Early Fault Detection in DSLs using
SMT Solving and Automated Debugging *

Sarmen Keshishzadeh!, Arjan J. Mooij?, and Mohammad Reza Mousavi®
! Eindhoven University of Technology, Eindhoven, The Netherlands
2 Embedded Systems Innovation by TNO, Eindhoven, The Netherlands
Center for Research on Embedded Systems, Halmstad University, Sweden
s.keshishzadeh@tue.nl, arjan.mooij@tno.nl, m.r.mousavi@hh.se

Abstract. In the context of Domain Specific Languages (DSLs), we
study ways to detect faults early in the software development cycle. We
propose techniques that validate a wide range of properties, classified
into basic and advanced. Basic validation includes syntax checking, ref-
erence checking and type checking. Advanced validation concerns domain
specific properties related to the semantics of the DSL. For verification,
we mechanically translate the DSL instance and the advanced properties
into Satisfiability Modulo Theory (SMT) problems, and solve these prob-
lems using an SMT solver. For user feedback, we extend the verification
with automated debugging, which pinpoints the causes of the violated
properties and traces them back to the syntactic constructs of the DSL.
We illustrate this integration of techniques using an industrial case on
collision prevention for medical imaging equipment.

Keywords: Early Fault Detection, Formal Verification, Domain Specific Lan-
guage (DSL), Satisfiability Modulo Theories (SMT), Delta Debugging.

1 Introduction

Domain specific languages (DSLs, [20,15]) are used to specify software at a
higher level of abstraction than implementation code, and to mechanically gen-
erate code afterwards. By trading generality for expressiveness in a limited do-
main, DSLs offer substantial gains in ease of use compared with general-purpose
programming and specification languages in their domain of application [15].
Hence, DSLs bring formality closer to domain requirements.

Our goal is to investigate ways to provide early fault detection (see, e.g.,
[11]) when developing industrial software using DSLs. Program verification tech-
niques often focus on implementation code, and heavily depend on abstraction
techniques. Since DSLs are based on domain specific abstractions, we aim to
integrate verification at the level of the DSL, i.e., before generating any code.

* This research was supported by the Dutch national program COMMIT and carried
out as part of the Allegio project.



Meta-modelling frameworks, such as the Eclipse Modelling Framework (EMF,
[19]), XText [7], and MontiCore [14], provide support for developing editors, per-
forming validation, and generating code. The validation for DSLs often concerns
basic validation, such as syntax checking, reference checking, and type checking.
In this paper, we focus on techniques for more advanced kinds of validation.

Our investigation is based on a prototype DSL for collision prevention, de-
veloped in collaboration with Philips Healthcare; see [16]. The main objective
of this DSL is to facilitate the reuse of software among different product config-
urations. The primary goals are hence to reach a convenient abstraction level,
and to generate implementation code. Since correct and timely functioning is
vital for medical systems, this prototype DSL is an interesting study case for
advanced validation.

Through our interaction with the software developers, we have identified
two important user requirements for the integration of advanced validation in
industrial DSLs. These have guided our selection of formal techniques.

The first requirement is to hide the validation techniques from the user of
the DSL. This implies that a push-button technology should be used, such as
model-checking [1] or satisfiability checking [3]. It also implies that we should not
rely on user knowledge about applying verification techniques and analyzing their
outputs. To this end we mechanically generate the validation input from the DSL
instance; this input includes both the formal model and the formal properties.
We also translate any property violations back to the abstraction level of the
DSL. To detect the syntactic constructs that cause the property violations, we
have used an automated debugging technique called delta debugging [23, 4, 22].
Thus the detected causes are presented in the DSL editor.

The second requirement is to provide feedback to the users in a short amount
of time (in the order of seconds to minutes). This often rules out model-checking
techniques based on explicit state-space exploration [9], and generic numerical
analysis techniques for hybrid systems [8]. We aim to use existing tools as they
are, and therefore we refrain from developing ad-hoc abstraction techniques for
our specific DSL. We have used Satisfiability Modulo Theories (SMT) [2, 6] solv-
ing. SMT solvers check satisfiability of first order logic formulae with respect to a
combination of background theories, e.g., on integer arithmetic. In recent years,
SMT solvers have been extensively applied as an efficient means for program
verification [6].

Thus we propose an integration of three techniques, viz., domain-specific
languages, SMT solving and delta debugging. Fig. 1 gives an overview of our
approach; we refer to it throughout this paper. The traditional use of DSLs is
depicted at the left, starting with a system specification which is formalized as
a DSL instance. The DSL instance is used for basic validation, and for generat-
ing implementation code in languages such as C++. In addition, we introduce
advanced validation by automatically generating a set of SMT problems that
express some system properties for the DSL instance. Finally the verification
results are linked back to the DSL instance.



__— F\ Advanced Validation
/gystem Specificatio SMT Solver
|
Formalize Formalize Property Patterns Execute  Respond
. A v —
Basic Validator DSL Instance —> S Pl SMT Problem Verifier &
Generator Debugger

Gensrate \ N —
- T Results
C++ Code _

Fig. 1. Overview of the Automated Approach

Although the SMT problems are generated from the DSL instance, the ver-
ification results do not change the DSL instance; so Fig. 1 is not a round-trip
engineering environment. Instead, the verification results are displayed in the
DSL editor. Automated debugging is used to determine a fault location.

Related work Delta-debugging has initially been developed for debugging pro-
grams. We are aware of a few research works [12, 21] that apply this technique
to more abstract domains. In this paper, we apply it to a declarative DSL.

Integrations of satisfiability checking and debugging have been studied in
both hardware and software domains. [18] applies such an integration in the
context of logic circuits. [13] proposes a method that, given a C program with
an assert statement and a set of failing test cases, provides a list of potential
fault locations in an interactive process. This method analyzes a failure trace
by encoding the definition and use relation for program variables as MAX-SAT
problems. Unlike C programs there is no definition-use relation among the state-
ments of our DSL. Hence, this approach is not applicable in our case.

An integration of verification techniques and DSLs is reported in [17]. Their
goal is to maximize reusability among different DSLs. They extract common-
alities shared between different DSLs (e.g., a Boolean expressions module) and
encapsulate them as analysis-DSLs. Analysis tools, such as model checkers and
SMT solvers, are applied to instances of analysis-DSLs. Their validation is lim-
ited to properties shared between various domains, e.g., completeness of a set of
specified restrictions, and consistency of simultaneously activated restrictions.

Overview In Section 2, we introduce the industrial prototype DSL, its syntax
and informal semantics. Subsequently, we describe the kinds of properties that
we aim to validate in Section 3. The translation to SMT is presented in Section 4.
Automated debugging for determining the causes of property violations is pre-
sented in Section 5, whereas the integration with the DSL editor is reported in
Section 6. In Section 7 we draw some conclusions and suggest future research.



‘ User Interface ‘

Detector daTta request
Table ‘ Safety Layer ‘
d;ta request
CArm ‘
‘ Sensors ‘ ‘ Motors ‘
(a) Geometry (b) Architecture

Fig. 2. Industrial Study Case

2 A Prototype DSL for Collision Prevention

To illustrate our approach, we consider the interventional X-ray scanners of
Philips Healthcare. These systems consist of several moving objects with shapes
as sketched in Fig. 2(a). For example, the Table can be moved horizontally, the
Detector can be moved vertically, and the CArm can be rotated.

To prevent collisions between these objects, the architecture contains a safety
layer as depicted in Fig. 2(b). All movement requests from the user to the motors
pass this layer. For making decisions on user requests, this layer stores data from
the sensors in internal structures called “geometric models”. In particular each
geometric model stores the (shortest) distance between each pair of objects.

To describe the safety layer, we consider a simplified prototype DSL that
focuses on decision rules for collision prevention. We illustrate the syntax and
the intuitive meaning of the syntactic constructs using the example instance in
Fig. 3. For confidentiality reasons, numbers and details have been changed.

2.1 Physical Objects and Geometric Models

Each DSL instance declares the physical objects in the system. The example in
Fig. 3 corresponds to the geometry in Fig. 2(a) with three objects, viz., Table,
CArm and Detector. The shapes of the objects are not specified in the DSL.

This example DSL instance declares a predefined geometric model and a
user-dependent geometric model:

— Actuals: current object distances, as given by the sensors;
— LookAhead: predicted object distances, based on Actuals and user requests.

The definitions of these models are internal, and not specified in the DSL.

2.2 Movement Restrictions

The user requests consist of a vector for each object movement (translation and
rotation). The collision prevention logic is specified in terms of restrictions on
these object movements. Each restriction contains an activation condition, which



// --- Context Declarations -------
object Table

object CArm

object Detector

model Actuals predefined
model LookAhead userdependent
// --- Restrictions -------
restriction ApproachingTableAndCArm
activation
Distance[Actuals](Table, CArm) < 35 mm + 15 cm
effect

absolute limit CArm[Rotation]
at ((Distance[Actuals](Table, CArm} - 35 mm) / 15 cm) * 10 dgps

restriction ApproachingTableAndDetector
activation
Distance[LookAhead](Table, Detector) < 35 mm + 15 cm
&& Distance[LookAhead](Table, Detector) <
Distance[Actuals](Table, Detector)
effect
relative limit Detector[Translation]
at ((Distance[LookAhead](Table, Detector) - 35 mm) / 15 cm)

Fig. 3. Example Instance of the DSL

is a boolean expression, and an effect that is only considered when the activation
condition evaluates to true. The effect specifies a speed limitation for a specific
object movement; to be more precise, a limitation on the (Euclidean) norm of the
movement vector. An absolute speed limit specifies a maximum speed that may
be requested to the motors. A relative limit indicates the maximum percentage
of the user request that may be requested to the motors.

The example restrictions in Fig. 3 illustrate that the expressions can refer
to the (shortest) distance between two objects in a specific geometric model.
Constants can be annotated with measurement units, or otherwise a default
unit is assumed. Further processing of a DSL instance unifies the applied units.

For each object movement, multiple restrictions can specify absolute and
relative limits. In this case, for each object movement, only the most-restrictive
activated limits are considered, i.e., the minimum of the absolute limits and the
minimum of the relative limits; the other limits are masked. Given the incoming
request vector inRequest for an object movement, we first compute the requested
speed inSpeed. Using the most-restrictive activated limits absLimit and relLimit
for this object movement, we compute the resulting speed outSpeed and the
outgoing movement request vector to the motors out Request as follows:

——

inSpeed = norm(inRequest)

outSpeed = min(absLimit, relLimit x inSpeed)
outSpeed

TR e
outRequest = ————— X inRequest
mSpeed



3 Validation Properties

In this section we describe several kinds of properties, that can be analysed early
in the software development cycle, in particular before generating code.

3.1 Basic validation

Practically all modern editors for programming languages and domain-specific
languages offer some basic types of validation:

— based on the language (context-free analysis):

e parsing: syntactic constructs are in accordance with the DSL grammar;
— based on the parse tree (context-dependent analysis):

o referencing: references refer to elements that have been defined;

e type checking: expressions have a well-defined type.

In addition, there can be domain-specific constraints like acyclic dependen-
cies. There can also be warnings for correct fragments that are probably not
intended, such as, in our DSL, the distance between an object and itself.

3.2 Advanced validation

Our aim is to offer validation that goes beyond basic validation. In this section
we consider the system properties focusing on collision prevention, which include
value ranges, safety properties, and absence of deadlocks.

In our example DSL, such checks often require additional knowledge about
the environment, including the geometric models and the timing. We try to keep
these details to a minimum in order to make the verification feasible and to give
quick feedback to the user. In our analyses this has an impact on the following:

— distances: We only assume that the distance function on pairs of objects is
symmetric and gives non-negative values. We ignore whether the distances
are feasible in practice.

— timing: We ignore the acceleration characteristics of the physical objects,
and any time delays between sensing and acting.

However, this can result in false positive reponses for well-definedness of
expressions and safety properties and false positive/negative responses for dead-
lock. The challenge is to balance the number of false positive/negative results
with the number of additional details that need to be provided. In what follows,
we categorize the kind of checks that could be useful for our DSL users.

Well-definedness of expressions There are some general conditions that can
be checked. For example, a potential division by zero, or a potential exponen-
tiation resulting in a complex number. (Similarly, for DSLs allowing for case
analysis, we can check whether the cases are complete and non-overlapping.)
Such checks are more involved than basic type checking, because they involve
the valuation of distance variables and arithmetic operations on them.



Ranges The minimum of activated absolute limits of each object movement
should be a non-negative real number; similarly, the minimum of activated rel-
ative limits should be a real number between 0 and 1.

Safety The ultimate goal of the safety layer is to prevent collisions. We check
specific speed limits when two objects are “very close” and “approaching”. We
also check monotonicity properties (with respect to each distance parameter),
e.g., the closer two objects, the stricter the speed limits. The notion of “ap-
proaching” can be expressed by comparing object distances in the Actuals (cur-
rent distances) and the LookAhead (predicted distances) geometric models; see
also the activation condition of ApproachingTableAndDetector in Fig. 3.

Deadlock Sometimes objects can reach a deadlock position. Consider for ex-
ample restriction ApproachingTableAndCArm in Fig. 3. Suppose we move the
Table and the CArm towards each other. If the remaining distance is exactly 35
mm, then the speed of the CArm is limited to 0, independently of any (future)
user request for the CArm. Unless there is another way to move the CArm, this
object has reached an individual deadlock.

We aim to warn the DSL-user for such situations, where certain sensor inputs
can stop an object independently of any future user request. As we abstract from
the dependencies between distance parameters in different geometric models,
our possibilities to formulate this property are limited. We formulate it as “for
each object, and for each valuation of the Actuals geometric model, there exist
a valuation of the LookAhead geometric model (a user dependent geometric
model), such that the object can move”. This can result in false positive/negative
responses. The false negative responses may sound serious in our context, but
this check is still useful as a warning for typical domain errors.

4 From DSL Instances and Properties to SMT

In this section we describe the SMT problem generator from Fig. 1. We describe
the advanced validation properties from Section 3.2 using examples, but for
each property also a formal pattern is defined. Given any DSL instance, these
properties are mechanically instantiated to a set of SMT problems in the common
SMT-LIB format, which is supported by various SMT solvers.

In Section 4.1 we address well-definedness of expressions, and in Section 4.2
we address the other properties, which need to take all restrictions into account.
Finally, in Section 4.3 we report on our experiences with SMT solvers.

Note that all SMT expressions are written in the prefix style. As a convention,
in our examples any SMT variable GeoModel Objectl Object2 represents the
expression Distance[GeoModel] (Objectl,Object2) in the DSL instance. So we
can assume that GeoModel Objectl Object2 is non-negative. The SMT problem
generator (Fig. 1) guarantees that Distance[GeoModel] (Objectl,Object2) and
Distance[GeoModel] (Object2,0bjectl) are represented by the same variable.
For brevity we use ahead instead of LookAhead in our naming convention.



4.1 Well-definedness of expressions

Since users can specify complicated activation conditions or speed limits, we
provide mechanisms to warn for mathematically undefined expressions. As an
example we focus on potential divisions by zero, which can occur at two places.
First, any divisions in the activation condition are checked in isolation. Second,
divisions appearing in effect clauses are checked under the assumption that the
corresponding activation condition holds.

Consider the following restriction which contains division at both locations:

restriction DivByZeroSample
activation 1 / (1 + Distance[Actuals](Table,CArm)) > 0 &&
Distance[Actuals] (Table,CArm) < 5
effect absolute limit CArm[Rotation] at
1 / (6 - Distance[Actuals](Table,CArm))

Assuming non-negative distances, both checks are satisfied in our example. The
following assertion statement encodes the check for the effect clause in SMT.

(assert (forall ((actuals_Table_CArm Real))
(implies (and (>= actuals_Table_CArm 0.0)
(> (/ 1.0 (+ 1.0 actuals_Table_CArm)) 0.0)
(< actuals_Table_CArm 5.0) )
(mot (= (- 6.0 actuals_Table_CArm) 0.0)) )))

In this example, the SMT variable actuals_Table CArm corresponds to Dis-
tance[Actuals] (Table,CArm), and condition (>= actuals_Table CArm 0.0)
encodes the domain knowledge that the used distances are non-negative.

4.2 Ranges, safety, and deadlock

The remaining properties need to take all restrictions into account. We first
introduce a procedure to translate the speed limits enforced by the restrictions
to SMT expressions. Each restriction is mapped to a single SMT expression, and
afterwards they are combined. This allows for tracing the detected faults back
to the corresponding DSL constructs in Section 5. For each identified pattern for
these properties we give an example from Fig. 3. To keep the formulae simple,
we omit the information that each distance is non-negative (see Section 4.1).
Consider the following general template of a restriction:

restriction [restriction]
activation [act_restriction]
effect
relative/absolute limit [object_movement] at [eff restriction]

Each restriction is translated to a function definition with as parameters
the distances it depends on. We encode restrictions as functions with an if-
then-else (ite) structure with [act_restriction] and [eff restriction]
specified as the condition and the then part of the conditional statement, re-
spectively.



(define-fun func_restriction ((arg_1 Real)...(arg_n Real)) Real
(ite [act_restriction]
[eff_restriction]
infinity ))

We define a sufficiently large number as infinity. If the activation condition is
not satisfied, then infinity is returned, implying that there is no speed limit.
Multiple active restrictions can affect the same absolute/relative limit of an
object movement. In this case, if at least one of the effects is active, we take the
minimum of the activated effects as the overall effect for this limit. Otherwise,
there is no restriction on the object movement. In SMT, the overall effect is
specified again as a function with an ite structure. The parameter set of this
function is the union of the parameter sets of the contributing functions.

(define-fun Object_Movement_Limit ((arg_1 Real)...(arg_n Real)) Real

(ite (or [act_restriction_1] [act_restriction_2] ...)
(min (func_restriction_1 arg_11 arg_12 ... arg_1k)
(func_restriction_2 arg_21 arg_22 ... arg_21)
)

([DEFAULT_VALUE]) ))

The value of [DEFAULT_VALUE] is determined by the limit type. For relative
limits, 1 is used; for absolute limits, infinity is used.

Let RelDetTrans be the SMT function that specifies the overall relative
translation limit for Detector. In our example, the only restriction that con-
tributes to this overall limit is ApproachingTableAndDetector, which is spec-
ified in terms of the two parameters actuals_Table Detector and ahead_Ta-
ble Detector. These are also the parameters of the overall function RelDet-
Trans.

Ranges For functions specifying the overall relative limit we check that the
return value is between 0 and 1 for any valuation of distance parameters. The
pattern for absolute limits is similar. For example, the following property will be
generated for Fig. 3. Given the function RelDetTrans that specifies the overall
relative translation limit for Detector, this property specifies that the relative
limit for the Translation movement of Detector is at most 1:

(assert (forall((actuals_Table_Detector Real) (ahead_Table_Detector Real))
(<= (RelDetTrans actuals_Table_Detector ahead_Table_Detector) 1.0) ))

Safety As an example, we consider the monotonicity properties for each rel-
ative/absolute limit and each rotation/translation movement with respect to
each distance parameter. Based on Fig. 3, the following property is generated
to verify the monotonicity of the relative limit of the translation movement for
Detector with respect to actuals_Table Detector. This means that decreasing
this distance parameter, while maintaining the other distance parameters, may
not lead to a more relaxed limit.

(assert (forall ((actuals_Table_Detector Real) (ahead_Table_Detector Real)



10

(actuals_Table_Detector’ Real))
(implies
(<= actuals_Table_Detector actuals_Table_Detector’)
(<= (RelDetTrans actuals_Table_Detector ahead_Table_Detector)
(RelDetTrans actulas_Table_Detector’ ahead_Table_Detector)) )))

Deadlock We identified the following pattern to check for absence of rota-
tion/translation deadlock: “for each valuation of distance parameters in Actuals,
there exists a valuation of LookAhead (a user-dependent geometric model) such
that relative and absolute limits are non-zero”.

For the example in Fig. 3, the following property expresses deadlock freedom
of the Detector translation movement. There is no absolute limit specified for this
movement and this property only depends on the arguments of RelDetTrans.

(assert (forall ((actuals_Table_Detector Real))
(exists ((ahead_Table_Detector’ Real))
(not (= (RelDetTrans actuals_Table_Detector ahead_Table_Detector’) 0.0))
)

4.3 Feasibility of SMT Solving

Applying this translation to real examples has led to some observations. First
of all, most state-of-the-art SMT solvers have limited support for non-linear
constraints such as exponentiation. Thus the occurrence of complex non-linear
expressions in a DSL specification may limit the analysis power of our method.
In our examples, exponentiation was mainly applied to model brake patterns.
We have temporarily isolated these patterns from the rest of the DSL. Approx-
imating non-linear constraints remains as one of the issues that we want to
investigate in our future work.

Secondly, in order to keep validation practically feasible, we have slightly
modified the SMT expressions. Since forall is an expensive operation for SMT
solvers [10], we follow a counterexample-based approach. Instead of showing that
the expressions hold for all parameter values, we aim to find parameter values
that violate the property; in other words, if the negated property cannot be
satisfied by any valuation, the property itself holds for all possible valuations.
We have not used specific facilities (such as quantifier instantiation) provided by
specific SMT solvers (such as Z3) in our analyses.

5 Automated Debugging

Based on the SMT problems presented in Section 4, the “verifier and debugger”
component in Fig. 1 checks the validity of the properties. Since we encode the
DSL restrictions as SMT functions with distance parameters, for any violated
property, SMT solvers provide a counterexample in terms of distance values.
We aim for a debugger that mechanically computes the location of any fault
in terms of the DSL instance. In this section we first describe suitable locations



11

to report faults for the different types of properties. Then we present a procedure
to compute these locations. Finally we discuss how to avoid computing masked
restrictions as locations.

5.1 Fault Location

In case of any property violation, we aim to indicate the location of any fault in
the DSL instance. We distinguish three kinds of locations in the DSL:

Expression The well-definedness property from Section 4.1 is defined for each
expression in isolation. In case of a violation, the fault location is the expres-
sion itself.

Restriction The properties from Section 4.2 are verified against the whole DSL
instance. In these cases the fault locations are the restrictions that can be
pivotal in causing the violation. We define this as follows:

“A restriction r is a pivotal restriction for causing the violation of
property P, if there exists a set of restrictions that does not violate
property P, but after adding restriction r the property is violated.”

Fixed If a property is violated for all subsets of the restrictions, then there is
no pivotal restriction. For our example properties, this can apply to safety
properties that specify a certain speed limit. For such properties that do not
(trivially) hold for the empty set of restrictions, we report any violations at
a fixed location in the DSL instance.

Debugging is only needed when restrictions should be identified as fault loca-
tion. In the remainder of this section, we focus on the properties from Section 4.2
that are trivially valid for the empty set of restrictions and violated by the full
set of restrictions.

5.2 Procedure to Locate a Single Pivotal Restriction

Our debugging procedure is based on the delta-debugging approach of [22]. In
[22] the delta-debugging procedure is introduced for isolating the relevant part
of a failure inducing program input. We adapt this procedure to our setting to
detect restrictions that cause property violations. In particular, for a violated
property we aim to find a pivotal restriction by narrowing down the difference
between sets of passing (satisfying the property) and failing (violating the prop-
erty) restrictions. Our procedure can be summarized as follows:

1. Choose a passing (R1) and a failing (R™) set, i.e., a set of restrictions that
satisfies the property and a set that violates the property, such that R C
R~. We choose RT as the empty set, and R~ as the set of all restrictions.

2. Repeatedly try to minimize the difference between sets BT and R™:

(a) Select a set R of restrictions such that Rt C¢ R C R™;

(b) Use the SMT solver to check whether R satisfies the property;

(c) If set R satisfies the property, then replace the passing set RT by R,
otherwise replace the failing set R~ by R.



12

Step 2.(a) Step 2.(b) Step 2.(c) |[|Step 3

Tteration| R™ ‘ R™ R Status of R Minimization| Fault
1 {} Hr1,r2}][ {r1} [satisfies the property] RT := R -
2 {7‘1} {7'1, 7'2} - - - 72

Fig. 4. Isolating a faulty restriction with delta-debugging

3. The single restriction r that distinguishes the passing set R from the failing
set R~ is a pivotal restriction for the property violation.

As an example, consider Fig. 3 where the relative limit for Detector trans-
lation can be negative. Fig. 4 illustrates the application of this fault isolation
procedure to detect a faulty restriction. Restrictions r; and r, represent the first
and second restriction in Fig. 3. Finally, in the second iteration, restriction rs,
i.e., ApproachingTableAndDetector, is identified as a fault location.

From the description of Step 2(a) one can easily deduce that the fault iso-
lation procedure is non-deterministic. In the presence of multiple faulty restric-
tions, each execution of this procedure can identify a different restriction.

Regarding the performance, in the worst case the number of iterations of
Step 2 is linear in the total number of restrictions. One can constrain the choice
of R in Step 2(a) to make it logarithmic. Moreover, the debugging considers
only subsets of the original specification, for which SMT solving has a lower
complexity (i.e., typically consuming much less time and memory).

5.3 Masked Restrictions

The procedure from Section 5.2 can also report restrictions as faults at points
where they are masked (see the DSL semantics in Section 2.2). To illustrate this,
we consider three example restrictions r1, r2, and r3 based on a single distance
parameter. Fig. 5(a) represents the individual relative limits for a specific object
movement in terms of the distance parameter. The overall effect is defined as
the minimum of the individual effects, as depicted in Fig. 5(b).

The effect of a restriction r is masked for a given set of distance values, if
there exists at least one restriction r’ for which the effect is less than the effect
of r for the same combination of distance values. In this example, the effect of
restriction r3 is masked by another restriction for every distance value.

Considering the range property “relative limits should be at most 17, re-
striction r3 in isolation violates this property, and hence the procedure from
Section 5.2 can indicate this masked restriction as the fault location. Masking is
no issue for the verification, but it is undesired that debugging reports masked
restrictions as fault location.

If the semantics of the DSL is correctly implemented throughout code gen-
eration, masked restrictions will never lead to failures and hence, are considered
spurious by the domain experts. To avoid reporting masked restrictions as fault
locations, we replace all restrictions by just their unmasked parts, as shown
in Fig. 5(b). This requires a small modification of the SMT formulations from
Section 4.2. For restriction 73 it results in the following SMT expression:



13

Relative Limit Relative Limit
3.0 : 3

25 25

20 20

15 . 15 -

10p 10f R

o5t h o5t -

00 05 10 15 20 25 30 r®@ 00 05 10 15 20 25 30°%Me@
(a) Effects of restrictions (b) Unmasked parts of restrictions

Fig. 5. Masked restriction

(define-fun r3 ((d Real)) Real
(ite (and [act_r3]
(not (and [act_rl] (< [eff_rl1] [eff_r3]) ))
(not (and [act_r2] (< [eff_r2] [eff_r3]) )) )
[eff_r3]
infinity ))

In comparison with the encoding from Section 4.2, the activation condition is
extended with two conjuncts indicating that its effect is not masked by an active
restriction r1 nor by an active restriction 2. We apply a similar encoding to
restrictions r1 and 72. In this way masked restrictions have no effect any more,
and hence, they cannot be identified as fault location.

6 Integration with DSL Editor

We have implemented the introduced verification and debugging approach using
the Eclipse Modeling Framework (EMF, [19]). Xtext is the open-source frame-
work that we have applied to specify the grammar of the DSL. It is integrated
with Xtend for validation and code generation. Z3 [5] is the SMT solver that we
have used in our experiments. To hide all the verification and debugging strate-
gies from the user, we provide the user with a Python script that for a given DSL
instance verifies the set of predefined properties through a sequence of calls to
73. For any violated property the debugging procedure is automatically invoked.

Basic validators are continuously executed while editing an instance of the
DSL. To avoid additional delays while editing, we have decided not to perform
continuous validation using SMT checkers. We generate the SMT problems and
the Python script using an Xtend code generator. The validation can be initiated
on user request by invoking the Python script. The validation results are stored,
interpreted by a validator and shown back in the editor.

The user is notified about the validation results using “warnings”, which
result in a yellow underlining of the problematic parts together with a textual
message; see Fig. 6. We cannot use “errors”, because they block future executions
of all code generators (including the SMT problem generator). We also warn the



14

restriction ApproachingTableAndCArm
activation
Distance[Actuals](Table, CArm) < 35 mm + 15 cm
effect
absolute limit CArm[Rotation]
at ((Distance[Actuals](Table, CArm) - 35 mm) / 15 cm) * 10 dgps
Multiple markers at this line -
- Potential (Rotation) deadlock for CArm
- Absolute limit for CArm rotation should be non-negative -

Fig. 6. Debugging results displayed in the DSL editor

user about verification or debugging attempts for which the corresponding SM'T
problem is not decidable (e.g., as a result of non-linear expressions).

7 Conclusions and Future Work

We have used a Domain Specific Language (DSL) for collision prevention to
study ways to support early fault detection in industrial applications. The goal
is to add value to the use of DSLs beyond code generation. In particular we have
focused on validation types that are more advanced than the usual basic types
of validation that can be found in modern programming environments.

For this prototype DSL, we have shown a useful set of advanced properties
that can be verified efficiently using the SMT solver Z3. Actual instances con-
sisting of 16 distance parameters from geometric models, and 81 restrictions lead
to 264 generated properties from 5 property patterns. In case of 226 violations,
the whole advanced validation process (including a non-optimized generator of
SMT problems and Python scripts (22 sec.), and verification and debugging
(105 sec.)) takes about 2 minutes on a standard desktop computer. The results
are displayed at logical locations in the DSL editor. To this end, we have inte-
grated three techniques, viz., domain-specific languages, SMT solving and delta
debugging.

In the studied DSL, restrictions can sometimes be masked by other restric-
tions and hence they have no observable effect. In particular, we have shown
how to ensure that masked restrictions are not reported as fault location.

We envisage some possible extensions of the present work. The debugging
procedure can be extended to detect all possible causes of a property violation.
Moreover, we aim to investigating other abstraction levels in order to rule out
false positive/negative responses.

References

1. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
2. C. Barrett, R. Sebastiani, S.A. Seshia, and C. Tinelli. Satisfiability modulo theories.
Handbook of Satisfiability, 185:825-885, 2009.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

15

A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications.
IOS Press, 2009.

H. Cleve and A. Zeller. Locating causes of program failures. In Proceedings of
ICSE 05, pages 342-351. ACM, 2005.

L. De Moura and N. Bjgrner. Z3: An efficient SMT solver. In Proceedings of
TACAS’08, LNCS, pages 337-340. Springer, 2008.

L. De Moura and N. Bjgrner. Satisfiability modulo theories: introduction and
applications. Communications of the ACM, 54(9):69-77, 2011.

M. Eysholdt and H. Behrens. Xtext: implement your language faster than the
quick and dirty way. In SPLASH/OOPSLA Companion, pages 307-309. ACM,
2010.

G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, and O. Maler. Spaceex: Scalable verification of hybrid systems.
In Proceedings of CAV’11, volume 6806 of LNCS, pages 379-395. Springer, 2011.

H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2010: A toolbox for the
construction and analysis of distributed processes. In Proceedings of TACAS’11,
volume 6605 of LNCS, pages 372-387. Springer, 2011.

Y. Ge and L. De Moura. Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In Proceedings of CAV’09, volume 5643 of LNCS, pages
306—-320. Springer, 2009.

J. Hooman, A. J. Mooij, and H. van Wezep. Early fault detection in industry
using models at various abstraction levels. In Proceedings of iFM’12, volume 7321
of LNCS, pages 268-282. Springer, 2012.

J.H. Hwang, T. Xie, F. Chen, and A. X. Liu. Fault localization for firewall policies.
In Proceedings of SRDS ’09, pages 100-106. IEEE Computer Society, 2009.

M. Jose and R. Majumdar. Cause clue clauses: error localization using maximum
satisfiability. ACM SIGPLAN Notices, 46(6):437-446, 2011.

H. Krahn, B. Rumpe, and S. Vilkel. MontiCore: a framework for compositional
development of domain specific languages. J. STTT, 12(5):353-372, 2010.

M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-
specific languages. ACM Computing Surveys, 37(4):316-344, 2005.

A. J. Mooij, J. Hooman, and R. Albers. Gaining industrial confidence for the
introduction of domain-specific languages. In Proceedings of IEESD’13. To appear.
D. Ratiu, M. Voelter, Z. Molotnikov, and B. Schaetz. Implementing modular
domain specific languages and analyses. In Workshop on MoDeVVa, 2012.

A. Smith, A. Veneris, M.F. Ali, and A. Viglas. Fault diagnosis and logic debug-
ging using boolean satisfiability. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 24(10):1606-1621, 2005.

D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. Eclipse Modeling Frame-
work. Pearson Education, 2008.

A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: an annotated
bibliography. SIGPLAN Notices, 35(6):26-36, 2000.

M. Woehrle, R. Bakhshi, and M. R. Mousavi. Mechanized extraction of topology
anti-patterns in wireless networks. In Proceedings of iF'M’12, volume 7321 of LNCS,
pages 158-173. Springer, 2012.

A. Zeller. Why Programs Fail? A Guide to Systematic Debugging. Morgan Kauf-
mann, 2009.

A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input.
IEEE Transactions on Software Engineering, 28(2):183—200, 2002.



