formal models share
the following drawbacks: (1) although, the adaptation concerns are separated
from the functionality of the system, the adaptation logic is hard-coded which
leads to system’s inflexibility. (2) the steady-state programs and configurations
are fixed and cannot change dynamically. (3) the system is specified as labeled
state transition systems at a low-level of abstraction. Since the adaptation logic
as well as configurations/steady-state programs are fixed and cannot change dy-
namically, these approaches are unsuitable to develop evolving adaptive systems

2

in which the system is required to adapt to unforeseen situations.
This paper In this paper, we propose a formal model called PobSAM

(Policy-based Self-Adaptive Model) for developing and specifying self-adaptive
systems that employs policies as the principal paradigm to govern and adapt the
system behavior. We model a self-adaptive system as a collection of interact-
ing actors directed to achieve particular goals according to predefined policies.
A PobSAM model is composed of a collection of autonomous managers and
managed actors. Autonomous managers are meta-actors responsible for moni-
toring and handling events by enforcing suitable policies. Each manager has a
set of configurations containing adaptation policies and governing policies. A
manager changes its configuration dynamically in response to the changing cir-
cumstances according to adaptation policies. The behavior of managed actors
is either governed by managers or cannot be directly controlled from outside.
Governing policies are the rules that are applied while the system is in a stable
state. Adaptation policies are rules that govern the transient states between two
stable states while the system is changing. The set of manager’s configurations
is not fixed and may change dynamically by growing and evolving the system.

PobSAM has a formal foundation that employs an integration of algebraic
formalisms and Actor-based models. The computational (functional) model
of PobSAM is actor-based while the multi-sorted algebra CA (Configuration
Algebra) is proposed to specify the configurations of managers. The sub-algebra
CAa is used to specify actions of simple governing policies which is built on the
process algebra PAccδ [10]. The common set theoretic operators are employed to
specify governing policy sets. We formalize adaptation policies using CAp. The
operational semantics of PobSAM is described with labeled transition systems.

We provide a behavioral equivalence to reason about PobSAM models. A
sound and complete axiomatizations, modulo splitting bisimulation, is provided
for CAa. We introduce an operator, named Ψ, to formulate the behavior of gov-
erning policy sets in terms of CAa terms. Then we use CAa axiom system to
reason about the behavioral equivalence of governing policy sets. We introduce
a new type of bisimilarity named prioritized splitting bisimulation. A sound and
complete axiomatizations, modulo prioritized splitting bisimulation is proposed
to describe the behavioral equivalence of adaptation policies. Following [11], we
define a particular model for CAp in terms of prioritized conditional transition
systems modulo prioritized splitting bisimulation, which indeed satisfies the de-
fined axioms of CAp. Furthermore, we present an equational theory to reason
about configurations and managers. This equational theory is particularly help-
ful for automatic component assessment. We refer to component assessment as
the problem of identifying a component with desired behavior that can replace
another component or can be used for interaction. A possible solution to this
problem relies on detecting the behavioral equivalence of a particular compo-
nent with desired behavior and a candidate component that could maintain that
behavior. We will illustrate this problem by means of concrete examples.

Contributions In the past, rigid formal methods have been proposed for
modeling and analysis of adaptive systems at the behavioral level, mainly at low
levels of abstraction, and flexible policy-based approaches have been proposed

3

for designing adaptive systems without formal foundation. Here, we propose a
flexible policy-based approach with formal foundation to support model-driven
developing and verification of self-adaptive systems. Compared to existing work,
our approach has the following novel features:

1. PobSAM is a novel flexible formal approach to design and develop evolving
self-adaptive systems which uses an identical mechanism, i.e., policies, to
adapt and control the system behavior.

2. Policies allow us to separate the rules that govern the behavioral choices of a
system from the system functionality, giving us a higher level of abstraction,
so that we can change the system behavior by enforcing suitable policies
which can be modified at runtime, without the need to change the system
code. As an example, we are able to change and reason about the scheduling
of jobs using policies independent of the system code.

3. Policies are specified at a high-level of abstraction and allow us to decouple
the adaptation concerns from the application code. We can adapt the sys-
tem behavior to unforeseen situations by defining and modifying the policies
dynamically (i.e., governing policies and adaptation policies). This is a ma-
jor advantage over the proposed formal models for developing evolving and
complex systems.

4. Safe adaptation is a main requirement of a model to develop self-adaptive sys-
tems. To this end, we present an adaptation strategy to pass the adaptation
phase safely and at the right moment.

5. Since, PobSAM is a modular model, it can support both structural and
behavioral adaptation, however in this paper, we focus on the behavioral
adaptation.

6. The formal foundation, the modular model, and separation of adaptation
rules will help us in developing rigorous analysis techniques. Since, CAa

is complete and sound for splitting bisimulation and CAp is complete and
sound for prioritized splitting bisimulation, we can reason about policy ac-
tions, governing policies, adaptation policies, configurations and managers
separately, without need to construct the whole model of the system. This is
a main advantage for evolving systems whose requirements and environment
change dynamically.

Compared to the conference version of this paper [22], in this paper (1) we
axiomatize CA to specify manager configurations (2) we present a behavioral
equivalence theory to reason about CA terms, and (3) we apply our approach
on a more concrete case study.

Structure of the paper This paper is organized as follows. In Section 2
we introduce an example to illustrate our approach. Section 3 briefly introduces
the PobSAM model. Sections 4 and 5 introduce the syntax and the semantics
of PobSAM model, respectively. A notion of behavioral equivalence for CA
is presented in Section 6. Section 7 presents related work and compares our
approach with the existing approaches. In Section 8, we present our conclusions
and plans for future work.

4

2. Illustrating Case Study

We use a simple example borrowed from [34] to illustrate our approach. In
this example, a team of collaborating unmanned autonomous vehicles (UAVs)
are used for a search and rescue operation. Each UAV is provided with a video
camera, GSM for location sensing, and infrared sensors for detecting physical
obstacles. Moreover, a UAV has the basic capability to control its movement.
Different technologies are used for UAVs communications, including WiFi for
interacting with other vehicles, and satellite or cellular 3G (in urban environ-
ments) for long distance interactions.

Assume a person with a body sensor network (BSN) is wounded in an area
and needs help. A set of UAVs with different capabilities collaborate with
each other to find the wounded person. There is an autonomous device named
mission commander to coordinate the rescue and save operation. The BSN
sends a help message to a mission commander. A mission is defined by the
commander to save the wounded person: one or more UAVs with video cameras
act as surveyors and others perform a communication relay function.

The UAVs are required to adapt their behavior according to the changes in
environment. The role of a UAV is not fixed, and it can be assigned to different
roles according to its available capabilities. For instance, the video camera of a
surveyor may break down and the surveyor would be assigned as a communica-
tion relay. Moreover, the responsibilities of a role may change dynamically to
adapt to unforeseen situations. Suppose we encounter this situation after setting
up the mission: the mentioned area may have hazardous chemicals. Thus we
should use UAVs equipped with some sensors for detecting chemicals to locate
the wounded person. Hence, we should design the system in a flexible manner
which allows us to change the behavior of a UAV dynamically. We will show
that how we address these requirements in the examples 5 and 6.

Another reason of adaptation in our scenario is that the UAVs must cope
with variable resources and faults. To this end, we require to find suitable UAVs
for interaction or replacement, e.g., consider a situation that a surveyor breaks
down and requires to be replaced by another UAV with the identical surveying
capabilities. Thus, we need to identify the UAVs with the equivalent behavior
at runtime that can replace the surveyor. We will deal with this issue in the
examples 12 and 13.

3. The Outline of PobSAM

As mentioned above, PobSAM is a policy-based formal model to develop
and specify self-adaptive evolving systems. The main elements of a PobSAM
model are actors and managers: actors perform the main functionality of the
system, and managers control the behavior of actors autonomously according
to a set of predefined policies. Furthermore, views are abstractions of the actors
provided for the managers. The PobSAM structure can be conceptualized as
the composition of three layers:

5

• Managed Actors Layer This layer is dedicated to the functional behav-
ior of a system and contains computational actors. Actors are governed by
autonomous managers using policies to achieve predefined goals. Hence-
forth, we use the terms managed actors and actors interchangeably.

• Autonomous Managers Layer Autonomous managers are meta-actors
that can operate in different configurations. Each configuration consists of
two classes of policies: governing policies, and adaptation policies. Using
governing policies, the manager directs the behavior of actors by sending
messages to them. Adaptation policies are used to switch between different
configurations to adapt the system behavior properly.

• View Layer In PobSAM, each actor provides its required state informa-
tion to the relevant managers. Not all aspects of the operational environ-
ment have direct influence on the behavior of managers. The view layer
is composed of a set of view variables, and provides an abstraction of the
actor states that is adequate for the managers’ needs. The distinction be-
tween the underlying computational environment and the required state
information of actors makes analyzing managers much simpler.

Example 1. The PobSAM model of a UAV contains the actors motor, video
camera, GSM and infrared sensors. Although, in general, actors may have
interaction with each other, in this example, there is no interaction among the
actors. The view layer has a number of view variables indicating attributes such
as the current location and speed. A UAV has a manager, named UAVCntrlr,
which controls different components of the UAV. We consider a configuration
for each role of UAV where one of the configurations is activated at each time.
The UAV can change its role by switching to the suitable configuration.

4. PobSAM Syntax

A PobSAM model is denoted by Π = ⟨R, V,E,M⟩ in which R, V, E and M
represent the set of actors, view variables, events and managers, respectively.
Figures 1 and 2 show the syntax and a BNF grammar of PobSAM model,
respectively, which we elaborate in the sequel.

4.1. Actors

The encapsulation of state and computation, and asynchronous communi-
cation make actors a natural way to model distributed systems. Therefore, we
use an actor-based model to specify the computational environment of a self-
adaptive system. To this end, an extension of Rebeca [33] is used. Rebeca is
an actor-based language for modeling concurrent asynchronous systems which
allows us to model the system as a set of reactive objects called rebecs inter-
acting by message passing. Each rebec provides methods called message servers
(msgsrv) which can be invoked by others. Each rebec has an unbounded buffer
for incoming messages, called queue. Furthermore, the rebecs’ state variables

6

MANAGERS {
MANAGER ManagerName1
// manager’s view
view = { viewvarName11,..., viewvarName1n};
// definition of manager’s configurations in terms of
// their governing and adaptation policies
Configurations {

configName1={gp11,...,gp1m}{ap11,...,ap1n};
.
.
.

}
Policies {

//Definition of governing policies(gps)
gp11: on eventi if condi do actionsi priority Oi;
.
.
.
//Definition of adaptation policies(aps)
ap11:[loose/strict]

on eventj if condj switchto Configuration1 when condk priority Oj;
.
.
.

}
}

// definition of other managers
}
Viewvariables {
//definition of views
datatype viewvarName1 = expr1;
datatype viewvarName2 = expr2;
.
.
.

}
Events {
//definition of events
eventName1 = expr1;
eventName2 = expr2;
.
.
.

}
Actors {
//definition of actors
reactiveclass classname1() {

Knownrebecs{}
Statevars{ Public datatype v1;

Private datatype v2;}
msgsrv initial() {}
msgsrv msgsrv1(){}

}
}
main {

classname1 rebec1(...):(...);
// instantiate other rebecs
ManagerName1 manager1(viewNamei,viewNamej)(configNamek);

}

Figure 1: Syntax of PobSAM Models

7

CL ::= reactiveclass CId(Nat) {KRs Vars Mtd∗}
KRs ::= knownrebecs{⟨V dcl; ⟩∗} St ::= v = exp;
V ars ::= statevars{⟨V dcl; ⟩∗} |v = newCId(⟨exp⟩∗);
V dcl ::= T ⟨v⟩+, |Call(⟨exp⟩∗,);
Mtd ::= msgsrv M(⟨T v⟩∗,){St∗} |if (exp) ⟨St∗⟩ ⟨else St∗⟩?
Call ::= v.M |self .M |sender.M

Mng ::= manager m {Cfs Pls Vws}
Cfs ::= configurations {⟨Cfdcl⟩+}
Cfdcl ::= cf = {⟨gp⟩∗, }{⟨ap⟩∗, }
Pls ::= policies {⟨Pldcl; ⟩∗}
Pldcl ::= ⟨Gpdcl | Apdcl⟩
Apdcl ::= ap : [loose|strict] on e if exp switchto

cf when exp priority Nat;
Gpdcl ::= gp : on e if exp do Acdcl priority Nat;
Acdcl ::= (v.M | exp :→ Acdcl)((+ | ∥ | ;)(v.M | exp :→ Acdcl))∗

V ws ::= views = {⟨vw⟩∗, };
V iews ::= Viewvariables {⟨T vw = exp ; ⟩∗}
Events ::= Events {⟨e = exp ; ⟩∗}

Figure 2: BNF grammar for Rebeca classes, managers, views and events. Angle brackets ⟨:::⟩
are used as meta parentheses, superscript ? for optional parts, superscript + for repetition
more than once, superscript * for repetition zero or more times, whereas using ⟨:::⟩, with
repetition denotes a comma separated list. Identifiers C, T, M and v denote class, type,
method and variable names, respectively; Nat denotes a natural number; and, exp denotes an
(arithmetic, boolean) expression. m, cf, gp, ap, e and vw indicate the identifiers of manager,
configuration, simple governing policy, adaptation policy, event and view, respectively.

(statevars) are responsible for capturing the rebec state. The known rebecs of
a rebec (knownrebecs) denotes the rebecs to which it can send messages. In
our simple extension, an actor can expose a number of its state variables to the
managers, i.e., an access specifier (private or public) is defined for state variables
(Figure 1, block Actors). The public state variables are used in the definition
of view variables, and private state variables are accessed only by the owner
rebec.
Example 2. Figure 3 shows the actor layer of a UAV partially. We consider
a reactive class named motor to model the motors which contains forward,
backward, stop and setSpeed message servers, as well as motorPort and speed

state variables. UAV1motor and UAV2motor are rebecs instantiated from motor

which model the motors of UAV1 and UAV2, respectively.

4.2. Views and Events

In PobSAM, the view layer is defined as a set of view variables. A
view variable is a function defined over public state variables of actors, i.e.,
v = f(x1, ..., xn), v ∈ V , where x1, .., xn indicate the public state variables of

8

Viewvariables {
byte speed1 = UAV1motor.speed;
byte location1 = GSM1.location;
byte location2 = GSM2.location;
//definition of other view variables

}
Actors{
reactiveclass motor() {
knownrebecs {}
statevars{ public byte motorPort;

public byte speed; }
msgsrv initial() { //initialization }
msgsrv forward() {
...
}

msgsrv backward() {
...
}

msgsrv stop() {
...
}

msgsrv setSpeed(byte s) {
...

}
}
reactiveclass GSM() {

...
}

} //definition of other reactive classes
main {
motor UAV1motor():();
motor UAV2motor():();
//instantiation of other rebecs
...
}

Figure 3: The Actors and View Layers of the UAV example

actors. Unlike conventional interfaces, a view variable can be defined over state
variables of different actors. View variables enable managers not to be con-
cerned about the internal behavior of actors and they provide an abstraction of
actor’s state to managers. Figure 3 gives the view layer of the UAV example
partially.

Events are defined using the following predefined predicates:

• removed(x) when an actor with specification x is removed,

• created(rc) when an actor is instantiated from the reactive class rc,

• sentMsg(src,msg , trg) when a message msg is sent from src to trg,

• exeMsgsrv(r ,msg) when the execution of message servermsg is completed
by actor r, and

• prd when a specific condition in the system becomes true.

9

4.3. Managers

Managers direct and adapt the behavior of actors by enforcing suitable poli-
cies and the view layer provides contextual information for the managers. A
manager may have different configurations, of which one is active at each time,
and dynamic adaptation is performed by switching among them. A manager has
access to a set of view variables of the view layer (see Fig.1). Let V = {v1, ..., vn}
denote the view layer of model. Formally, manager such as m is defined as the
tuple m = ⟨Vm, C, cinit⟩ where Vm ⊆ V indicate the view of m, C = {c1,, cn}
denotes the set of m’s configurations, and cinit is the initial configuration of m.
A configuration ci is defined as ci = ⟨g, p⟩, 1 ≤ i ≤ n where g and p are the set
of governing policies and adaptation policies of ci, respectively. A policy is a
rule which is triggered when a specific event occurs and some conditions hold.
Example 3. Assume UAV1 can operate as a surveyor or a relay, or stays idle.
This robot starts the mission as a surveyor. The UAV1’s controller is defined as
follows:

UAVCntrlr1 = ⟨Vm, {surveyor, relay, idle}, surveyor⟩,
where {speed1, location1, location2} ⊂ Vm. We consider location2 as a view
variable of UAV1 because it needs to know the location of UAV2 for collision
avoidance.

We define configurations formally using an algebraic theory called CA (for
Configuration Algebra). The algebraic theory CA is a multi-sorted algebra
containing four sorts: the sortG of governing policy sets, the sortA of governing
policy actions, the sort P of adaptation policies, and the sort B of conditions.
CA consists of subtheories CAa, CAp and B to define terms of sorts A, P and B,
respectively. Moreover, CAg is a common set algebra to define governing policy
sets. A fixed but arbitrary set of atomic conditions Bat are assumed whose
atomic predicates are defined over the view variables. The constants ⊤ ∈ Bat
and⊥ ∈ Bat stand for “True” and “False”, respectively. B is the Boolean algebra
over Bat and conditions of CA are B terms.

Governing Policies

The governing policy set g of a configuration is a collection of simple gov-
erning policies, i.e., g = {g1, ..., gn}, n ≥ 0. A simple governing policy is defined
as a prioritized event-condition-action rule. Whenever a manager receives an
event, it identifies all the simple governing policies that are triggered by that
event. For each of these policies, the policy condition is evaluated. If the con-
dition evaluates to true, the action part of the triggered policy is requested to
execute by sending asynchronous messages to the relevant actors. If multiple
simple governing policies become activated, they are enforced sequentially in
any arbitrary order.

A simple governing policy gi = ⟨o,e, ψ⟩•a, gi ∈ g, 1 ≤ i ≤ n, consists of pri-
ority o ∈ N, event e ∈ E, condition ψ and action a. ψ is a term of sort B and a
is non-recursive term of sort A. Furthermore, N is the set of natural numbers.

10

The action part of a simple governing policy is specified using CAa which
is a sub-theory of the process algebra PAccδ [10]. The encapsulation and pre-
abstraction operators of PAccδ are excluded from our algebra. PAccδ is a simple
process algebra with a strong theoretical foundation which supports conditional
expressions. It is assumed that a fixed but arbitrary finite set of primitive
actions A with typical elements α, β, ... has been given. Composite actions are
constructed from primitive actions using CAa’s operators. Henceforth, let A
represent the closed terms of sort A, {ϕ, ψ}∈ Bat and {a, a′, a′′} ∈ A. The
algebraic theory CAa has the following constant and operators to build terms
of sort A:

a
def
= a; a′ | a ∥ a′ | a∥ a′ | a+ a′ | ϕ :→ a | α | δa

Thus an action term can be the sequential (;) or parallel execution (∥) of
actions. The operator∥ is as ∥ but the first action that is performed comes from
the left operand. This is an auxiliary operator required to axiomatize parallel
composition. The term (ϕ :→ a) represents that action term a can be chosen
to be executed, if ϕ holds. Also, the manager can execute the actions non-
deterministically (+), of which the arguments may be guarded by a condition.
Moreover, the special constant δa is the deadlock and can perform no activity
and prevents subsequent processes from being executed. The primitive actions
of the action of a simple governing policy are of the form r.ℓ(v1, ..., vn) standing
for the sending of message ℓ(v1, ..., vn) to the actor r.
Example 4. The simple governing policy “Get health information of the
wounded person from his BSN and send a “success” message to the commander”
in the surveyor configuration is specified as follows where found(x,y) denotes
the event that the wounded person has been found at location (x, y). Further-
more, send and Healthinfo are the message servers of the actors relay1 and
BSN, respectively.

g1: on found(x,y) if true do
BSN.getHealthInfo()|| relay1.send([success,x,y], commander)

with priority 1

The algebraic form of this policy is g1
def
= ⟨1, found(x, y), ⊤⟩ • a1 where

a1
def
= BSN .getHealthInfo() ∥ relay1.send([success, x, y], commander)

Adaptation Policies

One of the main features of a formal model which specifies a self-adaptive
system is the adaptation semantics. To this end, we should deal with a number
of issues such as “when an adaptation is performed in the system ” , “when
the manager’s policies are modified” , “when the enforcement of new policies
begins after modifying policies” or “how to restrict the system behavior during
adaptation”.

Whenever an event requiring adaptation occurs, relevant managers are in-
formed. However, adaptation cannot be done immediately and only when the

11

system reaches a safe state, the concerned managers switch to the new config-
uration. Therefore, we introduce a new mode of operation named adaptation
mode in which a manager runs before switching to the next configuration. While
the manager is in the adaptation mode, it is likely that events occur which need
to be handled by managers. To handle these cases, we introduce two kinds of
adaptations named loose adaptation and strict adaptation. Under loose adap-
tation a manager enforces old policies, while under strict adaptation all events
will be postponed until the manager exits the adaptation mode and the system
reaches a safe state. As an example, consider a situation in which an adaptation
is required to use a relay as a surveyor. To this end, we must replace that UAV’s
governing policies with the new policies for surveying the area. The relay must
deliver its current messages to the receivers firstly, and afterward it should act
as a surveyor. Thus, the UAV must go to the loose adaptation mode according
to the introduced adaptation semantics of PobSAM. The behavior of UAV is
restricted in the loose adaptation mode: it is prohibited to receive new messages
from other UAVs while the old messages are being delivered.

A simple adaptation policy is a prioritized rule that whenever triggered, the
manager evolves to adaptation mode and waits until the system reaches a safe
state. The manager will switch to the new configuration when a safe state is
reached. Adaptation policies are specified using the sub-algebra CAp which
constructs terms of sort P as follows:

p
def
= ⟨o, e, ψ, λ, ϕ⟩•c | p⊕ p | δp

in which o ∈ N denotes the priority of adaptation policy, e ∈ E indicates an
event, and ψ denotes the condition of triggering adaptation. Moreover, ϕ and λ
indicate the conditions of applying adaptation and the adaptation type (loose or
strict) while c is the new configuration. ψ, λ and ϕ are terms of sort B. Values
⊤ and ⊥ of λ denote strict and loose adaptations, respectively. Informally,
the simple adaptation policy ⟨o, e, ψ, λ, ϕ⟩•c means when event e occurs and the
triggering condition ψ holds, if there is no other triggered adaptation policy with
a priority higher than o, the manager evolves to the strict or loose adaptation
modes based on the value of λ. When the condition of applying adaptation
ϕ becomes true, it will perform adaptation and switch to the configuration
c. Adaptation policies of a manager are defined as composition (⊕) of the
simple adaptation policies. Furthermore, δp indicates the unit element for the
composition operator.
Example 5. Assume a situation in our example that the video camera of
surveyor breaks down. This UAV is used as a relay in the mission, and another
UAV with a camera can play the surveyor role. We define an adaptation policy
which states “when the camera of a surveyor breaks down, if the wounded person
has not been found yet and the surveyor has enough energy, it should switch to
the relay configuration”. We specify this policy formally as formula 1 in which
brokencamera is an event. The view variable enoughEnergy indicates if the
energy level of the UAV is sufficient, and the view variable success denotes
whether the wounded person has been found or not.

p1: [loose] on brokencamera if (!success && enoughEnergy) switchto relayconf

12

when true with priority 1;

The algebraic form of this policy is as follows:

p1
def
= ⟨1, brokencamera,¬success ∧ enoughEnergy,⊥,⊤⟩•relayconf (1)

Policies are high-level specifications which can be defined and loaded dy-
namically. The managers interpret the policies and control the system behavior
according to them. We can change policies at runtime which leads to chang-
ing the behavior of system consequently. Thus, PobSAM allows us to adapt to
unforeseen situations without need to modify the system code by simply defin-
ing new set of policies. When the manager receives a message add(c), it will
add configuration c to the configuration list of the manager, if c is not in the
configuration list of the manager. In case that the manager receives a message
remove(c), it will remove c from the configuration list of the manager provided
that c is not the current configuration of the manager and belongs to the config-
uration list of the manager. Furthermore, when the manager receives a message
load(c, λ, ϕ), if c is not the current configuration of the manager, it evolves to
the strict or loose adaptation modes based on the value of λ. When the condi-
tion of applying adaptation ϕ becomes true, it will switch to the configuration
c.
Example 6. Assume a situation that the area is contaminated with hazardous
chemicals. We must be able to change the mission to adapt to these circum-
stances. A couple of UAVs must be responsible to detect chemicals and locate
the wounded person. We simply define a new configuration using a high-level
language containing suitable policies to detect chemicals, and load this config-
uration to the UAVs equipped with hazard detector sensors. Afterward, the
relevant UAVs are instructed to switch to this new configuration and use new
loaded policies to search the area.

5. Operational Semantics of PobSAM

In this section, we present the operational semantics of PobSAM. First, we
present the operational semantics of the view layer, then we explain the struc-
tural operational semantics of the main part of PobSAM, i.e., managers. The
operational semantics of our simple extension of Rebeca with access specifiers
does not differ from that of Rebeca [33].

5.1. Operational Semantics of the View Layer

Any changes in the actors’ states used in the definition of view variables,
must be reflected in the view layer. The state of a view variable is determined by
its current value that is modified by changing the relevant public state variables
of actors. After execution of a message server, the changes of public state
variables must be reflected in the view variables state, too. We specify the
operational semantics of the view layer as a labeled transition system defined

13

based on the semantics of the actor layer. The operational semantics of the actor
layer is defined as the labeled state transition system TA = (s0a, SA, LA, TA)
where s0a indicates the initial state of the actor layer, SA is the set of actor
states, LA is the set of labels, and TA ⊆ SA × LA × SA represents the transition
relation.

Let V = {v1, v2, . . . , vn} denote the view layer of the model, and vj =
fj(x1, x2, .., xm) denote an arbitrary view variable defined on public state vari-
ables x1, x2, .., xm. The operational semantics of the view layer is defined as
TV = (s0v, SV , LV , TV) where where s0v indicates the initial state of the view
layer, SV is the state set of view layer, LV ⊆ LA is the set of labels, and
TV ⊆ SV × LV × SV represents the transition relation. The states of SV are
of the form sv = ⟨v1, v2, ..., vn⟩. Let vj |sa denote the value of vj in which
xi, 1 ≤ i ≤ m is substituted with its corresponding value in state sa ∈ SA. The
initial state of the view layer is defined as s0v = ⟨v1|s0a , ..., vn|s0a⟩. The state tran-
sition relation of the view layer is built based on the state transition relation
of the actor layer using rule VR. This rule states when the actor layer evolves
from state sa to state s′a and there exists a view variable such as vk whose value
changes by this transition, the view layer switches to a new state to reflect the
changes of the actor layer.

(VR)
sa

l−→s′a ∃k vk|sa ̸= vk|s′a , 1 ≤ k ≤ n

⟨v1|sa , ..., vn|sa⟩
l−→ ⟨v1|s′a , v2|s′a , ..., vn|s′a⟩

5.2. Operational Semantics of Managers

We use prioritized conditional state transition systems to define the opera-
tional semantics of CA. Prioritized conditional state transition systems are an
extension of conditional state transition systems [10] with priorities defined as
follows:

Definition 1. Prioritized Conditional State Transition Systems A pri-
oritized conditional state transition system is defined as T = ⟨S,→,→√, s0⟩
where S is a set of states, s0 ∈ S is the initial state, and for each l ∈ B− ×A× N,
l−→ ⊆ S × S,

l−→√ ⊆ S and B− = B\⊥ is the set of Boolean terms excluding ⊥.

For convenience, we write s
(ϕ,α,n)−−−−−→s′ instead of (s, s′) ∈ (ϕ,α,n)−−−−−→ and s

(ϕ,α,n)−−−−−→
√

instead of s ∈ (ϕ,α,n)−−−−−→
√
. s

⟨ϕ,α,n⟩−−−−−→s′ means that it is possible to perform action
α under condition ϕ in state s when there is no enabled transition with higher

priority than n in state s, and then make a transition to s′. s
(ϕ,α,n)−−−−−→

√
is

interpreted as in state s, it is possible to perform action α under conditions
ϕ when there is no enabled transition with higher priority in state s and then

terminate successfully. Henceforth, we denote a transition by s
µ−→s′ where

µ = (ϕ, α, o).
A manager has four running modes, including waiting, loose adaptation,

strict adaptation and governing policy enforcement modes. The behavior of a

14

(NPE1)
Trig(e,v)={gi∈g | v�ψi,ei=e,@gj∈g.v�ψj∧ej=e∧oj>oi} Trig(e,v)̸=∅

Mc
C⟨δp,∅,

√
,observe(e):q⟩

(Tgi (e),observe(e),1)−−−−−−−−−−−−−→[M]cC⟨δp,Trig(e,v),
√
,q⟩

(NPE2) gi∈g′

[M]cC⟨δp,g′,
√
,q⟩

(⊤,enforce(gi),1)−−−−−−−−−−−→[M]cC⟨δp,g′\gi, gi.a,q⟩

(NPE3)
[M]cC⟨δp,g′,α,q⟩

(⊤,α,1)−−−−−→[M]cC⟨δp,g′,
√
,q⟩

(NPE4)
[M]cC⟨δp,g′,a,q⟩

µ−→[M]cC⟨δp,g′,a′′,q⟩
[M]cC⟨δp,g′,a+a′,q⟩

µ−→[M]cC⟨δp,g′,a′′,q⟩
(NPE5)

[M]cC⟨δp,g′,a,q⟩
µ−→[M]cC⟨δp,g′,

√
,q⟩

[M]cC⟨δp,g′,a+a′,q⟩
µ−→[M]cC⟨δp,g′,

√
,q⟩

(NPE6)
[M]cC⟨δp,g′,a,q⟩

(ϕ,α,1)−−−−→[M]cC⟨δp,g′,a′,q⟩

[M]cC⟨δp,g′,ψ:→a,q⟩
(ψ∧ϕ,α,1)−−−−−−→[M]cC⟨δp,g′,a′,q⟩

(NPE7)
[M]cC⟨δp,g′,a,q⟩

(ϕ,α,1)−−−−→[M]cC⟨δp,g′,
√
,q⟩

[M]cC⟨δp,g′,ψ:→a,q⟩
(ψ∧ϕ,α,1)−−−−−−→[M]cC⟨δp,g′,

√
,q⟩

(NPE8)
[M]cC⟨δp,g′,a,q⟩

µ−→[M]cC⟨δp,g′,a′′,q⟩
[M]cC⟨δp,g′,a∥a′,q⟩

µ−→[M]cC⟨δp,g′,a′′∥a′,q⟩
(NPE9)

[M]cC⟨δp,g′,a,q⟩
µ−→[M]cC⟨δp,g′,

√
,q⟩

[M]cC⟨δp,g′,a∥a′,q⟩
µ−→[M]cC⟨δp,g′,a′,q⟩

(NPE10)
[M]cC⟨δp,g′,a,q⟩

µ−→[M]cC⟨δp,g′,a′′,q⟩
[M]cC⟨δp,g′,a;a′,q⟩

µ−→[M]cC⟨δp,g′,a′′;a′,q⟩
(NPE11)

[M]cC⟨δp,g′,a,q⟩
µ−→[M]cC⟨δp,g′,

√
,q⟩

[M]cC⟨δp,g′,a;a′,q⟩
µ−→[M]cC⟨δp,g′,a′,q⟩

(NPE12)
[M]cC⟨δp,∅,

√
,q⟩

(⊤,waiting,1)−−−−−−−−−→Mc
C⟨δp,∅,

√
,q⟩

Figure 4: Rules of governing policy enforcement

manager depends on the mode in which it is running. To distinguish managers
in different modes, we use different notations. Let C denote the configuration

set of manager M, c
def
= ⟨g, p⟩ ∈ C denote the current configuration, pi denote

the triggered adaptation policy, g′ ⊆ g is the set of triggered simple governing
policies to be enforced, a is the action of a simple governing policy being executed
byM, and q is the input queue ofM. We denote managerM in the enforcement
mode by [M]cC⟨δp, g′, a, q⟩. The notations Mc

C⟨pi, ∅,
√
, q⟩, |M|cC⟨pi, g′, a, q⟩ and

∥M∥cC⟨pi, ∅,
√
, q⟩ indicate M in waiting, loose adaptation and strict adaptation

modes, respectively.
√

is a special constant to show termination of enforcing an
action. The initial state of the manager is defined as Mcinit

C ⟨δp, ∅,
√
, ∅⟩ where

cinit denotes the initial configuration of M. The conditions of transition system
are evaluated on the view layer.

Event Propagation. An event is a predicate evaluated on the transitions of the
actor layer. Let observe(e) ∈ A be the primitive action for observing event e.
Rule EPR asserts that when event e is satisfied by a transition at the actor
layer, the message observe(e) is appended to the input queue of all the man-
agers. This rule gives the semantics of event propagation for the manager in the
governing policy enforcement mode. Similar rules are defined for the waiting,
loose adaptation and strict adaptation modes.

15

EPR
sa

l−→s′a (sa, l, s
′
a) � e M ∈M

[M]cC⟨δp, g′, a, q⟩
l−→ [M]cC⟨δp, g′, a, q : observe(e)⟩

Governing policy enforcement semantics. Whenever an event is received by a
manager, it identifies all the triggered simple governing policies whose policy
conditions evaluate to true and highest priority. Once a manager enforces all
the triggered policies, it evolves to the waiting mode. Figure 4 gives the rules of
governing policy enforcement. Due to the fact that in PobSAM adaptation has
a higher priority than enforcing policies, we consider the priority of enforcing
policies as “1”.

Using NPE1, the manager switches to the enforcement mode by identifying
the triggered policies (gi = ⟨oi, ei, ψi⟩•ai) to be enforced in which Trig(e, v) de-
notes the set of triggered policies due to the occurrence of event e in state v
of the view layer. Tgi(e) denotes the triggering condition of gi when event e
occurs. We will elaborate this function in Section 6.2. NPE2 places the action
of a policy (gi.a) in the action part of the manager to be run and removes gi
from the list of activated policies. NPE3 represents the execution of a primitive
action α. NPE4 and NPE5 define the semantics of non-deterministic choice
and NPE6 and NPE7 define the semantics of conditional actions, respectively.
NPE8-11 apply sequential and parallel compositions of actions. When there is
no policy to be enforced, the manager will switch to the waiting mode using
NPE12 where waiting ∈ A.

As mentioned above, managers in loose adaptation mode are able to en-
force governing policies. Therefore, all the rules introduced for the enforcement
mode, except for NPE12, are applicable in loose adaptation mode too. In loose
adaptation mode, NPE1 is rewritten as rule LAE1:

(LAE1)
Trig(e,v)={gi∈g | v�ψi,ei=e,@gj∈g.v�ψj∧ej=e∧oj>oi} Trig(e,v) ̸=∅

|M|cC⟨pi,∅,
√
,q⟩

(Tgi (e),observe(e),1)−−−−−−−−−−−−−→|M|cC⟨pi,Trig(e,v),
√
,q⟩

Adaptation policy enforcement semantics. Figure 5 shows the rules for adap-
tation in strict mode. SAR1 states that the adaptation policy ⟨o, e, ψ, λ, ϕ⟩•c
is triggered with the priority o + 1, when event e occurs and the condition ψ
holds. If the adaptation type of that policy is strict adaptation type, the man-
ager M switches to the strict adaptation mode by performing primitive action
tostrict(e) ∈ A. SAR2 asserts that when the condition for applying the adap-
tation holds, M will evolve to the waiting mode by performing primitive action
switch(c) ∈ A, and run configuration c′. Rules of loose adaptation are similar
to the strict adaptations rules defined as follows where toloose(e) ∈ A:

(LAR1)
c = ⟨g, p⟩ p = p1 ⊕ p′ p1 = ⟨o, e, ψ, λ, ϕ⟩•c′ v � ψ λ = ⊥

Mc
C⟨δp, ∅,

√
, observe(e) : q⟩ (ψ,toloose(e),o+1)−−−−−−−−−−−−→ |M|cC⟨p1, ∅,

√
, q⟩

(LAR2)
p1 = ⟨o, e, ψ, λ, ϕ⟩•c′ v � ϕ

|M|cC⟨p1, ∅,
√
, q⟩ (ϕ,switch(c′),o+1)−−−−−−−−−−−−→ Mc′

C⟨δp, ∅,
√
, q⟩

16

(SAR1)
c = ⟨g, p⟩ p = p1 ⊕ p′ p1 = ⟨o, e, ψ, λ, ϕ⟩•c′ v � ψ λ = ⊤ c ̸= c′

Mc
C⟨δp, ∅,

√
, observe(e) : q⟩ (ψ,tostrict(e),o+1)−−−−−−−−−−−−→ ∥M∥cC⟨p1, ∅,

√
, q⟩

(SAR2)
p1 = ⟨o, e, ψ, λ, ϕ⟩•c′ v � ϕ

∥M∥cC⟨p1, ∅,
√
, q⟩ (ϕ,switch(c′),o+1)−−−−−−−−−−−−→ Mc′

C⟨δp, ∅,
√
, q⟩

Figure 5: Rules of strict adaptation

(DRR1)
c′ ∈ C p1 = ⟨2, e,⊤, λ, ϕ⟩ • c′ λ = ⊥ c ̸= c′

Mc
C⟨δp, ∅,

√
, load(c′, λ, ϕ) : q⟩ (⊤,load(c′,λ,ϕ),2)−−−−−−−−−−−→ |M|cC⟨p1, ∅,

√
, q⟩

(DRR2)
c′ ∈ C p1 = ⟨1, e,⊤, λ, ϕ⟩ • c′ λ = ⊤ c ̸= c′

Mc
C⟨δp, ∅,

√
, load(c′, λ, ϕ) : q⟩ (⊤,load(c′,λ,ϕ),1)−−−−−−−−−−−→ ∥M∥cC⟨p1, ∅,

√
, q⟩

(DRR3)
c ̸= c′ c ∈ C

Mc
C⟨δp, ∅,

√
, remove(c′) : q⟩ (⊤,remove(c′),1)−−−−−−−−−−−→ Mc

C\c′⟨δp, ∅,
√
, q⟩

(DRR4)
c′ /∈ C

Mc
C⟨δp, ∅,

√
, add(c′) : q⟩ (⊤,add(c′),1)−−−−−−−−→ Mc

C∪c′⟨δp, ∅,
√
, q⟩

Figure 6: Rules of dynamic adaptation of configurations

The semantics of dynamic configurations. Figure 6 shows the semantics of dy-
namic adaptation of configurations. When the manager dequeues a message
load(c′, λ, ϕ) to load configuration c′, it switches to either strict or loose adap-
tation modes according to the value of λ (DRR1, DRR2). When condition ϕ
becomes true, it switches to configuration c′ (LAR2 or SAR2). Rule DRR3
removes configuration c′ ∈ C from the configuration set, provided that c′ is not
the current configuration of manager. Rule DRR4 adds a new configuration c′

to the configuration set of manager where c′ /∈ C.
Table 1 shows the rules applied in each mode.

6. Behavioral Equivalence

In this section, we provide an equational theory to reason about behavioral
equivalence of managers, configurations and policies. To this end, we present
an axiom system for CAa (the algebra for actions of simple governing policies),
modulo splitting bisimilarity. We introduce an operator which formulates the
behavior of a governing policy set in terms of CAa terms. Then we use the
axiom system of CAa, to reason about behavioral equivalence of governing policy
sets. We extend splitting bisimulation with priorities called prioritized splitting

17

mode rules
waiting EPR, NPE1, SAR1, LAR1, DRR1-4
strict adaptation EPR, SAR2
loose adaptation EPR, LAR2, LAE1-11
enforcement EPR, NPE2-12

Table 1: Rules applied in different modes

bisimulation, and introduce an axiom system for CAp (the algebra for expressing
adaptation policies), modulo prioritized splitting bisimilarity. The behavioral
equivalence of configurations is defined based on the behavioral equivalence of
their governing policy set and adaptation policies. Furthermore, we present the
behavioral equivalence of managers based on the behavioral equivalence of their
configurations.

This behavioral equivalence theory is used to reason about PobSAM models.
One of the main results of our equational theory is compositionality, i.e. pre-
serving the semantics of the managed actor system by substitution of a policy,
configuration or manager by an equivalent one. The messages sent to the actors
by the managers of each state are consequences of enforcing governing policies.
We will show that two behavioral equivalent managers enforce equivalent gov-
erning policy sets, and subsequently, they send the same sequences of messages
to the actors. Therefore, when a manager such as m1 is replaced by an equiva-
lent manager like m2, the managed actors controlled by m1 behave identically
to the case that they are governed by m2.

6.1. Prioritized Splitting Bisimulation

In this section, we introduce the notion of prioritized splitting bisimulation
to define the equivalence of two prioritized conditional state transition systems.
In a prioritized conditional state transition system, when the condition of a
transition t1 from state s implies disjunction the conditions of transitions with
higher priorities from s, then transition t1 is never executed:

Definition 2. Let T = ⟨S,→,→√, s0⟩ denote a prioritized conditional state

transition system. We call a transition s
(ϕ,α,n)−−−−−→s′ ∈→ (or s

(ϕ,α,n)−−−−−→
√

∈→√) non-

triggerable iff there are transitions ti from s, 1 ≤ i ≤ m, where ti = s
(ϕi,αi,ni)−−−−−−→si

or ti = s
(ϕi,αi,ni)−−−−−−→

√
, ni > n and ϕ→

∨
ϕi. A triggerable transition is a transi-

tion which is not non-triggerable.

Furthermore, the function O(s, n) gives the relative priority of triggerable
transitions from s ∈ S with priority n ∈ N, with respect to all triggerable tran-
sitions from s. If there is no triggerable transition with priority n from state s,
then O(s, n) = 0.

Example 7. The transition s0
(ψ1,α,2)−−−−−→s2 of prioritized conditional state tran-

sitions shown in Figure 7 is non-triggerable. It is covered by the transition

18

s0
(ϕ1,α,4)−−−−−→s1 where ψ1 =⇒ ϕ1. Furthermore, O(s0, 4) = 1 and O(s0, n) = 0

where n ̸= 4.
The prioritized conditional transitions represent the execution of the tran-

sition at any state satisfying the condition with the highest priority among
enabled transitions. We can use several transitions from that state to cover all
the cases that satisfy the corresponding condition. In prioritized splitting bisim-
ulation, the conditions of a transition with relative priority n from state s of one
of the related transition systems may be simulated by several transitions with
identical relative priorities from the corresponding state in the other transition
system.

Definition 3. Prioritized Splitting Bisimulation Let
T1 = ⟨S1,→1,→√

1
, s01⟩ and T2 = ⟨S2,→2,→√

2
, s02⟩ denote two prioritized

conditional state transition systems. A binary relation R ⊆ S1 × S2 is a
prioritized splitting bisimulation iff (s01, s

0
2) ∈ R and ∀s1,s2(s1, s2) ∈ R ⇒:

- for each triggerable transition s1
(ϕ,α,n)−−−−−→1s

′

1, there exists a finite
set CS′ ⊆ B− × S2 × N such that

∨
(ϕ′,s′2,n

′)∈CS′,O(s1,n)=O(s2,n′) ϕ
′ → ϕ,

s2
(ϕ′,α,n′)−−−−−→2s

′

2 and (s
′

1, s
′

2) ∈ R for all (ϕ′, s′2, n
′) ∈ CS′;

- for each triggerable transition s2
(ϕ,α,n)−−−−−→2s

′

2, there exists a finite
set CS′ ⊆ B− × S1 × N such that

∨
(ϕ′,s′1,n

′)∈CS′,O(s2,n)=O(s1,n′) ϕ
′ → ϕ,

s1
(ϕ′,α,n′)−−−−−→1s

′

1 and (s
′

1, s
′

2) ∈ R for all (ϕ′, s′1, n
′) ∈ CS′;

- if s1
(ϕ,α,n)−−−−−→

√
1 is triggerable, then there is a set C ′ ⊆ B− × N such that∨

(ϕ′,n′)∈C′,O(s2,n)=O(s1,n′) ϕ
′ → ϕ and for all (ϕ′, n′) ∈ C ′ , s2

(ϕ′,α,n′)−−−−−→
√

2;

- if s2
(ϕ,α,n)−−−−−→

√
2 is triggerable, then there is a set C ′ ⊆ B− × N such that∨

(ϕ′,n′)∈C′,O(s1,n)=O(s2,n′) ϕ
′ → ϕ and for all (ϕ′, n′) ∈ C ′ , s1

(ϕ′,α,n′)−−−−−→
√

1;

Two prioritized conditional state transition systems T1 and T2 are priori-
tized splitting bisimilar, denoted by T1 ⇔p T2 if and only if there is a prioritized
splitting bisimulation relation such as R between T1 and T2. Let R be a prior-
itized splitting bisimulation between T1 and T2, then we say R is a prioritized
splitting bisimulation witnessing T1 ⇔p T2.
Example 8. The prioritized conditional state transition systems given in figure
7 are prioritized splitting bisimilar. In this figure, the dashed lines indicate a
prioritized splitting bisimulation relation between two transition system.

A conditional state transition system is a prioritized state transition system
in which all transitions have the same priority. Splitting bisimulation [10] is
used to define behavioral equivalence of conditional state transition systems.
In splitting bisimulation, a transition of a transition system is simulated by
several transition of another transition system. It is too trivial to prove that
two conditional state transition systems are splitting bisimilar, if and only if
their corresponding prioritized state transition systems are prioritized splitting
bisimilar.

19

(ψ1, α, 2)(φ1, α, 4)

(ψ1, α
′, 4)

(φ, α, 1)

(φ′
2
, α, 3) (φ′′

2
, α, 3)

(ψ2, α
′, 1)(ψ2, α

′, 1)

s0

s1 s2

s3 s4

s′
0

s′
1

s′
2

s′
3

s′
4

(ψ′
1
, α′, 4)

O(s0, n) = 0, n 6= 4
O(s0, 4) = 1

ψ2 = ψ1 ∨ ψ
′
1

φ1 = φ′
2
∨ φ′′

2

ψ1 → φ1 = >

Figure 7: Prioritized Splitting Bisimulation

6.2. Behavioral Equivalence of Governing Policies

We introduce an axiomatization for CAa, modulo splitting bisimulation. The
axioms presented in Table 2 constitute the axiom system of CAa taken from [10].
These axioms describe the basic identities between terms in A. The operator
+ is commutative, associative and idempotent (A1-A3). δa behaves as the neu-
tral element for +(A4). Furthermore, the operator ; right-distributes over +
and is associative (A6,A7). C1-C8 are axioms defined for the conditional-choice
operator. AP1-AP6 are standard axioms of the operators ∥ and∥ for PAccδ . Con-
gruence of splitting bisimulation, and soundness and ground-completeness of our
axiom system follow from the corresponding theorems of PAccδ [10]. Moreover,
the models of CAa terms are defined in terms of conditional state transition
systems in [10].

Now, we proceed to present the behavioral equivalence on the governing pol-
icy sets. A simple governing policy is a set of actions which must be enforced in
the system under specific circumstances. In order to reason about the behav-
ioral equivalence of governing policy sets, first we define an operator Ψ which
describes the behavior of a governing policy set as an action term. Given Ψ(g)
and Ψ(g′) of two arbitrary governing policy sets g and g′, we use the axiom
system of CAa to check the equivalence of Ψ(g) and Ψ(g′).

When an event occurs, the triggered policies with the highest priorities are
chosen to be enforced in the system. The actions of the triggered policies
will be sequentially executed in an arbitrary order. As an example consider
the policy set g = {g1, g2, g3} where g1 = ⟨1, e1, ϕ1⟩ • a1, g2 = ⟨1, e2, ϕ2⟩ • a2,
g3 = ⟨1, e1, ϕ3⟩ • a3 and e1 ̸= e2. When event e1 occurs, four cases can occur:

(i) if only the conditions of g1 become true (i.e., ϕ1 ∧ ¬ϕ3 = ⊤), then a1 is
executed,

(ii) if only the conditions of g3 become true (i.e., ϕ3 ∧ ¬ϕ1 = ⊤), then a3 is
executed,

(iii) if the conditions of both policies becomes true (i.e., ϕ1 ∧ ϕ3 = ⊤), then

20

a+ a′ = a′ + a A1
(a+ a′) + a′′ = a+ (a′ + a′′) A2
a+ a = a A3
a+ δa = a A4
δa; a = δa A5
(a+ a′); a′′ = a; a′′ + a′; a′′ A6
(a; a′); a′′ = a; (a′; a′′) A7

⊤ :→ a = a C1
⊥ :→ a = δa C2
ϕ :→ (a+ a′) = ϕ :→ a+ ϕ :→ a′ C3
ϕ :→ (a; a′) = ϕ :→ a; a′ C4
ϕ :→ (ψ :→ a) = (ϕ ∧ ψ) :→ a C5
(ϕ ∨ ψ) :→ a = ϕ :→ a+ ψ :→ a C6
ϕ :→ δa = δa C7
ϕ :→ a∥ a′ = ϕ :→ (a∥ a′) C8

a ∥ a′ = a′ ∥ a AP1
(a ∥ a′) ∥ a′′ = a ∥ (a′ ∥ a′′) AP2
(a+ a′)∥ a′′ = (a∥ a′′) + (a′∥ a′′) AP3
a ∥ a′ = a∥ a′ + a′∥ a AP4
α∥ a = α; a AP5
(α; a)∥ a′ = α; (a ∥ a′) AP6

Table 2: Action Algebra CAa

either the action a1; a3 or the action a3; a1 is performed,
(iv) if neither the conditions of g1 nor the conditions of g3 becomes true,

then action δa is performed. Therefore, the behavior of this governing policy
set is formalized as the following action, when event e1 occurs:

a = (ϕ1 ∧ ¬ϕ3 :→ a1) + (¬ϕ1 ∧ ϕ3 :→ a3) +

(ϕ1 ∧ ϕ3 :→ (a1; a3 + a3; a1)) + (¬ϕ1 ∧ ¬ϕ3 :→ δa)

Now, we proceed by formulating the behavior of a governing policy set, when
an event such as e occurs. Given the governing policy set g = {g1, ..., gn}, the
operator Ψ(g, e) returns the action terms (in A) that are enforced by a manager
due to a triggered set of governing policies (g′ ⊆ g), when an event (e ∈ E)
occurs. Formula Tgi defines the activation condition of gi = ⟨oi, ei, ϕi⟩ • ai when
event e occurs as follows:

Tgi(e) ≡
{
ϕi ∧ ¬

∨
oi<ok,ek=e

ϕk ei = e

⊥ ei ̸= e
(2)

which informally asserts that gi is triggered, if gi’s event is e, its condition is
true and no other policy with a higher priority is triggered. Assume g′ indi-
cates the set of triggered simple governing policies. Z(g′) is a function which
gives the choice between all the permutations of the actions of simple policies
in g′, i.e., this function gives different strategies to enforce the triggered poli-
cies. For example, in the third case of above example (iii), g′ = {g1, g3} and
Z(g′) = {a1; a3 , a3; a1}. The operator Ψ : g × E → A is defined as follows:

Ψ(g, e) = observe(e);
∑
g′⊆g

ϕ(g′, e) :→ Z(g′) GA1

21

in which ϕ(g′, e) =
∧
gi∈g′ Tgi(e) ∧

∧
gi∈(g−g′) ¬Tgi(e), gi ∈ g. The function

ϕ(g′, e) gives the conditions of triggering policy set g′ when event e occurs, e.g.,
in the above example ϕ({g1, g3}, e1) = ϕ1 ∧ ϕ3 and ϕ({g1}, e1) = ϕ1 ∧¬ϕ3. It is
clear that the behavior of a governing policy set g when event e occurs, is equal
to the behavior of a governing policy set ge where ge = {gi ∈ g|ei = e}, i.e.,

Ψ(g, e) = Ψ(ge, e) GA2

The behavior of a governing policy set is the choice of its behavior for each
event, i.e., the behavior of a governing policy set such as g in terms of CAa

terms is formulated as follows:

Ψ(g) =
∑
e∈E

Ψ(g, e) GA3

Example 9. When the wounded person is found by a surveyor, a “success” mes-
sage is sent to the commander using the following policies. When the surveyor
has enough energy, it will send the message to relay2, otherwise the message is
sent to the commander through relay1. The following simple governing policies
are used to specify this situation:

g2
def
= ⟨2, found(x, y), enoughEnergy⟩ • relay2 .send(msg , commander)

g3
def
= ⟨1, found(x, y), ⊤⟩ • relay1 .send(msg , commander)

Let g denote the governing policy set of surveyor where only the policy set
{g2, g3} can be triggered when event found occurs. The conditions of triggering
g2 and g3, when event found occurs, are Tg2(found(x, y)) = enoughEnergy and
Tg3(found(x, y)) = ¬enoughEnergy, respectively. The conditions of triggering
different subsets of g (i.e., g′) are described as follows:

ϕ(g′, found(x, y)) =

 enoughEnergy g′ = {g2}
¬enoughEnergy g′ = {g3}
⊥ otherwise

Thus, the behavior of g when event found(x, y) occurs is expressed using
GA2 as follows:

Ψ(g, found(x , y)) = observe(found(x, y));

(¬enoughEnergy :→ relay1 .send(msg , commander)) +

(enoughEnergy :→ relay2 .send(msg , commander)) +∑
g′⊆g,g′ ̸={g2},g′ ̸={g3}

⊥ :→ Z(g′)

Definition 4. We say two actions a and a′ are splitting bisimilar, denoted by
a⇔a′, iff the models of a and a′ in terms of conditional state transitions systems,
defined in [10], are splitting bisimilar.

22

Corollary 1. (Soundness) The axioms GA1-3 are sound for splitting
bisimulation equivalence, i.e., for all policy sets g, g′ of CAg and e ∈ E,
(i) Ψ(g) = Ψ(g′) implies Ψ(g)⇔Ψ(g′), and (ii) Ψ(g, e) = Ψ(g′, e) implies
Ψ(g, e)⇔Ψ(g′, e).

Proof. Since operator Ψ is a closed term from CAa, soundness of GA1-3 follows
from the soundness theorem of CAa following [10].

Corollary 2. (Ground Completeness) For all closed terms g, g′ of CAg and
e ∈ E (i) Ψ(g)⇔Ψ(g′) implies Ψ(g) = Ψ(g′), and (ii) Ψ(g, e)⇔Ψ(g′, e) implies
Ψ(g, e) = Ψ(g′, e).

Proof. Since operator Ψ is a closed term from CAa, ground completeness of
GA1-3 follows from the ground-completeness theorem of CAa following [10].

Example 10. Consider a situation where surveyor1 with the governing policy
set g = g′′ ∪ {g1}, with the g1 defined in Example 4, is incapable to act as a
surveyor. This UAV must be replaced by another UAV with the same behavior.
To this end, the UAV surveyor2 with the governing policy set g′ = g′′ ∪ {g3, g4}
could be a candidate to replace surveyor1, where g3 is defined in examples 9
and g4 is defined as follows:

g4
def
= ⟨1, found(x, y), ⊤⟩ • BSN .getHealthInfo()

Suppose when event found occurs, none of the policies in g′′ is triggered.
The action terms due to enforcing g and g′ are as follows:

Ψ(g) =
∑
e

Ψ(g, e) = Ψ(g, found) +
∑

e ̸=found

Ψ(g, e)
GA2
=

Ψ(g1, found) +
∑

e ̸=found

Ψ(g′′, e)

Ψ(g′) = Ψ({g3, g4}, found) +
∑

e ̸=found

Ψ(g′′, e)

where

Ψ(g1, found) = observe(found);

(BSN .getHealthInfo() ∥ relay1 .send(msg , commander))

Ψ({g3, g4}, found) = observe(found);

(BSN .getHealthInfo(); relay1 .send(msg , commander) +

relay1 .send(msg , commander);BSN .getHealthInfo())

It is straightforward to prove that Ψ(g1, found) and Ψ({g3, g4}, found) are
equivalent according to CAa axioms (AP4 and AP5). Consequently, surveyor2
has the same behavior as surveyor1 to act as a surveyor.

23

p⊕ p = p PA1
p⊕ p′ = p′ ⊕ p PA2
p⊕ (p′ ⊕ p′′) = (p⊕ p′)⊕ p′′ PA3
p⊕ δp = p PA4
⟨o, e,⊥, λ, ϕ⟩•c = δp PA5

⟨o, e, ψ, λ, ϕ⟩•c⊕ ⟨o, e, ψ′, λ, ϕ⟩•c = ⟨o, e, ψ ∨ ψ′, λ, ϕ⟩•c PA6

⟨o, e, ψ, λ, ϕ⟩•c⊕ ⟨o′, e, ψ′, λ′, ϕ′⟩•c′ = ⟨o, e, ψ, λ, ϕ⟩•c
if o > o′ ∧ ψ → ψ′ PA7

Table 3: Adaptation Policy Algebra CAp

6.3. Behavioral Equivalence of Adaptation Policies

In this section, we introduce an axiom system, modulo prioritized splitting
bisimulation to reason about the behavioral equivalence of adaptation policies.
Table 3 shows the axioms of algebra CAp in which p, p′ and p′′ are variables of
sort P. The operator ⊕ is idempotent, commutative and associative (PA1-PA3).
δp behaves as neutral element for ⊕ (PA4). PA5 describes when the condition
of triggering an adaptation policy never holds, it acts as a null adaptation pol-
icy. An adaptation policy never becomes activated, provided that its triggering
conditions imply the triggering conditions of another adaptation policy with a
higher priority and identical event (PA7).

We presented the structural operational semantics of a manager in Section 5
which expresses the whole behavior of a manager. To reason about the be-
havioral equivalence of two adaptation policies, first we define the semantics of
adaptation polices solely. We present the models of adaptation policies (CAp) in
terms of prioritized conditional state transition systems. A model of an algebra
such as CAp indicates its semantics which is a structure that consists of (1) a
non-empty set D, called the domain of the model, (2) for each constant of CAp

an element of D and (3) for each n-ary operator of CAp, an n-ary operation on
D.

CAp’s models are obtained by associating an element of PCTS for the con-
stant δp and each simple adaptation policy pi, and an operation on PCTS
corresponding to the operator ⊕. The constant δp is associated to constant

δ̂p, the simple adaptation policy pi is associated to p̂i, and operator ⊕ is as-
sociated to operator ⊕̂ of PCTS. An arbitrary set S closed under ⊎ is as-
sumed where S ⊎ S′ is the disjoint union of the sets S and S′ defined as
S ⊎ S′ = (S × {∅}) ∪ (S′ × {{∅}}). It is worth mentioning that the identity of
the states of a prioritized conditional transition system is not relevant to the
behavior represented by it. The models of CAp are obtained as follows:

- δ̂p = ⟨{s0}, ∅, ∅, s0⟩ where s0 ∈ S.
- Let s0 and s1 be distinct members of S. The model of a simple adaptation
policy pi = ⟨o, e, ψ, λ, ϕ⟩•c is defined as p̂i = ⟨S,→,→√, s0⟩∈ PCTS where

24

S = {s0, s1}:

(ψ,tostrict(e),o+1)−−−−−−−−−−−−→ = {(s0, s1)|λ = ⊤},
(ψ,toloose(e),o+1)−−−−−−−−−−−−→ = {(s0, s1)|λ = ⊥},

(ϕ,switch(c),o+1)−−−−−−−−−−−→
√

= {s1},

- Let Tp = ⟨S,→,→ √, s0⟩ ∈ PCTS and Tp′ = ⟨S′,→′,→′ √, s′0⟩ ∈ PCTS indi-
cate the models of two adaptation policies p and p′, respectively. Then,
Tp⊕̂Tp′ = ⟨S′′,→′′,→′′√, s′′0⟩ where s′′0 ∈ S\(S ⊎ S′), S′′ = {s′′0} ∪ (S ⊎ S′),

µ(s) = (s, ∅), µ′(s) = (s, {∅}), and ∀(ϕ, α, n) ∈ B− ×A× N:

(ϕ,α,n)−−−−−→′′ = {(s′′0 , µ(s1))|s0
(ϕ,α,n)−−−−−→s1} ∪ {(µ(s1), µ(s2))|s1

(ϕ,α,n)−−−−−→s2}

∪ {(s′′0 , µ′(s′1))|s′0
(ϕ,α,n)−−−−−→′s′1} ∪ {(µ′(s′1), µ

′(s′2))|s′1
(ϕ,α,n)−−−−−→′s′2}

(ϕ,α,n)−−−−−→′′√ = {µ(s)|s (ϕ,α,n)−−−−−→
√
}

∪ {µ′(s)|s (ϕ,α,n)−−−−−→′√},

The full prioritized splitting bisimulation models ℵ of CAp are the models
whose domain is equivalence class of prioritized conditional state transition sys-
tems modulo prioritized splitting bisimulation. ℵ is the expansion of B with (i)
the non-empty set P for the sort P, (ii) δ̃p ∈ P for the constant δp, (iii) p̃ ∈ P
for the simple adaptation policy p, and (iv) ⊕̃ : P × P → P for the operator ⊕
which are defined as follows:

P = PCTS/⇔p,

δ̃p = [δ̂p]⇔p

p̃ = [p̂]⇔p

[Z1]⇔p
⊕̃ [Z2]⇔p = [Z1⊕̂Z2]⇔p

Definition 5. We say two adaptation policies p and p′ are prioritized splitting
bisimilar, denoted by p⇔p p

′, iff their models in terms of prioritized conditional
state transitions systems are prioritized splitting bisimilar.

Proposition 1. (Congruence) Prioritized splitting bisimulation is a congru-
ence with respect to ⊕, i.e., for all CAp terms p, p′, q, and q′, p⇔pp

′ and q⇔p q
′

imply p⊕q⇔p p
′⊕q′.

Proof. See Appendix A.

Theorem 1. (Soundness) CAp is sound for prioritized splitting bisimulation
equivalence, i.e., for all CAp terms p and p′, p = p′ implies p⇔p p

′.

Proof. See Appendix A.

25

φ, toloose(brokencamera), 2

>, switch(relayconf), 2

φ = ¬success ∧ enoughEnergy

φ′ = ¬success

>, switch(comconf), 2 >, switch(relayconf), 4

(a) p̃1 (b) p̃′

φ, tostrict(brokencamera), 2
φ′, toloose(brokencamera), 4

Figure 8: The model of the adaptation policy of example 5

sW

sL
sS

sE

√

√

Figure 9: An Abstraction of the Behavior of a Configuration

Theorem 2. (Ground Completeness) CAp is ground complete for priori-
tized splitting bisimulation equivalence, i.e., for all CAp terms p and p′, p⇔p p

′

implies p = p′.

Proof. See Appendix A.

Example 11. Figures 8 (a) shows the model of adaptation policy p1 in example
5, and Figure 8 (b) gives the model of adaptation policy p′ defined as follows:

p′ = ⟨3, brokencamera,¬success,⊥,⊤⟩•relayconf ⊕
⟨1, brokencamera,¬success ∧ enoughEnergy,⊤,⊤⟩•comconf

The relation witnessing prioritized splitting bisimulation between p1 and p′ is
shown in Figure 8 by dashed lines. Furthermore, we can prove p1 = p′, according
to axiom P7.

6.4. Behavioral Equivalence of Configurations

Let c = ⟨g, p⟩ denote a configuration with the adaptation policy p and
the governing policy set g. Figure 9 gives an abstraction of the behav-
ior of a configuration. In this figure, sW , sE , sL and sS indicate the ab-
stract states of waiting mode, enforcement mode, loose adaptation mode and
strict adaptation mode, respectively. The dashed dotted transitions model

26

the transitions of adaptation policies while solid transitions model the tran-
sitions due to enforcing governing policies. The symbol

√
denotes termina-

tion of executing configuration c. Note that sL has a solid loop because of
enforcing governing policies. Suppose Tp = ⟨Sp,→p,→ p

√, sp
0⟩ ∈ PCTS and

Tg = ⟨Sg,→g,→g
√, s0g⟩ indicate the models of p and g, respectively. Then,

the model of c is Γ(Tc = ⟨S,→,→ √, s0⟩ ∈ PCTS) where S = Sm × Sg × Sp,
Sm = {sS , sW , sE , sL}, and the members of Sm are distinct members of
S\(Sp ∪ Sg). Let Ag and Ap indicate the action sets of Tg and Tp, respec-
tively. Furthermore, Γ(Tc) denotes the connected part of transition system Tc
whose states are reachable from the initial state of Tc. The transition relation
of Tc is defined as follows:

- Transitions due to enforcing governing policies

For all (ϕ, α) ∈ B− ×Ag, the following relations are defined:

⟨ϕ,α,1⟩−−−−→ = {((sW , s0g, s0p), (sE , s, s0p))|s0g
(ϕ,α)−−−→g s}

∪ {((sE , s, s0p), (sE , s′, s0p))|s
(ϕ,α)−−−→g s

′}

∪ {((sE , s, s0p), (sW , s0g, s0p))|s
(ϕ,α)−−−→g√}

∪ {((sL, s, sp), (sL, s′, sp))|s
(ϕ,α)−−−→g s

′ ∧ ∃ϕ′,α′,n sp
⟨ϕ′,α′,n⟩−−−−−−→

√
}

∪ {((sL, s, sp), (sL, s0g, sp))|s
(ϕ,α)−−−→g

√
∧ ∃ϕ′,α′,n sp

⟨ϕ′,α′,n⟩−−−−−−→
√
}

- Transitions due to enforcing adaptation policies

For all (ϕ, α, n) ∈ B− ×Ap × N, the following relations are defined:

⟨ϕ,α,n⟩−−−−−→ = {((sW , s0g, s0p), (sS , s0g, s))|s0p
⟨ϕ,α,n⟩−−−−−→p s ∧ α = tostrict(e)}

∪ {((sW , s0g, s), (sL, s0g, s′))|s
⟨ϕ,α,n⟩−−−−−→p s

′ ∧ α = toloose(e)}
⟨ϕ,α,n⟩−−−−−→

√
= {(sS , s0g, s)|s

⟨ϕ,α,n⟩−−−−−→p
√
} ∪ {(sL, s0g, s)|s

⟨ϕ,α,n⟩−−−−−→p
√
}

We describe the behavioral equivalence of two configurations based on the
behavioral equivalence of their governing policies as well as the behavioral equiv-
alence of their adaptation policies:

Definition 6. Let c = ⟨g, p⟩ and c′ = ⟨g′, p′⟩ be two arbitrary configurations.
c = c′ iff Ψ(g) = Ψ(g′) and p = p′. Furthermore, we say c and c′ are priori-
tized splitting bisimilar, written by c ⇔p c

′, if there is a prioritized splitting
bisimulation relation between the models of c and c′.

Theorem 3. Let c = ⟨g, p⟩ and c′ = ⟨g′, p′⟩ be two arbitrary configurations.
c = c′ iff c⇔p c

′.

Proof. See Appendix B.

27

⟨ci | C⟩ = ⟨gi, ti(⟨c1 | C⟩, ..., ⟨cn | C⟩)⟩ i = {1, ..., n} RDP

if c′i = ⟨gi, ti(c′1, ..., c′n)⟩ for i = {1, ..., n}, then
c′i = ⟨ci | C⟩ i = {1, ..., n} RSP

Table 4: Recursion axioms for configurations

Since adaptation policies are specified in terms of configurations, the defini-
tion of configurations is recursive. Let C = {ci = ⟨gi, pi⟩|1 ≤ i ≤ n} denote a set
of configurations where pi = ti(c1, ..., cn), ti is a function and ci is a variable. A
solution of C is an interpretation of cis such that the equations of C are satisfied.
The construct ⟨ci | C⟩ is a constant indicating component ci of a solution of C.
We use two common recursion axioms given in table 4 for guarded specifications
[9, 8]. RDP(Recursive Definition Principle) states that the constant ⟨ci | C⟩ is
a solution of the ith component of C. RSP (Recursive Specification Principle)
asserts that the recursive specification C = {ci = ⟨gi, pi⟩|1 ≤ i ≤ n} has at most
one solution per configuration.
Example 12. Consider a UAV controller with the configuration
set {survconf, hazardconf, relayconf} where survconf = ⟨gs, ps⟩,
hazardconf = ⟨gh, ph⟩ and relayconf = ⟨gr, pr⟩. The configurations survconf
and hazardconf are defined for surveying areas with safe and chemicals areas,
respectively. Assume the governing policy sets of both surveying configurations
are equivalent due to special conditions of the area, i.e., Ψ(gh) = Ψ(gs), and

ps = ⟨1, e, ϕ,⊥, ψ⟩ • relayconf ⊕ ⟨2, e′, ϕ′,⊥, ψ′⟩ • hazardvonf
ph = ⟨1, e, ϕ,⊥, ψ⟩ • relayconf ⊕ ⟨2, e′, ϕ′,⊥, ψ′⟩ • survconf
pr = ⟨1, e′′, ϕr,⊤, ψr⟩ • hazardvonf

We cannot prove ps = ph using CAp axioms. However, the equation
survconf = hazardconf is proved using RDP and RSP as well as CAp axioms.

6.5. Behavioral Equivalence of Managers

Checking behavioral equivalence of two managers is the most important part
of the behavioral equivalence theory. As mentioned above, a manager runs one of
its configurations at a time, and switches between the configurations to perform
dynamic adaptation. Therefore, the model of a manager is simply generated by
connecting the models of its configurations , i.e., a state s of configuration ci is
connected to the initial state of configuration cj , ci ̸= cj , if there is a transition
from s with action switch(cj).

Let m = ⟨Vm, C, cinit⟩ indicate a manager where C = {c1, ..., ck1}. Let
Tci = ⟨Si,→i,→ i

√, si
0⟩ ∈ PCTS for i = 1, ..., k1 denote the model of ci. The

model of m is defined as Tm = ⟨S,→,→ √, s0⟩ ∈ PCTS where S =
∪

1≤i≤m Si

28

and ∀(ϕ, α, n) ∈ B− ×A× N:

(ϕ,α,n)−−−−−→ =
∪

1≤i≤n

(ϕ,α,n)−−−−−→i ∪ {(s, s0j)|s ∈
(ϕ,α,n)−−−−−→i

√
∧ α = switch(cj)}

(ϕ,α,n)−−−−−→
√

= ∅

We proceed to reason about the behavioral equivalence of managers based on
the behavioral equivalence of their configurations. The managers in equivalent
initial configurations enforce equivalent governing policy sets. They should also
switch to equivalent configurations, say ci and c

′
i, using their equivalent adapta-

tion policies. Similarly, the managers in equivalent configurations ci and c
′
i must

enforce equivalent governing policy sets, and switch to equivalent configurations
say cj and c

′
j , and so on. Therefore, two managers are behavioral equivalent iff

they have equivalent initial configurations. It is clear that configurations which
are never active do not influence in the behavior of managers.

Definition 7. Letm = ⟨Vm, C, cinit⟩ andm′ = ⟨Vm′ , C ′, c′init⟩ be two managers
with configuration sets C = {c1, ..., ck1} and C ′ = {c′1, ..., c′k2}, initial configu-
rations cinit ∈ C and c′init ∈ C ′, and views Vm and Vm′ , respectively. We say
m = m′ iff cinit = c′init. Furthermore, we say m and m′ are prioritized splitting
bisimilar, written by m ⇔p m

′, if there is a prioritized splitting bisimulation
relation between the models of m and m′.

Theorem 4. Let m = ⟨Vm, C, cinit⟩ and m′ = ⟨Vm′ , C ′, c′init⟩ be two arbitrary
managers. Then, m = m′ iff m⇔p m

′.

Proof. See Appendix C.

Since, two behavioral equivalent managers have equivalent configurations
(Theorem 4), they enforce equivalent governing policy sets (Theorem 3). The
messages sent to the actors to control their behavior are consequences of en-
forcing governing policies. Hence, equivalent managers send the same sequences
of messages to the actors. As a result, when a manager is replaced by an
equivalent manager, the managed actors controlled by two equivalent managers
behave identically. Therefore, the semantics of the managed actors is preserved
by substitution of a manager (or a policy or a configuration) by an equivalent
one.
Example 13. Consider the UAV of example 12 with the capability to
search areas with chemical hazards. The manager of this UAV is defined as
survCntrlr = ⟨Vs, {survconf, hazardconf, relayconf}, survconf⟩, where con-
figuration survconf = ⟨gs, ps⟩ is used to search areas without hazardous
chemicals, hazardconf = ⟨gh, ph⟩ is used to search areas with hazards,
and relayconf = ⟨gr, pr⟩ is used for acting as a relay. Consider a sit-
uation that surveyor1 has to be replaced by a UAV with the manager
survCntrlr′ = ⟨Vs, {survconf ′, relayconf}, survconf ′⟩ where survconf ′ =

29

Dimension Degree PobSAM
Degree

Definition

evolution static to dy-
namic

dynamic whether the goals can change within the
lifetime of the system

binding
time

static, semi-
dynamic, dy-
namic

dynamic the point in time when the adaptive be-
havior is composed with the business
logic of an application

adaptation
source

external ,in-
ternal

external or
internal

where is the source of adaptation?

type parameter,
functional,
and struc-
tural

functional
and struc-
tural

whether adaptation is related to the pa-
rameters, the behavior or the structure of
the system

autonomy autonomous
to assisted
(system or
human)

autonomous what is the degree of outside intervention
during adaptation

organization centralized to
decentralized

decentralized
(by different
managers)

whether the adaptation is done by a sin-
gle component or distributed amongst
several components

scope local to
global

local whether adaptation is localized or in-
volves the entire system

triggering event-trigger
to time-
trigger

event-trigger whether the change that triggers adapta-
tion is associated with an event or a time
slot

Table 5: Modeling dimensions of PobSAM according to [3, 19]

⟨gs′, ps′⟩. Let configurations survconf and survconf ′ have equivalent govern-
ing policy sets, i.e., Ψ(gs) = Ψ(gs′). The adaptation policies of survconf and
survconf ′ are defined as follows where ϕ′ ⇒ ϕ

ps = ⟨1, e, ϕ,⊥, ψ⟩ • relayconf
ps′ = ⟨2, e, ϕ,⊥, ψ⟩ • relayconf ⊕ ⟨1, e, ϕ′,⊥, ψ′⟩ • hazardconf

According to axiom PA7, we prove that ps = ps′, and subsequently
survconf = survconf ′. Therefore, managers survCntrlr and survCntrlr′ are
equivalent, and we can replace surveyor1 with this equivalent UAV.

7. Discussion and Related Work

In [3], a taxonomy of different modeling dimensions of software self-adaptive
systems is proposed. Also, [19] proposes a taxonomy that captures various di-
mensions of dynamic adaptation in automotive system software. Table 5 posi-
tions PobSAM in these two taxonomy partially. We have omitted the dimensions
which are application-specific.

Flexibility of an approach to develop self-adaptive systems is realized by
three different features including separation of concerns, computational reflec-
tion and component-based design [27]. We explain how PobSAM can address
these requirements in the sequel.

30

PobSAM decouples the adaptation logic from the business logic described
at an abstract level using policies. The proposed model permits us to control
(adapt) the system behavior by enforcing (modifying) policies dynamically by
loading new policies and configurations without re-coding actors and managers;
thereby it leads to increasing system flexibility and scalability. Particularly, it
is possible to change the configurations and policies of managers dynamically
which is a major benefit for today’s complex and evolving systems.

Computational reflection is the ability of a system to monitor and change its
behavior subsequently. In PobSAM, the managers monitor the actor’s behavior
through the view layer and direct and adapt the system behavior. Policies
provide us a high-level description of what we want without dealing with how
to achieve it. Thus, using policies can be a suitable mechanism to determine if
the goals are achievable using existing policy refinement techniques.

Furthermore, PobSAM is a compositional model in terms of actors, man-
agers, policies and configurations. It is possible to change policies and config-
urations dynamically. Although we focused on behavioral adaptation in this
paper, PobSAM can support structural adaptation as well by adding, replacing
or removing actors and managers dynamically. This is an advantage over most
existing approaches that concentrate on one adaptation type.

One of the main aspects of modeling a self-adaptive system is specifying
adaptation requirements. To this end, we introduced a two phase adaptation
strategy to pass the adaptation phase safely. Upon receiving an adaptation event
by a manager, it switches to the adaptation mode. When the system reaches
a safe state, the adaptation is completed by evolving the manager to the new
configuration. [39] is a relevant work which extends LTL with an “adapt” oper-
ator called A-LTL to specify adaptation requirements before, during and after
adaptation [39]. The adaptation semantics of A-LTL contains three types of
adaptation including one-point adaptation, guided adaptation and overlapped
adaptation. While under one-point adaptation semantics, the program adapts
to the target program at a certain point, in guided adaptation the source pro-
gram will be restricted until the system reaches a safe state. Under overlapped
semantics, the target and source programs execute simultaneously. Similar to
the one-point adaptation, both loose and strict adaptation modes wait for a safe
state to switch to the target configuration. We can model guided adaptation
using loose adaptation model in which the manager enforces suitable policies
to guide the system to reach a safe state. In contrast to [39], it is impossible
to have overlapped execution of new and old configurations in PobSAM. Fur-
thermore, adaptation in [39] leads to switching to a completely new program,
but adaptation of PobSAM influences the behavior of managers directly and the
actors keep running normally during adaptation.

In [24] a protocol is introduced to pass the reconfiguration phase safely,
i.e., the reconfiguration leaves the modified system in a consistent state, and
causes no disturbance to the unaffected part of the system. Later [38] has
formalized and extended this framework in order to minimize disruption and
to handle hierarchical systems. In contrast to [38, 24] which consider changes
at the system structure level, our modification is performed at the behavioral

31

level. In [4], an approach without quiescence, for safe adaptation of Paradigm
models to unforeseen situation (a new Paradigm model) is introduced. To this
end, another well-defined Paradigm model is constructed, specifying how to
migrate safely to the new model. A special component McPal is provided to
coordinate the adaptation process, and each component is extended such that
it can coordinate its own migration to the unforeseen model. Process algebra
is used for formal analysis, particularly, to prove that the old model and the
new model are abstractions of the migration process. In [38, 24, 4], multiple
components are involved in adaptation, and a supervisor controls the adaptation
process using the proposed protocol. In our model, changes are local to each
manager and the manager is responsible to switch to the new configuration
according to its policies. In contrast to [38, 24, 4], our adaptation is a one-
step change where only one component is involved. Particularly, due to the
fixed structure of our system model during adaptation, the issue of avoiding
inconsistent states (due to adding/removing components) is not relevant, while
it is the main concern of [38, 24]. In contrast to [4], we specify adaptation at a
higher-level of abstraction, we only modify the policies of the manager and the
behavior of the rest of components remains ongoing and unaltered.

Dynamic adaptation is a very diverse area of research and different commu-
nities are concerned with this issue including autonomic computing, component-
based systems, software architecture, coordination models, agent-based systems
and more. Structural adaptation has been given strong attention in the re-
search community, and formal techniques have been extensively used to model
and analyze dynamic structural adaptation (see [13]). Structural adaptation
(or dynamic reconfiguration) is usually modeled using graph-based approaches
(e.g., [35, 28, 18]) or ADL-based approaches (e.g., [26, 29]). Fewer approaches
tackle behavioral adaptation as we considered. Since, we are interested in be-
havioral adaptation without changing the system structure, we restrict ourselves
to present related work done on formal modeling of self-adaptive systems at the
behavioral level in addition to applying policy-based approaches for engineering
of self-adaptive systems. [12] proposed an approach based on the concept of
proof lattice to verify if a system is in a correct state during and after adap-
tation in terms of satisfying the transitional-invariants. In this approach, the
behavior of system during adaptation is specified using adaptation lattice in
which a node is an automata denoting the behavior of a possible intermediate
program. In contrast to [12], we are not concerned about formal verification
of adaptive systems during adaptation. Particularly, as mentioned above, only
one component is involved in our adaptation phase, therefore our adaptation
process is not as complex as adaptation in [12].

Formal modeling and verification of adaptive systems at behavioral level is
a young research area [14] and only a few research groups have already focused
on this topic. As part of the RAPIDware project, Zhang et al. [40] proposed a
model-driven approach for developing adaptive systems. In this approach, dif-
ferent contexts in which an adaptive program may run are determined according
to high-level requirements specified by a formalism like temporal logic. The lo-
cal properties of the program in each context are described formally. Then, a

32

state-based model of the program in each context, as well as the adaptation
models for the adaptations of the program from one context to another are
built. Different behavioral variants of a program are modeled as Petri Nets
in [40]. Furthermore, [39] introduces a model checking approach to verify the
program formally.

[32] presents a method to describe adaptation behavior at an abstract level.
After deriving transition systems from the system description, the system prop-
erties are verified using model checking techniques. In [2], a framework, called
MARS, is proposed for model-based development of adaptive embedded sys-
tems where a model consists of a set of modules. A module may have different
guarded configurations which are selected depending on the current situation
of modules environment. The system is specified using Synchronous Adaptive
Systems (SAS) [31] and is verified using theorem proving, model checking and
specialized verification methods.

The main difference of our approach with the RAPIDware project and the
MARS framework is that they are mainly concerned with modeling the adap-
tive system at the behavioral level (even though the adaptation type may be
structural), we are interested in flexible formal models to develop and model
adaptive systems which adapt the system behavior by changing the system
behavior rather than structure. Both RAPIDware and MARS decouple adap-
tation concerns from the business logic. PobSAM decouples behavioral choices
in addition to adaptation logic. While in these works, the system is described
at a low-level of abstraction using a semantic-level state-based formalism, we
use high-level policies to control the system behavior and provide a high-level
language to specify policies formally. Moreover, configurations in addition to
adaptation logic are fixed in RAPIDware and MARS, while we can change con-
figurations and adaptation policies. The ability to change configurations and
adaptation logic is vital for an approach to model evolving adaptive systems.

Another close area of research is coordination models in which the interaction
of objects can be controlled to achieve adaptation. While coordination models
are aimed at decoupling interactions from computation and controlling interac-
tions, PobSAM is concerned with controlling objects through controlling their
behavior and decouples the behavioral choices and adaptation concerns from the
computational environment. ARC (Actor-Role-Coordinator) [30] and PAGODA
(Policy And GOal based Distributed Architecture) [36, 37] are two similar actor-
based coordination models in which meta-actors control interactions of actors.
ARC controls object interactions by manipulating message delivery including
rerouting and reordering messages. In PAGODA, each coordinator is provided
with a set of policies to coordinate actors where a simple policy may reorder
messages, serialize requests and maintain a history of events. Reo [7] is an-
other coordination model in which a graph transformation approach is used for
dynamic adaptation of Reo models [23].

Employing policies as a paradigm to adapt self-adaptive systems has been
given considerable attention during recent years. Policies are high-level goals
describing the user requirements which can be defined and modified dynamically.
In [5, 16, 17, 20, 15, 6] policies are used as the adaptation logic for structural

33

adaptation, while we use policies as a mechanism for behavioral adaptation.
Furthermore, [15] uses policies for a simple type of behavioral adaptation named
parameterization, too. [25] proposes an adaptive architecture for management
of differentiated networks which performs adaptation by enabling/disabling a
policy from a set of predefined QoS policies. [6] presents a policy definition
language for autonomic computing systems in which the policies themselves
can be modified dynamically to match environmental conditions. However, this
work does not deal with modeling system and it is limited to proposing an
informal policy language.

8. Conclusions and Future Work

We proposed PobSAM as a formal model to develop evolving self-adaptive
systems which uses policies as the main mechanism to govern and adapt the
system behavior. To this end, we model a system as the composition of a set
of actors: managed actors that are dedicated to the computational layer of a
system and autonomous managers that coordinate actors to achieve the prede-
fined goals using policies. This model integrates two formal methods including
the algebra CA and an actor-based model to specify a system. We presented
the operational semantics of PobSAM by means of labeled transition systems.
We presented behavioral equivalence of CA sub-algebras including CAa, CAg,
CAc and CAp according to the notions of splitting bisimilarity and prioritized
splitting bisimilarity.

There is much more research to pursue in the area of modeling and verifi-
cation of self-adaptive systems. In this paper, we focused on formal modeling
of self-adaptive systems. Verification of different properties of adaptation and
computational layers of PobSAM models is an ongoing work. As our model can
support both behavioral and structural adaptations, our future research will
concentrate on specifying structural adaptations.

References

[1] Autonomic computing. IBM Systems Journal, 42, 2003.

[2] Rasmus Adler, Ina Schaefer, Tobias Schule, and Eric Vecchie. From model-
based design to formal verification of adaptive embedded systems. In Pro-
ceedings of the formal engineering methods 9th international conference on
Formal methods and software engineering, ICFEM07, pages 7695, Berlin,
Heidelberg, 2007. Springer-Verlag.

[3] Jesper Andersson, Rogerio Lemos, Sam Malek, and Danny Weyns. In Betty
H. Cheng, Rogerio Lemos, Holger Giese, Paola Inverardi, and Jeff Magee,
editors, Software Engineering for Self-Adaptive Systems, chapter Model-
ing Dimensions of Self-Adaptive Software Systems, pages 2747. Springer-
Verlag, Berlin, Heidelberg, 2009.

34

[4] Suzana Andova, Luuk Groenewegen, J. Stafleu, and Erik P. de Vink. For-
malizing adaptation on-the-fly. Electr. Notes Theor. Comput. Sci., pages
2344, 2009.

[5] Richard Anthony and Cecilia Ekelin. Policy-driven self-management for an
automotive middleware. In Hot Topics in Autonomic Computing on Hot
Topics in Autonomic Computing, pages 5564, Berkeley, CA, USA, 2007.
USENIX Association.

[6] Richard John Anthony. Generic support for policy-based self-adaptive sys-
tems. In Proceedings of the 17th International Conference on Database and
Expert Systems Applications, pages 108113, Washington, DC, USA, 2006.
IEEE Computer Society.

[7] Farhad Arbab. Reo: a channel-based coordination model for component
composition. Mathematical Structures in Computer Science, 14(3):329366,
2004.

[8] J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equa-
tional Theories of Communicating Processes (Cambridge Tracts in Theoret-
ical Computer Science). Cambridge University Press, 1st edition, December
2009.

[9] Jan A. Bergstra and Jan Willem Klop. Verification of an alternating bit
protocol by means of process algebra. In Mathematical Methods of Speci-
fication and Synthesis of Software Systems, pages 923, 1985.

[10] Jan A. Bergstra and C. A. Middelburg. Preferential choice and coordination
conditions. J. Log. Algebr. Program., 70(2):172200, 2007.

[11] Jan A. Bergstra and C.A. (Kees) Middelburg. Model theory for process
algebra. In Aart Middeldorp, Vincent van Oostrom, Femke van Raamsdonk,
and Roel de Vrijer, editors, Processes, Terms and Cycles: Steps on the
Road to Infinity, volume 3838 of Lecture Notes in Computer Science, pages
445495. Springer Berlin / Heidelberg, 2005.

[12] Karun N. Biyani and Sandeep S. Kulkarni. Assurance of dynamic adapta-
tion in distributed systems. Journal of Parallel and Distributed Computing,
68(8):1097 1112, 2008.

[13] Jeremy S. Bradbury, James R. Cordy, Jurgen Dingel, and Michel Wer-
melinger. A survey of self-management in dynamic software architecture
specifications. In Proceedings of 1st ACM SIGSOFT Workshop on Self-
managed Systems, pages 2833. ACM, 2004.

[14] Betty H. C. Cheng, Rogerio de Lemos, Holger Giese, Paola Inverardi,
and Jeff Magee. Software engineering for self-adaptive systems. pages 126,
Berlin, Heidelberg, 2009. Springer-Verlag.

35

[15] Pierre-Charles David and Thomas Ledoux. Towards a framework for self-
adaptive component-based applications. In Proceedings of Int. Conf. on
Distributed Applications and Interoperable Systems (DAIS), pages 114,
2003.

[16] Christos Efstratiou, Keith Cheverst, Nigel Davies, and Adrian Friday. An
architecture for the effective support of adaptive context-aware applica-
tions. In Proceedings of the Second International Conference on Mobile
Data Management, MDM 01, pages 1526, London, UK, 2001. Springer-
Verlag.

[17] Christos Efstratiou, Adrian Friday, Nigel Davies, and Keith Cheverst. Util-
ising the event calculus for policy driven adaptation on mobile systems. In
Proceedings of IEEE 3rd International Workshop on Policies for Distributed
Systems and Networks, pages 1324, 2002.

[18] Hartmut Ehrig, Claudia Ermel, Olga Runge, Antonio Bucchiarone, and
Patrizio Pelliccione. Formal analysis and verification of self-healing systems.
In Fundamental Approaches to Software Engineering, pages 139153, 2010.

[19] Serena Fritsch, Aline Senart, Douglas C. Schmidt, and Siobhan Clarke.
Time-bounded adaptation for automotive system software. In Proceed-
ings of the 30th international conference on Software engineering, ICSE
08, pages 571580, New York, NY, USA, 2008. ACM.

[20] Phil Greenwood and Lynne Blair. A framework for policy driven auto adap-
tive systems using dynamic framed aspects. In Transactions on Aspect-
Oriented Software Development II, volume 4242 of LNCS, pages 3065.
Springer Berlin/Heidelberg, 2006.

[21] Christine Hofmeister. Dynamic Reconfiguration. PhD thesis, Computer Sci-
ence Department, University of Maryland, 1993.

[22] Narges Khakpour, Saeed Jalili, Carolyn L. Talcott, Marjan Sirjani, and
Mohammad Reza Mousavi. Pobsam: Policy-based managing of actors in
self-adaptive systems. Electr. Notes Theor. Comput. Sci., 263:129143, 2010.

[23] Christian Koehler, Alexander Lazovik, and Farhad Arbab. Connector
rewriting with high-level replacement systems. Electr. Notes Theor. Com-
put. Sci., 194(4):7792, 2008.

[24] J. Kramer and J. Magee. The evolving philosophers problem: Dy-
namic change management. IEEE Transactions on Software Engineering,
16:12931306, 1990.

[25] Leonidas Lymberopoulos, Emil Lupu, and Morris Sloman. An adaptive
policy-based framework for network services management. J. Network Syst.
Manage., 11(3):277303, 2003.

36

[26] Jeff Magee and Jeff Kramer. Dynamic structure in software architectures. In
Proceedings of the Fourth ACM SIGSOFT Symposium on the Foundations
of Software Engineering, 1996.

[27] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H.
C. Cheng. A Taxonomy of Compositional Adaptation. Technical report,
Michigan State University Technical Report MSU-CSE-04-17, 2004.

[28] Daniel Le Metayer. Describing software architecture styles using graph
grammars. IEEE Transactions on Software Engineering, 24(7):521 533,
1998.

[29] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-
based runtime software evolution. In Proceedings of the 20th international
conference on Software engineering, ICSE 98, pages 177186, Washington,
DC, USA, 1998. IEEE Computer Society.

[30] Shangping Ren, Yue Yu, Nianen Chen, Kevin Marth, Pierre-Etienne Poirot,
and Limin Shen. Actors, roles and coordinators a coordination model for
open distributed and embedded systems. In Coordination Models and Lan-
guages, volume 4038 of Lecture Notes in Computer Science, pages 247 265.
Springer Berlin/Heidelberg, 2006.

[31] Ina Schaefer and Arnd Poetzsch-Heffter. Using abstraction in modular ver-
ification of synchronous adaptive systems. In Proceedings of Workshop on
Trustworthy Software, Saarbrcken, Germany, 2006.

[32] Klaus Schneider, Tobias Schuele, and Marion Trapp. Verifying the adap-
tation behavior of embedded systems. In Proceedings of the 2006 interna-
tional workshop on Self-adaptation and self-managing systems, SEAMS 06,
pages 1622, New York, NY, USA, 2006. ACM.

[33] Marjan Sirjani, Ali Movaghar, Amin Shali, and Frank S. de Boer. Mod-
eling and verification of reactive systems using rebeca. Fundam. Inform.,
63(4):385410, 2004.

[34] Morris Sloman and Emil C. Lupu. Engineering policy-based ubiquitous
systems. Comput. J., 53(7):11131127, 2010.

[35] Gabriele Taentzer, Michael Goedicke, and Torsten Meyer. Dynamic change
management by distributed graph transformation: Towards configurable
distributed systems. In Hartmut Ehrig, Gregor Engels, Hans-Jrg Kreowski,
and Grzegorz Rozenberg, editors, Theory and Application of Graph Trans-
formations, volume 1764 of Lecture Notes in Computer Science, pages
179193. Springer Berlin / Heidelberg, 2000.

[36] Carolyn L. Talcott. Coordination models based on a formal model of dis-
tributed object reflection. Electr. Notes Theor. Comput. Sci., 150:143157,
March 2006. Proceedings of the First International Workshop on Methods

37

and Tools for Coordinating Concurrent, Distributed and Mobile Systems
(MTCoord 2005).

[37] Carolyn L. Talcott. Policy-based coordination in pagoda: A case study.
Electr. Notes Theor. Comput. Sci., 181:97112, 2007.

[38] Michel Wermelinger. A hierarchic architecture model for dynamic reconfig-
uration. In 2nd International Workshop on Software Engineering for Par-
allel and Distributed Systems, pages 243 254, may 1997.

[39] Ji Zhang and Betty H. C. Cheng. Specifying adaptation semantics. ACM
SIGSOFT Software Engineering Notes, 30(4):17, 2005.

[40] Ji Zhang and Betty H. C. Cheng. Model-based development of dynamically
adaptive software. In Proceedings of the 28th international conference on
Software engineering, ICSE 06, pages 371380, New York, NY, USA, 2006.
ACM.

[41] Ji Zhang, Heather Goldsby, and Betty H. C. Cheng. Modular verification of
dynamically adaptive systems. In Proceedings of the 8th ACM international
conference on Aspect-oriented software development, pages 161172, 2009.

Appendix A

Proof of Proposition 1

Proof. Let x̃ = ⟨Sx,→x,→x
√, sx

0⟩ ∈ PCTS for x = p, p′, q, q′. Let R1 and
R2 be prioritized splitting bisimulations witnessing p̃ ⇔p p̃

′ and q̃ ⇔p q̃
′, re-

spectively. Then, we construct R⊕ = ({(s0, s′0)} ∪ µ(R1) ∪ µ(R2)) ∩ (S × S′)
where S = Sp ∪ Sp′ , S′ = Sq ∪ Sq′ , s0 is initial state of p̃ ⊕̃ q̃, s′0 is initial
state of p̃′ ⊕̃ q̃′, and µ(Ri) = {(µi(s), µi(s′))|(s, s′) ∈ Ri}, i = 1, 2. Moreover,
µ1(s) = (s, ∅) and µ2(s) = (s, {∅}).

Proof of Theorem 1

Proof. According to the definition of ℵ, proof of CAP soundness is straight-
forward. For instance to prove soundness of axiom PA6, let p̂1, p̂2
and p̂3 denote the models of p1 = ⟨o, e, ψ, λ, ϕ⟩ • c, p2 = ⟨o, e, ψ′, λ, ϕ⟩•c and
p3 = ⟨o, e, ψ ∨ ψ′, λ, ϕ⟩•c, respectively. We should prove that p̃1 ⊕̃ p̃2 = p̃3. Let

µ
[12]
i : Si → S1

⊎
S2 where Si denote the state set of p̂i. We construct the bisimu-

lation relation RPA6 witnessing p̂1⊕̂p̂2 ⇔p p̂3 as follows, where s0 and s′0 denote

the initial states of p̂1⊕̂p̂2 and p̂3, respectively :

RPA6 = {(s0, s′0)} ∪ {(µ[12]
1 (s), s)|s ∈ S3 ∧ s ̸= s′0}

∪ {(µ[12]
2 (s), s)|s ∈ S3 ∧ s ̸= s′0}

38

We have the following equations according to the definition of ℵ,

[p̂1 ⊕̂ p̂2]⇔p
= [p̂1]⇔p ⊕̃ [p̂2]⇔p = p̃1 ⊕̃ p̃2 (3)

[p̂3]⇔p = p̃3 (4)

and

[p̂1 ⊕̂ p̂2]⇔p
= [p̂3]⇔p

(3),(4)⇒ p̃1 ⊕̃ p̃2 = p̃3 (5)

Proof of Theorem 2

Proof. Let T = ⟨S,→,→ √, s0⟩ ∈ PCTS and T ′ = ⟨S′,→′,→′ √, s′
0⟩ ∈ PCTS

denote two arbitrary prioritized conditional state transition systems where
ℵ |= T, T ′. Let trm(s) be a function which gives a CAp term to state s ∈ S. In
addition, trm(T) = trm(s0). We define trm(s) as follows:

trm(s) =

⊕
j pj s = s0, s

µ−→ sj ∧ trm(sj) = pj

⟨o, e, ψ,⊤, ϕ⟩ • c s
⟨ϕ,switch(c),o+1⟩−−−−−−−−−−−→

√
∧ s0 ⟨ψ,tostrict(e),o+1⟩−−−−−−−−−−−−→ s

⟨o, e, ψ,⊥, ϕ⟩ • c s
⟨ϕ,switch(c),o+1⟩−−−−−−−−−−−→

√
∧ s0 ⟨ψ,toloose(e),o+1⟩−−−−−−−−−−−−→ s

We use the following one-step reduction techniques to reduce a prioritized
conditional state transition system:

• sharing of double states

• replacing s
⟨ϕ,α,n⟩−−−−−→ s′ and s

⟨ϕ′,α,n⟩−−−−−→ s′ by s
⟨ϕ∨ϕ′,α,n⟩−−−−−−−→ s′

• replacing s
⟨ϕ,α,n⟩−−−−−→

√
and s

⟨ϕ′,α,n⟩−−−−−→
√

by s
⟨ϕ∨ϕ′,α,n⟩−−−−−−−→

√

• removing s′ and its descendant where s
⟨ϕ,α,n⟩−−−−−→ s′, s

⟨ϕ′,α′,n′⟩−−−−−−→ s′′, n < n′

and ϕ⇒ ϕ′

• removing transition s
⟨ϕ,α,n⟩−−−−−→

√
where there are transitions s

⟨ϕ′,α′,n′⟩−−−−−−→ s′′

or s
⟨ϕ′,α′,n′⟩−−−−−−→

√
where n < n′ and ϕ⇒ ϕ′.

We say T � T ′ when T ′ is obtained using the introduced reductions from
T and write � for transitive and reflexive closure of �. We say T is in normal
form, if it can not be reduced by reduction rules anymore. It can be proved that

(1) for all T, T ′ ∈ PCTS, T � T ′ implies T ⇔p T
′.

(2) for all T, T ′ ∈ PCTS that are in normal form, T ⇔p T
′ implies T = T ′.

(3) T � T ′ implies CAp ⊢ trm(T) = trm(T ′).

39

Let pcts(p) and pcts(p′) indicate the models of p and p′ in ℵ where
pcts(p)⇔p pcts(p

′). We reduce pcts(p) and pcts(p′) to their normal form in-
dicated by Tp and Tp′ . Thus, we conclude from property (1) that

pcts(p)⇔p Tp (6)

pcts(p′)⇔p Tp′ (7)

From the fact pcts(p)⇔p pcts(p
′), (6) and (7), we conclude Tp ⇔p Tp′ . Since Tp

and Tp′ are in normal form, we prove Tp = Tp′ according to property (2).
It is easy to show that CAp ⊢ trm(pcts(p)) = p and

CAp ⊢ trm(pcts(p′)) = p′. It follows from (3) that CAp ⊢ trm(Tp) = p
and CAp ⊢ trm(T ′

p) = p′. Therefore, from the fact Tp = Tp′ , we conclude
CAp ⊢ (trm(Tp) = trm(Tp′)) and CAp ⊢ p = p′.

Appendix B

Proof of Theorem 3

Proof. To prove left to right, let Rc be the prioritized splitting bisimulation
witnessing c1 ⇔p c2. Then we construct Fg and Rp as formulas 8 and 9 wit-
nessing Ψ(g)⇔pΨ(g′) and p⇔p p

′, respectively. Moreover, f(s, n) is a function
which gives the nth component of a triple, e.g., f((s′, s′′, s′′′), 2) = s′′.

Fg = {(f(s1, 2), f(s′1, 2)) | (s1, s′1) ∈ Rc ∧ (∃s2 .s1
⟨ϕ,α,1⟩−−−−→ s2 ∨ s1

⟨ϕ,α,1⟩−−−−→√)}
(8)

Rp = {(f(s1, 3), f(s′1, 3)) | (s1, s′1) ∈ Rc ∧ (∃s2 .s1
⟨ϕ,α,n⟩−−−−−→ s2 ∨ s1

⟨ϕ,α,n⟩−−−−−→√) ∧ n ̸= 1}
(9)

To prove right to left, let Rp and Fg be the prioritized splitting bisimulations
witnessing p⇔p p

′ and Ψ(g) ⇔p Ψ(g′), respectively. Then, formula 10 is a
relation witnessing c⇔p c

′ where Tc1 and Tc2 indicate the models of c1 and c2,
respectively .

Rc = {((t, sg, sa), (t, s′g, s′a))|(sa, s′a) ∈ Rp ∧ (sg, s
′
g) ∈ Fg

∧(t, sg, sa) ∈ Tc1 ∧ (t, s′g, s
′
a) ∈ Tc2} (10)

Appendix C

Proof of Theorem 4

Proof. To prove left to right, let Rm be the prioritized splitting bisimula-
tion witnessing m⇔p m

′. We construct bisimulation relation Rinit witnessing
cinit ⇔p c

′
init as formulas (11), where Scinit and Sc′init denote the state set of cinit

and c′init, respectively. Therefore, we prove cinit = c′init according to Theorem
3.

Rinit = Rm ∩ (Scinit × Sc′init) (11)

40

To prove right to left, let cl ∈ C and c′k ∈ C ′ be two prioritized splitting
bisimilar configurations. If there are transitions (s1, swicth(ci), s2) ∈→cl and
(s′1, swicth(c

′
j), s

′
2) ∈→c′k

where (s1, s
′
1) ∈ R and (s2, s

′
2) ∈ R, then we have ci =

c′j . Then, we can construct a relation Rij witnessing ci ⇔p c
′
j according to

Theorem 3. According to Definition 7 and Theorem 3 we have cinit ⇔p c
′
init.

Starting from cinit ⇔p c
′
init, we construct all Rij for ci ∈ C and c′j ∈ C ′ where

ci = c′j . The formula 12 is a relation witnessing m⇔p m
′.

Rm =
∪
ci=c′j

Rij (12)

41

