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Abstract. This paper proposes rule formats for Structural Operational
Semantics guaranteeing that certain binary operators are left distributive
with respect to a set of binary operators. Examples of left-distributivity
laws from the literature are shown to be instances of the provided for-
mats. Some conditions ensuring the invalidity of the left-distributivity
law are also offered.

1 Introduction

The syntax of a programming or specification language defines the collection
of syntactically correct expressions, and its core is typically described formally
using some variation on the notion of grammar. The semantics of a language
associates a ‘meaning’ to each syntactically correct expression.

Over the last three decades, Structural Operational Semantics (SOS), see,
e.g., [10, 32, 35, 36], has proven to be a powerful way to specify the semantics of
programming and specification languages. In this approach to semantics, lan-
guages can be given a clear behaviour in terms of states and transitions, where
the collection of transitions is specified by means of a set of syntax-driven infer-
ence rules. This behavioural description of the semantics of a language essentially
tells one how the expressions in the language under definition behave when run
on an idealized abstract machine.

Designers of languages often have expected algebraic properties of language
constructs in mind when defining a language. For example, one expects a sequen-
tial composition operator to be associative and, in the field of process algebra [13,
18, 26, 27], operators such as nondeterministic and parallel composition are of-
ten meant to be commutative and associative with respect to bisimilarity [34].
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Once the semantics of a language has been given in terms of state transitions,
a natural question to ask is whether the intended algebraic properties do hold
modulo the notion of behavioural equivalence or preorder of interest. The typ-
ical approach to answer this question is to perform an a posteriori verification:
based on the semantics in terms of state transitions, one proves the validity of
the desired algebraic laws, which describe the semantic properties of the various
operators in the language. An alternative approach is to ensure the validity of
algebraic properties a priori, i.e., by design, using the so called SOS rule formats
[12]. In this approach, one gives syntactic templates for the inference rules used
in defining the operational semantics for certain operators that guarantee the
validity of the desired laws by design. Not surprisingly, the definition of rule
formats is based on finding a reasonably good trade-off between generality and
ease of application. On the one hand, one strives to define a rule format that
can capture as many examples from the literature as possible, including ones
that may arise in the future. On the other, the rule format should be as easy to
apply as possible and, preferably, the syntactic constraints of the format should
be algorithmically checkable.

The literature on SOS provides rule formats for basic algebraic properties of
operators such as commutativity [30], associativity [22], idempotence [1] and the
existence of unit and zero elements [4, 11]. The main advantage of this approach
is that one is able to verify the desired property by syntactic checks that can
be mechanized. Moreover, it is interesting to use rule formats for establishing
semantic properties since the results so obtained apply to a broad class of lan-
guages. These formats provide one with an insight as to the semantic nature of
algebraic properties and its link to the syntax of SOS rules. Additionally, rule
formats like those presented in the above-mentioned references may serve as a
guideline for language designers who want to ensure, a priori, that the constructs
under design enjoy certain basic algebraic properties.

In the present paper, we develop two rule formats guaranteeing that certain
binary operators are left distributive with respect to others modulo bisimilarity.
A binary operator � is left distributive with respect to a binary operator �,
modulo some notion of behavioural equivalence, whenever the following equation
holds

(x� y) � z = (x� z) � (y � z).

A classic example of left-distributivity law within the realm of process algebra
is

(x+ y)‖ z = (x‖ z) + (y‖ z),

where ‘+’ and ‘‖ ’ stand for nondeterministic choice and left merge, respectively,
from [13, 18, 27]. (The reader may find many other examples in the main body of
this paper.) Distributivity laws like the aforementioned one play a crucial role in
(ground-)complete axiomatizations of behavioural equivalences over fragments
of process algebras (see, e.g., the above-mentioned references and [2, 7, 8]), and
their lack of validity with respect to choice-like operators is often the key to the
nonexistence of finite (in)equational axiomatizations of behavioural semantics—
see, for instance, [6, 9, 28, 29].
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The first rule format we present is the simplest of the two, but suffices to
handle many examples from the literature. The second rule format has more
complex syntactic conditions and can handle left-distributivity laws that are
outside the scope of the former format. In both rule formats, for the sake of
simplicity, the � operator ‘behaves like’ some form of nondeterministic choice
operator. Both rule formats are based on syntactic conditions that are decidable
over finite language specifications. Interestingly, the syntactic conditions of the
second rule format are based on a notion of distributivity compliance, which is
itself built on rule formats for other algebraic properties such as idempotence.

We provide a wealth of examples showing that the validity of several left-
distributivity laws from the literature on process algebras can be proved using
the two rule formats. Moreover, in Section 6 we argue that the two rule formats
can be applied just as well to show distributivity laws of the form f(x ⊕ y) =
f(x)⊕ f(y) involving a unary operator f .

In Section 7, we propose a simple rule format for left-distributivity laws
involving the internal choice operator from CSP [26], and present some of its
applications. The validity of those laws cannot be inferred using the previously
mentioned rule formats.

We also offer some impossibility results concerning the validity of the left-
distributivity law. Unlike previous results about rule formats for algebraic prop-
erties, these theorems allow one to recognize when the left-distributivity law is
guaranteed not to hold. When designing operational specifications for operators
that are intended to satisfy a left-distributivity law, a language designer might
also benefit from considering these kinds of negative results. To our knowledge
this type of result does not have any precursor in the field of rule formats. Hith-
erto, all rule formats aimed at providing sufficient conditions for establishing
semantic properties, whereas the above-mentioned results are the first ones that
offer necessary syntactic conditions for some semantic property to hold.

Roadmap of the paper The paper is organized as follows. Section 2 reviews some
standard definitions from the theory of SOS that will be used in the remainder
of this study. Section 3 presents our two rule formats guaranteeing that a bi-
nary operator � is left distributive with respect to a binary operator � modulo
bisimilarity. The first rule format and some examples of its application are pre-
sented in Section 3.2. In Section 3.3, we introduce the second rule format, which
extends the first rule format and can treat more examples. In order to ease its
application, we simplify the checks in the second rule format in Section 4 and
summarize the simplifications in a tabular form. Examples that can be handled
using the second rule format (even by using the simplified checks in Section 4)
are offered in Section 5. We apply the two rule formats to show left-distributivity
laws involving unary operators in Section 6. Section 7 is devoted to a simple rule
format for left-distributivity laws involving the internal choice operator from
CSP. Some impossibility results concerning the validity of the left-distributivity
law are offered in Section 8. We conclude the paper with a discussion of its
contributions and of lines for future research in Section 9.
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This paper is a considerable extension of [5]. That 12-page extended abstract
presented

– the first rule format for left distributivity, without a proof of its correctness,
and Examples 3 and 5–7,

– the material in Section 4, apart from the proof of Theorem 6, and
– Examples 10 and 11.

Essentially everything else is new in this paper.

2 Preliminaries

In this section we recall some standard definitions from the theory of SOS. We
refer the readers to, e.g., [10] and [32] for more information.

2.1 Transition system specifications and bisimilarity

Definition 1 (Signatures, terms and substitutions) We let V denote an
infinite set of variables and use x, x′, xi, y, y

′, yi, . . . to range over elements of
V . A signature Σ is a set of function symbols, each with a fixed arity. We call
these symbols operators and usually represent them by f, g, . . . . An operator with
arity zero is called a constant. We define the set T(Σ) of terms over Σ as the
smallest set satisfying the following constraints.

– A variable x ∈ V is a term.
– If f ∈ Σ has arity n and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

We use s, t, u, possibly subscripted and/or superscripted, to range over terms. We
write t1 ≡ t2 if t1 and t2 are syntactically equal. The function vars : T(Σ)→ 2V

gives the set of variables appearing in a term. The set C(Σ) ⊆ T(Σ) is the set of
closed terms, i.e., terms t such that vars(t) = ∅. We use p, q, p′, pi, . . . to range
over closed terms. A substitution σ is a function of type V → T(Σ). We extend
the domain of substitutions to terms homomorphically and write σ(t) for the
result of applying the substitution σ to the term t. If the range of a substitution
is included in C(Σ), we say that it is a closed substitution. For a substitution
σ, a sequence x1, . . . , xn of distinct variables and a sequence t1, . . . , tn of terms,
we write

σ[x1 7→ t1, . . . , xn 7→ tn]

for the substitution that maps xi to ti, for each 1 ≤ i ≤ n, and each variable
x 6∈ {x1, . . . , xn} to σ(x). Similarly, we write [x1 7→ t1, . . . , xn 7→ tn] for a
substitution that maps xi to ti, for each 1 ≤ i ≤ n, and acts like the identity
function on all the other variables.

Definition 2 (Transition system specification) A transition system speci-
fication (TSS) T is a triple (Σ,L, D) where

– Σ is a signature.

4



– L is a set of labels (or actions) ranged over by a, b, l. If l ∈ L and t, t′ ∈ T(Σ),
we say that t l→ t′ is a positive transition formula and t

l9 is a negative
transition formula. Such formulae are called t-testing. A transition formula
(or just formula), typically denoted by φ or ψ, is either a negative transition
formula or a positive one.

– D is a set of deduction rules, i.e., tuples of the form (Φ, φ) where Φ is a set
of formulae and φ is a positive formula. We call the formulae contained in
Φ the premises of the rule and φ the conclusion.

We write vars(Φ) to denote the set of variables appearing in a set of formulae
Φ, and vars(r) to denote the set of variables appearing in a deduction rule r. We
say that a formula or a deduction rule is closed if all of its terms are closed. A
deduction rule is t-testing, or tests t, if one of its premises is t-testing. Substi-
tutions are also extended to formulae and sets of formulae in the natural way.
For a rule r and a substitution σ, the rule σ(r) is called a substitution instance
of r. A set of positive closed formulae is called a transition relation.

We often refer to a positive transition formula t
l→ t′ as a transition with t

being its source, l its label, and t′ its target. A deduction rule (Φ, φ) is typically
written as Φ

φ . For the sake of consistency with SOS specifications of specific

operators in the literature, in examples we use φ1...φn

φ in lieu of {φ1,...,φn}
φ .

An axiom is a deduction rule with an empty set of premises. We write φ for
an axiom with φ as its conclusion, and often abbreviate this notation to φ when
this causes no confusion.

Definition 3 Given a rule d of the form

Φ

f(t1, . . . , tn) a→ t
,

we say that

– d is f -defining, and write op(d) = f ,
– d is a-emitting,
– toc(d) = t, the target of the conclusion of d, and
– hyps(d) = Φ, the set of premises of d.

We also denote by D(f, a) the set of a-emitting and f -defining rules in a set of
deduction rules D.

Example 1 (Choice operators). The choice operator from [27] is defined by the
following rules, where a ranges over the set of actions:

(chla)
x
a→x′

x+ y
a→x′

(chra)
y
a→ y′

x+ y
a→ y′

.
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For each action a, the rules (chla) and (chra) are a-emitting and +-defining. For
rule (chla), we have that toc(chla) = x′ and hyps(chla) = {x a→x′}.

For illustrative purposes in the remainder of the paper the following ‘choice’
operators are introduced. The left choice operator +l is defined by the rules
chla (there is one such rule for each action a). Symmetrically, the right choice
operator +r is defined by the rules chra. (Again, there is one such rule for each
action a.)

(chla)
x
a→x′

x+l y
a→x′

(chra)
y
a→ y′

x+r y
a→ y′

Intuitively, a TSS T defines a labelled transition system whose set of states
is the collection of closed terms over the signature of T , and whose transitions
are those whose existence ‘can be proved’ using the deduction rules of T . The
formal definition of the notion of ‘provable transition’ depends on the type of
rules in T . If the deduction rules in T involve only positive transition formulae,
then the transition relation associated with it is the smallest set of transitions
that is ‘closed under the deduction rules’.

On the other hand, if the deduction rules in T have the form

H

f(x1, . . . , xn) a→ t
,

where each transition formula in H is xi-testing, for some i ∈ {1, . . . , n}, then the
transition relation associated with T is the one defined by structural induction
on closed terms using the rules. (A special case of this kind of TSSs is the family
of TSSs in the well-known GSOS format [20].) This means that to determine
whether a transition f(p1, . . . , pn) a→ p exists, one needs to find a rule of the
above form and a closed substitution σ such that

– σ(xi) = pi, for each i ∈ {1, . . . , n},
– σ(t) = p,
– pi

b→σ(t′), for each xi
b→ t′ ∈ H, and

– for each xi
b9 ∈ H, the closed term pi does not afford a b-labelled transition.

The rule formats for left-distributivity we shall present in the remainder of this
paper are based on deduction rules of the form above. Therefore our readers
can simply assume that they define a transition relation following the above
recipe. However, in general, the meaning of a TSS is defined by the following
notion of least three-valued stable model, which we now introduce for the sake of
completeness and generality. Readers who are not interested in the subtleties of
the definition of three-valued stable models can skip Definitions 4–6 and continue
reading from Definition 7.

To define the notion of three-valued stable model, we need two auxiliary
definitions, namely provable transition rules and entailment, which are given
below.
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Definition 4 (Provable transition rules) A closed deduction rule is called a
transition rule when it is of the form N

φ , where N is a set of negative formulae.
A TSS T proves N

φ , denoted by T ` N
φ , when there is a well-founded upwardly

branching tree with closed formulae as nodes and of which

– the root is labelled by φ;
– if a node is labelled by ψ and the labels of the nodes directly above it form

the set K then:
• ψ is a negative formula and ψ ∈ N , or
• ψ is a positive formula and K

ψ is a substitution instance of a deduction
rule in T .

We often write T ` φ in lieu of T ` ∅φ .

Definition 5 (Contradiction and entailment) The closed transition formu-
la t l→ t′ is said to contradict t l9 , and vice versa. For two sets Φ and Ψ of closed
transition formulae, Φ contradicts Ψ when there is some φ ∈ Φ that contradicts
a ψ ∈ Ψ .

Let Φ be a transition relation and Ψ be a set of closed transition formulae.
We write Φ � Ψ , read ‘Φ entails Ψ ’, when Φ does not contradict Ψ , and each
transition in Ψ is contained in Φ.

Remark 1. Note that, when Ψ is a collection of negative transition formulae,
Φ � Ψ holds if, and only if, Φ does not contradict Ψ .

We now have all the necessary ingredients to define the semantics of TSSs in
terms of three-valued stable models [37].

Definition 6 (Three-valued stable model) A pair (C,U) of disjoint sets of
positive closed transition formulae is called a three-valued stable model for a
TSS T when the following conditions hold:

– φ ∈ C if, and only if, there is a set N of closed negative transition formulae
such that T ` N

φ and C ∪ U � N , and
– φ ∈ C ∪ U if, and only if, there is a set N of closed negative transition

formulae such that T ` N
φ and C � N .

C stands for Certainly and U for Unknown; the third value is determined by the
formulae not in C∪U . The least three-valued stable model is a three-valued stable
model that is the least one with respect to the (information-theoretic) ordering
on pairs of sets of formulae defined as (C,U) ≤ (C ′, U ′) iff C ⊆ C ′ and U ′ ⊆ U .
We say that T is complete when for its least three-valued stable model it holds
that U = ∅. In a complete TSS, we say that a closed substitution σ satisfies a set
of formulae Φ if σ(φ) ∈ C, for each positive formula φ ∈ Φ, and C � {σ(φ)}, for
each negative formula φ ∈ Φ. If a TSS is complete, we often also write p l→ p′ in
lieu of (p l→ p′) ∈ C, and p l9 when there is no p′ such that p l→ p′.
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In what follows, we shall tacitly restrict ourselves to considering only com-
plete TSSs.

Remark 2. Assume that (C,U) is a three-valued stable model for a TSS T and
that φ ∈ C. By the above definition, there is a set N of closed negative transition
formulae such that T ` N

φ and C ∪ U � N . Let K be the set of transition
formulae directly above φ in the proof of N

φ . Since φ is a positive formula, K
φ

is a substitution instance of a deduction rule in T . Moreover, for each positive
formula ψ ∈ K, the transition rule N

ψ is provable. Hence ψ is also contained in
C.

Definition 7 (Bisimulation and bisimilarity [27, 34]) Let T be a transi-
tion system specification with signature Σ and label set L. A relation R ⊆
C(Σ) × C(Σ) is a bisimulation relation if and only if R is symmetric and,
for all p0, p1, p

′
0 ∈ C(Σ) and l ∈ L,

(p0R p1 ∧ p0
l→ p′0)⇒ ∃p′1 ∈ C(Σ). (p1

l→ p′1 ∧ p′0R p′1).

Two terms p0, p1 ∈ C(Σ) are called bisimilar, denoted by p0 ↔–– p1, when there
exists a bisimulation relation R such that p0R p1.

Bisimilarity is extended to open terms by requiring that s, t ∈ T(Σ) are
bisimilar when σ(s)↔–– σ(t) for each closed substitution σ : V → C(Σ).

3 The left-distributivity rule formats

In this section, we present two rule formats guaranteeing that a binary operator
� is left distributive with respect to a binary operator � modulo bisimilarity.
The first rule format is the simplest of the two, but nevertheless suffices to handle
many examples from the literature. The second rule format has more complex
conditions and can handle left-distributivity laws that are outside the scope of
the former format.

Definition 8 (Left-distributivity law) We say that a binary operator � is
left distributive with respect to a binary operator � (modulo bisimilarity) if the
following equality holds:

(x� y) � z ↔–– (x� z) � (y � z). (1)

For all closed terms p, q, r, proving the algebraic law (1) involves two proof
obligations:

– Firability: ensuring that (p� q) � r
a→ if, and only if, (p� r) � (q � r) a→ ,

for each action a;
– Matching conclusions: ensuring that, for each closed term p1, if (p� q) �
r
a→ p1, then there exists some closed term p2 such that (p�r)� (q�r) a→ p2

and p1 ↔–– p2, and vice versa.
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Logically, the ‘firability condition’ is implied by the ‘matching-conclusion con-
dition’. However, since the two rule formats we shall present in what follows
use the same idea to guarantee the former condition, and differ in how they
guarantee the existence of matching conclusions up to bisimilarity, we prefer to
consider the two conditions separately. To our mind, this also leads to a clearer
presentation of the ideas underlying the rule formats. In what follows, we first
explain how we achieve the ‘firability condition’, and then we discuss how the
two different rule formats guarantee the ‘matching-conclusion condition’.

3.1 The firability condition

We begin by introducing the conditions on sets of rules for two binary operators
� and � that we shall use to guarantee the firability condition for them. First
of all, we present syntactic constraints on the rules for those operators that we
shall use throughout the remainder of the paper.

Definition 9 We say that a deduction rule is of the form (R1) when it has the
structure

Φy

x� y
a→ t

or
{x a→x′} ∪ Φy

x� y
a→ t

.

where

– the variables x, x′, y are pairwise distinct, and
– Φy is a (possibly empty) set of (positive or negative) y-testing formulae such

that x, x′ 6∈ vars(Φy).

A deduction rule is of the form (R2) when it has the structure

{x a→x′}

x� y
a→ t

or
{y a→ y′}

x� y
a→ t

or
{x a→x′, y

a→ y′}

x� y
a→ t

.

where the variables x, x′, y, y′ are pairwise distinct
A rule of the form (R1) or (R2) is non-left-inheriting if x 6∈ vars(t), that is,

if x does not appear in the target of the conclusion of the rule. An operation f
specified by rules of the form (R1) or (R2) is non-left-inheriting if so are all of
the f -defining rules.

Definition 10 (Firability constraint) Given a TSS T , let � and � be bi-
nary operators in the signature of T . For each action a, we write Fire(�,�, a)
whenever the following conditions are met:

– if D(�, a) 6= ∅ then D(�, a) 6= ∅,
– each d ∈ D(�, a) is of the form (R1), and
– each d ∈ D(�, a) is of the form (R2).
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Remark 3. Note that the first constraint in the definition of Fire(�,�, a) is
asymmetric, as it only requires that if there is a �-defining a-emitting rule, then
there should also be some �-defining a-emitting rule. As will become clear from
Examples 12–14, amongst others, this leads to a widely applicable rule format
for left distributivity.

Example 2. Recall the choice operators +, +l and +r presented in Example 1.
As our readers can easily check, Fire(f, g, a) holds for each action a and for all
f, g ∈ {+,+l,+r}.

The firability constraint in Definition 10 is sufficient to guarantee the afore-
mentioned firability condition.

Theorem 1 (Firability Theorem). Given a TSS T , let � and � be binary
operators from the signature of T . Suppose that Fire(�,�, a) holds for some
action a. Then,

(p� q) � r
a→ if, and only if, (p� r) � (q � r) a→ ,

for all closed terms p, q, r.

Proof. See Appendix A. ut

The import of Theorem 1 is that, when proving the validity of (1), we can
guarantee the firability condition for action a just by showing that Fire(�,�, a)
holds. Theorem 1 underlies the soundness of both the rule formats we present
in what follows.

The reader will have already noticed that the rule form (R1) does not place
any restriction on tests for the variable y. This is possible because the second
argument of the terms (p� q) � r, p � r and q � r is always the same, i.e., the
term r. This means that, for each �-defining rule, the same tests performed on
the second argument on one side of (1) are performed on the other. Roughly
speaking, one side of (1) may fire as much as the other does, insofar the second
argument is concerned.

3.2 The matching-conclusion condition

Theorem 1 tells us that any rule format, whose constraints imply condition
Fire(�,�, a) for each action a, guarantees the validity of (1) provided that the
matching-conclusion condition is met. Intuitively, in order to guarantee syntac-
tically that the matching-conclusion condition is satisfied, the targets of the
conclusions of �-defining and �-defining rules should ‘match’ when those op-
erators are used in the specific contexts of the left- and the right-hand sides
of (1). In what follows, we shall examine two different ways of ensuring the
above-mentioned ‘match’ of the targets of the conclusions of �-defining and �-
defining rules. The first relies on assuming that the targets of the conclusions
of �-defining rules are target variables of premises of rules of the form (R2).
The resulting rule format, which we present in Section 3.2, is based on easily
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checkable syntactic constraints and covers a large number of left-distributivity
laws from the literature. However, there are some examples of left-distributivity
axioms that cannot be shown valid using that format. In order to be able to
deal with more cases, including those that might be presented in the literature
in the future, in Section 3.3 we propose a more complex rule format in which
the ‘match’ of the targets of the conclusions of �-defining and �-defining rules
is performed by means of a powerful ‘compliance relation’.

The first rule format The first rule format that we present deals with exam-
ples of left distributivity with respect to operators whose semantics is given by
rules of the form (R2) that, like those for the choice operators we mentioned in
Example 1, have target variables of premises as targets of their conclusions. The
following definition presents the syntactic constraints of the rule format.

Definition 11 (First rule format) Let T be a TSS, and let � and � be binary
operators in the signature of T . We say that the rules for � and � are in the
first rule format for left distributivity if the following conditions are met:

1. Fire(�,�, a) holds for each action a,
2. � is non-left-inheriting,
3. each �-defining rule has a target variable of one of its premises as target of

its conclusion and
4. for each action a, either there is no a-emitting and �-defining rule that tests

both x and y, or if some a-emitting and �-defining rule tests its left argument
x then so do all a-emitting and �-defining rules.

Theorem 2 (Left distributivity over choice-like operators). Let T be a
TSS, and let � and � be binary operators in the signature of T . Assume that
the rules for � and � are in the first rule format for left distributivity. Then

(x� y) � z ↔–– (x� z) � (y � z).

Proof. We show the following two claims, where p, q, r, s are arbitrary closed
terms and a is any action:

1. If (p� q) � r
a→ s then (p� r) � (q � r) a→ s.

2. If (p� r) � (q � r) a→ s then (p� q) � r
a→ s.

In the proof of the former claim, we use the first condition in Definition 10. This
condition is not used in the proof of the latter claim. On the other hand, the
proof of the latter statement uses condition 4 in Definition 11, which is not used
in the proof of the former claim. The full proof may be found in Appendix B. ut

Remark 4. Condition 4 in Definition 11 cannot be dropped without jeopardiz-
ing the soundness of the rule format for left distributivity proved in the above
theorem. To see this, consider the operations � and � with rules

{x a→x′, y
a→ y′}

x� y
a→x′

{x a→x′, y
a→ y′}

x� y
a→x′ � y

{y a→ y′}

x� y
a→ y′

.
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The above rules satisfy all the conditions in Definition 11 apart from condition 4.
Now, let a be a constant with rule a a→0, where 0 is a constant with no rules.
As our readers can easily check,

(a� a) � (0 � a) 6↔–– (a� 0) � a.

Indeed, the term (a � a) � (0 � a) can perform a sequence of two a-labelled
transitions, whereas (a� 0) � a cannot because a� 0 affords no transitions.

Examples of application of the first rule format Theorem 2 provides
us with a simple, yet rather powerful, syntactic condition in order to infer
left-distributivity laws for operators like + and +l. Many of the common left-
distributivity laws are automatically derived from Theorem 2, as witnessed by
the examples we now proceed to discuss.

Example 3 (Left merge and interleaving parallel composition). The operational
semantics of the classic left-merge and interleaving parallel composition opera-
tors [13, 17, 18, 27] is given by the rules below:

x
a→x′

x‖ y a→x′ ‖ y

x
a→x′

x ‖ y a→x′ ‖ y

y
a→ y′

x ‖ y a→x ‖ y′
.

Note that the rules for the left-merge operator ‖ and those for any of +, +l and
+r satisfy the constraints of the first rule format for left distributivity. Therefore,
Theorem 2 yields the validity of the following laws.

(x+ y)‖ z ↔–– (x‖ z) + (y‖ z)
(x+l y)‖ z ↔–– (x‖ z) +l (y‖ z)
(x+r y)‖ z ↔–– (x‖ z) +r (y‖ z)

Observe that the equalities

(x+l y) ‖ z ↔–– (x ‖ z) +l (y ‖ z) and
(x+r y) ‖ z ↔–– (x ‖ z) +r (y ‖ z)

are sound. However, their soundness cannot be shown using Theorem 2, since
the parallel composition operator ‖ does not satisfy condition 2 in Definition 11.
Indeed, x occurs in the target of the conclusion of the second rule for ‖.

Example 4 (Synchronous parallel composition). Consider the synchronous par-
allel composition from CSP [26, 25]1 specified by the rules below, where a ranges
over the set of actions:

x
a→x′ y

a→ y′

x ‖s y
a→x′ ‖s y′

.

1 In [26], Hoare uses the symbol ‖ to denote the synchronous parallel composition
operator. Here we use that symbol for interleaving parallel composition.
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Note that the rules for the synchronous parallel composition operator and those
for any of +, +l and +r satisfy the constraints of the first rule format for left
distributivity. Therefore, Theorem 2 yields the validity of the following laws.

(x+ y) ‖s z ↔–– (x ‖s z) + (y ‖s z)
(x+l y) ‖s z ↔–– (x ‖s z) +l (y ‖s z)
(x+r y) ‖s z ↔–– (x ‖s z) +r (y ‖s z)

Example 5 (Join and ‘/’ operators). Consider the join operator on from [16] and
the ‘hourglass’ operator / from [2] specified by the rules below, where a, b range
over the set of actions:

x
a→x′ y

a→ y′

x on y
a→x′ ∓ y′

x
a→x′ y

b→ y′

x/y
a→x′/y′

,

where ∓ denotes the delayed choice operator from [16]. (The operational spec-
ification of the delayed choice operator is immaterial for the analysis of this
example.) The above rules and those for any of +, +l and +r satisfy the con-
straints of the first rule format for left distributivity. Therefore, Theorem 2 yields
the validity of the following laws, where � ∈ {on, /}.

(x+ y) � z ↔–– (x� z) + (y � z)
(x+l y) � z ↔–– (x� z) +l (y � z)
(x+r y) � z ↔–– (x� z) +r (y � z)

Example 6 (Disrupt). Consider the following disrupt operator I [14, 21] with
rules

x
a→x′

xI y
a→x′ I y

y
a→ y′

xI y
a→ y′

.

The above rules and those for any of +, +l and +r satisfy the constraints of the
first rule format for left distributivity. Therefore, Theorem 2 yields the validity
of the following laws.

(x+ y)I z ↔–– (xI z) + (y I z)
(x+l y)I z ↔–– (xI z) +l (y I z)
(x+r y)I z ↔–– (xI z) +r (y I z)

Example 7 (Unless operator). The unless operator / from [15] and the operator
∆ from [2, page 23] are specified by the rules

x
a→x′ y

b9 for a < b

x / y
a→x′

x
a→x′ y

b9 for a < b

x ∆ y
a→ θ(x′)

,

where < is an irreflexive partial order over the set of actions and θ denotes
the priority operator from [15]. (The operational specification of the priority
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operator is immaterial for the analysis of this example.) The above rules and
those for any of +, +l and +r satisfy the constraints of the first rule format for
left distributivity. Therefore, Theorem 2 yields the validity of the following laws,
where � ∈ {/,∆}.

(x+ y) � z ↔–– (x� z) + (y � z)
(x+l y) � z ↔–– (x� z) +l (y � z)
(x+r y) � z ↔–– (x� z) +r (y � z)

Example 8 (Interplay between the choice operators). Consider the choice opera-
tors +, +l and +r from Example 1. The rules for any of the nine combinations
of those operators satisfy the constraints of the first rule format for left dis-
tributivity. Therefore, Theorem 2 yields the validity of the following law, where
�,� ∈ {+,+l,+r}.

(x� y) � z ↔–– (x� z) � (y � z)

For example, as an instance of that family of equalities, we obtain the following
‘self left-distributivity law’ for any � ∈ {+,+l,+r}:

(x� y) � z ↔–– (x� z) � (y � z).

As we show in Section 6, our first rule format for left distributivity can also
be used to derive distributivity laws involving unary � operators.

3.3 The second left-distributivity format

As witnessed by the above-mentioned examples, the rule format introduced in
Definition 11 can handle many of the common left-distributivity laws from the
literature. However, as we mentioned in Example 3, that rule format is not
general enough to prove the validity of, e.g., the left-distributivity law

(x+l y) ‖ z ↔–– (x ‖ z) +l (y ‖ z).

It is instructive to see why the equality

(p+l q) ‖ r ↔–– (p ‖ r) +l (q ‖ r)

holds for all p, q, r. The terms that can be reached from (p +l q) ‖ r via an
a-labelled transition have one of the two following forms:

– p′ ‖ r, for some p′ such that p a→ p′ or
– (p+l q) ‖ r′, for some r′ such that r a→ r′.

On the other hand, the terms that can be reached from (p ‖ r) +l (q ‖ r) via an
a-labelled transition are of the form
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– p′ ‖ r, for some p′ such that p a→ p′ or
– p ‖ r′, for some r′ such that r a→ r′.

The first of those possible forms is identical to the first form of a possible deriva-
tive of (p+l q) ‖ r. However, the second form—viz. p ‖ r′, for some r′ such that
r
a→ r′—matches (p+l q) ‖ r′ only up to one application of the equation

x+l y = x,

which is sound modulo bisimilarity, from left to right. This rewriting can be
performed in the context of ‖ since the rules for the interleaving parallel compo-
sition operator given in Example 3 are in de Simone format [23], which is one of
the congruence formats for bisimilarity—see, for instance, the survey articles [10,
32].

The above discussion motivates the development of a generalization of the
rule format we presented in Definition 11. The main idea behind this more power-
ful rule format is to weaken the constraints for ensuring the ‘matching-conclusion
condition’, so that terms that are targets of transitions from (p � q) � r and
(p � r) � (q � r) need only be equal up to the application of some equation,
whose validity modulo bisimilarity can be justified ‘syntactically’, in a context
consisting of operations that preserve bisimilarity. Of course, the resulting def-
inition of the rule format depends on the set of equations that one is allowed
to use. Indeed, one can obtain more powerful rule formats by simply extend-
ing the collection of allowed equations. Therefore, what we now present can be
seen as a template for rule formats guaranteeing the validity of left-distributivity
equations of the form (1). Our definition of the second rule format is based on
a rewriting relation over terms that is sufficient to handle the examples from
the literature we have met so far. The rewriting relation we present below can,
however, be easily strengthened by adding more rewriting rules, provided their
soundness with respect to bisimilarity can be ‘justified syntactically’. (See the
paragraphs after Definition 12 and Remark 6 for a brief discussion of extensions
of the proposed rule format.)

Definition 12 (The rewriting relation  ) Let T = (Σ,L, D) be a TSS.

1. The relation  is the least binary relation over T(Σ) that satisfies the fol-
lowing clauses, where we use t! t′ as a short-hand for t t′ and t′  t:
– t t,
– f(t, t)! t, if T is in idempotence format with respect to f from [1],
– C[t] C[t′], if t t′ and T is in a congruence format for ↔––,
– t1 +l t2  t1, if +l ∈ Σ and the +l-defining rules in T are those in

Example 1, and
– t1 +r t2  t2, if +r ∈ Σ and the +r-defining rules in T are those in

Example 1.
2. Let � and � be two binary operations in Σ. We write t↓�,�u if, and only, if

there are some t′ and u′ such that t t′, u u′, and t′ = u′ can be proved
by possibly using one application of axiom

(x� y) � z = (x� z) � (y � z)
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at the top level—that is, either t′ ≡ u′, t′ ≡ (t1 � t2) � t3 and u′ = (t1 �
t3) � (t2 � t3), or t′ ≡ (t1 � t3) � (t2 � t3) and u′ ≡ (t1 � t2) � t3, for some
t1, t2, t3.

Lemma 1. Let T = (Σ,L, D) be a TSS. If t  t′ then t ↔–– t′, for all t, t′ ∈
T(Σ).

Proof. By induction on the definition of  . The soundness of the rewrite rules

– f(t, t)! t, if T is in idempotence format with respect to f from [1], and
– C[t] C[t′], if t t′ and T is in a congruence format for ↔––,

is guaranteed by results in [1] and in the classic theory of structural operational
semantics. ut

In order to check whether a rewriting rule preserves bisimilarity, in all cases
apart from the the first, the above definition relies on existing rule formats
guaranteeing the validity of algebraic laws modulo bisimilarity, see [12], or on
equations whose soundness with respect to bisimilarity is easy to check, such as

x+l y = x and x+r y = y.

This choice allows us to achieve an expressive and extensible rule format while
retaining its syntactic nature. For instance, one may easily extend the rewriting
relation  with the following two clauses:

– f(t1, t2)! f(t2, t1), if T is in the commutativity rule format with respect
to f from [30], and

– f(t, f(t′, t′′)) ! f(f(t, t′), t′′), if T is in the associativity rule format with
respect to f from [22].

While proving the soundness of a left-distributivity law of the form

(x� y) � z ↔–– (x� z) � (y � z),

the validity of equivalences of the form

(t� t′) � t′′ = (t� t′′) � (t′ � t′′)

will be guaranteed by coinduction.
In Definition 13 to follow, which is the key ingredient in the definition of our

second rule format for left distributivity, we shall use the relation ↓�,� to describe
when a �-defining rule d1 is ‘distributivity compliant’ to a �-defining rule d2.
The intuitive idea is that this will hold when those two rules can be combined
to derive transitions from terms of the form (p� q)� r and (p� r)� (q� r) that
‘match’ up to bisimilarity. Since the definition of distributivity compliance is
quite technical, we find it useful to explain, by means of examples, the intuition
behind it. For the sake of consistency and clarity, in the examples to follow, we
shall use the same naming convention for substitutions that will be employed in
Definition 13.
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Suppose that the transition (p � q) � r
a→ s is proved using rules d1 and d2,

given below. Assume, furthermore, that

(d1)
{x a→x′, y

a→ y1, y
b→ y2}

x� y
a→ t

and that d2 tests only one of its arguments, say

(d2)
{x a→x′}
x� y

a→ t′
.

Then s = σ1(t), where

σ1 = [x 7→ p� q, y 7→ r, x′ 7→ σ′2(t′), y1 7→ r1, y2 7→ r2]
σ′2 = [x 7→ p, y 7→ q, x′ 7→ p′]

and p
a→ p′, r a→ r1 and r

b→ r2.
As highlighted by the proof of Theorem 1, rules d2 and d1 can be used to

derive a transition (p� r) � (q � r) a→σ2(t′), where

σ2 = [x 7→ p� r, y 7→ q � r, x′ 7→ σ1x(t)]
σ1x = [x 7→ p, y 7→ r, x′ 7→ p′, y1 7→ r1, y2 7→ r2].

The transition (p�r)�(q�r) a→σ2(t′) will be deemed to ‘match’ (p�q)�r a→ s =
σ1(t) provided that

σ1(t) ↓�,� σ2(t′).

This will give a syntactically checkable guarantee that σ1(t)↔–– σ2(t′) holds.
Assume now that d2 tests both its arguments, say

(d2)
{x a→x′, y

a→ y′}
x� y

a→ t′
,

and that the transition (p� q) � r
a→ s is proved using rule d1 and rule d2. Then

s = σ1(t), where

σ1 = [x 7→ p� q, y 7→ r, x′ 7→ σ′2(t′), y1 7→ r1, y2 7→ r2]
σ′2 = [x 7→ p, y 7→ q, x′ 7→ p′, y′ 7→ q′]

and p
a→ p′, q a→ q′, r a→ r1 and r

b→ r2.
Let

(d3)
{x a→x′, y

a9 , y
c→ y′}

x� y
a→ t′′

.

Again, as highlighted by the proof of Theorem 1, rules d2, d1 and d3 can be used
to derive a transition (p� r) � (q � r) a→σ2x(t′), where

σ2x = [x 7→ p� r, y 7→ q � r, x′ 7→ σ1x(t), y′ 7→ σ′1y(t′′)]
σ′1y = [x 7→ q, y 7→ r, x′ 7→ q′, y′ 7→ r′],
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and p� r
a→σ1x(t), q � r

a→σ′1y(t′′), q a→ q′ and r
c→ r′.

The transition (p� r) � (q� r) a→σ2x(t′) will be deemed to ‘match’ (p� q) �
r
a→ s = σ1(t) provided that

σ1(t) ↓�,� σ2x(t′).

Again, this will give a syntactically checkable guarantee that σ1(t) ↔–– σ2x(t′)
holds. Note that, in this case, we also need to check this matching condition
when the roles of rules d1 and d3 are swapped, since rule d3 might be used
to satisfy the x-testing premise of d2 and rule d1 might be used to satisfy the
y-testing premise of that rule. In that case, our proof obligation is to show that

σ1(t) ↓�,� σ2y(t′),

where

σ2y = [x 7→ p� r, y 7→ q � r, x′ 7→ σ′1x(t′′), y′ 7→ σ1y(t)]
σ′1x = [x 7→ p, y 7→ r, x′ 7→ p′, y′ 7→ r′]
σ1y = [x 7→ q, y 7→ r, x′ 7→ q′, y1 7→ r1, y2 7→ r2].

Definition 13 (Distributivity compliance up to  ) Let T be a TSS, and
let � and � be binary operators in the signature of T . Let d1 be a �-defining
rule in T and d2 be a �-defining rule in T . We say that d1 is distributivity
compliant to d2 up to  , and we write it d1

 ∼ d2, whenever

1. rule d1 is of the form (R1) and rule d2 is of the form (R2),
2. the collection of positive y-testing premises in d1 is of the form {y ai→ yi | i ∈

I}, for some index set I, where all the variables are pairwise distinct, and
3. one of the following two cases applies:

(a) d2 has premises {x a→x′} or {y a→ y′}, and

σ1(toc(d1)) ↓�,� σ2(toc(d2)),

or
(b) d2 has premises {x a→x′, y

a→ y′} and, for each rule d3 ∈ D(�, a),
– the collection of positive y-testing premises in d3 is of the form
{y aj→ yj | j ∈ J}, for some index set J , where all the variables are
pairwise distinct,

– σ1(toc(d1)) ↓�,� σ2x(toc(d2)) and
– σ1(toc(d1)) ↓�,� σ2y(toc(d2)),

where the substitutions σ1, σ1x, σ1y, σ2, σ2x and σ2y are defined as follows,
with p, q, p′, q′, r, r′, and all the variables in {ri | i ∈ I}∪{rj | j ∈ J} being
fresh and pairwise distinct variables.
– σ1 = [x 7→ p� q, y 7→ r, x′ 7→ σ′2(toc(d2)), yi 7→ ri (i ∈ I)].
– σ2 = [x 7→ p� r, y 7→ q � r, x′ 7→ σ1x(toc(d1)), y′ 7→ σ1y(toc(d1))].
– σ′2 = [x 7→ p, y 7→ q, x′ 7→ p′, y′ 7→ q′].
– σ1x = [x 7→ p, y 7→ r, x′ 7→ p′, yi 7→ ri (i ∈ I)].
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– σ′1x = [x 7→ p, y 7→ r, x′ 7→ p′, yj 7→ rj (j ∈ J)].
– σ1y = [x 7→ q, y 7→ r, x′ 7→ q′, yi 7→ ri (i ∈ I)].
– σ′1y = [x 7→ q, y 7→ r, x′ 7→ q′, yj 7→ rj (j ∈ J)].
– σ2x = [x 7→ p� r, y 7→ q � r, x′ 7→ σ1x(toc(d1)), y′ 7→ σ′1y(toc(d3))].
– σ2y = [x 7→ p� r, y 7→ q � r, x′ 7→ σ′1x(toc(d3)), y′ 7→ σ1y(toc(d1))].

The reader should notice that, in order not to complicate the definition fur-
ther by a more refined case distinction, in condition 3a of Definition 13, the
substitution σ2 is defined for both x′ and y′, even if in that case only one of
them appears in rule d2.

The following result is straightforward.

Theorem 3 (Decidability of  ∼). Let T be a TSS, and let � and � be binary
operators in the signature of T . Assume that the set of premises of each �-
defining rule is finite. Let d1 be a �-defining rule in T and d2 be a �-defining
rule in T . The problem of determining whether d1

 ∼ d2 holds is decidable.

Remark 5. Note that  ∼ performs only one rewriting step on both the terms.
Clearly, extending Definition 13 in order to consider any finite amount of rewrit-
ing steps would not jeopardize Theorem 3.

We now have all the necessary ingredients to define our second rule format
for left distributivity.

Definition 14 (Second left-distributivity format) A TSS T is in the sec-
ond left-distributivity format for a binary operator � with respect to a binary
operator � whenever, for each action a,

1. Fire(�,�, a), and
2. d1

 ∼ d2, for each d1 ∈ D(�, a) and for each d2 ∈ D(�, a).

We are now ready to formulate the two main theorems of the paper.

Theorem 4 (Soundness of the second left-distributivity format). Let T
be a TSS. If T is in the second left-distributivity format for � with respect to �
then

(x� y) � z ↔–– (x� z) � (y � z).

Proof. A proof of this result may be found in Appendix C. ut

Remark 6. The above theorem holds true for any notion of distributivity com-
pliance up to rewriting that is based on a rewriting relation  over terms that
has the following properties:

–  ⊆↔–– and
–  is decidable.
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The latter requirement is not necessary for the soundness of the format. However,
it is highly desirable from the point of view of applications. Indeed, in order to
obtain a bona fide rule format, the relation  should be defined by using rules
whose applicability can be checked syntactically, for instance using extant rule
format for operational semantics. The proposal we presented in Definition 12 fits
this requirement.

Remark 7. For the sake of generality, the definition of the rewriting relation used
in the second rule format has one clause for the left choice operator +l. Note,
however, that any binary operator f that preserves bisimilarity is left distributive
with respect to +l. Indeed, let f be such a binary operator. We have that, since
the equation x+l y ↔–– x is valid,

f(x+l y, z)↔–– f(x, z)
↔–– f(x, z) +l f(y, z),

as claimed.

The following result is straightforward, but important from the point of view
of applications. In its statement, we use Range(f) to stand for the set of actions
a for which there exists an a-emitting f -defining rule.

Theorem 5 (Decidability of the second rule format). Let T be a TSS,
and let � and � be two binary operators from the signature of T . Assume that
Range(�) is finite, that each �-defining rule has a finite set of premises, and
that D(�, a) ∪ D(�, a) is finite for each a ∈ Range(�). Then it is decidable
whether T is in the second left-distributivity format for � with respect to �.

The import of Theorems 4 and 5 is that, when establishing that an operator
� is left distributive with respect to an operator �, it is sufficient to check
whether the SOS specification for those operators meets the conditions of the
format of Definition 14, which can be done effectively when the TSS under study
is finitary.

The two rule formats for left distributivity that we have presented in Defini-
tions 11 and 14 are, in general, incomparable. Indeed, as we shall see in Section 5,
there are some examples of left-distributivity laws whose validity can be inferred
using Theorem 4, but not with Theorem 2. On the other hand, the rule for-
mat in Definition 11 places no restrictions on the form of the positive y-testing
premises in �-defining rules of the form (R1), whereas Definition 13(2) requires
that the collection of positive y-testing premises be of the form {y ai→ yi | i ∈ I},
for some index set I, where all the variables are pairwise distinct. However, our
second rule format does subsume the first if we impose some restrictions on the
�-defining rules.

Proposition 1. Let T be a TSS, and let � and � be binary operators in the
signature of T . Assume that the rules for � and � are in the first rule format
for left distributivity. Suppose furthermore that
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1. the collection of positive y-testing premises in �-defining rules satisfy con-
dition 2 in Definition 13, and

2. for each a, if there is some rule in D(�, a) with premises {x a→x′, y
a→ y′}

then D(�, a) has cardinality at most one.

Then T is in the second left-distributivity format for � with respect to �.

Proof. It suffices to show that d1
 ∼ d2, for each a, for each d1 ∈ D(�, a) and

for each d2 ∈ D(�, a). To this end, consider, first of all, the case that the set of
premises for d2 is {x a→x′}. In this case, since the rules for � and � are in the
first rule format for left distributivity, we have that toc(d2) = x′. We claim that

σ1(toc(d1)) = σ2(x′).

To see this, observe that σ2(x′) = σ1x(toc(d1)). Moreover, as can be checked
by inspection, σ1 and σ1x agree on all the variables apart from x. Since � is
non-left-inheriting, the variable x does not occur in toc(d1) and we are done. A
similar argument applies when the set of premises for d2 is {y a→ y′}.

Consider now the case that the set of premises for d2 is {x a→x′, y
a→ y′}. Let

d1 be the only rule in D(�, a). In this case, since the rules for � and � are in the
first rule format for left distributivity, we have that toc(d2) = x′ or toc(d2) = y′.
In both cases, one can easily check that

– σ1(toc(d1)) = σ2x(toc(d2)) and
– σ1(toc(d1)) = σ2y(toc(d2)),

using the fact that x does not occur in toc(d1). ut

4 Analyzing the distributivity compliance

In this section, we reduce the analysis of the distributivity-compliance relation
 ∼ to a syntactic check on the targets of the conclusions of the �- and �-defining
rules. By analyzing different possible syntactic shapes for terms, we check which
pairs of shapes can be related using the distributivity-compliance relation. This
analysis is useful in order to avoid many of the substitutions involved in Defini-
tion 13, and, as witnessed by some of the examples in Section 5, to avoid all of
them in many cases.

Table 1 summarizes our results. Even though the offered list is not exhaustive,
which, at first sight, seems a challenging task to achieve, we believe Table 1 offers
enough cases to avoid substitutions completely in most cases.

In Table 1, x and y are considered as the variables for the first and second
argument, respectively, for both �- and �-defining rules. When the variable x′

is mentioned, implicitly the considered rule has a premise x a→x′ (for a-emitting
rules). Similarly, when the variable y′ is mentioned, implicitly the rule consid-
ered has a premise y a→ y′. The term t stands for a generic open term from the
signature, and, following Definition 13, p, q and r are hypothetical closed terms
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Table 1. Analysis of the distributivity-compliance pairs

toc(d1) toc(d2) result further requirements

1 x′ � y x p� r

2 x′ � y y q � r

3 x x′ � y′ p� q D(�, a) = {d1}
4 x′ x′ � y′ p′ � q′ D(�, a) = {d1}
5 x� t x′ � y′ (p� q) � σ(t) D(�, a) = {d1}, x, x′ 6∈ vars(t)

6 x′ � t x′ � y′ (p′ � q′) � σ(t) D(�, a) = {d1}, x, x′ 6∈ vars(t)

7 t x′ � y′ σ(t) � idempotent, D(�, a) = {d1}, x, x′ 6∈ vars(t)

8 t x′ σ′(t) Condition 4 of Definition 11, x 6∈ vars(t)

9 t y′ σ′(t) Condition 4 of Definition 11, x 6∈ vars(t)

with σ = [y 7→ r, yi 7→ ri (i ∈ I)] and σ′ = [y 7→ r, x′ 7→ p′, yi 7→ ri (i ∈ I)]

applied to the distributivity equation in this way: (p� q)� r ↔–– (p� r)� (q� r).
The symbols p′, q′, and ri, are considered as targets of possible transitions from
p, q and r.

Table 1 is to be read as follows. First of all, d1 ∈ D(�, a) and d2 ∈ D(�, a),
for some action a. In each row, the first column (column toc(d1)) specifies the
form of the target of the conclusion of the �-defining rule d1 (e.g., x in case of
row 3), and the second column (column toc(d2)) specifies the form of the target
of the conclusion of the �-defining rule d2 (e.g., x′ � y′ in case of row 3). If the
conditions in the column further requirements are satisfied (e.g., in row 3, d1

is the only �-defining and a-emitting rule), then the result of the transition of
terms (p�q)�r and (p�r)�(q�r) is specified by the term given in column result
(e.g., p�q in row 3). In rows 5–6, the stated result is up to one application of the
left-distributivity equation (1). The requirement � idempotent means that the
operator � can be proved idempotent, e.g., by means of the rule format offered
in [1].

The reader may want to notice that the first rule format of Section 3.2 is
partly based on the analysis which leads to rows 8 and 9 in Table 1.

Theorem 6 (Soundness of Table 1). Let T be a TSS. Let � and � be binary
operations in the signature of T satisfying

1. Fire(�,�, a), and
2. if D(�, a) 6= ∅ then for each d1 ∈ D(�, a) and for each d2 ∈ D(�, a), the

rules d1 and d2 match a row in Table 1.

It holds that:
(x� y) � z ↔–– (x� z) � (y � z).

Proof. The proof of the theorem goes by a straightforward check of the conditions
of Definition 13 on the combination specified in each row. For example, we discuss
the case of row 7 in some detail below.
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Applying the substitutions, we can see that on the left side of the distribu-
tivity equation (p � q) � r ↔–– (p � r) � (q � r), we can prove the transition
(p � q) � r

a→ v, with v = t[x 7→ p � q, y 7→ r, x′ 7→ (x′ � y′)[x 7→ p, y 7→ q,
x′ 7→ p′, y′ 7→ q′], yi 7→ ri (i ∈ I)], and thus

v = t[x 7→ p� q, y 7→ r, x′ 7→ p′ � q′, yi 7→ ri (i ∈ I)].

On the right side of the distributivity equation, we can prove the transition
(p � r) � (q � r) a→ v′, with v′ = (x′ � y′)[x 7→ p � r, y 7→ q � r, x′ 7→ t[x 7→ p,
y 7→ r, x′ 7→ p′, yi 7→ ri (i ∈ I)]), y′ 7→ t[x 7→ q, y 7→ r, x′ 7→ q′, yi 7→ ri (i ∈ I)],
and thus v′ = v′1 � v′2, where

v′1 = t[x 7→ p, y 7→ r, x′ 7→ p′, yi 7→ ri (i ∈ I)] and
v′2 = t[x 7→ q, y 7→ r, x′ 7→ q′, yi 7→ ri (i ∈ I)].

From the column further requirements of row 7, we know that the variables x and
x′ do not appear in t, leading the two terms to be v = t[y 7→ r, yi 7→ ri (i ∈ I)]
and v′ = v � v. Since, as a further requirement, the operator � is idempotent
with respect to bisimilarity, i.e., x� x↔–– x, we can conclude that

v′ ↓�,� v = t[y 7→ r, yi 7→ ri (i ∈ I)],

where t[y 7→ r, yi 7→ ri (i ∈ I)] is the term stated in the column result of row
7. ut

5 Examples

In what follows, we apply the rule format provided in Section 3.3 in order to
check some examples of left-distributivity laws whose validity cannot be inferred
using Theorem 2.

Example 9 (Interleaving parallel composition and left choice). As we remarked
in Example 3, the equality

(x+l y) ‖ z ↔–– (x ‖ z) +l (y ‖ z)

is sound. However, its soundness cannot be shown using Theorem 2, since the
parallel composition operator ‖ does not satisfy condition 2 in Definition 11.
Indeed, x occurs in the target of the conclusion of the second rule for ‖.

On the other hand, the validity of the above law can be shown by applying
the rule format from Definition 14. Indeed, we observe that

– the targets of the conclusions of the pair of rules

(par0)
x
a→x′

x ‖ y a→x′ ‖ y
(lc0)

x
a→x′

x+l y
a→x′

,

when instantiated as required in Definition 13, both become p′ ‖ r, and
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– the targets of the conclusions of the pair of rules

(par1)
y
a→ y′

x ‖ y a→x ‖ y′
(lc1)

x
a→x′

x+l y
a→x′

,

when instantiated as required in Definition 13, become(p+lq) ‖ r′ and p ‖ r′,
with (p+l q) ‖ r′  p ‖ r′.

Example 10 (Unit-delay operator and the choice operator from ATP). Consider
any TSS T containing the unit-delay operator b c and the choice operator +∗

from ATP [33]2 and for which the transition relation
χ→ is deterministic. (The

distinguished symbol χ denotes the passage of one unit of time.) The semantics
of those operators is defined by the following rules, where a 6= χ.

(uda)
x
a→x′

bxc(y) a→x′
(udχ)

bxc(y)
χ→ y

(extChla)
x
a→x′

x+∗ y a→x′
(extChra)

y
a→ y′

x+∗ y a→ y′

(extTime)
x
χ→x′ y

χ→ y′

x+∗ y
χ→x′ +∗ y′

We claim that T is in the second left-distributivity format for b c with respect
to +∗. Indeed, we observe that

– the targets of the conclusions of the pair of rules (uda, extChla) when in-
stantiated as required in Definition 13, both become p′,

– the targets of the conclusions of the pair of rules (uda, extChra) when in-
stantiated as required in Definition 13, both become q′, and

– the targets of the conclusions of the pair of rules (udχ, extT ime) when in-
stantiated as required in Definition 13, become r and r+∗ r, with r+∗ r  r
because T is in idempotence format with respect to +∗, as argued in [1,
Example 9].

The well-known law

bx+∗ yc(z)↔–– bxc(z) +∗ byc(z)

thus follows from Theorem 4.
Table 1 can be used to match the targets of the conclusions as follows: the

combination of uda and extChla follows from row 8, the combination of uda and
extChra follows from row 9, and finally the combination of udχ and extTime
follows from row 7.
2 In [33], the symbol of this operator is �, whose use we prefer to avoid in this paper

for the sake of clarity.
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Example 11 (Timed left merge and the choice operator from ATP). Consider the
TSS for ATP with the timed extension of the left-merge operator from Example 3
specified by the following rules, where a 6= χ:

(mergea)
x
a→x′

x‖ y a→x′ ‖ y
(mergeχ)

x
χ→x′ y

χ→ y′

x‖ y χ→x′‖ y′
.

We claim that this TSS is in the second left-distributivity format for ‖ with
respect to +∗. We limit ourselves to checking that the targets of the conclusions
of the second rule for ‖ and rule extT ime match when instantiated as required
in Definition 13. This follows because, in all cases, the resulting terms yield an
instance of the equality

(p′ +∗ q′)‖ r′ = (p′‖ r′) +∗ (q′‖ r′).

The law
(x+∗ y)‖ z = (x‖ z) +∗ (y‖ z)

thus follows from Theorem 4.
Checking the conditions of the second rule format can be simplified by using

the syntactic checks of Table 1, as follows: the combination mergea, extChla
follows from row 8, the combination mergea, extChra follows from row 9 and the
combination mergeχ, extTime follows from row 6.

6 Examples of left-distributivity laws involving unary
operators

In this section we apply the rule formats from Section 3 in order to prove left-
distributivity laws involving unary operators from the literature. In order to do
so, we turn unary operators into binary operators that simply ignore their right
argument.

We begin with three examples that can be dealt with using Theorem 2.

Example 12 (Encapsulation and choice). Consider the classic unary encapsula-
tion operators ∂H from ACP [13], where H ⊆ L, with rules

x
a→x′

∂H(x) a→ ∂H(x′)
a 6∈ H.

It is well known that

∂H(x+ y)↔–– ∂H(x) + ∂H(y), (2)

where + is the choice operator from Example 1.
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We shall now argue that the validity of this equation can be shown using The-
orem 2. To this end, we turn the encapsulation operators into binary operators
that ignore their second argument. The above rules therefore become

x
a→x′

∂H(x, y) a→ ∂H(x′, y)
a 6∈ H.

Note that the rules for ∂H and + are in the first rule format for left distributivity
from Definition 11. In particular, Fire(∂H ,+, a) holds for each action a, because
if there is an a-emitting rule for ∂H then there is also an a-emitting rule for
+. (Note that the converse only holds if H = ∅. This explains the asymmetric
nature of the constraint Fire(�,�, a).) Therefore Theorem 2 yields the validity
of the left-distributivity law

∂H(x+ y, z)↔–– ∂H(x, z) + ∂H(y, z),

from which the soundness of (2) follows immediately.

Example 13 (Match operator and choice). Consider the unary match operators
[a = b] from the π-calculus [38]3, where a, b ∈ L, with rules

x
c→x′

[a = b](x) c→x′
if a = b,

where c ∈ L.
It is well known that

[a = b](x+ y)↔–– [a = b](x) + [a = b](y), (3)

where + is the choice operator from Example 1.
We shall now argue that the validity of this equation can be shown using

Theorem 2. To this end, as above, we turn the match operators into binary
operators that ignore their second argument. The above rules therefore become

x
c→x′

[a = b](x, y) c→x′
if a = b.

Note that the rules for [a = b] and + are in the first rule format for left dis-
tributivity from Definition 11. Therefore Theorem 2 yields the validity of the
left-distributivity law

[a = b](x+ y, z)↔–– [a = b](x, z) + [a = b](y, z),

from which the soundness of (3) follows immediately.

3 Note that in the π-calculus a and b in the formula [a = b]p are names and not labels.
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Example 14 (Projection operator and choice). Consider the unary projection op-
erators πn from ACP [13, 17], where n ≥ 0, with rules

x
a→x′

πn+1(x) a→πn(x′)
a ∈ L.

It is well known that
πn(x+ y)↔–– πn(x) + πn(y), (4)

where + is the choice operator from Example 1.
We shall now argue that the validity of this equation can be shown using

Theorem 2. Again, we turn the projection operators into binary operators that
ignore their second argument. The above rules therefore become

x
a→x′

πn+1(x, y) a→πn(x′, y)
a ∈ L.

Note that the rules for πn and + are in the first rule format for left distribu-
tivity from Definition 11. Therefore Theorem 2 yields the validity of the left-
distributivity law

πn(x+ y, z)↔–– πn(x, z) + πn(y, z),

from which the soundness of (4) follows immediately.

Example 15 (Prefix operator and synchronous parallel operator). Consider any
TSS T containing the synchronous parallel operator ‖s from Example 4 and
containing the following binary version of the prefix operator from CCS [27],
where a ranges over a set of actions L:

(prefa) =
a.(x, y) a→x

.

We claim that T is in the second left-distributivity format for the prefix
operator with respect to ‖s. Let us pick an action a. Then the targets of the
conclusions of prefa and of

x
a→x′ y

a→ y′

x ‖s y
a→x′ ‖s y′

,

which is the only a-emitting rule for ‖s, both yield the term p ‖s q when instan-
tiated as required in Definition 13. Therefore, Theorem 4 yields the validity of
the law

a.(x ‖s y, z)↔–– a.(x, z) ‖s a.(y, z).
Turning the prefix operator back to its unary version, we obtain the soundness
of the following equality:

a.(x ‖s y)↔–– a.x ‖s a.y.

Row 3 in Table 1 can be used to match the targets of the conclusions of the
synchronous parallel composition and the prefix operators.

27



Example 16 (Unit-delay operator and choice operator). Consider any TSS T
that includes the choice operator +∗ from Example 10 and the following binary
versions of the unit-delay operator:

(delay1) =
(1)(x, y)

χ→x
.

We claim that T is in the second left-distributivity format for (1) with respect
to +∗. To see this, it suffices to observe that the targets of the conclusions of
the χ-emitting rules for those two operators, when instantiated as required in
Definition 13, both yield the term p+∗q. Therefore, Theorem 4 yields the validity
of the law

(1)(x+∗ y, z)↔–– (1)(x, z) +∗ (1)(y, z).

Turning the unit-delay operator back to its unary version, we obtain the well-
known law

(1)(x+∗ y)↔–– (1)(x) +∗ (1)(y).

Row 3 in Table 1 can be used to match the targets of the conclusions of the
delay rules for the unit-delay and choice operators.

Example 17 (Hiding and the external choice operator from CSP). Consider the
binary version of the hiding operator τI from [19], where I is a set of actions
that does not contain τ . The rules for this operator are

x
a→x′

τI(x, y) τ→ τI(x′, y)
a ∈ I

x
a→x′

τI(x, y) a→ τI(x′, y)
a 6∈ I.

The rules for the external choice operator � from CSP [26] are as follows, where
a 6= τ ranges over the set of ‘observable actions’.

x
a→x′

x� y
a→x′

y
a→ y′

x� y
a→ y′

x
τ→x′

x� y
τ→x′ � y

y
τ→ y′

x� y
τ→x� y′

.

Note that the last two rules for � do not satisfy condition 3 in Definition 11.
On the other hand, the second rule format for left distributivity can be used to
establish the validity of the equation

τI(x� y, z)↔–– τI(x, z)� τI(y, z). (5)

The verification of the constraints in Definition 13 is somewhat laborious, but is
not hard. By way of example, we limit ourselves to checking that the rule

x
a→x′

τI(x, y) τ→ τI(x′, y)
a ∈ I
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is distributivity compliant to

y
τ→ y′

x� y
τ→x� y′

,

in the sense of Definition 13. To this end, observe that

σ1(τI(x′, y)) = τI(σ′2(x� y′), r) = τI(p� q′, r).

Next, we have that

σ2(x� y′) = τI(p, r)� σ1y(τI(x′, y)) = τI(p, r)� τI(q′, r).

Since the equality
τI(p� q′, r) = τI(p, r)� τI(q′, r)

is an instance of (5), we may now conclude that

τI(p� q′, r) ↓τI ,� τI(p, r)� τI(q
′, r),

which was to be shown.

Example 18 (Encapsulation and the external choice operator from CSP). Con-
sider the binary version of the encapsulation operators ∂H from ACP [13] given
in Example 12, where we now assume that H is a set of actions that does not
contain τ . Again, the second rule format for left distributivity can be used to
establish the validity of the equation

∂H(x� y, z)↔–– ∂H(x, z)� ∂H(y, z),

which is the binary version of the well-known equivalence

∂H(x� y)↔–– ∂H(x)� ∂H(y).

We omit the verification of the constraints in Definition 13.

7 Internal choice

The internal choice operator u from CSP [26] is specified by the following two
rules:

x u y τ→x x u y τ→ y
.

These rules are not of the form (R2) and therefore they do not fit either of
the rule formats for left distributivity that have presented so far. On the other
hand, there are a small number of left-distributivity laws that do hold for u.
Rather than complicating our rule formats further to handle these very specific
left-distributivity laws, we shall now present a simple distributivity format that
is tailor made for the internal choice operator.
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Definition 15 Let T be a TSS. We say that a binary operator � in the signature
of T is u-friendly if the following conditions are met:

– the set of deduction rules for � contains the rule

x
τ→x′

x� y
τ→x′ � y

(6)

and
– each rule for � different from the one above has a premise of the form x

a→x′,
for some a 6= τ .

Theorem 7. Let T be a TSS, and let � be a binary operator in the signature
of T . Assume that � is u-friendly. Then

(x u y) � z ↔–– (x� z) u (y � z).

Proof. Let p, q, r, s be arbitrary closed terms. In order to show that

(p u q) � r ↔–– (p� r) u (q � r),

we shall prove that, for each closed term s and action a,

(p u q) � r
a→ s if, and only if, (p� r) u (q � r) a→ s.

Observe, first of all, that the only initial transitions of the term (p� r)u (q� r)
are (p� r)u (q� r) τ→ (p� r) and (p� r)u (q� r) τ→ (q� r). Moreover, it is clear
that the transitions (pu q) � r

τ→ p� r and (pu q) � r
τ→ q� r are provable using

rule 6. Therefore, it suffices only to show that if (p u q) � r
a→ s then

– a = τ and
– either s ≡ p� r or s ≡ q � r.

To this end, assume that (puq)�r
a→ s. Since the only initial transitions of puq

are p u q τ→ p and p u q τ→ q, by the second constraint in Definition 15 we have
that the transition (pu q) � r

a→ s must be proved using rule 6. This means that
a = τ , and either s ≡ p� r or s ≡ q � r, as claimed. ut

Example 19. Consider the binary version of the hiding operator τI from Exam-
ple 17. It is immediate to check that the rules for τI meet the requirements in
Definition 15. Therefore Theorem 7 yields the validity of the left-distributivity
law

τI(x u y, z)↔–– τI(x, z) u τI(y, z).

The unary version of this equation is the well known

τI(x u y)↔–– τI(x) u τI(y).
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Example 20. Consider the binary version of the relabelling operator [f ] from [27],
where f is an endofunction over the set of actions such that f(τ) = τ . (We
write this operator in postfix form for consistency with the notation used in the
standard literature on Milner’s CCS.) The rules for this operator are

x
a→x′

(x, y)[f ]
f(a)→ (x′, y)[f ]

,

where a ranges over the set of actions. It is immediate to check that the above
rules meet the requirements in Definition 15. Therefore Theorem 7 yields the
validity of the left-distributivity law

(x u y, z)[f ]↔–– (x, z)[f ] u (y, z)[f ].

The unary version of this equation is the well known

(x u y)[f ]↔–– (x)[f ] u (y)[f ].

Example 21. The validity of the left-distributivity laws of the form

∂H(x u y, z)↔–– ∂H(x, z) u ∂H(y, z),

where ∂H , with H a set of actions that does not contain τ , is the binary version of
the encapsulation operator from Example 12 is also a consequence of Theorem 7.
We leave the straightforward verification to the reader.

8 Impossibility results

In this section we provide some impossibility results concerning the validity of the
left-distributivity law. Unlike previous results about rule formats for algebraic
properties, such as those surveyed in [12], we offer theorems to recognize when
the left-distributivity law is guaranteed not to hold. When designing operational
specifications for operators that are intended to satisfy a left-distributivity law,
a language designer might also benefit from considering these kinds of negative
results.

8.1 Left-inheriting operators

Our first negative result will concern a kind of left-inheriting operator, which we
call strong left-inheriting and we now proceed to define.

Definition 16 (Forwarder operators) Let
−→
k = (k1, k2, . . . , k`), where 1 ≤

` ≤ n and 1 ≤ k1 < k2 < . . . < k` ≤ n. An operator f of arity n is a
−→
k -

forwarder if the following conditions hold for each action a and for all closed
terms p1, . . . , pn:
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– if f(p1 . . . , pk1 , . . . , pk2 , . . . , pk`
, . . . , pn) a→ then there is some 1 ≤ i ≤ ` such

that pki

a→ and
– for each 1 ≤ i ≤ `, if pki

a→ then f(p1 . . . , pk1 , . . . , pk2 , . . . , pk`
, . . . , pn) a→ .

Syntactic conditions to guarantee that an operator is a
−→
k -forwarder can be

given. However, this is beyond the scope of the present paper.

Example 22. As the reader can easily check, the left-merge operator ‖ from Ex-
ample 3 and the replication operator ! given by the rules below

x
a→x′

!x a→x′ ‖!x
(a ∈ L),

where ‖ is the interleaving parallel composition operator from Example 3, are
(1)-forwarders. On the other hand, the interleaving parallel composition operator
and the choice operator + from Example 1 are (1, 2)-forwarders.

Definition 17 (Forwarder contexts) The grammar for forwarder contexts
for a variable x is

F [x] ::= x | f(x1, . . . , xi−1, F [x], xi+1, . . . , xn),

where f is an n-ary operator, x1, . . . , xi−1, xi+1, . . . , xn are variables, F [x] ap-
pears as the ith argument of f , and f is

−→
k -forwarder with i appearing in

−→
k .

Lemma 2. Assume that F [x] is a forwarder context for a variable x. Then, for
each closed substitution σ and for each action a, the following statements hold:

1. if σ(x) a→ then σ(F [x]) a→ ;
2. if σ(F [x]) a→ then there is some y ∈ vars(F [x]) such that σ(y) a→ .

Proof. Both claims can be shown by structural induction on F [x]. ut

Definition 18 (Strong left-inheriting operators) Given a TSS T , let � be
a binary operator from the signature of T . We say that � is strong left-inheriting
with respect to an action a whenever each a-emitting �-defining rule d has the
form

Φx ∪ Φy

x� y
a→F [x]

,

where

– Φx and Φy are sets of x-testing and y-testing formulae, respectively, whose
subsets of positive premises are finite,

– no two formulae in Φx ∪ Φy contradict each other,

– each positive formula in Φx ∪ Φy has the form z
b→ z′ for some action b and

variable z′,
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– the variables x, y and the targets of the positive formulae in Φx ∪ Φy are all
distinct, and

– F [x] is a forwarder context for x with vars(F [x]) ⊆ vars(Φx ∪ Φy) ∪ {x}.

Intuitively, not only does a strong left-inheriting operator inherit its left
argument; it also makes sure that the inherited term may affect the next step of
computation.

Theorem 8 (Impossibility Theorem: strong left-inheriting operators).
Given a TSS T , let � be a binary operator in the signature of T . Assume that

– the set of actions is infinite,
– the signature of T contains the inaction constant from Remark 4, the prefix

operators from CCS (see Example 15) and the choice operator from Exam-
ple 1,

– � is a strong left-inheriting operator with respect to some action a ∈ L, and
– there is some a-emitting and �-defining rule.

Then
(x+ y) � z 6↔–– (x� z) + (y � z).

The proof of Theorem 8, which may be found in Appendix D, relies on the
fact that, when (p+ q) � r

a→ s1 for some action a and closed terms p, q, r and
s1, the term s1 has both the initial capabilities of p and q because s1 has some
occurrence of the term p + q in a forwarder context, and + is itself a (1, 2)-
forwarder. On the other hand, if (p � r) + (q � r) a→ s2, for some s2, then s2 is
never able to have both of the initial capabilities of p and q simultaneously, since
+ performs a choice.

Using Theorem 8, we obtain, for instance, that:

– (x+ y) ‖ z 6↔–– (x ‖ z) + (y ‖ z)
– a.(x+ y) 6↔–– (a.x) + (a.y)
– !(x+ y) 6↔–– (!x) + (!y)

For the last two cases, in order to apply the above-mentioned theorem, one
needs to consider the binary version of the action prefixing operator from Ex-
ample 15 and the binary version of the replication operator, which ignores its
second argument and can be defined along the lines we followed in the examples
in Section 6.

The three examples given above do not fit the constraints of either of our
rule formats for left distributivity. Indeed, the operation ‖ as well as the binary
versions of the action prefixing and the replication operations do not satisfy
condition 2 in Definition 11, which requires that the � operation be non-left-
inheriting. The requirements for the second rule format are not met either be-
cause, in all cases, there are a rule d1 for the operation playing the role of �
and a rule d2 for + such that d1 is not distributivity compliant to d2. By way of
example, consider the pair of rules

y
a→ y′

x ‖ y a→x ‖ y′

y
a→ y′

x+ y
a→ y′

.
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The first of these rules is not distributivity compliant to the second. Indeed,
using the substitutions defined in Definition 13, we have that

σ1(x ‖ y′) = (p+ q) ‖ r′ and
σ2(y′) = q ‖ r′,

and (p+ q) ‖ r′ ↓‖,+ q ‖ r′ does not hold.

8.2 The use of negative premises

We now present two results that rely on the use of negative premises in rules.

Definition 19 (Always Moving Operators) Given a TSS T , we say that an
operator f from the signature of T with arity n is always moving for action a
whenever f(−→p ) a→ , for each n-tuple of closed terms −→p .

For example, an n-ary operator f , with n ≥ 1, is always moving for action a
when the set of rules D(f, a) contains

– either some rule d with hyps(d) = ∅,
– or rules d1, d2 with hyps(d1) = {x1

a→x′1} and hyps(d2) = {x1
a9 }.

An example of operator that is always moving for action a is the prefixing op-
erator a. .

Remark 8. It is possible to find syntactic conditions on the set of rules for some
operator f guaranteeing that f is always moving. For instance, the decidable
logic of initial transition formulae offered in [3], which is able to reason about
firability of GSOS rules, can be used in order to check whether operators are
always moving. The development of rule formats for always-moving operators is,
however, orthogonal to the gist of this paper and therefore we do not address it
here.

Theorem 9. Given a TSS T , let � and � be binary operators in the signature
of T . Assume that

1. the signature of T contains at least one constant,
2. a ∈ L,
3. � is always moving for action a, and
4. the set of premises of each a-emitting and �-defining rule contains either

x
a9 or y a9 .

Then
(x� y) � z 6↔–– (x� z) � (y � z),

and any triple of closed terms witnesses the above inequivalence.
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Proof. Let T be a TSS, and let � and � be binary operators of the signature
of T . Let p, q and r be arbitrary closed terms, which exist since the signature of
T contains at least one constant.

Since � is always moving for action a, we have that (p� q) � r
a→ , (p� r) a→

and (q� r) a→ . As each a-emitting and �-defining rule d is, by assumption, such
that x a9 ∈ hyps(d) or y a9 ∈ hyps(d), none of those rules can be used to prove
an a-labelled transition for (p� r) � (q � r). It follows that

(p� q) � r 6↔–– (p� r) � (q � r),

as required. ut

In what follows we offer a result that ensures the invalidity of the distribu-
tivity law when negative premises appear in �-defining rules.

Theorem 10. Let T be a TSS whose signature contains a binary operator �,
the inaction constant 0, the prefix operators from CCS and the choice operator.
Assume that there is some action a such that the only a-emitting �-defining rule
in T has the form

(d)
Φx ∪ Φy
x� y

a→ t
,

where

– Φx and Φy are sets of x-testing and y-testing formulae, respectively, whose
subsets of positive premises are finite,

– no two formulae in Φx ∪ Φy contradict each other,
– each positive formula in Φx ∪ Φy has the form z

b→ z′ for some action b and
variable z′,

– the variables x, y and the targets of the positive formulae in Φx ∪ Φy are all
distinct, and

– {x b9 | b ∈ L} ⊆ Φx, for some non-empty set of actions L.

Then
(x+ y) � z 6↔–– (x� z) + (y � z).

Proof. Let {x ai→xi | i ∈ I} and {y bj→ yj | j ∈ J}, where I and J are finite index
sets, be the collections of positive premises in Φx and Φy, respectively. Define

p =
∑
i∈I

ai.0 and

r =
∑
j∈J

bj .0.

By the assumption of the theorem, the closed substitution σ mapping x to p, y
to r and all the other variables to 0 satisfies the premises of d. Therefore, we
have that

p� r
a→σ(t).
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Let q = b.0 for some b ∈ L. Then,

(p� r) + (q � r) a→σ(t).

On the other hand, the term (p+ q) � r does not afford an a-labelled transition
because p + q

b→0 and therefore no closed substitution mapping x to p + q can
satisfy the premises of d, which is the only a-emitting �-defining rule in T . This
means that

(p+ q) � r 6↔–– (p� r) + (q � r),

and the claim follows. ut

Example 23. Let > be an irreflexive partial order over L. The priority operator
Θ from [15] is specified by the following rules:

x
a→x′, x

b9 (∀b > a)

Θ(x) a→Θ(x′)
(a ∈ L).

The binary version of that operator can be defined following the lines presented
in the examples in Section 6. Theorem 10, when applied to the binary version of
Θ, yields the well-known fact that, when > is a non-trivial partial order,

Θ(x+ y) 6↔–– Θ(x) +Θ(y).

Indeed, if > is non-trivial, then there are actions a and b with a < b. The single
a-emitting rule for the binary version of Θ has a negative premise of the form
x

b9 , and therefore Theorem 10 is applicable to derive the above inequivalence.

9 Conclusions

In this paper we have provided two rule formats guaranteeing that certain binary
operators are left distributive with respect to choice-like operators. As witnessed
by the wealth of examples we discussed in the main body of this study, the rule
formats are general enough to cover relevant examples from the literature. In
particular, they can also be applied to establish the validity of left-distributivity
laws involving unary operators. This can be achieved by simply considering unary
operators as binary operators that ignore their second argument.

We have also offered conditions that allow one to recognize the invalidity
of the left-distributivity law in the context of left-inheriting operators and in
the presence of negative premises. Such conditions can be applied to well-known
examples of invalid left-distributivity laws.

The research presented in this article opens several interesting lines for future
investigation. First of all, our rule formats can be easily adapted to obtain rule
formats guaranteeing the validity of right-distributivity laws of the form

x� (y � z) = (x� y) � (x� z).
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The rule formats we have presented should also be extended in order to handle
examples of distributivity laws where � is not ‘choice-like’. It would also be
interesting to see whether one can relax the syntactic constraints of the rule
formats presented in this paper substantially, while preserving their soundness
and ease of application.

The rule formats in this paper guarantee the validity of left-distributivity laws
modulo strong bisimilarity. However, some distributivity laws from the literature
on process calculi, such as those for the external and internal choice operators
in [24], hold only up to coarser notions of semantics such as failure and testing
semantics. Another possible avenue for future research is therefore to develop
more generous rule formats for distributivity laws up to notions of semantics
that are coarser than bisimilarity.

Last, but not least, we intend to find further ‘impossibility theorems’ along
the lines of those we presented in Section 8. A related line for possible future
research is to consider the positive and negative results on the validity of left-
distributivity laws in the setting of Ordered SOS [31].

This future work will lead to a better understanding of the semantic nature
of distributivity properties and of its links to the syntax of SOS rules.

Acknowledgements We thank the anonymous reviewers for their detailed com-
ments, which led to several improvements in the contents and the presentation
of the paper.
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A Proof of Theorem 1

Instead of proving Theorem 1 we prove a stronger theorem. In what follows,
when we say (p � q) � r

a→ using rules d1 and d2, the considered transition
is provable by the �-defining rule d1, possibly using the �-defining rule d2 to
prove a transition (p� q) a→ p′ satisfying the set Φx(d1) of x-testing premises in
d1. We say (p�r)�(q�r) a→ using rules d2, d1 and d3, with the straightforward
analogous meaning, using d1 to prove a transition from (p� r) satisfying Φx(d2)
and d3 to prove a transition from (q � r) satisfying Φy(d2).

Theorem 11. Let T be a TSS, and let � and � be binary operators in the
signature of T . Suppose that Fire(�,�, a), for some actions a. Then, for all
closed terms p, q, and r,

– if (p� q) � r
a→ using rules d1 and d2 then (p� r) � (q � r) a→ using rules

d2, d1 and d1.
– (p� r) � (q� r) a→ using rules d2, d1 and d3 then (p� q) � r

a→ using rules
d1 or d3, and d2.

It is easy to see that Theorem 11 implies Theorem 1.
Theorem 11 can be proved along the lines of Theorem 2 and we therefore

omit the details.

B Proof of Theorem 2

Let T be a TSS, and let � and � be binary operators in the signature of T . As-
sume that the rules for � and � are in the first rule format for left distributivity.
We show the following two claims, where p, q, r, s are arbitrary closed terms and
a is any action:

1. If (p� q) � r
a→ s then (p� r) � (q � r) a→ s.

2. If (p� r) � (q � r) a→ s then (p� q) � r
a→ s.

We consider each of the above claims in turn.

1. Assume that (p� q) � r
a→ s. We shall prove that (p� r) � (q � r) a→ s.

Since (p� q) � r
a→ s and Fire(�,�, a) holds, there are a rule d1 of the form

(∅ or {x a→x′}) ∪ Φy

x� y
a→ t

and a closed substitution σ such that
– σ(x) = p� q,
– σ(y) = r,
– σ(t) = s and
– σ satisfies the premises of d1.
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We shall argue that (p�r)� (q�r) a→ s by considering two cases, depending
on whether d1 has a premise of the form x

a→x′.
(a) Case: d1 has no x-testing premise. In this case, rule d1 can be used to

infer that p � r
a→ s and q � r

a→ s both hold. Indeed, recall that x 6∈
vars(Φy) by the constraints of the rule form (R1) and x 6∈ vars(t) by
constraint 2 in Definition 11. Therefore, the closed substitution σ[x 7→ p]
satisfies the premises of d1 and is such that

σ[x 7→ p](x� y
a→ t) = p� r

a→ s.

A similar reasoning using the closed substitution σ[x 7→ q] shows that
q�r a→ s is also provable using d1 as claimed. The first and third condition
in Definition 10 yield the existence of some rule d2 ∈ D(�, a) of the form

({x a→x′} or {y a→ y′} or {x a→x′, y
a→ y′})

x� y
a→ t

.

By constraint 3 of Definition 11, d2 has a target variable of one of its
premises as target of its conclusion. Therefore, regardless of the set of
premises of d2, we can instantiate that rule using any closed substitution
mapping x to p� r, y to q � r and both x′ and y′ to s to infer that

(p� r) � (q � r) a→ s,

as required.
(b) Case: d1 has a premise of the form x

a→x′. In this case, as σ satisfies
the premises of d1, we have that

σ(x) = p� q
a→σ(x′).

The above transition can be proved using a rule d2 ∈ D(�, a) of the form

({x a→x′} or {y a→ y′} or {x a→x′, y
a→ y′})

x� y
a→ t′

,

where, by constraint 3, t′ = x′ or t′ = y′. Assume, without loss of
generality, that t′ = y′. Then y

a→ y′ is a premise of rule d2 and

q
a→σ(x′).

So, instantiating rule d1 above using σ[x 7→ q], we have that

σ[x 7→ q](x� y) = q � r
a→σ[x 7→ q](t) = σ(t) = s.

(Recall that x 6∈ vars(t) by constraint 2 in Definition 11.) If d2 does
not have any x-testing premise then the above transition can be used to
satisfy its premise and we can infer

(p� r) � (q � r) a→ s,
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as required. Assume now that d2 has x a→x′ as a premise, and therefore
has the form

{x a→x′, y
a→ y′}

x� y
a→ y′

.

Since the transition p � q
a→σ(x′) is proved using d2, there is some p′

such that p a→ p′. Recall that, by the assumptions for this case of the
proof,

d1 =
{x a→x′} ∪ Φy

x� y
a→ t

.

Then the substitution σ[x 7→ p, x′ 7→ p′] satisfies the premises of d1, and
we can deduce that

σ[x 7→ p, x′ 7→ p′](x� y) = p� r
a→σ[x 7→ p, x′ 7→ p′](t) = σ[x′ 7→ p′](t).

Using rule d2 and any substitution that maps x to p � r, x′ to σ[x′ 7→
p′](t), y to q � r and y′ to s, we may conclude that

(p� r) � (q � r) a→ s,

as required.
2. Assume that (p� r) � (q � r) a→ s. We shall prove that (p� q) � r

a→ s.
Since (p� r) � (q� r) a→ s and Fire(�,�, a) holds, there are a rule d2 of the
form

({x a→x′} or {y a→ y′} or {x a→x′, y
a→ y′})

x� y
a→ t

,

where, by constraint 3, t = x′ or t = y′, and a closed substitution σ such
that
– σ(x) = p� r,
– σ(y) = q � r,
– σ(t) = s and
– σ satisfies the premises of d2.

Assume, without loss of generality, that t = x′. Therefore x a→x′ is a premise
of d2 and

σ(x) = p� r
a→ s = σ(x′).

Since p� r
a→ s, there are some rule

d1 =
(∅ or {x a→x′}) ∪ Φy

x� y
a→ t′

and a closed substitution σ′ such that
– σ′(x) = p,
– σ′(y) = r,
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– σ′(t′) = s and
– σ′ satisfies the premises of d1.

We shall argue that (p� q) � r
a→ s by considering two cases, depending on

whether d1 has a premise of the form x
a→x′.

(a) Case: d1 has no x-testing premise.
Consider the substitution σ′[x 7→ p � q]. Since x 6∈ vars(Φy) and σ′

satisfies the premises of d1, it follows that σ′[x 7→ p� q] also satisfies Φy.
Therefore, we can instantiate rule d1 with σ′[x 7→ p� q] to infer that

σ′[x 7→ p� q](x� y) = (p� q) � r
a→σ′[x 7→ p� q](t′) = σ′(t′) = s,

as required. (Recall that � is non-left-inheriting by condition 2 in Defi-
nition 11.)

(b) Case: d1 has a premise of the form x
a→x′. Then,

d1 =
{x a→x′} ∪ Φy

x� y
a→ t′

.

As σ′ satisfies the premises of d1, we have that

σ′(x) = p
a→σ′(x′).

If x a→x′ is the only premise of rule d2, then we can use that rule and
the above transition to infer that

p� q
a→σ′(x′).

Consider now the closed substitution σ′[x 7→ p � q]. This substitution
satisfies the premises of rule d1, because so does σ′ and x 6∈ vars(Φy).
Therefore, instantiating rule d1 with σ′[x 7→ p � q], we may derive the
transition

(p� q) � r
a→σ′[x 7→ p� q](t′) = σ′(t′) = s,

as required.
Assume now that x a→x′ is not the only premise of rule d2. Then, because
of the assumptions of this case,

d2 =
{x a→x′, y

a→ y′}

x� y
a→x′

.

Recall that we used the above rule and the closed substitution σ to prove
the transition

(p� r) � (q � r) a→ s.

Therefore we have that

σ(y) = q � r
a→σ(y′).
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Using condition 4 in Definition 11 and the form of the rules d1 and d2,
this means that there are a rule

d3 =
{x a→x′} ∪ Φ′y

x� y
a→ t′′

and a closed substitution σ̂ such that
– σ̂(x) = q

a→ σ̂(x′),
– σ̂(y) = r,
– σ̂(t′′) = σ(y′) and
– σ̂ satisfies Φ′y.

Using rule d2 with premises p a→σ′(x′) and q
a→ σ̂(x′), we obtain that

p� q
a→σ′(x′).

Finally, instantiating rule d1 with the closed substitution σ′[x 7→ p� q],
we infer the transition

σ′[x 7→ p� q](x� y) = (p� q) � r
a→σ′[x 7→ p� q](t′) = σ′(t′) = s,

as required.

This completes the proof.

C Proof of Theorem 4

Let T = (Σ,L, D) be a TSS. Assume that T is in the second left-distributivity
format for � with respect to �. We shall prove that

(x� y) � z ↔–– (x� z) � (y � z).

To this end, it suffices to show that the relation

R = {((p� q) � r, (p� r) � (q � r)) | p, q, r ∈ C(Σ)}∪ ↔––
is a bisimulation.

Let us pick an action a and closed terms p, q and r. We now prove the
following two claims:

1. If (p� q) � r
a→ v1 then (p� r) � (q� r) a→ v2, for some v2 such that v1R v2.

2. If (p� r) � (q� r) a→ v2 then (p� q) � r
a→ v1, for some v1 such that v1R v2.

We consider these two claims separately.

1. Assume that (p � q) � r
a→ v1 for some closed term v1. This means that

(p� q) � r
a→ v1 using rules d1 and d2, for some �-defining rule d1 and some

�-defining rule d2.
By Theorem 11, (p� r) � (q � r) a→ v2, for some closed term v2, using rules
d2, d1 and d1. We shall now show that v1 R v2.
As T is in the second left-distributivity format for � with respect to �, we
have that d1

 ∼ d2. We distinguish two cases depending on whether the set
of premises of d2 is a singleton.
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– Case: hyps(d2) = {x a→x′} or hyps(d2) = {y a→ y′}. In both of the cases,
the term v1 is formed by exactly the substitutions of condition 3a in
Definition 13, when the variable p′ is used as a term such that p a→ p′,
similarly q′ for q, and each ri for yi, i ∈ I. Thus, v1 = σ1(toc(d1)) and,
for the same reasons, v2 = σ2(toc(d2)). Now, by the definition of  ∼, we
have that v1  v′1 and v2  v′2, for some v′1 and v′2 with v′1 = v′2, by
possibly using one application of axiom

(x� y) � z = (x� z) � (y � z)

at the top level. Since v1 ↔–– v′1 and v2 ↔–– v′2 hold by Lemma 1, by possibly
using the transitivity of bisimilarity, we may conclude that v1 R v2, as
required.

– Case: hyps(d2) = {x a→x′, y
a→ y′}. In this case, by condition 3b in Def-

inition 13, the bisimilarity proven in the previous case is guaranteed for
all the possible pairs of �-defining rules, and this also includes the case
when the two premises of rule d2 are both satisfied using rule d1.

2. Assume that (p� r) � (q � r) a→ v2 for some closed term v2. This transition
can be proved using rules d2, d1, d3, for some �-defining rule d2 and some
�-defining rules d1 and d3.
By Theorem 11, (p � q) � r

a→ v1, for some closed term v1, using rules d1

or d3 and d2. We now argue that v1 R v2. By condition 3b in Definition 13,
reasoning as above, v1 R v2 is guaranteed for all the possible pairs of �-
defining rules, including the case when the transition (p � q) � r

a→ v1 is
proved using d1 and d2 or using d3 and d2.

This completes the proof.

D Proof of Theorem 8

Let T be a TSS and let � be a binary operator of the signature of T . Assume
the hypotheses of Theorem 8.

Let us pick an a-emitting and �-defining rule d. By the hypotheses of the
theorem, d has the form

Φx ∪ Φy

x� y
a→F [x]

,

where

– Φx and Φy are sets of x-testing and y-testing formulae, respectively, whose
subsets of positive premises are finite,

– no two formulae in Φx ∪ Φy contradict each other,

– each positive formula in Φx ∪ Φy has the form z
b→ z′ for some action b and

variable z′,
– the variables x, y and the targets of the positive formulae in Φx ∪Φy are all

distinct, and
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– F [x] a forwarder context for x with vars(F [x]) ⊆ vars(Φx ∪ Φy) ∪ {x}.

Since the signature of T contains the inaction, the prefix operators and the
choice operator, and no two formulae in Φx ∪Φy contradict each other, it is easy
to construct three terms p, q, and r such that

1. p ‘satisfies’ Φx,
2. if x b9 ∈ Φx, then q

b9 ,
3. r ‘satisfies’ Φy,

4. p b→ , q b9 and r
b9 , for some action b,

5. q c→ , p c9 and r
c9 , for some action c, and

6. the depth of p and r is one—that is, for all action b and c, and closed terms
p′ and r′, if p b→ p′ then p′

c9 , and if r b→ r′ then r′
c9 .

Conditions 4 and 5 can be met because, by assumption, the set of actions is
infinite.

We claim that
(p+ q) � r 6↔–– (p� r) + (q � r).

To see this, observe that, since + is a (1, 2)-forwarder operator, due to condi-
tions 1 and 2, p + q ‘satisfies’ Φx. By condition 3, the rule d fires with some
closed substitution σ mapping x to p+ q and y to r. Thus (p+ q) � r

a→σ(F [x]).
By conditions 4–5 and Lemma 2, we have that σ(F [x]) b→ and σ(F [x]) c→ .

Assume now that (p � r) + (q � r) a→ s, for some s. We will now argue that
σ(F [x]) 6↔–– v, proving our claim that

(p+ q) � r 6↔–– (p� r) + (q � r).

Indeed, suppose that p� r
a→ s. Since � is strong left-inheriting with respect to

an action a, we have that there are an a-emitting �-defining rule of the form

Φ′x ∪ Φ′y

x� y
a→F ′[x]

,

satisfying the requirements in Definition 18 and a closed substitution σ′ such
that s = σ′(F ′[x]). By conditions 5 and 6, using Lemma 2 we have that s c9 .
Therefore σ(F [x]) 6↔–– s.

If q�r a→ s then, reasoning in similar fashion using conditions 4 and 6 as well
as Lemma 2, we infer that s b9 . Therefore σ(F [x]) 6↔–– s, and we are done.
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