Vietoris bisimulations

N. Bezhanishvili, G. Fontaine and Y. Venema

July 17, 2008

Abstract

Building on the fact that descriptive frames are coalgebras for the Vietoris functor on the category of Stone spaces, we introduce and study the concept of a Vietoris bisimulation between two descriptive modal models, together with the associated notion of bisimilarity. We prove that our notion of bisimilarity, which is defined in terms of relation lifting, coincides with Kripke bisimilarity (with respect to the underlying Kripke models), with behavioral equivalence, and with modal equivalence, but not with Aczel-Mendler bisimilarity. As a corollary we obtain that the Vietoris functor does not preserve weak pullbacks. Comparing Vietoris bisimulations between descriptive models to Kripke bisimulations on the underlying Kripke models, we prove that the closure of such a Kripke bisimulation is a Vietoris bisimulation. As a corollary we show that the collection of Vietoris bisimulations between two descriptive models forms a complete lattice. Finally, we provide a game-theoretic characterization of Vietoris bisimilarity.

Keywords Modal logic, bisimulation, descriptive frame, coalgebra, Vietoris construction.

1 Introduction

Bisimulations between Kripke models are of key importance in modal logic [8]. The starting observation is that the truth of modal formulas is invariant under bisimilarity, in the sense that any two states satisfy the same modal formulas if they are linked by some bisimulation. More fundamental connections between modal logic and bisimilarity are provided by results pointing in the converse direction. In particular, for some classes of models one may show that modal equivalence is equivalent to bisimilarity, i.e., the fact that two states are not bisimilar is witnessed by a separating modal formula. Such model classes are called Hennessy-Milner classes, after the authors of [16] who established this property for the class of image-finite models. As a second example, a celebrated theorem by van Benthem [6] identifies modal logic as the bisimulation invariant fragment of first-order logic: Any first order formula in one free variable that is invariant under bisimilarity is equivalent to (the standard translation of) a modal formula.

However, next to Kripke frames and models, other structures are worth studying. In fact, it follows from the work of Thomason [29], Blok [9], and others, that from a mathematical viewpoint Kripke frames do not provide an adequate semantics for the study of normal modal logics (where the word ‘logic’ is now taken in the technical meaning of a set of formulas containing certain axioms and being closed under certain derivation rules). To overcome
this problem one may turn to the algebraic semantics of modal logic [30] which allows for a general completeness result: any axiomatic extension of the basic modal logic K is sound and complete with respect to some class of modal algebras. However, despite this mathematical advantage, many modal logicians still prefer frame-based semantics since they find relational structures more intuitive to work with. A good compromise is given by the general frames which are (almost) as intuitive as the familiar relational structures, but on the other hand, do support a general completeness result. In particular, the descriptive frames provide an interesting subclass of general frames, since there is a full categorical duality with the category of modal algebras [14]. Descriptive frames are formed by a Kripke frame nicely entangled with a Stone topology; a descriptive model arises by adding a valuation that interprets the proposition letters of the language as clopens of the topology. Such a valuation corresponds to an assignment of variables on the dual modal algebra.

Our paper addresses the question, that naturally arises in this context: What do bisimulations between descriptive models look like? We shall introduce and motivate the proper notion of a bisimulation between descriptive structures, together with the associated concept of bisimilarity. We shall then prove some of the intrinsic properties of these notions, and finally, compare them to the corresponding notions for Kripke structures.

Our approach is coalgebraic. The theory of universal coalgebra [27] aims at providing a general framework for the study of notions related to (possibly infinite) behavior such as invariance and observational indistinguishability. Coalgebras are simple but fundamental mathematical structures that capture the essence of dynamic or evolving systems [19]. Kripke frames and models provide key examples of set-based coalgebras, i.e., structures of the form $\langle S, \sigma : S \to TS \rangle$, where S is some set, and T is some set functor denoting the type of the coalgebra. Many familiar notions and constructions, such as bisimulations and bounded morphisms, have analogues in other fields, and find their natural place at the abstraction level of coalgebra. Perhaps even more important is the realization that one may generalize the concept of modal logic itself, as a dynamic specification language for behavior, from Kripke frames to arbitrary coalgebras, see [30] and references therein. In fact, the link between (these generalizations of) modal logic and coalgebra is so tight, that one may even claim that modal logic is the natural logic for coalgebras — just like equational logic is that for algebra. The point here is that not only Kripke frames and models, but also descriptive frames and models can be seen as coalgebras, not set-based but over the category Stone of Stone spaces [1, 20]. This provides a second motivation for this paper: to study bisimulations between coalgebras over a category different from Set.

In any case, once we have identified descriptive frames and models as coalgebras, the theory of universal coalgebra then suggests a natural definition of a bisimulation between descriptive frames and models, with an associated notion of bisimilarity. In fact, there are two natural candidates for such a definition. The Vietoris bisimulations are defined using the so-called relation lifting associated with the Vietoris functor, while the notion of Aczel-Mendler bisimulation, named after the authors of [3], is defined in terms of a commuting diagram based on a coalgebra structure imposed on the bisimulation relation itself.

We show that Vietoris bisimilarity coincides with modal equivalence (which in its turn is the same as the important coalgebraic notion of behavioral equivalence). Moreover, it
turns out that there is a very simple characterization of this notion: a relation between two descriptive models is a Vietoris bisimulation if it is both a bisimulation between the two underlying Kripke models, and closed when seen as a subset in the product topology. In short:

Vietoris bisimulations are closed Kripke bisimulations.

On the other hand, we show that Aczel-Mendler bisimilarity does not coincide with modal equivalence (and thus also differs from Vietoris bisimilarity and from behavioral equivalence), and that the poset of Aczel-Mendler bisimulations, ordered by inclusion, does not form a lattice. As a corollary of the first observation, we obtain the following contribution of this paper:

the Vietoris functor does not preserve weak pullbacks.

This is all in contrast to the powerset functor, which does preserve weak pullbacks. Also, for coalgebras for the powerset functor, the notion of bisimilarity defined via relation lifting coincides with Aczel-Mendler bisimilarity, but, in general, is different from modal equivalence.

On the basis of the above-mentioned negative evidence, we conclude that for descriptive frames and models, Aczel-Mendler bisimilarity is not the right notion of bisimilarity, and we concentrate on Vietoris bisimulations. We turn to a comparison between Vietoris bisimulations and Kripke bisimulations, and we derive our main technical result, stating that

the closure of a Kripke bisimulation is a Vietoris bisimulation.

As a corollary we prove that the collection of Vietoris bisimulations between two descriptive models forms a complete lattice, ordered by set inclusion.

We finish this introduction with an overview of the paper. After a brief presentation in Section 2 of descriptive frames and models from the coalgebraic point of view, in Section 3 we define the notion of Vietoris bisimulation, in terms of relation lifting. We prove that Vietoris bisimulations can be characterized as closed Kripke bisimulation and that Vietoris bisimilarity coincides with modal equivalence, and hence, with behavioral equivalence. In Section 4 we define Aczel-Mendler bisimilarity; we argue that in our setting this is not the right notion of bisimilarity by showing that it does not coincide with behavioral equivalence. We give an example showing why the Vietoris functor does not preserve weak pullbacks. In Section 5 we prove the main technical result of the paper that the closure of a Kripke bisimulation is a Vietoris bisimulation. As a corollary of this, we show that the collection of Vietoris bisimulations between two descriptive models forms a complete lattice, ordered by set inclusion. Section 6 provides a game-theoretic characterization of the notion of Vietoris bisimilarity. To finish off, we mention some conclusions and questions for further research.

Acknowledgements The authors are very grateful to an anonymous referee for pointing out a mistake in the original version of the paper, which completely changed the structure and the presentation of the paper. We thank Alexandru Baltag for some pointers to the literature, and Prakash Panangaden for explaining some coalgebraic aspects of [10]. Special thanks go to Clemens Kupke for reminding us of the use of relation lifting for defining bisimulations.
2 Vietoris coalgebras

The aim of this section is to introduce the coalgebraic perspective on descriptive frames and models. This viewpoint essentially dates back to a talk given by Abramsky in 1988, of which the lecture notes remained unpublished until recently [1]. Abramsky’s work had an early predecessor in Esakia [13], where the connection with the Vietoris functor was already made. Our presentation here is based on Kupke, Kurz & Venema [20], whereas the reader is referred to Venema [30] for some more context.

Notation First we need some auxiliary definitions. Given a binary relation $R \subseteq W \times W$, a state $u \in W$ and a set $U \subseteq W$, define

- $R(u) = \{ y \in W : uRy \}$, $R(U) = \{ y \in W : uRy \text{ for some } u \in U \}$,
- $\langle R \rangle U = \{ y \in W : yRu \text{ for some } u \in U \}$,
- $[R]U = \{ y \in W : u \in U \text{ for all } u \text{ with } yRu \}$.

Observe that $\langle R \rangle U = R^{-1}(U)$, where R^{-1} is the converse relation of R, and that $[R]U = W \setminus \langle R \rangle (W \setminus U)$.

Kripke frames and models Recall that a Kripke frame is a pair $F = (W, R)$, where W is a non-empty set and R is a binary relation on W. Throughout the paper we fix a set Φ of proposition letters. A Kripke model is a tuple $M = (W, R, V)$, where (W, R) is a Kripke frame and $V : \Phi \to \mathcal{P}(W)$ sends proposition letters to the set of states where they are true. We assume familiarity with the notion of a bounded morphism from one Kripke frame or model to another [8]. Readers unfamiliar with this notion can derive its definition from Fact 2.3, or define bounded morphisms as maps of which the graph is a bisimulation.

Definition 2.1. Let $M = (W, R, V)$ and $M' = (W', R', V')$ be two Kripke models. A relation $B \subseteq W \times W'$ is called a (Kripke) bisimulation, if for every $x \in W$ and $x' \in W'$ such that xBx', we have

1. $x \in V(p)$ iff $x' \in V'(p)$, for all proposition letters p;
2. xRy implies that there exists $y' \in W'$ such that $x'R'y'$ and yBy';
3. $x'R'y'$ implies that there exists $y \in W$ such that xRy and yBy'.

Two points x and x' are called (Kripke) bisimilar, notation: $M, x \equiv M', x'$ if they are linked by some Kripke bisimulation.

We assume familiarity with the syntax and semantics of modal logic [8]. We use the symbol \models for the satisfaction relation, that is, we write $M, s \models \phi$ to denote that formula ϕ is true, or satisfied, at state s in the Kripke model M. Two points, s and s', in two models, M and M', respectively, are called modally equivalent if they satisfy exactly the same modal formulas. The relation of modal equivalence is denoted by \equiv. One of the reasons why
bisimilarity is such an important notion in modal logic, is that the truth of modal formulas is invariant under bisimilarity, or briefly: \(\Downarrow \subseteq \Leftrightarrow \), while for some important classes of models the converse inclusion holds as well.

Descriptive frames and models Roughly, a descriptive frame consists of a Kripke frame and a modal algebra nicely glued together in one structure. Part of the interest in descriptive frames stems from the fact that they provide a category which is dually equivalent to that of modal algebras [14].

Formally, a field of sets is a pair \((W, A)\) with \(A \subseteq \mathcal{P}(S)\) being closed under all Boolean set-theoretic operations. The elements of \(A\) are called the admissible subsets of \(S\). A field of sets is called differentiated if for any two distinct points \(s \neq t\) of \(X\) there is an admissible set \(U \in A\) such that \(s \in U\) and \(t \notin U\), and compact if every subset of \(A\) with the finite intersection property has a non-empty intersection. A general frame is a triple \((W, R, A)\) such that \((W, R)\) is a Kripke frame and \((W, A)\) is a field of sets such that \(A\) is closed under \(\langle R \rangle\); that is, \(U \in A\) implies \(\langle R \rangle U \in A\). A binary relation \(R\) on a field of sets \((W, A)\) is tight if

\[
\forall x, y \in W \left(\neg Rxy \rightarrow \exists U \in A (y \in U \land x \notin \langle R \rangle U) \right). \tag{1}
\]

The notions of differentiatedness, compactness and tightness apply to general frames in the obvious way. Finally, a descriptive frame is a general frame \((W, R, A)\) that is differentiated, tight and compact. As morphisms between descriptive frames we take those bounded morphisms between the underlying Kripke frames such that the preimage of an admissible set is admissible.

A tuple \(M = (W, R, A, V)\) is called a descriptive model if \((W, R, A)\) is a descriptive frame and \(V\) is an admissible valuation, that is, a map interpreting each proposition letter as an admissible set of states. The notion of truth in descriptive models is defined as for Kripke models; it is routine to verify that the interpretation of any formula, that is, the set of points where this formulas is true, is an admissible set.

Coalgebra We also recall the definition of coalgebras [27].

Definition 2.2. Let \(C\) be a category and \(T : C \to C\) an endofunctor. A \(T\)-coalgebra is a pair \((X, \sigma)\), where \(\sigma : X \to TX\) is a morphism of \(C\). In the case \(C\) is the category \(\text{Set}\) of sets with functions, we often speak of systems rather than coalgebras. A morphism between two coalgebras \((X, \sigma)\) and \((X', \sigma')\) is an arrow \(f \in C\) such that the following diagram commutes:

\[
\begin{array}{ccc}
X & \xrightarrow{f} & X' \\
\downarrow{\sigma} & & \downarrow{\sigma'} \\
TX & \xrightarrow{Tf} & TX'
\end{array}
\]

Kripke frames can be seen as coalgebras for the powerset functor \(\mathcal{P}\) on the category of sets. Recall that \(\mathcal{P}\) maps a set \(W\) to its power set \(\mathcal{P}(W)\), and a function \(f : W \to W'\) to the direct image function \(\mathcal{P}f\) given by \(\mathcal{P}f(U) = f[U]\) (for all \(U \subseteq W\)). Coalgebraically, we see
a Kripke frame \((W, R)\) as a pair \((W, \rho_R)\), where \(\rho_R : W \to \mathcal{P}(W)\) maps a point \(x\) to the set \(\rho_R(x)\) of its \(R\)-successors. In the sequel we will simply write \(R\) instead of \(\rho_R\).

In order to represent a Kripke model \((W, R, V)\) as a coalgebra, we represent the valuation as the function \(\nu_V : W \to \mathcal{P}(\Phi)\) indicating for each world \(x\) which proposition letters are true at \(x\). Formally, \(\nu_V\) is defined by putting \(\nu_V(x) := V^{-1}[x]\). The model \((W, R, V)\) can then be represented as the pair \((W, \sigma)\), with \(\sigma : W \to \mathcal{P}(W) \times \mathcal{P}(\Phi)\) given by \(\sigma(x) := (R(x), \nu_V(x))\). Kripke models over a set \(\Phi\) of proposition letters are coalgebras for the Kripke functor \(\mathcal{P}\) which maps a set \(W\) to the set \(\mathcal{P}(W) \times \mathcal{P}(\Phi)\), and maps a function \(f : W \to W'\) to the function \(\mathcal{P} f \times \text{id}\) given by \((\mathcal{P} f \times \text{id})(U, Q) = (f[U], Q)\) (for all \(U \subseteq W\) and all sets \(Q\) of proposition letters).

We do not know who first made this coalgebraic perspective on Kripke structures explicit, but Abramsky [1] and, independently, Rutten [25] and Barwise & Moss [5] are sure candidates. We summarize our findings formally as follows.

Fact 2.3. The category of Kripke frames with bounded morphisms is isomorphic to the category of \(\mathcal{P}\)-coalgebras. Likewise, the category of Kripke models with bounded morphisms is isomorphic to the category of \(\mathcal{P}_\Phi\)-coalgebras.

Stone spaces Descriptive frames (models) can be represented as coalgebras as well, but not for the functor \(\mathcal{P}(\mathcal{P}_\Phi)\) or any other set functor. In fact, to represent descriptive structures as coalgebras we need to take the category of Stone spaces as our base category, and to define an analogue of the powerset functor on this category.

We first give some basic facts concerning Stone spaces. A **Stone space** is a compact Hausdorff space which is zero-dimensional, that is, has a basis of clopens. We let \(\text{Stone}\) denote the category of Stone spaces and continuous maps. Usually we will be sloppy concerning the distinction between a Stone space and its underlying set, writing for instance \(x \in X\) where we mean that \(x\) is an element of the underlying set of \(X\), etc. We assume some familiarity with notions and results pertaining to Stone spaces (or more generally, to compact Hausdorff spaces), such as the fact that the closed sets in a Stone space coincide with the compact ones. For future reference we explicitly mention the following facts, which can be found in any textbook on topology such as [11].

Fact 2.4. Let \(X\) and \(X'\) be Stone spaces.

1. Given a subset \(S\) of \(X\), the subspace induced by \(S\) is a Stone space iff \(S\) is closed.
2. If \(f : X \to X'\) is continuous, then the image \(f[X]\) of \(X\) under \(f\) is a Stone space.

The earlier announced analog of the powerset functor on the category of Stone spaces is given by the Vietoris construction, which may be defined as follows.

Definition 2.5. For every Stone space \(X\), its Vietoris space \(\mathcal{V}(X)\) is defined as the set of all closed subsets of \(X\), endowed with the topology generated by taking as a subbasis all sets of the form

1. \(\exists C = \{F \in \mathcal{V}(X) : F \subseteq C\}\)
2. \(\forall C = \{F \in \mathcal{V}(X) : F \cap C \neq \emptyset\}\)
where C ranges over all clopen subsets of X.

Note that usually, one builds up the Vietoris topology starting from basic elements of the form $\exists U, \forall U$ with U an arbitrary open set rather than clopen. In the case of Stone spaces the two definitions are equivalent. It is well known that for every Stone space X, the space $\mathcal{V}(X)$ is also a Stone space, and the Vietoris construction \mathcal{V} can in fact be extended to a functor $\mathcal{V} : \text{Stone} \to \text{Stone}$ which sends a map $f : X \to Y$ to the map $\mathcal{V}f$ given by $\mathcal{V}f(F) = f[F]$ (for all closed sets $F \subseteq X$).

Descriptive frames and models as Stone coalgebras To explain how descriptive frames can be seen as Stone coalgebras, we first link the admissible sets of a descriptive frame to the clopen sets of a Stone space. For every field of sets (X, A) we can define a topology on X by declaring A as its basis. This topology is zero-dimensional by definition, and it is not hard to verify that it is a Stone space iff (X, A) is descriptive. Conversely, it is easy to see that the set $\text{Clop}(X)$ of clopens of a Stone space X forms a field of sets that is differentiated and compact. In the sequel it will be convenient for us to identify Stone spaces with descriptive field of sets.

Now consider a Stone space X and a binary relation R on (the underlying set of) X. We leave it for the reader to check the well-known fact that R satisfies the tightness condition (1) iff R is point-closed, that is, $R(x)$ is a closed set for all points $x \in X$. In other words, a relation R is tight on a Stone space X iff R, seen as a coalgebraic map, is a function from X to (the carrier set of) the Vietoris space $\mathcal{V}(X)$. However, this is not enough for making the structure $(X, R, \text{Clop}(X))$ a descriptive frame: for $(X, R, \text{Clop}(X))$ to be a general frame, $\text{Clop}(X)$ must be closed under the operation $\langle R \rangle$. This however is taken care of by the continuity of R. For future reference we state this as follows, for any Stone space X:

$$R : X \to \mathcal{V}(X) \text{ is continuous iff } \text{Clop}(X) \text{ is closed under } \langle R \rangle.$$ (2)

The above considerations show that descriptive frames can be identified with Stone coalgebras for the Vietoris functor \mathcal{V}.

In order to see descriptive models as Stone-based coalgebras, consider a clopen valuation on a descriptive frame (X, R), that is, a function $V : \Phi \to \mathcal{P}(X)$ mapping each $p \in \Phi$ to a clopen subset of X. In the coalgebraic representation of Kripke models, this valuation V was represented as the map $V^{-1} : X \to \mathcal{P}(\Phi)$. Now identify $\mathcal{P}(\Phi)$ with the set 2^Φ of characteristic functions on Φ, and observe that this set can be endowed with the product topology induced by the discrete topology on the set $2 = \{0, 1\}$. The resulting topological space, denoted as 2^Φ, is a Stone space; for convenience, its elements will be identified with, and denoted as, subsets of Φ. It can be proved that a valuation $V : \Phi \to \mathcal{P}(X)$ is admissible iff V^{-1} is continuous when seen as a map between the topologies X and 2^Φ. Let $\mathcal{V}_\Phi : \text{Stone} \to \text{Stone}$ be the functor that maps a Stone space X to $\mathcal{V}(X) \times 2^\Phi$, and a function $f : X \to Y$ to the map $\mathcal{V}f \times \text{id}$ given by $(\mathcal{V}f \times \text{id})(F, Q) = (f[F], Q)$ (for all $F \in \mathcal{V}(X)$ and all $Q \subseteq \Phi$).

The following fact, which in the sequel we may use without further notification, summarizes our findings. For a proof we refer to [20].
Fact 2.6. The category of descriptive frames with continuous bounded morphisms is isomorphic to the category of V-coalgebras. Likewise, the category of descriptive models with continuous bounded morphisms is isomorphic to the category of V_{Φ}-coalgebras.

Convention 2.7. In the sequel we will make use of Fact 2.6 without explicit notification. For instance, we will usually present descriptive models coalgebraically as pairs $M = (X, \sigma)$, or as triples $M = (X, R, \nu)$. Here X is a Stone space and $\sigma : X \to V_{\Phi}(X)$ is a Vietoris coalgebra map on X, which can also be presented as the pair (R, ν) where $\nu : X \to 2^\Phi$ represents an admissible valuation, and one may think of R either as a tight/point-closed relation $R \subseteq X \times X'$, or as a continuous map $R : X \to V(X)$.

Finality and behavioral equivalence To finish this introductory section we briefly discuss two key coalgebraic concepts in the context of descriptive models.

To start with the first, a coalgebra (Z, ζ) is final in the category of T-coalgebras if for every T-coalgebra C there is a unique coalgebra homomorphism $! : C \to (Z, \zeta)$. The categories of descriptive frames and models both have final objects: the canonical (general) frame in the case of descriptive frames, and the canonical model in the case of the descriptive models. From the perspective of the duality with modal algebras this should not come as a surprise, since the canonical general frame is the dual of the Lindenbaum-Tarski algebra, which is known to be a free object in the category of modal algebras (or an initial object, depending on the exact status of the proposition letters in Φ).

Recall that the canonical model for a set Φ of proposition letters is the structure $M^c := (X^c, R^c, \nu^c)$. Here X^c is the set of maximal consistent sets of modal formulas (using proposition letters from Φ); the admissible/clopen sets are of the form $\hat{\phi} := \{ u \in X^c \mid \phi \in u \}$ for any formula ϕ in the modal language (with proposition letters from Φ); the canonical accessibility relation $R^c \subseteq X^c \times X^c$ is given by putting $uR^c v$ if $\{ \diamond \phi \mid \phi \in v \} \subseteq u$; and the canonical valuation ν^c is defined by $\nu^c(u) := u \cap \Phi$. To say that the structure M^c is the final object in the category of descriptive models amounts to the following result, which is essentially due to Abramsky [1].

Fact 2.8. Let M be a descriptive model. Then the theory map, sending a point x in M to the set of formulas that are true at x, is the unique coalgebra morphism from M to M^c.

In the case of set-based coalgebras there is often a natural interpretation of the states of a final algebra as the various distinct behaviours that a pointed coalgebra may display. This explains why we call a state s in a system C behaviorally equivalent to a state s' in a system C' if $\nu_C(s) = \nu_C'(s')$. In the absence of a final coalgebra, we call two states s and s' in two systems C and C' behaviorally equivalent if s and s' can be identified by some pair of coalgebra morphisms, that is, if there is a coalgebra D and two coalgebra homomorphisms $f : C \to D$ and $f' : C' \to D$ such that $f(s) = f'(s')$.

As a consequence of Fact 2.8, we can show that behavioral equivalence coincides with modal equivalence (where both notions are defined in the same way as for systems). While the following theorem is to our knowledge new, it is a straightforward consequence of Abramsky’s result, Fact 2.8, and work by Kurz & Pattinson [22] on the coalgebraic role of the canonical model.
Theorem 2.9. Let M and M' be descriptive models, and let x and x' be points in M and M', respectively. Then x and x' are behaviorally equivalent iff $M, x \sim M', x'$.

Bisimulations can be seen as a way to get hold of the notion of behavioral equivalence, without having to move outside of the two coalgebras involved. In the next two sections we will discuss two ways of defining the notion of a bisimulation for descriptive models.

3 Vietoris Bisimulations

The first characterization of bisimulations between systems (that is, set-based coalgebras) that we will generalize to the setting of Stone coalgebras is the one using the notion of relation lifting. As far as we know, this characterization is due to Rutten [26], who generalized earlier results by Hermida & Jacobs [17] on set coalgebras for so-called polynomial set functors. See also [4, 28].

We first consider the case of the powerset functor. Let W and W' be sets and let $B \subseteq W \times W'$ be a binary relation. We define the relation lifting $\widetilde{P}(B) \subseteq P(W) \times P(W')$ of B by

$$\widetilde{P}(B) := \{ (U, U') : \forall x \in U \exists x' \in U' \ x B x', \ and \ \forall x' \in U' \exists x \in U \ x B x' \}.$$

Similarly, for the functor P_Φ, we define the relation lifting $\widetilde{P}_\Phi(B) \subseteq P_\Phi(W) \times P_\Phi(W')$ of B by

$$\widetilde{P}_\Phi(B) := \{ ((U, Q), (U', Q')) : (U, U') \in \widetilde{P}(B) \ and \ Q = Q' \}.$$

Fact 3.1. Let (W, σ) and (W', σ') be Kripke models. A relation $B \subseteq W \times W'$ is a Kripke bisimulation iff $(\sigma(w), \sigma'(w'))$ belongs to $\widetilde{P}_\Phi(B)$, for all $(w, w') \in B$.

The notion of relation lifting can be defined for an arbitrary set functor, as follows. Given a relation $B \subseteq S \times S'$, consider the following diagram, where π and π' denote the projection maps.

$$S \xleftarrow{\pi} B \xrightarrow{\pi'} S'$$

If we apply the functor T to this diagram, it follows from the category-theoretic properties of the product $T S \times T S'$ (with projection maps p and p') that there is a unique map $\rho = (T \pi, T \pi')$ from $T R$ to $T S \times T S'$ such that $p \circ \rho = T \pi$ and $p' \circ \rho = T \pi'$:

$$T S \xleftarrow{T \pi} T B \xrightarrow{T \pi'} T S'$$

The relation lifting of B is defined as the image of TB under ρ, that is, as the relation

$$\widetilde{T}B := \{ ((T \pi)(u), (T \pi')(u)) \mid u \in TB \}.$$

9
It is an easy exercise to check that this definition, in the case of the Kripke functor \(P \), coincides with (4).

This suggests the following definition for relation lifting on Stone spaces. Given two Stone spaces \(X \) and \(X' \), consider a subspace \(S \) of the product space \(X \times X' \), with the projections \(\pi : S \to X \) and \(\pi' : S \to X' \). Observe that the projections are continuous, and hence indeed are arrows in Stone. Now apply the Vietoris functor to the diagram:

\[
X \xrightarrow{\pi} S \xrightarrow{\pi'} X'
\]

obtaining

\[
\forall X \xrightarrow{\forall \pi} \forall S \xrightarrow{\forall \pi'} \forall X'
\]

Since the category Stone has products, there is a unique arrow \((\forall \pi, \forall \pi') \) from \(\forall S \) to \(\forall X \times \forall X' \). We will define \(\tilde{\forall}(S) \) as the subspace of \(\forall X \times \forall X' \) induced by the image of \(\forall S \) under this map — this subspace is a Stone space by Fact 2.4(2).

This definition easily generalizes to an arbitrary endofunctor \(T \) on Stone.

Definition 3.2. Let \(T \) be an endofunctor on the category Stone, and let \(X \) and \(X' \) be two Stone spaces. Given a subspace \(S \) of \(X \times X' \), with projections \(\pi \) and \(\pi' \), let the \(T \)-lifting \(\tilde{T}(S) \) of \(S \) denote the subspace \((T \pi, T \pi')|TS \) of \(TX \times TX' \). Given the identification of subspaces of a product with binary relations between the respective spaces that are closed in the product topology (Fact 2.4(1)), this definition induces a notion of relation lifting of closed binary relations, that will be denoted by \(\tilde{T} \) as well.

Observe that for any closed relation \(B \subseteq X \times X' \), the relation \(\tilde{T}(B) \subseteq TX \times TX' \) is closed as well (in the product topology of \(TX \) and \(TX' \)). See Remark 3.6 on how to extend this definition of relation lifting to relations that are not closed.

On the basis of Definition 3.2 we define our notion of Vietoris bisimulation.

Definition 3.3. Let \((X, \sigma) \) and \((X', \sigma') \) be two descriptive models, and suppose that \(B \subseteq X \times X' \) is a closed set in the product topology. Then we say that \(B \) is a Vietoris bisimulation if \((\sigma(x), \sigma(x')) \in \tilde{\forall}_{\Phi}(B) \) for all \((x, x') \in B \).

Here is a more direct characterization of the Vietoris relation lifting.

Proposition 3.4. Given a closed relation \(B \) between two Stone spaces \(X \) and \(X' \), we may characterize the relation liftings \(\tilde{\forall}(B) \) and \(\tilde{\forall}_{\Phi}(B) \) as follows:

\[
\tilde{\forall}(B) = \{(F, F') : \forall x \in F \ \exists x' \in F' \ x B x' \}, \tag{6}
\]

and

\[
\tilde{\forall}_{\Phi}(B) = \{((F, Q), (F', Q')) : (F, F') \in \tilde{\forall}(B) \text{ and } Q = Q'\} \tag{7}
\]

In other words, when we restrict attention to closed subsets of \(X \) and \(X' \), the relations \(\tilde{\forall}(B) \) and \(\forall B \) coincide, and likewise for \(\tilde{\forall}_{\Phi}(B) \) and \(\tilde{\forall}_{\Phi}(B) \). That is, another way of formulating (6) and (7) is as follows:

\[
\tilde{\forall}(B) = \tilde{\forall}(B) \cap (\forall X \times \forall X'),
\]

\[
\tilde{\forall}_{\Phi}(B) = \tilde{\forall}_{\Phi}(B) \cap (\forall X \times \forall X').
\]
Proof. We only prove the first characterization, the second one being an immediate consequence of the first. For the inclusion ‘\subseteq’ of (6), take an element in $\mathcal{V}(B)$, i.e., a closed subset $G \subseteq B$. Then the sets $\pi[G]$ and $\pi'[G]$ are closed subsets of X and X', respectively, and by definition this pair of sets satisfies the property that $\forall x \in \pi[G] \exists x' \in \pi'[G]$ xGx', and vice versa. But then by G being a subset of B, the pair $(\pi[G], \pi'[G])$ belongs to the set on the right hand side of (6). For the opposite inclusion, take a pair $(F, F') \in \mathcal{P}(B) \cap (\mathcal{V}X \times \mathcal{V}X')$. Then the set $G := (F \times F') \cap B$ is a closed subset of B, and so it belongs to the set $\mathcal{V}(B)$. But since (F, F') belongs to $\mathcal{P}(B)$, it is straightforward to check that $\pi[G] = F$ and $\pi'[G] = F'$. From this it follows that $(F, F') = (\mathcal{V}_\pi, \mathcal{V}_\pi')(G)$ and so by definition, $(F, F') \in \mathcal{V}(B)$. This proves (6). \hfill \square

As an easy corollary of Proposition 3.4 we obtain the following characterization of Vietoris bisimulations. We list it as a theorem because of its conceptual, not its technical importance.

Theorem 3.5. Let (X, σ) and (X', σ') be two descriptive models, and let B be a relation $B \subseteq X \times X'$. Then B is a Vietoris bisimulation iff B is a closed Kripke bisimulation.

Proof. Let B be a relation $B \subseteq X \times X'$. Then B is a Vietoris bisimulation iff B is closed and $(\sigma(x), \sigma'(x')) \in \mathcal{V}_\Phi(B)$ for each pair $(x, x') \in B$. But by Proposition 3.4 this is equivalent to requiring that B is a closed Kripke bisimulation. \hfill \square

Remark 3.6. Given the fact that (6) and (7) characterize the Vietoris relation lifting of a closed binary relation, we may take these identities as the definition of a notion of relation lifting for arbitrary (i.e., not necessarily closed) relations between X and X'. That is, for any relation $B \subseteq X \times X'$, define

$$\tilde{B} := \{(F, F') \in \mathcal{V}X \times \mathcal{V}X' \mid \forall x \in F \exists x' \in F' \ xBx', \ \forall x' \in F' \exists x \in F \ xBx'\}.$$

Interestingly, we may prove that

$$B \text{ is closed } \iff \tilde{B} \text{ is closed } \iff (\forall x \times \forall x').$$

(8)

The implication ‘\Rightarrow’ follows from (6): If B is closed then $\tilde{V}B$ is a closed subset in $\mathcal{V}X \times \mathcal{V}X'$, simply by Definition 3.2. But by (6), $\tilde{V}B = \tilde{B}$, and so the latter is indeed closed.

For the implication in the opposite direction, suppose that \tilde{B} is closed in $\mathcal{V}X \times \mathcal{V}X'$. In order to prove that B is closed, we will show its complement to be open. For this purpose, take $(x, x') \notin B$. It suffices to find an open neighborhood of (x, x') that does not intersect B. Since every singleton of a Stone space is closed, we have that $(\{x\}, \{x'\}) \in \mathcal{V}X \times \mathcal{V}X'$. Moreover, $(\{x\}, \{x'\}) \notin \tilde{B}$. Therefore, there exist basic open sets $U \subseteq \mathcal{V}X$ and $U' \subseteq \mathcal{V}X'$ such that $\{x\} \in U$, $\{x'\} \in U'$, and $(U \times U') \cap B = \emptyset$. By definition of the Vietoris topology, there are clopens C_i, C'_i with $U = \langle \exists \rangle C_1 \cap \cdots \cap \langle \exists \rangle C_k \cap [\exists] C_{k+1} \cap \cdots \cap [\exists] C_n$ and $U' = \langle \exists \rangle C'_1 \cap \cdots \cap \langle \exists \rangle C'_{k'} \cap [\exists] C'_{k'+1} \cap \cdots \cap [\exists] C'_{n'}$. Then $x \in \bigcap_{i=1}^n C_i$ and $x' \in \bigcap_{i=1}^{n'} C'_i$. Let $C = \bigcap_{i=1}^n C_i$ and $C' = \bigcap_{i=1}^{n'} C'_i$. Then $(x, x') \in C \times C'$. Now we show that $(C \times C') \cap B = \emptyset$. Suppose there exists $(s, s') \in B$ such that $s \in C$ and $s' \in C'$. Then $(\{s\}, \{s'\}) \in \tilde{B}$ and $(\{s\}, \{s'\}) \in U \times U'$. This is a contradiction since the intersection of $U \times U'$ with \tilde{B} is empty. Thus, $C \times C'$ is a neighborhood of (x, x') that does not intersect B. This finishes the proof of (8).

11
Our main reason for believing that Definition 3.3 provides the right notion of a Vietoris bisimulation is that, unlike the Aczel-Mendler bisimilarity of the following section, Vietoris bisimilarity exactly captures the notion of behavioral equivalence between two Stone spaces. As a matter of fact, we can show that the relation of behavioral equivalence is itself a Vietoris bisimulation.

Theorem 3.7. Let \(M = (X, R, \nu) \) and \(M' = (X', R', \nu') \) be descriptive models. Then the relation of behavioral equivalence between \(M \) and \(M' \) is a Vietoris bisimulation.

Proof. By the Theorems 2.9 and 3.5 it suffices to prove that the relation \(\sim \) of modal equivalence is a closed Kripke bisimulation between \(M \) and \(M' \).

We first prove that \(\sim \) is a Kripke bisimulation. Let \(x \sim x' \). Then obviously \(x \) and \(x' \) satisfy the same propositional variables. Now assume \(xRy \) and suppose there is no \(y' \in R'(x') \) such that \(y' \) are modally equivalent. This means that for every \(y' \in R'(x') \) there exists a formula \(\varphi_y \) such that \(y \not\models \varphi_y' \) and \(y' \models \varphi_y' \). Therefore, \(R'(x') \subseteq \bigcup_{y' \in R'(x')} [\varphi_y']^{M'} \), where \([\varphi_y']^{M'} \) denotes the set of points in \(M' \) where \(\varphi_y \) holds. Since \(M \) is a descriptive model, for each \(\varphi_y \), the set \([\varphi_y']^{M'} \) is clopen. (As mentioned earlier on, it is routine to verify that in a general frame, the interpretation of any modal formula is a clopen set.) Moreover, \(R'(x') \), being a closed set of a compact space, is also compact. Thus, there exist \(\varphi_1, \ldots, \varphi_n \) such that \(R'(x') \subseteq \bigcup_{i=1}^n [\varphi_i]^{M'} \) and for each \(i \leq n \) we have \(y \not\models \varphi_i \). This implies that \(x' \models \Box (\varphi_1 \lor \cdots \lor \varphi_n) \) and \(y \not\models \varphi_1 \lor \cdots \lor \varphi_n \). Finally, since \(x \) and \(x' \) are modally equivalent, we obtain that \(x \models \Box (\varphi_1 \lor \cdots \lor \varphi_n) \), which together with \(xRy \) gives us a contradiction. The proof of the forth condition is similar.

It remains to show that \(\sim \) is closed. Suppose \(x \) and \(x' \) are not modally equivalent. Then there exists a formula \(\varphi \) such that \(M, x \models \varphi \) and \(M', x' \not\models \varphi \). Let \(U \) be the basic open set \([\varphi]^M \times [\neg \varphi]^{M'}\). Then \((x, x') \in U \), while it is obvious that \(\sim \cap U = \emptyset \). Thus, we found an open neighborhood of \((x, x') \) contained in the complement of \(\sim \). This means that \(\sim \) is closed. \(\square \)

Remark 3.8. Theorem 3.7 is closely related to results in the literature on so-called m-saturated models. A modal model is called \(m \)-saturated if, for every state \(w \in W \), every set \(\Sigma \) of formulas which is finitely satisfiable in the set of successors of \(w \), is itself satisfiable in the set of successors of \(w \). Then a result, originally due to A. Visser (unpublished, see [8, section 2.5] for a proof), states that the class of m-saturated models has the so-called Hennessy-Milner property. That is, between any two m-saturated models, the relation of modal equivalence is a (Kripke) bisimulation. The connection with our approach here is that one may easily show that descriptive models are in fact m-saturated, so that Theorem 3.7 can be seen as a corollary of Visser’s result. For more work in this direction, see Goldblatt [15] or Hollenberg [18].

As a fairly direct corollary of the previous theorem we find that the notions of behavioral equivalence, Vietoris bisimilarity and Kripke bisimilarity coincide.

Corollary 3.9. Let \(M \) and \(M' \) be descriptive models, and let \(x \) and \(x' \) be two points in \(M \) and \(M' \), respectively. Then the following are equivalent:

1. \(x \) and \(x' \) are behaviorally equivalent
2. x and x' are Vietoris bisimilar

3. x and x' are Kripke bisimilar.

Proof. The implication ‘$1 \Rightarrow 2$’ is immediate by the previous theorem, and the implication ‘$2 \Rightarrow 3$’ follows from Theorem 3.5. The remaining implication ‘$3 \Rightarrow 2$’ follows from the invariance of the truth of modal formulas under Kripke bisimilarity (and the fact that behavioral equivalence is the same as modal equivalence).

4 Aczel-Mendler bisimulations

In this section we discuss an earlier notion of bisimulation, due to Aczel & Mendler [3]. Here the basic idea is that the bisimulation relation is itself the carrier of a coalgebraic structure. Aczel & Mendler’s definition, which applied to set coalgebras only, easily generalizes to the following definition for any category in which finite products exist.

Definition 4.1. Let $T : C \to C$ be an endofunctor on a category C, which we assume to have binary products. Consider two T-coalgebras (S, σ) and (S', σ'), and let B be a subobject of $S \times S'$, with associated projections $\pi : B \to S$ and $\pi' : B \to S'$. The triple (B, π, π') is called a T-bisimulation if there exists a morphism $\beta : B \to TB$ such that the following diagram commutes:

\[
\begin{array}{ccc}
S & \xrightarrow{\sigma} & B \\
\downarrow{\pi} & & \downarrow{\beta} \\
TS & \xrightarrow{T\pi} & TB \\
\end{array}
\]

\[
\begin{array}{ccc}
S' & \xleftarrow{\sigma'} & B' \\
\downarrow{\pi'} & & \downarrow{\beta'} \\
TS' & \xleftarrow{T\pi'} & TB' \\
\end{array}
\]

Remark 4.2. If the base category C does not have binary products, then bisimulations can be defined as so-called mono spans (B, π, π'); see, e.g., Kurz [21, Section 1.1.3].

Note that the above definition, when applied to Kripke structures, admits bisimulations between two Kripke frames that are not concretely based on actual binary relations between the carriers of the two coalgebras. If we restrict our attention to concrete relations, as we will do in this paper, then the two notions coincide.

Fact 4.3. Let $M = (W, R, \nu)$ and $M' = (W', R', \nu')$ be Kripke models and therefore coalgebras for the Kripke functor P_R. Let $B \subseteq W \times W'$ be a binary relation between W and W' with associated projections $\pi : (x, x') \mapsto x$ and $\pi' : (x, x') \mapsto x'$. Then B is a Kripke bisimulation iff (B, π, π') is a P_R-bisimulation.

Now we are ready to define bisimulations of descriptive models. Given Fact 4.3, it seems natural to take the following coalgebraic perspective, analogous to Definition 4.1.

Definition 4.4. Let (X, σ) and (X', σ') be two descriptive models, and let $B \subseteq X \times X'$ be a binary relation with associated projections $\pi : (x, x') \mapsto x$ and $\pi' : (x, x') \mapsto x'$. Then we call B an Aczel-Mendler bisimulation, if, seen as a subspace of the product topology $X \times X'$, it is a Stone space which can be endowed with a Vietoris coalgebra structure β that makes the diagram below commute.
Two points x and x' are called Aczel-Mendler bisimilar if they are linked by some Aczel-Mendler bisimulation.

Note that the diagram of Definition 4.4 is a diagram in the category of Stone spaces. In particular, the arrow β must be a continuous map from B to \mathcal{V}_B.

Proposition 4.5. Every Aczel-Mendler bisimulation between two descriptive models is also a Kripke bisimulation. As a corollary, Aczel-Mendler bisimilarity implies Kripke bisimilarity, Vietoris bisimilarity, behavioral equivalence, and modal equivalence.

Proof. That every Aczel-Mendler bisimulation is a Kripke bisimulation, follows directly from the commutativity of the diagram of Definition 4.4. (For details: the argument of [30, Example 168], which applies to the powerset functor, goes through for the Vietoris functor as well.) From this the second statement of the proposition is immediate by Corollary 3.9.

The following example shows that the converse of Proposition 4.5 does not hold in general: Aczel-Mendler bisimilarity is not the same as Vietoris bisimilarity, and hence, it differs from modal equivalence and behavioral equivalence as well.

Example 4.6. We will give an example of two descriptive models and two states in these models that are modally equivalent, but not Aczel-Mendler bisimilar. Let $T_0 = \{ t_i \mid i \in \omega \}$, $U_0 = \{ u_i \mid i \in \omega \}$ and $V_0 = \{ v_i \mid i \in \omega \}$ be countable sets, endowed with the discrete topology. Let $T = T_0 \cup \{ t_\infty \}$, $U = U_0 \cup \{ u_\infty \}$ and $V = V_0 \cup \{ v_\infty \}$ be the Alexandroff compactifications of T_0, U_0, and V_0, respectively. In other words, the clopens of T are the finite subsets of T_0, together with the cofinite subsets of T containing the point t_∞, and likewise for U and V. We let X denote the topological sum $T \oplus U \oplus V$, and define a relation R on X by

$$R := \{(t_i, u_i), (t_i, v_i) \mid i \in \omega \cup \{ \infty \} \},$$

see Figure 1 for a picture. It is routine to check that (X, R) is a descriptive frame. We let (X', R') be an isomorphic copy of (X, R), and define valuations ν and ν' on X and X' by

- $\nu(u_i) = \nu'(u'_i) = \{ p^+_i \}$ for all odd $i \in \omega$,
- $\nu(v_i) = \nu'(v'_i) = \{ p^-_i \}$ for all odd $i \in \omega$,
- $\nu(u_i) = \nu'(v'_i) = \{ q^+_i \}$ for all even $i \in \omega$,
- $\nu(v_i) = \nu'(u'_i) = \{ q^-_i \}$ for all even $i \in \omega$.

It is easy to check that ν and ν' are admissible valuations and therefore $X = (X, R, \nu)$ and $X' = (X', R', \nu')$ are descriptive models.
We first focus on the relation $B := \sim \sim$ of modal equivalence. It is easy to see that

$$B = \{(t_i, t'_i) \mid i \in \omega \cup \{\infty\}\} \cup \{(u_i, u'_i), (v_i, v'_i) \mid i \text{ is odd }\} \cup \{(u_i, v'_i), (v_i, u'_i) \mid i \text{ is even }\} \cup \{(u_\infty, v_\infty) \times \{u'\infty, v'\infty\}\}$$

Claim 1. B is a Vietoris bisimulation, but not an Aczel-Mendler bisimulation.

Proof of Claim In the previous section we already proved that the relation of modal equivalence between two descriptive models is a Vietoris bisimulation. This takes care of the first part of the claim, so it is left to prove that B is not an Aczel-Mendler bisimulation.

Suppose for contradiction that $\beta : B \to \mathcal{V}_B(B)$ is a continuous map making the diagram of Definition 4.4 commute. Let $\beta : B \to \mathcal{V}(B)$ be the composition of $\beta : B \to \mathcal{V}(B) \times 2^\phi$ with the first projection of $\mathcal{V}(B) \times 2^\phi$ to $\mathcal{V}(B)$. Obviously, β is continuous iff β is continuous.

Therefore, it suffices to show that $\beta : B \to \mathcal{V}(B)$ is not continuous.

Chasing the diagram of Definition 4.4, it is not hard to show that

$$\text{if } i \in \omega, \text{ then } \beta(t_i, t'_i) = (R(t_i) \times R'(t'_i)) \cap B,$$

and

$$\beta(t_\infty, t'_\infty) \cap \{(u_\infty, v_\infty) \times \{u'\infty, v'\infty\}\} \neq \emptyset.$$

By (10) we may assume, without loss of generality, that $(u_\infty, u'_\infty) \in \beta(t_\infty, t'_\infty)$. Consider the set $C = (U \times U') \cap B$. Obviously, $C = \{(u_i, u'_i) \mid i \text{ is odd}\} \cup \{(u_\infty, u'_\infty)\}$. Since U and U' are clopen in X and X', respectively, the set $U \times U'$ is clopen in $X \times X'$. Therefore, C
is clopen in B, and so by definition of $\mathcal{V}(B)$, $\langle \exists \rangle C$ is open in $\mathcal{V}(B)$. Then by the supposed continuity of β, the set $\beta^{-1}(\langle \exists \rangle C) = \{(x, x') | \beta(x, x') \cap C \neq \emptyset\}$ is open in B. However, using (9) and (10), it is not hard to show that

$$
\beta^{-1}(\langle \exists \rangle C) = \{(t_i, t'_i) | i = \infty \text{ or } i \text{ is odd}\},
$$

and this set is clearly not open in B. (For instance, one may show that the pair $(t_\infty, t'_\infty) \in \beta^{-1}(\langle \exists \rangle C)$ is a limit point of the complement $B \setminus \beta^{-1}(\langle \exists \rangle C)$ of $\beta^{-1}(\langle \exists \rangle C)$). This gives us the desired contradiction, and thus proves the claim. \hfill \Diamond

Note that, although in our example the modal equivalence relation, B, is not an Aczel-Mendler bisimulation, for any two modally equivalent points $x \in X$ and $x' \in X'$, the relation $\{(x, x') \cup ((R(x) \times R'(x')) \cap B)\}$ is an Aczel-Mendler bisimulation. Therefore, x and x' are modally equivalent iff they are Aczel-Mendler bisimilar. In order to show that in general, the relation of modal equivalence does not coincide with Aczel-Mendler bisimilarity, we need to modify our example a bit.

Let Y be the Stone space we obtain from X by adding one single point r, i.e., we let Y be the topological sum $X \oplus \{r\}$. We also let $S = R \cup \{(u_i, r), (v_i, r), (r, t_i) | i \in \omega \cup \{\infty\}\}$. It is easy to check that (Y, S) is a descriptive frame. Let (Y', S') be an isomorphic copy of (Y, S). We define valuations μ and μ' on Y and Y', respectively, by

- $\mu(x) = \nu(x)$ and $\mu'(x') = \nu'(x')$ for each $x \in X$ and $x' \in X'$,
- $\mu(r) = \mu'(r') = \{p\}$.

It is easy to check that μ and μ' are descriptive valuations. Thus, $Y = (Y, S, \mu)$ and $Y' = (Y', S', \mu')$ are descriptive models.

Claim 2. The points r and r' are Vietoris bisimilar, but not Aczel-Mendler bisimilar.

Proof of Claim It is easy to verify that r and r' are modally equivalent, and so by Corollary 3.9 they are Vietoris bisimilar. Now for contradiction assume that r and r' are also Aczel-Mendler bisimilar, that is, there is an Aczel-Mendler bisimulation B' linking r and r'. By Proposition 4.5 we obtain that B' is a Kripke bisimulation, and so from $rB'r'$ it is not hard to derive that $B' = B \cup \{(r, r')\}$. But then the same argument as above shows that B' is not an Aczel-Mendler bisimulation. \hfill \Diamond

Remark 4.7. In fact we can avoid the use of the propositional variables p^+_i, p^-_i, q^+_i, q^-_i in Example 4.6. We let T_n denote the tree obtained from the disjoint union of all the chains of length k for $k \leq n$, by identifying their roots. We let (Z, S) be the descriptive frame obtained by substituting each u_i and v_i in (X, R), for $i \in \omega$, by T_{2i+1} and T_{2i}, respectively. We also let (Z', S') be an isomorphic copy of (Z, S). Then an argument similar to the one used in Example 4.6 shows that the modal equivalence between the descriptive frames (Z, S) and (Z', S') is not an Aczel-Mendler bisimulation. We skip the details.

As a corollary to Example 4.6, we obtain that the Vietoris functor does not preserve weak pullbacks. For the definition of weak pullbacks and weak pullback preserving functors we refer to [30].
Corollary 4.8. The Vietoris functor does not preserve weak pullbacks.

Proof. Let X and X' be the Stone spaces of Example 4.6. Also let $!_X : X \to X^c$ and $!_{X'} : X' \to X^c$ be the theory maps discussed in Section 2, where X^c is the underlying Stone space of the canonical model $M^c = (X^c, R^c, \nu^c)$. Then clearly, $!_X : X \to X^c$ and $!_{X'} : X' \to X^c$ are coalgebra homomorphisms from the descriptive frames (X, R) and (X', R'), respectively, to (X^c, R^c). It is easy to check that the modal equivalence $B \subseteq X \times X'$ described in Example 4.6 is equal to $\{(x, x') \in X \times X' | !_X(x) = !_X(x')\}$. Therefore, B is the pullback of $!_X$ and $!_{X'}$. So if \mathcal{V} preserves weak pullbacks, then $\mathcal{V}B$ must be a weak pullback of $\mathcal{V}(!_X)$ and $\mathcal{V}(!_{X'})$.

We show that this is a contradiction. Consider the maps $\sigma \circ \pi : B \to \mathcal{V}X$ and $\sigma' \circ \pi' : B \to \mathcal{V}X'$. First we claim that

$$\mathcal{V}(!_X) \circ \sigma \circ \pi = \mathcal{V}(!_{X'}) \circ \sigma' \circ \pi'. \tag{11}$$

This follows from the facts that $!_X$ is a coalgebra morphism ($\mathcal{V}(!_X) \circ \sigma = \sigma^c \circ !_X$), that B is a pullback ($!_X \circ \pi = !_X \circ \pi'$) and that $!_{X'}$ is a coalgebra morphism ($\sigma^c \circ !_X = \mathcal{V}(!_{X'}) \circ \sigma'$), see the diagram in Figure 2.

Now if $\mathcal{V}B$ is a weak pullback of $!_X$ and $!_{X'}$, there must exist a map $\beta : B \to \mathcal{V}B$ such that $\mathcal{V}_\pi \circ \beta = \sigma \circ \pi$ and $\mathcal{V}_{\pi'} \circ \beta = \sigma' \circ \pi'$. But this means that B is an Aczel-Mendler bisimulation, contradicting Claim 1 in Example 4.6.

We finish this section by showing that the set of Aczel-Mendler bisimulations between two descriptive models do not form a lattice.

Corollary 4.9. There exist pairs of descriptive models for which the poset of Aczel-Mendler bisimulations is not a lattice.
Proof. Let X and X' be the models described in Example 4.6. Let
$$B_1 := \{(u_i, u'_i), (v_i, v'_i), (t_i, t'_i) \mid i \text{ is odd or } i = \infty\}$$
and
$$B_2 := \{(u_i, v'_i), (v_i, u'_i), (t_i, t'_i) \mid i \text{ is even or } i = \infty\}.$$
We show that B_1 and B_2 are Aczel-Mendler bisimulations. Without loss of generality we consider the case of B_1. It is easy to see that B_1 is closed, therefore it is a Stone space. As in Example 4.6, instead of $V\Phi(B_1)$, we work with $V(B_1)$. We define a map $\beta_1 : B_1 \to V(B_1)$ by
$$\beta_1(x, x') = (R(x) \times R'(x')) \cap B_1.$$
Since R and R' are closed, β_1 is well defined. The standard argument also shows that the diagram of Definition 4.4 commutes. Finally, let C be clopen in B_1. Then $C = \bigcup_{i=1}^{n} (C_i \times C'_i) \cap B_1$, where C_i and C'_i are clopens in X and X', respectively. It is now routine to check that for each clopen A and A' in X and X', respectively, we have $\beta_1^{-1}(\langle A \times A' \rangle \cap B_1) = (\langle R \rangle A \times \langle R' \rangle A') \cap B_1$ and $\beta_1^{-1}(\langle A \times A' \rangle \cap B_1) = (\langle R \rangle A \times \langle R' \rangle A') \cap B_1$. Thus, β_1 is continuous and B_1 is an Aczel-Mendler bisimulation.

We observe that the modal equivalence relation B of Example 4.6 is equal to $B_1 \cup B_2$. Therefore, $B_1 \cup B_2$ is not an Aczel-Mendler bisimulation. Moreover, since $B_1 \cup B_2$ is modal equivalence, and by Proposition 4.5 Aczel-Mendler bisimilarity implies modal equivalence, there is no Aczel-Mendler bisimulation that contains $B_1 \cup B_2$. Thus, the Aczel-Mendler bisimulations B_1 and B_2 do not have an upper bound in the poset of all Aczel-Mendler bisimulations.

We see the results of this section as strong evidence that Aczel-Mendler bisimilarity is not the right notion of bisimilarity between descriptive models. Therefore, we prefer to work with the Vietoris bisimulations defined in the previous section.

5 Kripke versus Vietoris bisimulations

In this section we have a closer look at the connection between the two kinds of bisimulations that we have met. In Section 2 we already saw that the Vietoris bisimulations between two descriptive models can be identified with those Kripke bisimulations (between the underlying Kripke models) that are closed in the product space of the two Stone topologies. We will now prove something rather stronger, namely that the closure of any Kripke bisimulation is a Vietoris bisimulation. Given Theorem 3.5, the point to prove is that the topological closure of a Kripke bisimulation is again a Kripke bisimulation.

We first prove some auxiliary results concerning descriptive frames. The first lemma was obtained by Esakia [12] for transitive and reflexive relations (see also [7]).

Lemma 5.1. Let (X, R) be a descriptive frame. Then for every $U \subseteq X$, we have
$$\overline{R(U)} = R(\overline{U}).$$
Proof. First we show that $\overline{R(U)} \subseteq R(\overline{U})$. From $U \subseteq \overline{U}$, it follows that $R(U) \subseteq R(\overline{U})$. Recall that in a descriptive frame, if F is a closed set, so is $R(F)$ (see for instance [8, Proposition 5.83]). Thus $R(\overline{U})$ is closed. Since $R(\overline{U})$ is a closed set containing $R(U)$, we have that $R(U) \subseteq R(\overline{U})$.

For the inclusion from right to left, take an arbitrary x in $R(\overline{U})$. That is, there exists $y \in \overline{U}$ such that yRx. Suppose for contradiction that x does not belong to $\overline{R(U)}$. Since X, being a Stone space, has a clopen basis, there exists a clopen neighborhood C of x such that $C \cap R(U) = \emptyset$. It follows that $\langle R \rangle C \cap U = \emptyset$. Recall that (X, R) is a descriptive frame and hence, $\langle R \rangle C$ is clopen. Moreover, since yRx and $x \in C$, we get that $y \in (\langle R \rangle C)$. Gathering everything together, we obtain that $\langle R \rangle C$ is a clopen neighborhood of y such that $\langle R \rangle C \cap U = \emptyset$. This means that $y \notin \overline{U}$, which contradicts our assumption on y. \hfill \Box

Lemma 5.2. Let (X, R) be a descriptive frame. Then for every $U \subseteq X$, we have

$\overline{(R(U))} \subseteq (R(U))$.

Proof. From $U \subseteq \overline{U}$, it follows that $(R(U)) \subseteq (R(U))$. It is well known that in a descriptive frame (X, R), if F is a closed subset of X, then $\langle R \rangle F$ is closed (see, e.g., [12] or [7]). In particular, $(R(U))$ is closed. Therefore, $(R(U)) \subseteq \overline{(R(U))}$ implies that $\overline{(R(U))} \subseteq \overline{(R(U))}$, which finishes the proof of the lemma. \hfill \Box

Remark 5.3. Note that the converse inclusion $\overline{(R(U))} \supseteq (R(U))$ does not hold in general. For example, consider a countable set U with the discrete topology and let $\alpha(U) = U \cup \{\omega\}$ be the Alexandroff compactification of U (for the definition of the Alexandroff compactification see for instance [11, 3.5.11]). In other words, the clopens of $\alpha(U)$ are the finite subsets of U, together with the cofinite sets containing ω. Let $X = \alpha(U) \cup \{\omega\}$, where ω denotes topological sum, and let $R = \{(x, x)\}$. Then it is easy to check that (X, R) is a descriptive frame. Now, $(R(U)) = \emptyset$, and so, $\overline{(R(U))} = \emptyset$. On the other hand, $\overline{U} = U \cup \{\omega\}$, which gives us that $(R(U)) = \{x\}$. Thus, $\overline{(R(U))} \not\supseteq (R(U))$.

Lemma 5.4. Let (X, R) and (X', R') be descriptive frames and let $B \subseteq X \times X'$ be a relation. If (U, U') belongs to $\overline{P}(B)$, then $(\overline{U}, \overline{U'})$ belongs to $\overline{V}(B)$.

Proof. Suppose for contradiction that there exist $U \subseteq X$ and $U' \subseteq X'$ such that $(U, U') \in \overline{P}(B)$ and $(\overline{U}, \overline{U'}) \notin \overline{V}(B)$. Since $(\overline{U}, \overline{U'}) \notin \overline{V}(B)$ and $\overline{V}(B)$ is a closed set, there is a clopen neighborhood $\Sigma \times \Sigma'$ of $(\overline{U}, \overline{U'})$ such that $(\Sigma \times \Sigma') \cap \overline{V}(B) = \emptyset$. By definition of the Vietoris topology, we may assume that there are clopens $C_1, \ldots, C_n, D_1, \ldots, D_l$ of X such that $\Sigma = \langle \exists \rangle C_1 \land \cdots \land \langle \exists \rangle C_n \land \langle \exists \rangle D_1 \land \cdots \land \langle \exists \rangle D_l$. Similarly we may assume that there are clopens $C'_1, \ldots, C'_n', D'_1, \ldots, D'_l'$ of X' such that $\Sigma' = \langle \exists \rangle C'_1 \land \cdots \land \langle \exists \rangle C'_n' \land \langle \exists \rangle D'_1 \land \cdots \land \langle \exists \rangle D'_l'$.

As \overline{U} belongs to Σ, we have that for all $1 \leq i \leq n$, \overline{U} belongs to $\langle \exists \rangle C_i$; that is, $\overline{U} \cap C_i \neq \emptyset$. Thus for all $1 \leq i \leq n$, there exist u_i such that $u_i \in U \cap C_i$. Since $u_i \in U$ and C_i is a clopen neighborhood of u_i, we obtain that $C_i \cap U \neq \emptyset$. Therefore there is some x_i which belongs to $C_i \cap U$. Using a similar argument, we can show that there exist $y'_1, \ldots, y'_{n'}$ such that y'_i belongs to $C'_i \cap U'$, for all $1 \leq i \leq n'$.

Recall that (U, U') belongs to $\overline{P}(B)$. Thus for all $x \in U$, there is $x' \in U'$ such that (x, x') belongs to B. In particular, for each x_i, there exists $x'_i \in U'$ such that (x_i, x'_i) belongs to B. Likewise, for each y'_i, there exists $y_i \in U$ such that (y_i, y'_i) belongs to B. \hfill 19
Define F as the set \{$x_i : 1 \leq i \leq n$\} $\cup \{y_i : 1 \leq i \leq n'$\} and F' as the set \{$x'_i : 1 \leq i \leq n$\} $\cup \{y'_i : 1 \leq i \leq n'$\}. Then $(F,F') \in \tilde{\nu}(B) \subseteq \tilde{\nu}(B)$. We show now that (F,F') belongs to $\Sigma \times \Sigma'$; that is, F belongs to Σ and F' belongs to Σ'. We confine ourselves to prove that F belongs to Σ.

So we have to show that F belongs to $\langle \exists \rangle C_i$ (for all $1 \leq i \leq n$) and belongs to $[\exists] D_j$ (for all $1 \leq j \leq l$). Fix $1 \leq i \leq n$. To prove that F belongs to $\langle \exists \rangle C_i$, it is sufficient to prove that $F \cap C_i \neq \emptyset$. This follows immediately from the fact that x_i belongs to $F \cap C_i$. Fix now $1 \leq j \leq l$. We have to show that $F \subseteq D_j$. From the construction of F, it follows that F is a subset of U. Recall that \overline{U} belongs to Σ. In particular, \overline{U} belongs to $[\exists] D_j$; that is, \overline{U} is a subset of D_j. Putting that together with the fact that F is a subset of U, we obtain that $F \subseteq D_j$. This shows that F belongs to Σ.

Gathering everything together, we obtain that (F,F') belongs to $(\Sigma \times \Sigma') \cap \tilde{\nu}(B)$, which contradicts the fact that $(\Sigma \times \Sigma') \cap \tilde{\nu}(B)$ is empty. \qed

We have now arrived at the main technical result of the paper.

Theorem 5.5. Let (X,R,ν) and (X',R',ν') be descriptive models. If $B \subseteq X \times X'$ is a bisimulation between the underlying Kripke models, then \overline{B} is a Vietoris bisimulation.

Proof. By definition \overline{B} is closed, so we only need to check that \overline{B} is a Kripke bisimulation.

First, suppose for contradiction that $\nu(x) \neq \nu'(x')$ for some pair (x, x') in \overline{B}. Then without loss of generality, we may assume that $p \in \nu(x) \setminus \nu'(x')$, for some $p \in \Phi$. Consider the set $\Omega = \nu^{-1}(p) \times (X' \setminus \nu'^{-1}(p))$. It is not hard to see that Ω is a clopen neighbourhood of (x, x'). Since (x, x') belongs to \overline{B}, this means that $\Omega \cap B$ is nonempty. But any $(u, u') \in \Omega$ will have the property that $u \models p$ while $u' \not\models p$, so the nonemptiness of $\Omega \cap B$ contradicts the fact that B is a bisimulation. Hence we may conclude that $\nu(x) = \nu'(x')$.

It remains to check that \overline{B} satisfies the back and forth condition. We only consider the forth condition, leaving the back condition to be proved by a symmetric argument. Consider again a pair (x, x') in \overline{B}, and suppose that xRy for some $y \in X$. We need to come up with a y' such that $x'R'y'$ and $yB'y'$. Roughly, the idea of the proof is the following. Since (x, x') is in \overline{B}, there is a net $(x_i, x'_i)_{i \in I}$ in B which converges to (x, x'). (For definitions and basic facts about nets, we refer to [11, Section 1.6].) Using the lemmas we show that without loss of generality the x_i' are such that there is a set $Y' = \{y'_i : i \in I\} \subseteq R'((x'_i : i \in I) \cup \{x'\})$ such that $yB'y'$ for all i. We will then obtain y' as either an actual element of Y', or else as one of its limit points.

Turning to the details, we take a non-empty directed set I and a net $N = \{(x_i, x'_i) : i \in I\}$ converging to (x, x') and such that $N \subseteq B$. For every $i \in I$, define the net N_i as the net \{(\{x_j, x'_j\} : j \geq i\}. It is not hard to show that this net is finer than N, so that N_i converges to (x, x') as well. Let X_i be the set \{${x_j : j \geq i}$\} and let X'_i be the set \{${x'_j : j \geq i}$\}.

It is straightforward to verify that $(R(X_i), (X'_i))$ belongs to $\tilde{\nu}(B)$. Together with Lemma 5.4, this gives us that $(R(X_i), (X'_i)) \in \tilde{\nu}(B)$. Then by Lemma 5.1, $(R(X_i), (X'_i))$ belongs to $\tilde{\nu}(B)$. Recall that a set is closed iff together with a net it contains all the net’s limits. It follows that $X_i = X_i \cup \{x\}$ and $X'_i = X'_i \cup \{x'\}$. Therefore, $(R(X_i \cup \{x\}), (X'_i \cup \{x'\}))$ belongs to $\tilde{\nu}(B)$. From xRy, it follows that y belongs to $R(X_i \cup \{x\})$. As $(R(X_i \cup \{x\}), (X'_i \cup \{x'\})) \subseteq (R(X_i \cup \{x\}), (X'_i \cup \{x'\}))$, we conclude that $\nu(x) = \nu'(x')$. \qed
\(\{x'\}\) \(\in \mathcal{V}(\mathcal{B})\), there is \(y'_i \in R'(X'_i \cup \{x'\})\) such that \((y, y'_i)\) belongs to \(\mathcal{B}\). Since \(y'_i\) belongs to \(R'(X'_i \cup \{x'\})\), either \(x'R'y'_i\) or there is \(f(i) \geq i\) such that \(x'_{f(i)} R'y'_i\). If we can find a \(y'_i\) such that \(x'R'y'_i\), then we may take this \(y'_i\) to be our \(y'\), and we are done. Otherwise, we may assume the existence of a monotone map \(f : I \to I\) such that \(x'_{f(i)} R'y'_i\) for all \(i \in I\). Consider now the net \(N' = \{(x_{f(i)}, x'_{f(i)}) : i \in I\}\). Clearly, \(N'\) is a refinement of \(N\), so it converges to \((x, x')\) as well. Moreover, for each \(i \in I\), there exists \(y'_i\) such that \((y, y'_i) \in \mathcal{B}\) and \(x'_{f(i)} R'y'_i\).

We consider \(Y' = \{y'_i : i \in I\}\). Recall that for all \(i \in I\) we have that \(x'_{f(i)} \in (\mathcal{R}')(\mathcal{Y}')\). Thus, \(\{x'_{f(i)} : i \in I\}\) is a subset of \(\mathcal{R'}(\mathcal{Y}')\). The fact that \(\{x'_{f(i)} : i \in I\}\) converges to \(x'\) implies that \(x'\) belongs to \(\{y'_i : i \in I\}\). Therefore, \(x'\) belongs to \(\mathcal{R'}(\mathcal{Y}')\). By Lemma 5.2, \(x' \in \mathcal{R'}(\mathcal{Y}')\). Thus, there is \(y'\) such that \(x'R'y'\) and \(y' \in \mathcal{Y}' = \{y'_i : i \in I\}\).

Finally, we show that \((y, y')\) belongs to \(\mathcal{B}\). Since \(y'\) belongs to the closure of \(\{y'_i : i \in I\}\), there is a net \(Z' \subseteq \{y'_i : i \in I\}\) converging to \(y'\). Then obviously \(\{(y, z') : z' \in Z'\}\) converges to \((y, y')\). Recall also that \((y, y'_i)\) belongs to \(\mathcal{B}\), for all \(i \in I\). Thus \(\{(y, z') : z' \in Z'\}\) is a subset of \(\mathcal{B}\). It follows that the limit of \(\{(y, z') : z' \in Z'\}\) belongs to \(\mathcal{B}\). Therefore, \((y, y')\) belongs to \(\mathcal{B}\). Thus, we found \(y' \in X'\) such that \(x'R'y'\) and \((y, y') \in \mathcal{B}\). This shows that \(\mathcal{B}\) is a bisimulation indeed.

\[\text{Remark 5.6.} \text{ In section 2 we proved that between two descriptive models, the notions of Kripke bisimilarity and Vietoris bisimilarity coincide (Corollary 3.9). We could also have derived this result from Theorem 5.5. For the nontrivial direction, any two points that are linked by some Kripke bisimulation \(B\), are also linked by the Vietoris bisimulation \(\mathcal{B}\). \]}

An interesting corollary of Theorem 3.5 is the following.

\[\text{Corollary 5.7.} \text{ The collection of Vietoris bisimulations between two descriptive models } M \text{ and } M' \text{ forms a complete lattice, with joins given by} \]

\[\bigvee_{i \in I} B_i := \bigcup_{i \in I} B_i. \tag{12}\]

\[\text{Proof.} \text{ It suffices to prove, with } \{B_i \mid i \in I\} \text{ a collection of Vietoris bisimulations between } M \text{ and } M', \text{ that } \bigcup_{i \in I} B_i \text{ is the smallest Vietoris bisimulation containing each } B_i. \]

It follows from Theorem 3.5 that each \(B_i\) is a Kripke bisimulation. Since the collection of Kripke bisimulations between two models is closed under taking unions, this implies that \(\bigcup_{i \in I} B_i\) is a Kripke bisimulation between (the underlying Kripke models of) \(M\) and \(M'\). But then by Theorem 5.5, \(\bigcup_{i \in I} B_i\) is a Vietoris bisimulation between \(M\) and \(M'\). It is then easy to see that it is in fact the smallest closed bisimulation containing every \(B_i\). \[\square\]

\[\text{Remark 5.8.} \text{ While (12) provides a fairly direct description of the joins in a lattice of Vietoris bisimulations, it seems to be harder to find an intuitive characterization of the meets. In particular, meets are generally not given by intersections: while the intersection of a family of Vietoris bisimulations is closed, the (simple) example below shows that in general it is not a (Kripke) bisimulation.} \]

Let \(M\) and \(M'\) be two isomorphic copies of the 2-fork model; that is, \(M = (W, R, \nu)\) and \(M' = (W', R', \nu')\), where \(W = \{w_0, w_1, w_2\}\), \(W' = \{w'_0, w'_1, w'_2\}\) and \(R = \{(w_0, w_1), (w_0, w_2)\}, \]

21
Position	Player	Admissible moves
\((x,x')\) | ∃ | \(\{Z \in \mathcal{V}(X \times X') : (R(x), R'(x')) \in \mathcal{V}(Z)\}\)
\(Z \in \mathcal{V}(X \times X')\) | ∀ | \(Z\)

Table 1: Bisimilarity game for descriptive models.

\[R' = \{(w_0', w_1'), (w_0', w_2')\}, \text{ and } \nu(w_i) = \nu'(w_i') \text{ for all } i \text{ and } j.\] Then it is easy to check that \(B_1 = \{(w_0, w_0'), (w_1, w_1'), (w_2, w_2')\}\) and \(B_2 = \{(w_0, w_0'), (w_1, w_2'), (w_2, w_1')\}\) are bisimulations. However, \(B_1 \cap B_2 = \{(w_0, w_0')\}\) is not a bisimulation.

6 Bisimilarity Games

Both the notion of a Kripke bisimulation and that of Kripke bisimilarity can be studied in a game-theoretic framework. For instance, the relation \(\leftrightarrow\) of Kripke bisimilarity between two Kripke models can be characterized as the largest bisimulation between the two models. Then from Fact 3.1 we may infer that \(\leftrightarrow\) is the greatest postfixpoint of some monotone operation on the complete lattice of binary relations between the universes of the two models, and from this it is standard [2] to derive a game-theoretic characterization. Clearly, by Corollary 3.9, the very same games would also work to characterize the notion of Vietoris bisimilarity. But we can do better than this: in this section we briefly discuss a game-theoretic characterization of Vietoris bisimilarity between two descriptive models which only refers to elements and subobjects of the product space.

Let \(M = (X, R, \nu)\) and \(M' = (X', R', \nu')\) be two descriptive models. A match of the bisimilarity game \(G\) between \(M\) and \(M'\) is played by two players, ∃ (Éloise) and ∀ (Abéard). These players move a token around from one position of the game to the next one. In the game there are two kinds of positions: pairs of the form \((s, s') \in X \times X'\) are called basic positions and belong to ∃. The other positions are closed relations between \(X\) and \(X'\) and belong to ∀.

The idea of the game is that at a position \((s, s')\), ∃ claims that \(s\) and \(s'\) are Vietoris bisimilar, and to substantiate this claim she proposes a ‘candidate bisimulation’ \(Z\), i.e., a closed relation \(Z \subseteq X \times X'\) such that \(R(x)\) and \(R'(x')\) are related by \(\mathcal{V}(Z)\). ∀ then challenges her by picking a pair \((t, t') \in Z\) as the next basic position. These rules are summarized in Table 1.

A match of the games thus consists of a sequence of positions. ∃ looses at the instant such a match arrives at a position \((s, s')\) where \(s\) and \(s'\) do not satisfy the same proposition letters. On the other hand, ∀ looses if ∃ could (legitimately) choose the empty relation as a candidate bisimulation. In the case that neither player looses after finitely many steps, we are dealing with an infinite match, and the agreement is that all infinite matches are won by ∃. Basically then, ∃ wins a match if she manages not to get stuck.

A position \(p\) of this game is called winning for ∃ if she has a strategy in the instantiation of the game \(G\) initialized at position \(p\).

Theorem 6.1. Let \(M = (X, R, \nu)\) and \(M' = (X', R', \nu')\) be descriptive models. Then for all
x ∈ X and x′ ∈ X′, x and x′ are Vietoris bisimilar iff (x, x′) is a winning position for ∃ in the bisimilarity game.

Proof. For the direction from right to left, suppose that B is a Vietoris bisimulation linking x and x′. We need to provide ∃ with a winning strategy for the game G starting at (x, x′). Suppose that ∃, starting from position (x, x′), always chooses the relation B. Using the definition of a Vietoris bisimulation, it is straightforward to verify that this is a legitimate, winning strategy for her.

For the converse direction, it clearly suffices to prove that the set W ⊆ X × X′ of winning positions for ∃ is itself a Vietoris bisimulation. We leave it for the reader to verify that W is a Kripke bisimulation. Thus it remains to show that W is closed. Since W is a Kripke bisimulation, it follows from Theorem 5.5 that W is a Vietoris bisimulation. As we saw already in the first part of the proof, this implies that every pair (s, s′) in W is a winning position for ∃. But then from the fact that W was defined as the set of all winning positions, we may conclude that W is a subset of W. It follows that W = W; in other words, W is closed.

7 Conclusions & Further Work

In this paper we sketched some rudiments of the coalgebraic theory of descriptive models, focussing on the notion of a bisimulation. We saw that this theory is reasonably well-behaved, and intimately related to the theory of bisimulations between Kripke models. In particular, we found that the notions of Vietoris bisimilarity, Kripke bisimilarity, behavioral equivalence, modal equivalence, all coincide. These four notions do not coincide with Aczel-Mendler bisimilarity, however: this is due to the fact that the Vietoris functor does not preserve weak pullbacks, something we also established in this paper. Most of our positive results could be obtained through relatively easy proofs, with the possible exception of our main technical observation, viz., that the topological closure of a Kripke bisimulation is a Vietoris bisimulation.

Our work can be extended in various directions. Clearly, to start with, one may investigate the Vietoris coalgebras over more general categories of topological spaces, such as compact Hausdorff spaces.

Orthogonal to this, one may generalize the functor rather than the base category. In particular, it would be interesting to understand the relation between bisimulations for other functor pairs than Vietoris and power set. For instance, joint work of the third author with A. Palmigiano [23] indicates that, with every weak pullback preserving functor T on Set, one may associate a functor T on Stone, generalizing the relation between P and V (in the sense that V = P). An interesting question is then whether the analog of Theorem 5.5 holds in this generality, i.e., whether the topological closure of a T-bisimulation between T-coalgebras is always a T-bisimulation.

Finally, descriptive models are concrete coalgebras, that is, coalgebras for an endofunctor on a concrete category. Roughly speaking, these are categories in which the objects are sets with some additional structure, and all morphisms are functions between those sets. For such coalgebras, notions like ‘state’, ‘behaviour’ and ‘bisimulation’ make sense. As a...
different example, Desharnais, Edalat & Panangaden [10] study bisimulations between so-called Labelled Markov processes. These are probabilistic transition systems and can formally be modelled as coalgebras over a base category where the carriers are certain measurable spaces, and the morphisms are measurable functions. We think it would be interesting to study the notion of bisimulation for concrete coalgebras for other examples, and in more generality.

References

