
Interpreted systems semantics for process
algebra with identity annotations

Francien Dechesne1 and Mohammad Reza Mousavi2

1 Philosophy Section, Faculty of Technology, Policy and Management
Delft University of Technology, The Netherlands

2 Department of Computer Science
Eindhoven University of Technology, The Netherlands

Abstract. Process algebras have been developed as formalisms for spec-
ifying the behavioral aspects of protocols. Interpreted systems have been
proposed as a semantic model for multi-agent communication. In this
paper, we connect these two formalisms by defining an interpreted sys-
tems semantics for a generic process algebraic formalism. This allows
us to translate and compare the vast body of knowledge and results for
each of the two formalisms to the other and perform epistemic reasoning,
e.g., using model-checking tools for interpreted systems, on process al-
gebraic specifications. Based on our translation we formulate and prove
some results about the interpreted systems generated by process alge-
braic specifications.

1 Introduction

1.1 Motivation

Process algebras [29, 19, 3] have evolved in the past three decades into a rich
theory of behavioral specification for concurrent and distributed systems. Various
process algebras come equipped with rich syntax, rigorous semantics and strong
equational and operational reasoning techniques.

Interpreted systems (ISs) [15, 30, 17, 14] have started around the same time
as process algebras and have gained popularity as semantic models to include
epistemic aspects into multi-agent systems. Since then much research has been
devoted into both theory and implementation of interpreted systems.

In this paper, we propose an interpreted systems semantics for a generic
process algebra, thereby establishing a link between these two worlds. This link
allows one to translate the vast body of knowledge in each of the two realms to
the other and benefit from the tools available for both formalisms when dealing
with a multi-agent system (e.g., by using model-checkers for interpreted systems
for protocols specified in process algebra). Also, algebraic structures of processes
and their equational theory can be used to compositionally reason about logical
properties, see, e.g., [1].

1.2 Related Work

In this paper we aim to show how Interpreted Systems can provide semantics
for a generic process algebraic formalism. This paves the way for using model-
checking tools based on interpreted systems, e.g., MCMAS [27] and MCK [28],
for verifying epistemic properties of process algebraic specifications. This also
relates to the line of work in translating operational specification languages to
the input languages of the above-mentioned model checkers, see, e.g., [5]. A
subsequent goal for the research initiated by this paper is to characterize the
class of IS models for different process algebras.

The benefits of combining behavioral (e.g., process algebraic) and epistemic
formalisms (e.g., epistemic logic) have been noted by several authors, starting
from Halpern and Moses in the seminal [15]. There already exists a rich literature
on such combinational frameworks, especially in the application area of security
protocols [6, 25, 7, 36, 11]. Our work in [9] contributed to this body of knowledge
by providing a combinational framework for verifying a rich epistemic temporal
language on a process algebraic formalism. Our study of interpreted systems
for process algebras is based on the process algebraic framework proposed in
[9]. This framework bears relation to the epistemic systems of [34] by the con-
cept of an appearance map (renaming function in our framework). Recently, the
process-algebraic framework of [9] has been extended in [25] to support proba-
bilistic constructs. In [6], an epistemic temporal logic for the applied pi-calculus
is presented (although [6] only allows for single-agent knowledge).

We mention [26], which aims at axiomatizations for interesting classes of ISs
(notably hypercubes), through a characterization of the epistemic dimension of
those ISs as a subclass of S5 Kripke models. This work however disregards the
temporal dimension of the ISs.

The intention of our paper relates to the work of Van Benthem et al. on
exploring the interface between the Dynamic Epistemic- (DEL) and Epistemic
Temporal- (ETL) frameworks [4, 21]. Their line of work compares and merges
the two, and characterizes the classes of models for ETL generated from DEL
models.

There have been several attempts to define a knowledge-based semantics for
programming languages [24, 20, 23, 12, 37, 13]. The closest to our work are [20,
23], where a knowledge-based semantics is given to a CSP-like process alge-
bra with local states and assignments. The fundamental difference between the
approach of [20, 23] and that of the present paper is that there, each agent is
supposed to be represented by a sequential process, while in our approach agents
may have different observations and perceptions of process algebraic actions and
they need not be (although can be) incarnated in a particular process. In other
words, in our approach there needs not be a one-to-one mapping between agents
and processes.

1.3 Structure of the Paper

In Section 2, we present our generic process algebraic formalism called CCSi.
The basic definitions of interpreted systems are recalled in Section 3. Then, the

2

semantics of CCSi in terms of an interpreted system is presented in 4. Some
formal results about the semantic framework are presented in Section 5 and the
paper is concluded in Section 6.

2 CCSi: A Process Algebraic Formalism

2.1 Syntax

The basic building blocks of a behavioral specification in a process algebra are
atomic actions. They represent sending, receiving or communicating (synchro-
nizing on) messages as well as internal computations that may or may not be
visible to the observers. Atomic actions are composed using various composition
operators, leading to myriad process algebras. Here, we confine ourselves to a
simple process algebra, inspired by the well-known Calculus of Communicating
Systems (CCS) [29]. The formalism studied in this paper (and also in the earlier
work) is called CCSi, for CCS with identities. We slightly extend our earlier def-
inition of CCSi with termination constant ε and unbounded choice to allow for
infinite branching. We have intentionally chosen for a process algebra with few
composition operators to illustrate the ideas. The constructions presented here
can be extended in a straight-forward manner to various other process algebras
such as those introduced in [19, 3].

Let Act be a finite set of action names (a, b, a0, . . . and !a, ?a, . . .), and let
Id be a finite set of identities (of the participating principals or agents) typ-
ically denoted by i, j, . . . i1, i2, Action letters preceded by a question mark
or exclamation mark ?a and !a represent the receiving and the sending parts
of a communication, respectively, which result through synchronization in the
communication a.3 We let Greek letters α, β, . . . range over the complete set of
actions Act (including the sending- and receiving parts), while letters a, b, . . .
only range over actions without question- and exclamation marks.

Processes in CCSi are specified using decorated actions d ∈ D ::= {(J)α|J ⊆
Id, α ∈ Act}, and a global renaming function ρ : Act→ Act∪{τ}. The intuitive
meaning of a decorated action (J)α is that action α is taken visibly to the
principals in J (the intended audience of this α). Principals not in J will observe
the so-called public appearance ρ(α) of α. In the signature of ρ, τ denotes the
“silent appearance” of an action; it is assumed that τ /∈ Act and for any other
action α, if ρ(α) = τ , then (J)α becomes unobservable to the principals not in J.
We abbreviate (Id)α, i.e., an action visible to everyone, by α. CCSi-Processes
are then specified as follows, together with a renaming function ρ:

Proc ::= ε | D | Proc ; Proc | Proc ||Proc | Σi∈IProci

3 Here we take a variation on standard CCS, where successful synchronization of a
send- and receive action results in a silent action τ . We take the synchronization a
in our framework to be the successful communication of a message (which is not a
silent action).

3

where termination process ε cannot make any transition, but terminates, Proc ; Proc
denotes sequential composition, Proc ||Proc denotes parallel composition, and
Σi∈IProci denotes nondeterministic choice among processes Proci, for each i in
the non-empty (and possibly infinite) index set I. We will write p1 + . . .+ pm to
denote the finite nondeterministic choice Σ{1,...,m}pi.)

The combination of identity annotations on actions and the action renaming
provides different views on the behavior of the system, according to different
principals.4 Modeling passive observation of a system by hiding parts of it to
specific principals is already done in the literature (e.g., in [35]), but we will
generate the views for all principals simultaneously. This enables talking about
properties such as “i knows that j knows that k has communicated message a”.

Note that in this formalism there is no direct correspondence between the
processes (Proc) and agents (Id). We are not so much interested in how the
principals behave (what their actions are), but we are interested in what they
get to know from what happens. This is in line with the approach taken in the
seminal [15], where agents are processors, not processes (their framework focuses
on knowledge and does not specify the behavior of the system explicitly). But
it differs with some earlier work which uses process algebra for the specification
of multi-agent systems such as [20, 23, 12, 37, 13], where agents are modeled as
processes. In our approach, an agent may take part in several processes and
a process may comprise actions that are visible (communicated by/to) many
different principals. This is useful in the behavioral specification of protocols,
where an agent may participate in different threads of communications and a
single thread may be involved in several synchronisations with different agents.

Example 1. (Toy Example: Syntax) Let Act = {a, a0, b, c}. We elaborate the
definitions throughout the paper for the following simple CCSi-process p and
renaming function ρ.

p
.
= ((1)?a || (2)!a) + ((3)b ; c)

ρ(a) = ρ(a0)
.
= a0, ρ(b)

.
= τ, ρ(c)

.
= c

Process p features a non-deterministic choice between the following two op-
tions:

1. synchronizing on action a; the result of synchronization is directly visible to
principals 1 and 2, while the rest precieve this as action a0, or

2. performing an action b followed by c. Action b is only visible to principal 3,
and the rest of the principals do not even notice that an action has taken
place. Action c is visible to all principals. Note that as defined earlier, action
c abbreviates the decorated action (Id)c (everyone sees c as it happens).

4 We will see that the send- (!a) and receive (?a) parts of an action will not be explicit
in the semantics, but only the result a of their successful communication will be.
This means ρ(?a) and ρ(!a) can be defined arbitrarily, or be left undefined.

4

Crypt(i) =
∑

b:Bool ((i)?pay(i, b);CryptF lip(i, b))

CryptF lip(i, b) =
∑

c:Bool ((i)flip(i, c);CryptShare(i, b, c))

CryptShare(i, b, c) =
∑

d:Bool (((i)!share((i mod 2) + 1, c) || (i)?share(i, d)) ;
CryptBcast(i, b, c, d))

CryptBcast(i, b, c, d) = ((i)!bcast(i, b⊕ c⊕ d)
||
∑

x:Bool((i)?bcast((i mod 2) + 1, x))) ;
paid(i, b⊕ c⊕ d⊕ x)

Master = (M)!pay(1,>); (M)!pay(2,⊥)
+ (M)!pay(1,⊥); (M)!pay(2,>)
+ (M)!pay(1,⊥); (M)!pay(2,⊥)

Fig. 1. A CCSi model of the Dining Cryptographers protocol for 2 cryptographers.

Example 2. (Dining Cryptographers: Syntax) In this example, we give a
formal specification of the Dining Cryptographers protocol [8], which has been
extensively studied in the literature (e.g., in [35, 2, 22, 16, 33]). For reasons of pre-
sentational simplicity, we give a version with two cryptographers and an external
observer.

In general, the scene is about a number of cryptographers (2 in our case)
having dinner together. At the end, they learn that the bill has been paid by
one of them, or by their master. They do not want to compromise each other’s
right to anonymity, but they wish to make it known to the public whether the
payer was the master or not. (The usual presentation of the setting includes at
least three cryptographers, in which case the paying cryptographer -if any- will
remain anonymous not just to the public, but to the other cryptographers as
well.) To this end, they come up with the following protocol: each neighboring
cryptographer generates a shared bit, by flipping a coin; then each cryptographer
computes the exclusive or (XOR) of the bits she sees (one in our case) with her
own bit, and announces the result — or the flipped result, if she was herself the
payer. The XOR of the publicly announced results indicates whether the payer
was an insider or the master.

We specify the protocol for an external observer (O), two cryptographers
(1 and 2), and the master (M). The observer is assumed to perfectly know the
protocol; it tries to comprise the anonymity of the cryptographers and learn
about the identity of the payer by looking at the trace of the protocol which has
taken place, and comparing it with the possible traces with different payers.

A model of this protocol in our process language is shown in Figure 1.
The model is adopted and adapted from our earlier publication [9] and is

close to the CSP description presented in [35], the only significant difference be-
ing that the actions are annotated with identities from the set Id = {O, 1, 2,M}.

5

Note that we use parameters in the basic actions and process definitions only to
provide a notational shorthand for the concrete actions and processes resulting
from instantiating them. For example, ?pay(i, b) is not defined in our process
language but rather it stands for a number of instances such as ?pay(1,>),
?pay(2,⊥) each of which are basic actions (obtained by globally replacing i and
b with a member of {1, 2}and {⊥,>} in the process definition each time). In the
description of the protocol ⊕ denotes exclusive or. Also the process names are
syntactic sugar for the processes they define. The behavior of the ith cryptog-
rapher is specified by the process Crypt(i) and the behavior of the whole DC
system as a parallel composition of Crypt(i)’s and the Master process:

DC2 = Crypt(1) ||Crypt(2) ||Master

Note that the observer principal is not mentioned anywhere in the specification
and will only be represented in the semantic model of the protocol.

A cryptographer process executes a series of actions corresponding to the
three big steps of the protocol: decide whether to pay or not, flip the coins
together with the neighbors, and announce the result of XOR-ing the two coins
and her own paying bit. The first step is modeled as a statement pay(i, b), which
is in fact a communication step with the Master.

The second step is modeled by the processes CryptF lip(i) and CryptShare(i).
Process Crypt(i) executes a flip action and then shares the result with the neigh-
bor, by executing an action !share which will synchronize with the ?share from
the neighboring cryptographer. CryptBcast models the last phase, announc-
ing the result of one’s computation (!bcast), receiving the results from all the
others (?bcast) and concluding for itself that a cryptographer has paid or not
(paid(i,>), or paid(i,⊥), respectively).

The renaming function ρ specifies how much of a cryptographers’ actions is
visible for observing parties. For any i ∈ {1, 2} and b ∈ {>,⊥}, we define

ρ(pay(i, b)) = pay(i) ρ(bcast(i, b)) = bcast(i, b) ρ(share(i, c)) = share(i)
ρ(flip(i, b)) = flip(i) ρ(paid(i, b)) = paid(i, b)

where pay(1), bcast(1,>), . . . are basic actions.

2.2 Transition Systems Semantics

The operational semantics of CCSi (from [9]) is given in Figure 2 in terms
of Structural Operational Semantics (SOS) rules [32]. The operational state of
CCSi is a pair (p, π), where p is a process in the syntax given in Section 2.1 and
π is a sequence of decorated actions (a history).

We include the history in the operational state of our semantics in order
to capture the epistemic aspect. Such a sequence of decorated actions together
with the renaming function allow us to construct in each state how each principal
perceives what has happened so far. This allows us to evaluate epistemic state-
ments on the semantics. (Note that just process terms as states only would only

6

code the possible future actions, and contain no information about the past - let
alone code individual perceptions of the past; the semantics for process a; p+b; p
would, for example, after initial branching meet in a single state coded with p.)
Using histories and principals’ perception, we recover the notions of knowledge
and knowledge update in the operational semantics of protocols. If a particular
proposition is true in all operational states that are perceived the same for a
particular principal, then the principal knows the proposition. The knowledge of
principals is updated by appending new perceived actions to the histories.

The operational semantics of a process p is its associated labeled transitions
system (with (p, ε) as the starting state, where ε denotes the empty history
of decorated actions) defined by the deduction rules of Figure 2. The transi-

tions in this LTS are of the form
a→ , which is, in turn, defined in terms of the

auxiliary transition relation
(J)a⇒ , by stripping off the decorations and blocking

non-synchronized sends and receives.

Process ε cannot make any transition, but terminates immediately; this is
denoted by the termination predicate

√
in the deduction rule (axiom) (ε). The

semantics of a decorated action is defined by the deduction rule (a): the pro-
cess d can perform the action d (which is concatenated to the history) and then
turn into the terminated process ε. The operational behavior of nondeterministic
choice is defined by the choice in the behavior of its arguments. This is captured
by the deduction rule scheme (ni) (for each index set I, i ∈ I). Transition seman-
tics of sequential composition is defined by either taking an action from the first
component, or termination of the first component followed by an action from
the second one, as specified by deduction rules (s0) and (s1) respectively. The
semantics of parallel composition is defined by the interleaving (deduction rules
(p0)-(p1)) and the synchronization (deduction rules (p2)-(p3)) of the actions
of its arguments (we here omit deduction rules (p1) and (p3), which are, re-
spectively, symmetric copies of (p0) and (p2)). Termination of nondeterministic
choice, sequential composition and parallel composition is specified, respectively,
by (nti), (st), and (pt).

Deduction rule (strip) strips down the decorated action into plain actions (by
removing the intended audience) and ignores send- and receive actions (hence,
one could say it enforces synchronization among communicating processes in the
trace semantics).

In addition to the operational semantics, we define an epistemic semantics

for the process calculus using the indistinguishability relation
i· · ·, which is de-

fined in terms of the indistinguishability relation
i
= (see also [9]). Considering

the deduction rules for
i
=, reflexivity is captured in deduction rule (refl); rule

(= ρ0) defines the case for a visible action to principle i; rule (= ρ1) concerns
when two invisible actions which have the same public appearance for i; rule
(= ρ2) defines the case for an action which is invisible to i but appears to i as
another visible action; rule (= τ0) is about an invisible action which appears as
τ to i (i.e., is absolutely unobservable for i). (Again for the sake of brevity, we
have omitted symmetric rules for (= ρ2) and (= τ0).) Deduction rule (I) lifts

7

(ε)
(ε, π)

√ (a)
(d, π)

d⇒ (ε, π _ d)

(ni)
(xi, π)

d⇒ (y, π′)

(Σi∈Ixi, π)
d⇒ (y, π′)

i ∈ I (nti)
(xi, π)

√

(Σi∈Ixi, π)
√ i ∈ I

(s0)
(x0, π)

d⇒ (y0, π
′)

(x0 ;x1, π)
d⇒ (y0 ;x1, π

′)
(s1)

(x0, π)
√

(x1, π)
d⇒ (y0, π

′)

(x0 ;x1, π)
d⇒ (y0, π

′)

(st)
(x0, π)

√
(x1, π)

√

(x0 ;x1, π)
√ (p0)

(x0, π)
d⇒ (y0, π

′)

(x0 ||x1, π)
d⇒ (y0 ||x1, π′)

(pt)
(x0, π)

√
(x1, π)

√

(x0 ||x1, π)
√ (p2)

(x0, π)
(J)?a⇒ (y0, π

′) (x1, π)
(J′)!a⇒ (y1, π

′′)

(x0 ||x1, π)
(J∪J′)a⇒ (y0 || y1, π _ (J ∪ J′)a)

(strip)
(x, π)

(J)a⇒ (y, π′)

(x, π)
a→ (y, π′)

(= refl)
π

i
= π

(= ρ0)
π

i
= π′ a = b i ∈ J ∩ J′

π _ (J)a
i
= π′ _ (J′)b

(= ρ1)
π

i
= π′ ρ(a) = ρ(b) i /∈ J′ ∪ J
π _ (J)a

i
= π′ _ (J′)b

(= ρ2)
π

i
= π′ a = ρ(b) i ∈ J \ J′

π _ (J)a
i
= π′ _ (J′)b

(= τ0)
π

i
= π′ i /∈ J ρ(a) = τ

π _ (J)a
i
= π′

(I)
π0

i
= π1

(x0, π0)
i· · · (x1, π1)

Fig. 2. SOS of CCSi (cf. [9])

the indistinguishability relation
i
= from sequences of decorated actions to the

indistinguishability relation
i· · · on the operational state of CCSi. As shown in

[9], both
i
= and

i· · · are equivalence relations.
This semantics is introduced here to present the original semantics given in

[9] and to compare it with the interpreted systems semantics presented in the
subsequent sections. For these and the following definitions, we now provide a
running example for clarification.

Example 3. (Toy Example: Semantics) Consider process p specified in Ex-
ample 1. The traces of p can be generated by the SOS-rules as follows:

1. ((1)?a, 〈〉) (1)?a⇒ (ε, 〈(1)?a〉) – rule (a)

2. ((2)!a, 〈〉) (2)!a⇒ (ε, 〈(2)!a〉) – rule (a)

3. ((1)?a || (2)!a, 〈〉) (1,2)a⇒ (ε || ε, 〈(1, 2)a〉) – rule (p2), using 1,2
4. (ε || ε, 〈(1, 2)a〉)√ – rules (ε), (pt)

5. ((3)b, 〈〉) (3)b⇒ (ε, 〈(3)b〉) – rule (a)

8

(1)a (3)b

(1, 2, 3)c

1, 2

Fig. 3. Operational Semantics of the Toy Example

6. ((3)b ; c, 〈〉) (3)b⇒ (ε ; c, 〈(3)b〉) – rule (s0), using 5

7. (c, 〈(3)b〉) c⇒ (ε, 〈(3)b, c〉) – rule (a)
8. (ε, 〈(3)b, c〉)√ – rule (ε)

9. (ε ; c, 〈(3)b〉) c⇒ (ε, 〈(3)b, c〉) – rule (s1), using 7,8

10. ((1)?a || (2)!a, 〈〉) (1)?a⇒ (ε || (2)!a, 〈(1)?a〉) (2)!a⇒ (ε ||(ε, 〈(1)?a, (2)!a〉)
– rules (p0), (p1), using 1,2

11. ((1)?a || (2)!a, 〈〉) (2)!a⇒ ((1)?a || ε, 〈(2)!a〉) (1)?a⇒ (ε || ε, 〈(2)!a, (1)?a〉)
– rule (p1), (p0), using 2,1

12. (p, 〈〉) (1,2)a⇒ (ε || ε, 〈(1, 2)a〉) – rule (ni), using 3

13. (p, 〈〉) (1)?a⇒ (ε || (2)!a, 〈(1)?a〉) (2)!a⇒ (ε || ε, 〈(1)?a, (2)!a〉) – rule (ni) using 10

14. (p, 〈〉) (2)!a⇒ ((1)?a || ε, 〈(2)!a〉) (1)?a⇒ (ε || ε, 〈(2)!a, (1)?a〉) – rule (ni) using 11

15. (p, 〈〉) (3)b⇒ (ε ; c, 〈(3)b〉) c⇒ (ε, 〈(3)b, c〉) – rule (n1) using 6, followed by 9

16. (p, 〈〉) a→ (ε || ε, 〈(1, 2)a〉) – rule (strip), using 12

17. (p, 〈〉) b→ (ε ; c, (3)b)
c→ (ε, 〈(3)b, c〉) – rule (strip) using 15

Note again that rule (strip) is restricted to ‘closed’ actions, i.e., excluding !a, ?a,
so it does not apply to lines 12 and 13. The set of traces of p is therefore (lines
15 and 16): {〈a〉, 〈b, c〉}.

Now, we also generate the indistinguishability relation through the SOS-rules:

1. For all i ∈ Id and for all π: π
i
= π – rule (= refl)

2. 〈(1, 2)a〉 3
= 〈a0〉 – rule (= ρ2)

3. 〈(3)b, c〉 1
= 〈c〉 – rule (= τ0)

4. 〈(3)b, c〉 2
= 〈c〉 – rule (= τ0)

The state space of this example is depicted in Figure 3. In this figure, the
initial state is designated with a small incoming arrow. The transitions derived
from the operational semantics are drawn as solid arrows and the indistinguisha-
bility relation is drawn as a dotted line labeled with the principal identities. (In
order not to clutter the figure, we dispensed with the self-loops denoting the
reflexivity of the indistinguishability relation.)

9

(1,M)pay(1,>) (1,M)pay(1,⊥) (1,M)pay(1,⊥)

O, 2

O, 1, 2,MO, 2

(2,M)pay(2,>)(2,M)pay(2,⊥) (2,M)pay(2,⊥)
O, 2

O O, 1

Fig. 4. Operational Semantics of the Dining Cryptographers Protocol

Example 4. (Dining Cryptographers: Semantics) Consider the specification
of dining cryptographers given in Example 2. The complete state space of the
protocol is too large to be studied manually (see [10] for a prototype implemen-
tation of a model-checker for a process algebra, using which we performed a
mechanized analysis of this protocol). The initial steps of the protocol are de-
picted in Figure 4. Consider, for example, the leftmost and the middle traces in
Figure 4. After the first step of the protocol, principals 1 and 2 observe action
pay(1,>) in the leftmost trace and action pay(1,⊥) in the middle trace and
hence, can distinguish the target states of these two actions. Principals O and
2, however, observe pay(1) in both cases and hence the resulting states are in-
distinguishable to them. After the second step, principal 2 can also distinguish
between the two traces, because it can observe pay(2,⊥) as the second action
of the leftmost trace, while it can observe pay(2,>) as the second action of the
middle trace. Principal O still cannot distinguish the two traces because the
second action appears in both cases as pay(2) to it. Note that modeling this
aspect of knowledge about the actions that have taken place and revisions in
the knowledge is made possible thanks to the notion of history (of past actions)
that is included in the operational state.

Below, we give three completed traces of the protocol, which are continuations
of the three initial branches depicted in Figure 4. The protocol starts with the
Master synchronising on pay-actions with each cryptographer. These traces do
show the essence of the protocol (i.e., the three possible cases for payment) with
some choice of coin flips. Our choices for coin flips may seem arbitrary at the
first glance, but actually, a particular choice is made to demonstrate how the
protocol guarantees anonymity:

1. The first trace, given below, is a continuation of the leftmost trace, in which
the first cryptographer has paid; the result of both coin flips in this par-
ticular trace is a head (>). For the sake of brevity, in the description of
the traces, we only mention the histories and the transitions and omit the
process expressions:

10

(DC2, 〈〉)
pay(1,>)→

(−, 〈(1, M)pay(1,>)〉) pay(2,⊥)→

(−, 〈(1, M)pay(1,>), (2, M)pay(2,⊥)〉) flip(1,>)→

(−, 〈(1, M)pay(1,>), (2, M)pay(2,⊥), (1)flip(1,>)〉) flip(2,>)→

(−, 〈(1, M)pay(1,>), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,>)〉) share(1,>)→

(−, 〈(1, M)pay(1,>), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,>),

((1, 2))share(1,>)〉) share(2,>)→

(−, 〈(1, M)pay(1,>), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,>),

((1, 2))share(1,>), ((1, 2))share(2,>)〉) bcast(1,>⊕>⊕>)→

(−, 〈(1, M)pay(1,>), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,>),

((1, 2))share(1,>), ((1, 2))share(2,>), ((1, 2))bcast(1,>)〉) bcast(2,⊥⊕>⊕>)→

(−, 〈(1, M)pay(1,>), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,>),
((1, 2))share(1,>), ((1, 2))share(2,>),

((1, 2))bcast(1,>), ((1, 2))bcast(2,⊥)〉) paid(1,>⊕>⊕>⊕⊥)→

(−, 〈(1, M)pay(1,>), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,>),
((1, 2))share(1,>), ((1, 2))share(2,>),
((1, 2))bcast(1,>), ((1, 2))bcast(2,⊥),

((O, 1, 2, M))paid(1,>)〉) paid(2,⊥⊕>⊕>⊕>)→

(−, 〈(1, M)pay(1,>), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,>),
((1, 2))share(1,>), ((1, 2))share(2,>),
((1, 2))bcast(1,>), ((1, 2))bcast(2,⊥),
((O, 1, 2, M))paid(1,>), ((O, 1, 2, M))paid(2,>)〉) √

As it can be seen, upon termination, the history indicates that both prin-
cipals 1 and 2 have announced that a cryptographer has paid and this an-
nouncement can be observed by each and every principal.

2. The second trace, given below, is a continuation of the trace in the middle
of Figure 4, in which the second cryptographer has paid, the result of the
coin flip by crytographer 1 is a head (>) and that of the cryptographer 2 is
a tail (⊥):

11

(DC2, 〈〉)
pay(1,⊥)→

(−, 〈(1, M)pay(1,⊥)〉) pay(2,⊥)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥)〉) flip(1,>)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥), (1)flip(1,>)〉) flip(2,⊥)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,⊥)〉) share(1,>)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,⊥),

((1, 2))share(1,>)〉) share(2,>)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,⊥),

((1, 2))share(1,>), ((1, 2))share(2,>)〉) bcast(1,⊥⊕>⊕⊥)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,⊥),

((1, 2))share(1,>), ((1, 2))share(2,>), ((1, 2))bcast(1,>)〉) bcast(2,>⊕>⊕>)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,⊥),
((1, 2))share(1,>), ((1, 2))share(2,>),

((1, 2))bcast(1,⊥), ((1, 2))bcast(2,⊥)〉) paid(1,⊥⊕>⊕>⊕>)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,⊥),
((1, 2))share(1,>), ((1, 2))share(2,>),
((1, 2))bcast(1,⊥), ((1, 2))bcast(2,⊥),

((O, 1, 2, M))paid(1,>)〉) paid(2,>⊕>⊕>⊕⊥)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,⊥),
((1, 2))share(1,>), ((1, 2))share(2,>),
((1, 2))bcast(1,⊥), ((1, 2))bcast(2,⊥),
((O, 1, 2, M))paid(1,>), ((O, 1, 2, M))paid(2,>)〉) √

Similar to the previous trace, at the end of the protocol, it has been an-
nounced, by both cryptographers, that a cryptographer has paid the bill.
The observer, however, cannot distinguish this trace from the first one, and
hence, at the end of either of the two traces, cannot establish which cryptog-
rapher has paid. Note that the two cryptographers do know (both in the first
and the second trace) who has paid the bill: for example, at the end of the
above-given trace, cryptographer 2 knows that it has paid the bill, because
this trace is distinguishable (by observing paid(2,>)) from any other trace
in which it has not paid the bill. Cryptographer 1 also knows that 2 has paid
the bill, because it knows after the first step that it has not paid the bill,

12

and after the last step knows that a cryptographer, hence 2, has paid the
bill; in other words, this trace is distinguishable from other traces in which
2 has not paid in the observable pay and paid actions.

3. The last trace is a continuation of the rightmost trace in Figure 4, in which
the master has taken care of the bill and no cryptographer has paid. Both
coin flips in this trace result in a head (>):

(DC2, 〈〉)
pay(1,⊥)→

(−, 〈(1, M)pay(1,⊥)〉) pay(2,⊥)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥)〉) flip(1,>)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥), (1)flip(1,>)〉) flip(2,>)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,>)〉) share(1,>)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,>),

((1, 2))share(1,>)〉) share(2,>)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,>),

((1, 2))share(1,>), ((1, 2))share(2,>)〉) bcast(1,⊥⊕>⊕>)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,>),

((1, 2))share(1,>), ((1, 2))share(2,>), ((1, 2))bcast(1,⊥)〉) bcast(2,⊥⊕>⊕>)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,>),
((1, 2))share(1,>), ((1, 2))share(2,>),

((1, 2))bcast(1,⊥), ((1, 2))bcast(2,⊥)〉) paid(1,⊥⊕>⊕>⊕⊥)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,>),
((1, 2))share(1,>), ((1, 2))share(2,>),
((1, 2))bcast(1,⊥), ((1, 2))bcast(2,⊥),

((O, 1, 2, M))paid(1,⊥)〉) paid(2,⊥⊕>⊕>⊕⊥)→

(−, 〈(1, M)pay(1,⊥), (2, M)pay(2,⊥), (1)flip(1,>), (2)flip(2,>),
((1, 2))share(1,>), ((1, 2))share(2,>),
((1, 2))bcast(1,⊥), ((1, 2))bcast(2,⊥),
((O, 1, 2, M))paid(1,⊥), ((O, 1, 2, M))paid(2,⊥)〉)
After observing this trace, all principals know that the master has taken care
of the bill, because they all observe both paid(2,⊥) and paid(2,⊥) and in
all traces that are indistinguishable from the present trace (i.e., contain the
same observable paid actions in the end) no cryptographer has paid. The
latter claim can be checked formally, using an exhaustive search of the state
space of the procotol; we refer to [10] for the details.

13

3 Interpreted Systems

In this section, we recall from [17] formal definitions, terminology and notational
conventions regarding interpreted systems. Note however that we deviate from
the original definition of [17], by restricting to finite runs. We do this in the
context of our process language, because our process terms only afford finite
behavior. In order to have infinite runs corresponding to our porcesses, we could
have every run have an infinite ‘stuttering’ tail (as is suggested in [15] as well).
We will discuss in Section 5 why we have chosen not to do so for the context of
this paper.

Definition 1 (Interpreted Systems (finite depth)) Given a set of n > 0
agents with identifiers in Id = {1, . . . , n}, and for each agent i ∈ Id a set
of local states Li, a global state l is an n-tuple (l1, . . . , ln) with li ∈ Li. Let
L =

∏n
i=1 Li denote the set of global states. A run r is a finite sequence of global

states r(0), r(1), . . . , r(m) for some m ∈ N. A protocol R is a non-empty set of
runs.

Given a set Φ of atomic logical formulae, a valuation is a function ν : L→ Φ.
An interpreted system is then a pair (R, ν), where R is a protocol and ν is a

valuation.

Two global states are taken to be indistinguishable for an agent if their
local states are equal. This defines an equivalence relation for the evaluation of
epistemic formulas:

Definition 2 (Indistinguishability relations in ISs [17]) Given an inter-
preted system with set of global states L, for each agent i ∈ Id the relation
i≈⊆ L× L is defined by: l

i≈ l′ iff li = l′i.

The valuation part ν of an Interpreted System (which is taken to be defined
on the full L) can be specified independently of the protocol part R. As it turns
out, linking our framework and Interpreted Systems is essentially about linking
our operational semantics to the protocol part of ISs and linking the respective
indistinguishability relations. Within this paper we do not yet explore with which
logical language, including a meaningful choice for the atoms, it is best to talk
about our epistemic-operational models for processes. This will be part of our
future work, and for now, we therefore do not specify the ν-part, only the protocol
part of our ISs.

4 Interpreted Systems Semantics for CCSi

In this section, we define an interpreted systems semantics for the process algebra
CCSi. We do so by defining the influence of each operational step on the local
state of each principal and then aggregating these influences into the definition
of a run. The development of this section is only dependent on the definition
of an operational semantics, as defined , and hence the same schema can be

14

(is
√

)
(x, π)

√

x√

(is d)
(x, π)

(J)a⇒ (y, π′)

x
[[(J)a]]
 y

Fig. 5. Influence of a decorated action on the local states

used for any other process algebra (process algebraic formalism) as long as the
visibility range (the set of principals to which the action is visible) and the public
appearance of each action is provided in the operational semantics.

Before we define the interpreted systems semantics for a CCSi process, we
first describe what we will call the local and global state of such a semantics:
For a process p ∈ CCSi with renaming function ρ, a local state li ∈ Li ⊆ Act∗
is a sequence of actions in p as they appear to agent i ∈ Id under ρ. The set of
global states L is defined to be L =

∏n
i=1 Li. The protocol corresponding to p is

the set of all runs of p, which are the sequences of global states corresponding
to the traces of p. Note that unlike the histories of CCSi, which are sequences
of decorated actions, the local states of CCSi are sequences of actions (without
any decoration).

Definition 3 (Concatenation of actions-tuples to global states) Consider
a global state l = (l1, . . . , ln) and an n-tuple a = (a1, . . . , an) of actions in
Act ∪ {τ}. Then l

_
a = (l′1, . . . , l

′
n) where l′i = li if ai = τ and l′i = li · ai

otherwise.

Definition 4 (Decorated action tuple) For any decorated action d = (J)a
we define [[d]] to be the n-tuple (a1, . . . , an) with ai = a for i ∈ J, and ai = ρ(a)
for i /∈ J.

We are now ready to define the interpreted system semantics of processes by
defining their associated protocols. Definition 5 defines the protocol associated
with the process ε to be the singleton set comprising empty local sequences.
The protocol associated with a decorated action, is defined by the tuple of local
appearances of each action to each agent. Finally, the notion of protocol is lifted
in the expected way from decorated actions to processes.

Definition 5 (Interpreted System protocols for CCSi) The influence of
a decorated action (or termination) on the local state of each principal is de-
fined in Figure 5.

We write p↓ in the remainder of this definition, to denote that process p can
terminate according to the deduction rules of Figure 5, i.e., p√, or cannot take

any transition, i.e., there are no process p′ and n-tuple of actions a s.t. p
a
 p′ .

15




pay(1)
pay(1,>)
pay(1)
pay(1,>)







pay(1)
pay(1,⊥)
pay(1)
pay(1,⊥)







pay(1)
pay(1,⊥)
pay(1)
pay(1,⊥)







pay(2)
pay(2)
pay(2,⊥)
pay(2,⊥)







pay(2)
pay(2)
pay(2,>)
pay(2,>)







pay(2)
pay(2)
pay(2,⊥)
pay(2,⊥)




Fig. 6. Interpreted Systems Semantics of the Dining Cryptographers Protocol

A run of a process p is a sequence (l0, l1, . . . , lm) of global states, such that
there exist processes p0, p1, . . . , pm with l0 = (〈〉, . . . , 〈〉), p0 = p, pm↓, and (if

m > 0) for each k < m, it holds that lk+1 = l
_

k a and pk
a
 pk+1.

The protocol associated with a process p, denoted as [[p]], is the set of all runs
of p.

Example 5. (Toy Example: Interpreted Systems) The IS semantics for the
proces p = ((1)?a || (2)!a) + ((3)b ; c) consists of the following runs:

(〈〉, 〈〉, 〈〉), (〈a〉, 〈a〉, 〈a0〉)

and (〈〉, 〈〉, 〈〉), (〈〉, 〈〉, 〈b〉), (〈c〉, 〈c〉, 〈b, c〉);

We see that the process histories of decorated actions are unfolded, through
the annotations and the renaming functions, into the local perspectives of the
principals in the IS semantics: local states are the sequences of (undecorated)
actions from the history as perceived by the corresponding principal.

Example 6. (Dining Cryptographers: Interpreted Systems) In Figure 6,
the initial steps of the runs of dining cryptographers protocol are depicted. Each
tuple depicted in Figure 6, represents the view of principals O, 1, 2, and M,
respectively, of the action that has take place.

The runs of the interpreted systems semantics, corresponding to the traces
given in Example 4, are given below:

1. The first run corresponds to the leftmost trace in Figures 4 and 6; the global
state of the run is a 4-tuple comprising the local states of O, 1, 2, and M,
respectively (to save space, we have abbreviated the action names flip, share
and bcast into fl, sh and bc, respectively):

16

〈〉,〈〉,〈〉,
〈〉

 ,

〈pay(1)〉,〈pay(1,>)〉,
〈pay(1)〉,
〈pay(1,>)〉

 ,

〈pay(1), pay(2)〉,
〈pay(1,>),pay(2)〉,
〈pay(1), pay(2,>)〉,
〈pay(1,>),pay(2,>)〉

 ,

〈pay(1), pay(2), fl(1)〉,
〈pay(1,>),pay(2), fl(1,>)〉,
〈pay(1), pay(2,>),fl(1)〉,
〈pay(1,>),pay(2,>),fl(1)〉

 ,

〈pay(1), pay(2), fl(1), fl(2)〉,
〈pay(1,>),pay(2), fl(1,>),fl(2)〉,
〈pay(1), pay(2,>),fl(1), fl(2,⊥)〉,
〈pay(1,>),pay(2,>),fl(1), fl(2)〉

 ,

〈pay(1), pay(2), fl(1), fl(2), sh(1)〉,
〈pay(1,>),pay(2), fl(1,>),fl(2), sh(1,>)〉,
〈pay(1), pay(2,>),fl(1), fl(2,⊥),sh(1,>)〉,
〈pay(1,>),pay(2,>),fl(1), fl(2), sh(1)〉

 ,

〈pay(1), pay(2), fl(1), fl(2), sh(1), sh(2)〉,
〈pay(1,>),pay(2), fl(1,>),fl(2), sh(1,>),sh(2,⊥)〉,
〈pay(1), pay(2,>),fl(1), fl(2,⊥),sh(1,>),sh(2,⊥)〉,
〈pay(1,>),pay(2,>),fl(1), fl(2), sh(1), sh(2)〉

 ,

〈pay(1), pay(2), fl(1), fl(2), sh(1), sh(2), bc(1,>)〉,
〈pay(1,>),pay(2), fl(1,>),fl(2), sh(1,>),sh(2,⊥),bc(1,>)〉,
〈pay(1), pay(2,>),fl(1), fl(2,⊥),sh(1,>),sh(2,⊥),bc(1,>)〉,
〈pay(1,>),pay(2,>),fl(1), fl(2), sh(1), sh(2), bc(1,>)〉

 ,

〈pay(1), pay(2), fl(1), fl(2), sh(1), sh(2), bc(1,>),bc(2,⊥)〉,
〈pay(1,>),pay(2), fl(1,>),fl(2), sh(1,>),sh(2,⊥),bc(1,>),bc(2,⊥)〉,
〈pay(1), pay(2,>),fl(1), fl(2,⊥),sh(1,>),sh(2,⊥),bc(1,>),bc(2,⊥)〉,
〈pay(1,>),pay(2,>),fl(1), fl(2), sh(1), sh(2), bc(1,>),bc(2,⊥)〉

 ,

〈pay(1), pay(2), fl(1), fl(2), sh(1), sh(2), bc(1,>),bc(2,⊥),paid(1,>)〉,
〈pay(1,>),pay(2), fl(1,>),fl(2), sh(1,>),sh(2,⊥),bc(1,>),bc(2,⊥),paid(1,>)〉,
〈pay(1), pay(2,>),fl(1), fl(2,⊥),sh(1,>),sh(2,⊥),bc(1,>),bc(2,⊥),paid(1,>)〉,
〈pay(1,>),pay(2,>),fl(1), fl(2), sh(1), sh(2), bc(1,>),bc(2,⊥),paid(1,>)〉

 ,

〈pay(1), pay(2), fl(1), fl(2), sh(1), sh(2), bc(1,>),bc(2,⊥),paid(1,>),paid(2,>)〉
〈pay(1,>),pay(2), fl(1,>),fl(2), sh(1,>),sh(2,⊥),bc(1,>),bc(2,⊥),paid(1,>),paid(2,>)〉
〈pay(1), pay(2,>),fl(1), fl(2,⊥),sh(1,>),sh(2,⊥),bc(1,>),bc(2,⊥),paid(1,>),paid(2,>)〉
〈pay(1,>),pay(2,>),fl(1), fl(2), sh(1), sh(2), bc(1,>),bc(2,⊥),paid(1,>),paid(2,>)〉



There are a couple of interesting observations to be made about the above-
given run: firstly, each operational step of the protocol results in appending
one action to the local state of each and every principal. This phenomenon,
called synchronicity, is because of the particular definition of ρ, which does
not map any action to the invisible action τ . Secondly, no principal can
observe all actions as they actually happen in the protocol: a cryptographer
cannot observe the content of the commuinication between the master and
the other cryptographer and the result of its coin flip, the master cannot
observe the result of the coin flip for any of the two cryptographer and the
communication between the two cryptographers for sharing them, and the
observer cannot observe any of the aforementioned information.

2. The second run corresponds to the middle trace in Figures 4 and 6 using the
same abbreviations as in the first run:

17

〈〉,〈〉,〈〉,
〈〉

 ,

 〈pay(1)〉,〈pay(1,⊥)〉,
〈pay(1)〉,
〈pay(1,⊥)〉

 ,

〈pay(1), pay(2)〉,
〈pay(1,⊥),pay(2)〉,
〈pay(1), pay(2,>)〉,
〈pay(1,⊥),pay(2,>)〉

 ,

〈pay(1), pay(2), fl(1)〉,
〈pay(1,⊥),pay(2), fl(1,>)〉,
〈pay(1), pay(2,>),fl(1)〉,
〈pay(1,⊥),pay(2,>),fl(1)〉

 ,

〈pay(1), pay(2), fl(1), fl(2)〉,
〈pay(1,⊥),pay(2), fl(1,>),fl(2)〉,
〈pay(1), pay(2,>),fl(1), fl(2,⊥)〉,
〈pay(1,⊥),pay(2,>),fl(1), fl(2)〉

 ,

〈pay(1), pay(2), fl(1), fl(2), sh(1)〉,
〈pay(1,⊥),pay(2), fl(1,>),fl(2), sh(1,>)〉,
〈pay(1), pay(2,>),fl(1), fl(2,⊥),sh(1,>)〉,
〈pay(1,⊥),pay(2,>),fl(1), fl(2), sh(1)〉

 ,

〈pay(1), pay(2), fl(1), fl(2), sh(1), sh(2)〉,
〈pay(1,⊥),pay(2), fl(1,>),fl(2), sh(1,>),sh(2,⊥)〉,
〈pay(1), pay(2,>),fl(1), fl(2,⊥),sh(1,>),sh(2,⊥)〉,
〈pay(1,⊥),pay(2,>),fl(1), fl(2), sh(1), sh(2)〉

 ,

〈pay(1), pay(2), fl(1), fl(2), sh(1), sh(2), bc(1,>)〉,
〈pay(1,⊥),pay(2), fl(1,>),fl(2), sh(1,>),sh(2,⊥),bc(1,>)〉,
〈pay(1), pay(2,>),fl(1), fl(2,⊥),sh(1,>),sh(2,⊥),bc(1,>)〉,
〈pay(1,⊥),pay(2,>),fl(1), fl(2), sh(1), sh(2), bc(1,>)〉

 ,

〈pay(1), pay(2), fl(1), fl(2), sh(1), sh(2), bc(1,>),bc(2,⊥)〉,
〈pay(1,⊥),pay(2), fl(1,>),fl(2), sh(1,>),sh(2,⊥),bc(1,>),bc(2,⊥)〉,
〈pay(1), pay(2,>),fl(1), fl(2,⊥),sh(1,>),sh(2,⊥),bc(1,>),bc(2,⊥)〉,
〈pay(1,⊥),pay(2,>),fl(1), fl(2), sh(1), sh(2), bc(1,>),bc(2,⊥)〉

 ,

〈pay(1), pay(2), fl(1), fl(2), sh(1), sh(2), bc(1,>),bc(2,⊥),paid(1,>)〉,
〈pay(1,⊥),pay(2), fl(1,>),fl(2), sh(1,>),sh(2,⊥),bc(1,>),bc(2,⊥),paid(1,>)〉,
〈pay(1), pay(2,>),fl(1), fl(2,⊥),sh(1,>),sh(2,⊥),bc(1,>),bc(2,⊥),paid(1,>)〉,
〈pay(1,⊥),pay(2,>),fl(1), fl(2), sh(1), sh(2), bc(1,>),bc(2,⊥),paid(1,>)〉

 ,

〈pay(1), pay(2), fl(1), fl(2), sh(1), sh(2), bc(1,>),bc(2,⊥),paid(1,>),paid(2,>)〉
〈pay(1,⊥),pay(2), fl(1,>),fl(2), sh(1,>),sh(2,⊥),bc(1,>),bc(2,⊥),paid(1,>),paid(2,>)〉
〈pay(1), pay(2,>),fl(1), fl(2,⊥),sh(1,>),sh(2,⊥),bc(1,>),bc(2,⊥),paid(1,>),paid(2,>)〉
〈pay(1,⊥),pay(2,>),fl(1), fl(2), sh(1), sh(2), bc(1,>),bc(2,⊥),paid(1,>),paid(2,>)〉


Consider the first and the second run presented above and consider the local

state corresponding to the view of the observer (viz. the first element in the
global state); for convenience, we quote the local state of the observer in the
final global state of both runs below:

〈pay(1), pay(2), fl(1), fl(2), sh(1), sh(2), bc(1,>), bc(2,⊥), paid(1,>), paid(2,>)〉
〈pay(1), pay(2), fl(1), fl(2), sh(1), sh(2), bc(1,>), bc(2,⊥), paid(1,>), paid(2,>)〉

As it can be seen, the local views of the observer in the two runs coincide
and following Definition 2, these two runs are indistinguishable for the observer.
However, the local states of the other principals differ in one or more actions
(namely, flip and pay). These results have also been established in the oper-
ational semantic model of the protocol and they hint at the correspondence
between the two semantic models. We formalize and prove this correspondence
in the remainder of this paper.

18

5 Some formal results

In this section, we present three types of formal results regarding our interpreted
systems semantics for CCSi. The first type establishes a correspondence between
the operational and the interpreted systems semantics of CCSi. The second
type of results determine the expressiveness of process algebraic specifications in
generating interpreted systems. Finally, we give the third type of results about
the characterization of the interpreted systems generated by process algebraic
specifications.

Correspondence The first result, formulated below, relates our interpreted sys-
tems semantics with the operational semantics originally defined for CCSi. It
states that each component of a protocol in the interpreted systems semantics
is a local projection on a trace obtained from the operational semantics.

Theorem 6 For each CCSi process p, the following two statements hold:

– r = r(0), . . . , r(m) ∈ [[p]] ⇒ ∃p′,π(p, 〈〉)→ ∗(p′, π)∧ p′↓∧ ∀i ≤ n, π
i
= br(m)ic,

– ∀π(p, 〈〉)→ ∗(p′, π)∧ p′↓ ⇒ ∃r∈[[p]],m∈Nr = r(0), ..., r(m)∧ ∀i ≤ n, π
i
= br(m)ic,

where → ∗ denotes the reflexive transitive closure of the union of transition
relations

a→ , and blic is the sequence of actions in li lifted to form a history, by
reading the actions as decorated implicitly with (Id), i.e. as publicly visible (cf.
the convention on p. 3).

The first item states that for each run in the IS semantics of p, there is a pair
(p′, π) with process p′ terminating, and such that for each i, how i perceives the
history π is equal to his local state r(m)i. The proof goes by an induction on
the length of the run. The second item states that conversely, for each process
p that can terminate after history π, there is a run in the IS semantics of p in
which for each i, i’s local state at the end of the run captures how i perceives π.
The proof of the second item is by an induction on the number of the transitions
leading to (p′, π).

Expressiveness Before we study the expressiveness of process algebras in gen-
erating interpreted systems, we confine our attention to the set of interpreted
systems of which the local states are initialized with the empty history and are
updated at each step by at most one action; this is the idea behind the notion
of initialized and prefix-closed interpreted systems defined below.

Definition 7 Consider an interpreted system (R, ν) with sets Li of local states
such that Li ⊆ Act∗ for each i ∈ Id. A run r = r(0), . . . , r(m) ∈ R is prefix
closed if for each two consecutive global states r(k) = (l1, . . . , ln) and r(k+ 1) =
(l′1, . . . , l

′
n) with k < m, and each i ∈ Id it holds that either li = l′i or l_i α = l′i

for some α ∈ Act. The run r is initialized if r(0) = (〈〉, . . . , 〈〉). Interpreted
system (R, ν) is initialized and prefix closed, if each and every run r ∈ R is
initialized, and prefix closed.

19

It trivially holds that the interpreted system semantics for our processes
are initialized, and prefix-closed. The following theorems show the (lack of) ex-
pressiveness of process algebras in generating interpreted systems. The first two
theorems show that all initialized and prefix-closed interpreted systems with 1
action or at most 2 agents can be specified by a process algebraic description.
The third theorem shows that in the setting with more than 1 action and more
than 2 agents, not all initialized and prefix closed interpreted systems can be
captured by process algebraic specifications.

Theorem 8 For an action set Act with | Act |≤ 1 (i.e., with cardinality at most
1), for each finite initialized, and prefix-closed interpreted system (R, ν), there
exists a process algebraic description p and renaming ρ such that [[p]] = R.

Theorem 9 Assume that the system comprises at most 2 agents; for each fi-
nite initialized and prefix-closed interpreted system (R, ν), there exists a process
algebraic description p and a renaming ρ such that [[p]] = R.

Theorem 10 For an action set of cardinality at least 2 and more than 2 agents,
there exist finite initialized and prefix-closed interpreted systems that cannot be
generated by any process algebraic specification.

Proof of Theorem 10. Consider the singleton protocol {((〈〉, 〈〉, 〈〉), (α, β, γ))},
where α, β and γ denote three distinct actions. We claim that this protocol
cannot be generated by any process algebraic specification p with the given sig-
nature for ρ. Assume towards contradiction, that such a p exists; p cannot have
non-ε summands or parallel components, since otherwise the protocol cannot be
singleton. Hence, p should be an action prefixing followed by ε, i.e., is of the
form d; ε. It follows from Definition 5 that [[p]] = (〈〉, 〈〉, 〈〉)_[[d]]. Without loss of
generality assume that d = (J)α; then since β 6= 〈〉 and γ 6= 〈〉, it should hold
that β = ρ(α) and γ = ρ(α), which contradicts the assumption that β and γ are
distinct. �

Theorem 10 points out a gap in the expressiveness of our process algebraic
specification language. In the proof of the theorem, this shortcoming is traced
back to the restrictive nature of our global renaming function: it presumes a di-
chotomy of actions and their public appearances while interpreted systems allow
for several (more than 2) different appearances of actions. This expressiveness
gap can be filled in various ways, e.g., by adding the principal identities as a pa-
rameter to the signature of the renaming function, thereby allowing for different
appearance for different principals. This will be an important next step towards
making our framework more general and increasing its expressiveness, especially
for application in communication protocols.

Towards characterization The properties of the epistemic relations in the IS
semantics for the CCSi process algebra derive from the signature and the prop-
erties of the renaming function. For example, if ρ(a) = a for all a, then the

20

equivalence classes of the
i≈ are trivial (all singletons). The one action with a

special interpretation, the silent action τ , plays a special role. For this paper,
we have excluded τ as member of Act, but allowed it to be in the range of ρ.
If ρ(a) = τ for some a 6= τ , the renaming function enables modeling that some
agents do not notice anything happening, when a actually happens.

If we would have allowed τ to be in Act (and thereby in the domain of ρ), for a
sensible interpretation of the intuition behind the renaming function, we should
probably fix ρ(τ) = τ , although one could model the “illusion” that something
happens when it actually doesn’t, by allowing ρ(τ) = a for some a 6= τ .

The three characterizing properties from [4] can be translated into our for-
malism as follows:

Synchronicity: if r, r′ ∈ [[p]] and r(m)
i≈ r′(m′), then m = m′.

This property relates directly to a simple characteristic of the renaming func-
tion: we have synchronicity for process p with renaming ρ iff [ρ(a) 6= τ for all
a 6= τ for which (J)a ∈ p with J 6= Id]. If (J)τ were allowed to occur as action
with J 6= Id, then the extra clause ρ(τ) = τ needs to hold.

Perfect Recall: For all r(m)_[d], r′(m′)_[d′] ∈ [[p]]: r(m)_[d]
i≈ r′(m′)_[d′]

implies r(m)
i≈ r′(m′).

This property was proven to hold for the process algebra with identities in
[9]. It holds for synchronous combinations of processes and renaming functions,
as shown in the proof sketch of Appendix C.

Uniform No Miracles: if r(m)
i≈ r′(m′) and there are r′′(m′′), r′′′(m′′′)

and d, d′ such that r′′(m′′)_[d]
i≈ r′′′(m′′′)_[d′], then r(m)_[d]

i≈ r′(m′)_[d′].
The investigation of the conditions under which this property holds for the

ISs generated from processes and renaming functions is left for future work.

Discussion: finite vs infinite runs As we indicated before defining Interpreted
Systems for our processes in Definition 1, an important difference with the stan-
dard account is the fact that we take runs to be finite sequences of global states
(corresponding to the finite behavior of our processes) rather than infinite se-
quences. For future work, we consider generalizing our process language by in-
cluding recursion, which would incorporate infinitely running processes. If we
then generate the corresponding ISs in the way we do in this paper, these would
contain both infinite and finite runs. This is still deviating from the standard
notion of IS.

In order to turn finite runs (corresponding to finite behavior) into infinite runs
could be to add an infinitely stuttering tail: after termination (or the inability to
proceed) at time M , generate an infinite tail with r(m) = r(m′) for all m,m′ >
M . However, in our current framework, this would make us lose the property of

synchronicity: for terminating processes then r(m)
i
= r(m′) for all m 6= m′ > M .

In [15] problems of synchronization in distributed systems are solved by assuming
hardware clocks within the processes. For us, implementing such assumption

21

however, would have to be done beyond our process language (remember we
take the agents, or principals, in Id as different entities than the processes).

6 Conclusions and future work

In this paper, we defined an interpreted systems semantics for a CCS-based
process algebra. The defined semantics can be adopted for any other process-
algebraic formalism as long as the visibility range and the public appearance
of each atomic action in the process algebra is defined (either by using a richer
syntax for atomic actions, or by providing this information as an addendum
to the process-algebraic specification). We formally compared the interpreted
systems semantics with the original operational semantics of the process algebra
and provided a few semantic properties of the generated models by imposing
restrictions on the public appearance function and the syntax of the process
description.

There are two immediate next steps. The first is to include infinite behavior
into the process language, but also to adapt the construction of ISs to generate
more standard ISs, i.e. consisting of infinite runs. The second is to develop an
epistemic temporal logical language to reason about the processes, by determin-
ing which set of propositions will be natural given the process language. Here it
is relevant to keep in mind the potential application area of security protocols
and the kind of properties relevant there.

We intend to extend this research and study the characteristics of interpreted
systems models generated by different process algebras. Furthermore, we would
like to mechanize our semantics in a tool in order to be able to verify epis-
temic properties of process-algebraic descriptions using the tools developed for
interpreted systems.

Acknowledgements We are grateful to the anonymous reviewers for their useful
comments, suggestions, and pointers for future work.

References

1. L. Aceto, A. Birgisson, A. Ingolfsdottir, and M.R. Mousavi. Decompositional Rea-
soning about the History of Parallel Processes. Proceedings of FSEN’11, volume
7141 of LNCS, Springer-Verlag, 2011.

2. M. Bhargava and C. Palamidessi. Probabilistic anonymity. Proceedings of CON-
CUR’05, volume 3653 of LNCS, Springer-Verlag, 2011.

3. J.C.M. Baeten, T. Basten, and M.A. Reniers. Process Algebra: Equational Theories
of Communicating Processes. Cambridge University Press, 2009.

4. J. van Benthem, J. Gerbrandy, T. Hoshi, and E. Pacuit. Merging frameworks for
interaction. Journal of Philosophical Logic, 38(5):491–526, 2009.

5. I. Boureanu, M. Cohen, and A. Lomuscio. A Compilation Method for the Verifi-
cation of Temporal-Epistemic Properties of Cryptographic Protocols. Journal of
Applied Non-Classical Logics, 19)4):463–487, 2009.

22

6. R. Chadha, S. Delaune, and S. Kremer. Epistemic logic for the applied pi calculus.
In Proceedings of FMOODS - FORTE ’09, volume 5522 of LNCS, pages 182–197.
Springer, 2009.

7. K. Chatzikokolakis, S. Knight and P. Panangaden. Epistemic Strategies and Games
on Concurrent Processes In SOFSEM’09, volume 5404 of LNCS, pages 153-166,
Springer, 2009.

8. D. Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of Cryptology, 1:65-75, 1988.

9. F. Dechesne, M.R. Mousavi, and S. Orzan. Operational and epistemic approaches
to protocol analysis: bridging the gap. In Proceedings of LPAR’07, volume 4790 of
LNCS, pages 226–241, Springer, 2007.

10. F. Dechesne, M.R. Mousavi, and S. Orzan. Operational and epistemic approaches
to protocol analysis: bridging the gap. Technical Report CSR-07-15, Department
of Computer Science, Eindhoven University of Technology, 2007.

11. F. Dechesne and Y. Wang. To know or not to know: epistemic approaches to
security protocol verification. Synthese, 177:51–76, 2010.

12. R. van Eijk, F. de Boer, W. van der Hoek and J.-J. Ch. Meyer. Operational Se-
mantics for Agent Communication Languages. In Issues in Agent Communication,
volume 1916 of LNCS, pages 80–95, Springer, 2000.

13. R. van Eijk, F. de Boer, W. van der Hoek and J.-J. Ch. Meyer. Process Algebra
for Agent Communication: A General Semantic Approach. In Communication in
Multiagent Systems - Agent Communication Languages and Conversation Policies,
volume 2650 of LNCS, pages 113–128, Springer, 2003.

14. R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning About Knowledge.
MIT Press, 1995.

15. J.Y. Halpern and Y. Moses. Knowledge and Common Knowledge in a distributed
environment. Proceedings of the 3rd ACM Conference on Principles of Distributed
Computing, pages 50-61, ACM, 1984, Reprinted in the Journal of the Association
for Computing Machinery, Vol. 37, No. 3, pages 549-587, 1990.

16. J.Y. Halpern and K.R. O’Neill. Anonymity and information hiding in multiagent
systems. Journal of Computer Security, pages 483-514, 2005.

17. J. Halpern and M.Y. Vardi. Reasoning about knowledge and time in asynchronous
systems. In Proceedings of STOC’88, pages 53–65, ACM Press, 1988.

18. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
J. ACM, 32(1):137–161, 1985.

19. T. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
20. W. van der Hoek, M. van Hulst, and J.-J. Ch. Meyer. Towards an Epistemic

Approach to Reasoning about Concurrent Programs. In Proceedings of the REX
Workshop’92, volume 666 of LNCS, pages 261–287, Springer, 1992.

21. T. Hoshi. Merging DEL and ETL. J. of Logic, Lang. and Inf., 19:413–430, 2010.
22. D. Hughes and V. Shmatikov. Information hiding, anonymity and privacy: A mod-

ular approach. Journal of Computer Security, 12(1):3-36, 2004.
23. M. van Hulst, and J.-J. Ch. Meyer. An epistemic proof system for parallel processes:

extended abstract. In Proceeding of TARK’94, pages 243–254, ACM Press, 1994
24. S. Katz, and G. Taubenfeld. What Processes Know: Definitions and Proof Methods.

In Proceedings of PODC’86, pages 249–262, ACM Press, 1986.
25. S. Kramer, C. Palamidessi, R. Segala, A. Turrini, and C. Braun. A quantitative

doxastic logic for probabilistic processes and applications to information-hiding.
The Journal of Applied Non-Classical Logic, 19/4:489–516, 2009.

26. A. Lomuscio and M. Ryan. Ideal agents sharing (some!) knowledge. In Proceedings
of ECAI’98, pages 557–561, John Wiley and Sons, 1998.

23

27. A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A Model Checker for the Verifi-
cation of Multi-Agent Systems. In Proceedings of CAV’09, volume 5643 of LNCS,
pages 682–688, Springer, 2009.

28. R. van der Meyden, and K. Su. Symbolic model checking the knowledge of the
dining cryptographers. In Proceedings of CSFW’04, pages 280–291, IEEE, 2004

29. R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer,
1980.

30. R. Parikh and R. Ramanujam. Distributed processes and the logic of knowledge.
In Proceedings of CLP’85, volume 193 of LNCS, pages 256–268. Springer, 1985.

31. D.M.R. Park. Concurrency and Automata on Infinite Sequences. IN Proceedings
of the 5th GI Conference, volume 104 of LNCS, pages 167–183, Springer, 1981.

32. G.D. Plotkin. A structural approach to operational semantics. Journal of Logic
and Algebraic Programming, 60:17–139, 2004.

33. F. Raimondi and A. Lomuscio. A tool for specification and verification of epis-
temic properties in interpreted systems. Electronic Notes in Theoretical Computer
Science, 85(4), 2004.

34. S. Richards and M. Sadrzadeh. Aximo: Automated axiomatic reasoning for infor-
mation update. In Proceedings of M4M5’07, volume 231 of ENTCS, pages 211–225,
Elsevier, 2009.

35. S. Schneider and A. Sidiropoulos. CSP and anonymity. In Proceedings of ES-
ORICS’96, volume 1146 of LNCS, pages 198–218, Springer, 1996.

36. B. Toninho and L. Caires. A spatial-epistemic logic for reasoning about security
protocols. In Proceedings of SecCo’10, volume 51 of EPTCS, pages 1–15, 2010.

37. W. de Vries, F.S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. A Truly
Concurrent Model for Interacting Agents. In Proceedings of PRIMA’01, volume
2132 of LNCS, pages 16–30, Springer, 2001.

24

A Proof of Correspondence Results

Before we proceed with the proof of the theorem, we state and prove some
auxiliary lemmata about our SOS semantics of Figure 2 as well the interpreted
systems semantics of Definition 5. These lemmata will come in handy in the
proof of Theorem 6.

Lemma 11 (Arbitrary Past) For each two CCSi processes p, p′, each sequence

of decorated actions π and and each decorated action d, if (p, π)
d⇒ (p′, π′), then

π′ = π_d. Moreover, for each π′′, (p, π′′)
d⇒ (p′, π′′_d).

Proof. By induction on the proof structure for (p, π)
d⇒ (p′, π′). The base case

follows immediately from deduction rule (a) in Figure 2. The induction step

follows by considering the last deduction rule used in the proof of (p, π)
d⇒ (p′, π′)

applying the induction hypothesis on the premise(s) and using the result again
as the premises of the same deduction rule. �

Lemma 12 (Termination trace) For each CCSi process p, p↓ if and only if
(〈〉, . . . , 〈〉) ∈ [[p]].

Proof. The only-if implication follows immediately from Definition 5 of run:
since p↓, we have that (〈〉, . . . , 〈〉) is among the runs of [[p]].

For the if side, assume that (〈〉, . . . , 〈〉) ∈ [[p]]. Then according to Definition 5
it should hold for p0 = p = pm that pm↓. �

Lemma 13 For all CCSi processes p, p′, p′′, sequences of decorated actions π, π′, π′′,

and each decorated action (J)a, if (p, π)
d⇒ (p′, π′)⇒ ∗(p′′, π′′), and p′′↓ then there

exist some r ∈ [[p]] and r′ ∈ [[p′]] such that r = r(0), . . . , r(m), for some m ∈ N,
r′ = r′(0), . . . , r′(m− 1), and for each i < m, r(i+ 1) = [[d]]_r′(i).

Proof. By induction on the number of transitions leading to ⇒ ∗. For the base

case, if the number of transitions ⇒ ∗ is zero, then (p, π)
d⇒ (p′, π′) and p′↓.

It follows from Definition 5 that (〈〉, . . . , 〈〉) ∈ [[p′]] and (〈〉, . . . , 〈〉) ∈ [[p′]] and
((〈〉, . . . , 〈〉), [[d]]) ∈ [[p′]]. Hence, the lemma follows.

Similarly, for the induction step, assume that ⇒ ∗ is due to a step labeled

d′, followed by a number (zero or more) subsequent steps, i.e., (p, π)
d⇒ (p′, π′)

d⇒ (q, π0) ⇒ ∗(p′′, π′′), for some q and π0. The induction hypothesis applies to
the trace originating from p′ and hence, there exist some r′ ∈ [[p′]] such that
r′ = r′(0), . . . , r′(m), for some m ∈ N. It follows from r′ ∈ [[p′]] and Definition
5 that there exists a sequence of processes p0, . . . , pm such that p0 = p′ and for

each k < m, it holds that lk+1 = l
_

k ak and pk
ak pk+1. Consider the sequence,

p, p′, p1, . . . ,m. We have that p
[[d]]
 p′, due to deduction rule (is d) of Figure

5. Moreover, for each k < m, it holds that pk
ak pk+1. Define the run r to

be of the form r(0), . . . , r(m + 1) such that r(0) = (〈〉, . . . , 〈〉), and for each

25

i ≤ m, r(i+ 1) = [[d]]_r(i), which implies, according to the definition of r′, that
r(i + 1) = [[d]]_(r′(i − 1)_ai) = ([[d]]_r′(i − 1))_ai = r(i)_ai. It then follows
from Definition 5 that r ∈ [[p]], which was to be shown. �

Proof of Theorem 6. The if-side is proven by an induction on the number of
transitions comprising → ∗.

The base case, i.e., the case for immediate termination of p, follows from
Lemma 12. The induction step follows from Lemma 13.

Similarly, the only-if side is proven by an induction on the length of run r.
For a singleton run, i.e., a run comprising of a single global state with empty
sequences as local states, the Theorem follows from Lemma 12. The induction
step follows from Lemma 13. �

B Proof of Expressiveness Results

Proof of Theorem 8. Without loss of generality, we assume that the set of actions
Act = {α} (otherwise, if Act = ∅, the only possible run in the interpreted system
is the one with the empty sequence of actions, which can be generated by the
CCSi process 0).

We prove the theorem by constructing a (sequential) process pr for each run
r of a given protocol R. The process specification corresponding to the protocol
is then

∑
r∈R pr. We construct the pr by an induction on the size of the run

r and show that for each run r there exists a process pr such that under the
renaming function ρ with ρ(α) = τ , it holds that [[pr]] = r.

For a run of size 1, we have that r = (〈〉, . . . , 〈〉). It clearly holds that [[δ]] = r
and hence r can be generated by the CCSi process δ.

Assume that each initialized prefix-closed run of size m or less can be gener-
ated by a CCSi process and consider an initialized prefix-closed run r = r(0), . . .,
r(m), where m ≥ 1. Then r(0) = (〈〉, . . . , 〈〉) (because r is initialized). Write
r(1) = (l0, . . . , ln), then for each i ≤ n one of the following cases holds:

– li = 〈〉, or
– li = 〈a〉, or

Define the set J ⊆ Id as J
.
= {i | li = 〈a〉}. We have already defined

ρ(α) = τ and thus, we have that [[(J)α]] = (l1, . . . , ln). Define r′ to be the run
r′(0), r′(1), . . . , r′(m − 1), where r′(0) = (〈〉, . . . , 〈〉) and for each j ≤ n and
i < m, r′(i)j is obtained by removing lj from the head of r(i + 1)j , if lj 6= 〈〉,
or r(i + 1)j , otherwise. It clearly holds that r′ is initialized and r′ is of size m,
and hence, the induction hypothesis applies to r′. Thus, there exists a process p
such that [[p]] = r′(0), . . . , r′(m − 1). It then follows that [[J(α); p]] = r(0), r(1),
. . . , r(m), which was to be shown.

�

Proof of Theorem 9. Without loss of generality we assume that Act 6= ∅, where
Act is the set of actions appearing in the interpreted system.

26

Define the set ActP .
= Act ∪ {αβ , ατ | α, β ∈ Act}. Also define the function

ρ : ActP → ActP ∪ {τ} such that ρ(α)
.
= α ρ(αβ)

.
= b and ρ(ατ) = τ , for each

α, βAct. Similar to the proof of Theorem 8, we construct for each run r of a
protocol, a process p such that [[p]] = r, under the renaming function ρ.

For a run of size 1, we have that r = r(0) = (〈〉, 〈〉). It clearly holds that
[[δ]] = r and hence r can be generated by the CCSi process 0.

Assume that each prefix-closed run of size m or less can be generated by a
CCSi process and consider a prefix-closed run r = r(0), . . ., r(m), where m ≥ 1.
Assume that r(0) = (a0, a1) and r(1) = (a_0 b0, a

_
1 b1). Define r′ to be the run

r′(0), r′(1), . . . , r′(m − 1), where r′(0) = (〈〉, . . . , 〈〉) and for each j ∈ {0, 1} and
i < m, r′(i)j is obtained by removing aj from the head of r(i+ 1)j , if bj 6= 〈〉, or
r(i+1)j , otherwise. Because r′ is of size m, the induction hypothesis applies and
there exists a process p such that [[p]] = r′(0), . . . , r′(m− 1). Moreover, because
r is initialized, and prefix closed, and we have that a0 = a1 = 〈〉 and one of the
following four cases holds:

1. a0 = b0, and a1 = b1, or

2. a0 = b0, and b1 = α, for some α ∈ Act, or

3. b0 = α, and a1 = b1, for some α ∈ Act, or

4. b0 = α, and b1 = β, for some α, β ∈ Act.

Based on each of the above-given four cases, define d as follows:

1. d
.
= (∅)α for some α ∈ Act,

2. d
.
= ({0})ατ ,

3. d
.
= ({1})ατ ,

4. d
.
= ({0})αβ .

Following the above-given definition of d the definition of ρ given before, we have
that [[d]] = (b0, b1). Then it follows from Definition that [[d; p]] = r(0), r(1), . . . ,
r(m), which was to be shown. �

C Towards characterization

We discuss the three properties that were proven to be characterizing the ISs
resulting from the translation of DEL into ETL in [4].

In this discussion, assume a process p in CCSi, and a renaming function ρ :
Act→ Act have been specified. Let Id = {1, . . . ,m} be the identities occurring
in p. Recall that the elements of [[p]] are (finite) sequences r of global states, and
that global states r(n) in [[p]] (i.e. run r at ‘time’ n) are m-tuples (l1, . . . , lm) of
local states. Local states are the (finite) sequences of the actions that happened
according to p as observed by agent i in a global state r(n).

27

Synchronicity : if r, r′ ∈ [[p]] and for some m,m′: r(m)
i≈ r′(m′) , then m = m′.

Lemma 14 Synchronicity is satisfied for process p with renaming ρ unless:

1. (J)τ occurs in p with J 6= Id and ρ(τ) 6= τ , or:
2. (J)α occurs in p with J 6= Id and ρ(α) = τ

Proof sketch. Synchronicity states that agents cannot confuse the number of
actions that have happened according to p so far. There are only two ways by
which such confusion would occur, so we have synchronicity unless:

1. if agents could think that something actually happened when nothing did:
(J)τ occurs in p with J 6= Id and ρ(τ) = α for some α 6= τ . (In the CCSi-
version we presented in this paper, τ does not occur as action.)

2. Conversely, if agents can think that nothing happened when something ac-
tually did: (J)α occurs in p with J 6= Id and ρ(α) = τ .

Excluding the two situations above ensures synchronicity: they will not occur if
and only if ρ(τ) = τ , and ρ(α) 6= τ for all α 6= τ for which (J)α ∈ p with J 6= Id
�

Perfect Recall : For all r(m)_[d], r′(m′)_[d′] ∈ [[p]]: r(m)_[d]
i≈ r′(m′)_[d′]

implies r(m)
i≈ r′(m′)

A formulation of Perfect Recall for the process algebra with identities has
been proven to hold in [9]. It turns out that the combination p, ρ has perfect
recall for i iff ρ(α) 6= τ for all occurring (J)α where i 6∈ J (cf. the second clause
in Lemma 14). In particular, Perfect Recall holds for synchronous combinations
of processes and renamings.

Proof sketch. Assume r(m)_[(J)α]
i≈ r′(m′)_[(J′)α′] in [[p]]. Then we have four

cases: (1) i ∈ J∩ J′, (2) i ∈ J \ J′, (3) (symmetrically) i ∈ J′ \ J, or (4) i 6∈ J∪ J′.
Case (1): Then r(m)_[(J)α]

i≈ r′(m′)_[(J′)α′] means that r(m)_i α = r′(m′)_i α
′.

It follows that α = α′ and r(m)i = r′(m′)i, hence r(m)
i≈ r′(m′).

Case (2): Then EITHER ρ(α′) = τ and r(m)_i α = r′(m′)i, so r(m)i 6= r′(m′)i,
OR ρ(α′) 6= τ and r(m)_i α = r′(m′)_i ρ(α′), so α = ρ(α′) and r(m)i = r′(m′)i,

hence r(m)
i≈ r′(m′).

Case (3) is symmetrical to case (2).
Case (4): Here again, we have 4 cases ρ(α) = τ = ρ(α′), ρ(α) 6= τ 6= ρ(α′),
ρ(α) 6= τ = ρ(α′) and ρ(α) = ρ 6= ρ(α′). It is not hard to see that from
the first two cases it follows that r(m)i = r′(m′)i, and from the latter two:
r(m)i 6= r′(m′)i.

So, the combination p, ρ is has perfect recall for i iff ρ(α) 6= τ for all occurring
(J)α where i 6∈ J . �

Uniform No Miracles : if in [[p]], r(m)
i≈ r′(m′) and there are r′′(m′′), r′′′(m′′′)

and d, d′ such that r′′(m′′)_[d]
i≈ r′′′(m′′′)_[d′], then r(m)_[d]

i≈ r′(m′)_[d].

28

This property is somewhat hard to read. It expresses that if two actions some-
where lead to indistinguishabie states, the agent will never be able to distinguish
the states resulting from these actions happening from indistinguishable states.

We leave the analysis of this property for future work.

29

