
Minimizing Generalized Büchi Automata

Sudeep Juvekar1 and Nir Piterman2

1 Indian Institute of Technology Bombay
2 Ecole Polytechnique Fédéral de Lausanne (EPFL)

Abstract. We consider the problem of minimization of generalized Büchi au-
tomata. We extend fair-simulation minimization and delayed-simulation mini-
mization to the case where the Büchi automaton has multiple acceptance condi-
tions. For fair simulation, we show how to efficiently compute the fair-simulation
relation while maintaining the structure of the automaton. We then use the fair-
simulation relation to merge states and remove transitions. Our fair-simulation al-
gorithm works in time O(mn3k2) where m is the number of transitions, n is the
number of states, and k is the number of acceptance sets. For delayed simulation,
we extend the existing definition to the case of multiple acceptance conditions.
We show that our definition can indeed be used for minimization and give an al-
gorithm that computes the delayed-simulation relation. Our delayed-simulation
algorithm works in time O(mn3k). We implemented the two algorithms and re-
port on experimental results.

1 Introduction
In recent years algorithmic methods for verifying temporal-logic properties of finite-
state systems have been discovered (cf. [CGP99]). The development of symbolic meth-
ods to reason about large state spaces [McM93,BCC+99] have led to the acceptance
of model checking in hardware industry [BLM01,CFF+01]. The standard approach to
linear temporal logic (LTL) model checking is to translate the given specification to
a nondeterministic Büchi automaton [Var96]. By now, there are many algorithms that
take an LTL formula (or formalisms that extend LTL, cf. [AFF+02,IEE05]) and con-
struct an equivalent Büchi automaton [GPVW95,SB00,GO01]. The resulting automata
may be exponentially larger than the original LTL formula.

To improve model-checking efficiency we would like to produce the minimal pos-
sible automata. Unfortunately, finding the minimal automaton equivalent to a given
nondeterministic automaton is computationally expensive. Thus, we usually resort to
computationally cheap methods that are not guaranteed to produce the best automata.

One such approach is to use simulation [Mil71]. A state t simulates a state s if it
has the same observations and for every successor s′ of s there exists a successor t′ of t
that simulates s′. If s and t are simulation equivalent, i.e., t simulates s and s simulates
t, then we can merge s and t to a single state. Similarly, if s has transitions to both t
and t′ such that t′ simulates t, then the transition to t is redundant. Simulation considers
only the transition structure of the automaton and not its acceptance condition. Thus,
simulation is inadequate for minimization of Büchi automata.

There have been several suggestions how to extend simulation to include the accep-
tance condition [DHW91,GL94,HKR97,EWS01]. The simplest of these, is direct simu-

2

lation where in addition to agreement on observations of states, we demand agreement
on acceptance [DHW91]. A variant is reversed simulation which checks the edges enter-
ing a state [SB00]. Both can be applied to automata on infinite objects [SB00,GBS02].
Agreement on acceptance makes direct and reversed simulation very restrictive.

Fair-Simulation is a more relaxed notion of simulation [HKR97]. According to this
notion, simulation comes equipped with a strategy. The strategy instructs us which suc-
cessor t′ of t to choose. We demand in addition that by following the strategy a fair
computation on one side produces a fair computation on the other side. That is, if we
have an infinite sequence of states that starts from the simulated state we can use the
strategy to produce an infinite sequence of simulating states. Furthermore, if the first
sequence is fair so is the second. Etessami et al. show how to efficiently compute fair
simulation for the case of Büchi automata [EWS01]. They show also that fair simula-
tion is too relaxed and cannot be used to merge states. Gurumurthy et al. show that it
is still worthwhile to try minimizing with fair simulation [GBS02]. They show that by
checking every merge and edge removal for soundness, fair simulation can still be used
for minimization. The total complexity of all successful soundness checks is bounded
by the complexity of checking fair simulation.

Etessami et al. provide an intermediate simulation notion called delayed simulation
[EWS01]. The simulation again includes a strategy but this time whenever one compu-
tation visits an accepting state the other computation must visit an accepting state later.
They show that delayed simulation can be used to merge states. That is, if s and t are
delayed-simulation equivalent, then the automaton in which s and t are merged into
one state is equivalent to the original. By now most LTL to Büchi conversions use some
form of simulation to minimize the size of the automaton.

Translation of LTL to Büchi automata results naturally in generalized Büchi au-
tomata, that is, Büchi automata with multiple acceptance sets (cf. [GPVW95,SB00]). A
generalized Büchi automaton with k acceptance conditions and n states can be easily
converted to a simple Büchi automaton with nk states (and one acceptance condition).
This conversion is natural (and even required) when explicit state model checking is
used [CVWY92]. However, when using symbolic model checking this conversion is
undesirable and unnecessary. Symbolic algorithms for checking emptiness of automata
easily handle the generalized Büchi condition without loosing efficiency. On the other
hand, converting generalized Büchi to simple Büchi results in model checking a prob-
lem that may be k times larger. Counter examples may be significantly longer (even
more than a factor of k as the order between the acceptance sets may be important).
A similar situation arises when considering complementation of generalized Büchi au-
tomata; handling generalized Büchi directly is exponentially more efficient [KV04].
Also when we use LTL in the context of synthesis, handling the generalized Büchi con-
dition directly produces algorithms that are exponentially better than converting them
to simple Büchi [KPV05]. Thus, it is extremely important to be able to further minimize
generalized Büchi automata without first converting them to simple Büchi automata.

The notions of direct and reversed simulation are extended naturally to generalized
Büchi automata (though they are even more restrictive in this case) [EH00,SB00]. This
is not the case for fair and delayed simulation. The definition of fair simulation does not
rely on a specific acceptance condition. Indeed, it applies naturally to generalized Büchi

3

automata. It is not clear, however, how to solve efficiently fair simulation with respect
to generalized Büchi automata and how to extend the efficient soundness check. In the
case of delayed simulation it is not even clear how to extend the definition to the case of
generalized Büchi automata. As mentioned, generalized Büchi automata that are used
for symbolic model checking are not converted to simple Büchi automata. As we do not
know how to use fair-simulation minimization and delayed-simulation minimization on
these automata, we use only the simple optimization techniques. Here we show how the
more advanced minimization techniques can be applied to generalized Büchi automata.

In the context of fair simulation, the efficient computation of fair simulation for
Büchi automata relies on Jurdziński’s ranking for parity games [Jur00,EWS01]. We
show how to define a ranking for this type of fair simulation, how to compute this
ranking efficiently, and how to check efficiently whether fair-simulation minimization
is sound. The overall complexity of the fair-simulation minimization for all successful
merges / edge removals is O(mn3k2) where m is the number of transitions of the
automaton, n the number of states, and k the number of acceptance sets.

The definition of delayed simulation is tailored specifically for simple Büchi au-
tomata [EWS01]. We show how to extend this definition to the case of generalized
Büchi automata. We prove that our definition, while seemingly very relaxed, has the
power needed in order to be used to minimize generalized Büchi automata. We also
show how to efficiently check delayed simulation for this case. The complexity of the
delayed simulation minimization is O(mn3k) where m is the number of transitions of
the automaton, n the number of states, and k the number of acceptance sets.

Finally, we have implemented both these extensions in Wring [SB00]. We report
on the results of testing our implementation on 500 randomly generated LTL formulae.

2 Preliminaries
Games. A game is a tuple G = 〈V, V0, V1, ρ, W 〉 where V is the set of locations of the
game, V0 and V1 are a partition of V to locations of player 0 and player 1 respectively,
ρ ⊆ V × V is the transition relation, and W ⊆ V ω is the winning set of G.

A play in G is a maximal sequence of locations π = v0v1 · · · such that forall i ≥ 0
we have (vi, vi+1) ∈ ρ. A play π is winning for player 0 if π ∈W or π is finite and the
last location in π is in V1 (i.e., player 1 cannot move from the last location in π). Other-
wise, player 1 wins. For an infinite play π we denote by inf(π) the set of locations that
recur infinitely often in π. Formally, inf(π) = {v ∈ V | v = vi for infinitely many i}.

A strategy for player 0 is a partial function f : V ∗ · V0 → V such that whenever
f(πv) is defined (v, f(πv)) ∈ ρ. We say that a play π = v0v1 · · · is f -conform if
whenever vi ∈ V0 we have vi+1 = f(v0 · · · vi). The strategy f is winning from v if
every f -conform play that starts in v is winning for player 0. We say that player 0 wins
from v if she has a winning strategy. The winning region of player 0, is the set of states
from which player 0 wins. We denote the winning region of player 0 by W0. A strategy,
winning strategy, win, and winning region are defined dually for player 1. We solve a
game by computing the winning regions W0 and W1. For the kind of games handled by
this paper W0 and W1 form a partition of V [GH82].

In this paper we are interested in two types of winning conditions. In order to define
the first winning conditions we use two sets P = {P1, . . . , Pk} and Q = {Q1, . . . , Ql}

4

of subsets of the states in G. The generalized Streett[1] condition on P and Q is the
set of sequences π ∈ V ω such that either there exists i such that inf(π) ∩ Pi = ∅ or
forall j we have inf(π)∩Qj 6= ∅. That is, either there exists some set in P that appears
finitely often in π, or every set in Q appears infinitely often in π. Notice that when P
and Q are singletons then the generalized Streett[1] condition on P and Q is in fact a
Streett[1] condition [Str82] or a parity[3] condition [EJ91]. The second winning con-
dition is generalized response. We use a set P = {〈P1, Q1〉, . . . , 〈Pk, Qk〉} of pairs of
subsets of V . In order to define the winning condition we add to the game a counter that
ranges over {1, . . . , k}. The counter is controlled by player 1 and before every move of
player 1 she may change this counter arbitrarily. Player 0 wins the generalized response
condition on P if either player 1 changes the counter infinitely often, or if eventually
the counter is set to i and along the suffix of the play along which the counter is i every
visit to Pi is followed by a visit to Qi. That is, player 1 chooses a pair 〈Pi, Qi〉 ∈ P .
While playing according to this pair a visit to Pi should be followed later by a visit
to Qi. At every given point in time player 1 may decide to change the target pair to j
and start following 〈Pj , Qj〉. If player 1 changes her mind infinitely often she looses.
Notice that this is very different from ensuring that for every j ∈ {1, . . . , k} every visit
to Pi is followed by a visit to Qi. In our setting player 0 can work with each of the pairs
separately. She does not care about other pairs while playing according to one pair (at
least not directly). From every state in the winning region of player 0, she has a strategy
to win the delayed game with respect to every one of the pairs. This strategy cannot
leave the region from which she can win with respect to the other pairs. In order to
ensure that forall j ∈ {1, . . . , k} every visit to Pj is followed by a visit to Qj , player
0 has to memorize to which pairs she owes a visit. This is not necessary in our case.
Notice that in the case that P is a singleton {〈P1, Q1〉}, this game is exactly the game
defined in [EWS01] for delayed simulation. We explain below the motivation for these
two conditions and in Section 3 show how to solve these two types of games.

Nondeterministic Büchi Automata. A nondeterministic Büchi automaton (or NBW
for short) is N = 〈Σ, S, S0, δ, T,F〉, where Σ = {−1, 0, 1}P for some set of propo-
sitions P is a finite alphabet, S is a finite set of states, S0 ⊆ S is a set of initial
states, δ ⊆ S × S is a transition relation, T : S → Σ is a labeling function, and
F = {F1, . . . , Fk} ⊆ 2S is a set of winning conditions. We call F ∈ F a win-
ning set or acceptance set. For v ∈ V we denote δ(v) = {w | (v, w) ∈ δ} and
δ−1(v) = {w | (w, v) ∈ δ} the set of successors and predecessors of v. A run of N is
an infinite sequence of states s0, s1, . . . ∈ Sω such that s0 ∈ S0 and forall j ≥ 0
we have (sj , sj+1) ∈ δ. For a run r = s0, s1, . . ., let inf(r) = {s ∈ S | s =
si for infinitely many i’s} be the set of all states occurring infinitely often in the run.
A run r is accepting if for every 1 ≤ i ≤ k we have inf(r) ∩ Fi 6= ∅. Usually, we
distinguish between Büchi automata where |F| = 1 and generalized Büchi automata
where |F| > 1. In this paper we are interested mainly in generalized Büchi automata.
Unless mentioned explicitly, all NBW have more than one acceptance set.

Given two labels σ, σ′ ∈ {−1, 0, 1}P , we say that σ′ abstracts σ (σ v σ′) if for
every q ∈ P such that σ′(q) = 1 we have σ(q) = 1 and for every q such that σ′(q) =
−1 we have σ(q) = −1. It is simple to see that the abstraction relation is reflexive and
transitive. An infinite word over P is an infinite sequence w = w0w1 · · · ∈ {−1, 1}P

5

of truth assignments to the propositions in P . A run r = s0, s1, . . . induces an infinite
word w = w0w1 · · · if for every i ≥ 0 we have that T (si) abstracts wi (notice that
a single run may induce many different words). A word w is accepted by N if it is
induced by some accepting run. The language of N , denoted L(N), is the set of words
accepted by N . We say that two automata are equivalent if they have the same language.

Another way to characterize sets of sequences of propositions is by LTL formulas
[Pnu77,Eme90]. For every LTL formula ϕ, there exists an NBW Nϕ with 2O(|ϕ|) states,
such that L(Nϕ) = L(ϕ) [VW94]. We would like the produced NBW to have a minimal
number of states, transitions, and acceptance sets.
Simulation. A natural way of comparing automata is by considering language equiva-
lence and language containment. However, these problems are computationally expen-
sive and impractical. In many cases, we resort to using simulation, a precondition to
language containment, which is easy to compute.

Simulation does not consider the acceptance condition. We use the extensions fair
simulation [HKR97] and delayed simulation [EWS01] that consider acceptance. Both
simulations are defined via games. Consider two NBW N = 〈Σ, S, S0, δ, T,F〉 and
N ′ = 〈Σ, R,R0, η, T ′,F ′〉. Let GN,N ′ = 〈V0∪V1, V0, V1, ρ, W 〉 be the simulation
game where (a) V0 = S × R × {0} (b) V1 = {(s, t, 1) : s ∈ S, t ∈ R, and T (s) v
T ′(t)} (c) ρ = {((s, t, 1), (s′, t, 0)) : (s, s′) ∈ δ} ∪ {((s, t, 0), (s, t′, 1)) | (t, t′) ∈ η}
Note that the game has O(|S|·|R|) states and O(|δ|·|R|+|η|·|S|) transitions. In order to
define the winning conditions we define sets of subsets of the locations that depend on
the winning conditions of N and N ′. Let F = {F1, . . . , Fk} and F ′ = {F ′

1, . . . , F
′
l }.

We define the sets P1, . . . , Pk and Q1, . . . , Ql. The set Pi contains all locations (s, t, 1)
such that s ∈ Fi. The set Qi contains all locations (s, t, 1) such that t ∈ F ′

i .
In order to consider fair simulation we consider the generalized Streett[1] game

GN,N ′ over P= {P1, . . . , Pk} and Q= {Q1, . . . , Ql}. It follows that player 0 wins an
infinite play if the projection of the play on the first component is fair implies that
the projection of the play on the second component is fair. We call this game the fair-
simulation game or just the fair game. If player 0 wins the fair game from state (s, t, 1)
then t fair simulates s, denoted by s≤f t. We call H = {(s, t) | (s, t, 1) ∈ W0} the
simulation relation. From every pair (s, t) ∈ H player 0 has a strategy so that the play
remains in H and if the projection of an infinite outcome on the first component is
fair then so is the projection on the second component. We say that s and t are fair
equivalent, denoted s=f t if both s≤f t and t≤fs. Fair simulation implies language
containment [HKR97]. Gurumurthy et al. show how to use fair simulation to reduce the
number of states and transitions of an NBW where |F| = 1 [GBS02].

In order to consider delayed simulation we require that |F| = |F ′| (i.e., k = l).
Consider the generalized response game GN,N ′ over P = {〈P1, Q1〉, . . . , 〈Pk, Qk〉}.
We call this game the delayed-simulation game or just the delayed game. As before, if
player 0 wins from (s, t, 1) then t delayed simulates s. That is, H = {(s, t) | (s, t, 1) ∈
W0} is the simulation relation. From every pair (s, t) ∈ H and for every pair 〈Pi, Qi〉 ∈
P player 0 has a strategy so that the play remains in H and if the projection of an infinite
outcome on the first component visits Pi then the projection on the second component
visits Qi sometime later. The notations ≤d and =d are defined like for fair simulation.
We consider delayed simulation between an automaton and itself. When |F| = 1 our

6

definition is equivalent to the definition in [EWS01]. Etessami et al. study delayed sim-
ulation for the case where |F| = 1. They show that delayed simulation is implied by
direct simulation (which we do not define here) and it implies fair simulation. These
two claims are true also for the general definition above. The first claim is immediate
and the second can be proved much like Theorem 8.

We note that the generalization of delayed simulation to the case of generalized
Büchi automata is not straight forward. The most straight forward extension would be
to consider a play winning if for every 〈Pi, Qi〉 ∈ P we have that every visit to Pi is
followed by a visit to Qi. In Section 4 we show that our definition is strong enough to
be used for minimization of NBW. Having different strategies for every one of the pairs
is exactly what is needed to establish correctness of delayed-simulation minimization
(as long as the strategies remain in the winning region of player 0).

We use simulation to reduce the number of states and transitions of an automaton.
We usually compute simulation between an NBW and itself. In order to reason about the
changes done to an automaton, we consider simulation between two different automata.

3 Solving Games
Generalized Streett[1] Games. In [EWS01] and [GBS02], fair games are solved using
a reduction to parity[3] games. Then Jurdziński’s algorithm for solving parity games is
used [Jur00]. Here we generalize this approach to our case.

Let G = 〈V, ρ〉 be a generalized Streett[1] game over P = {P1, . . . , Pk} and
Q = {Q1, . . . , Ql}. We define a set of ranking functions R = 〈r1, . . . , rl〉. The ranking
ri measures what is the minimum over j of the maximal number of visits to Pj until a
visit to Qi is enforced by player 0. If the rank of some state is finite, it means that either
for some j we have Pj is visited finitely often or within a finite number of steps player
0 forces a visit to Qi. We use the ranking to define a winning strategy for player 0 and
show that whenever player 0 wins, such a ranking system exists.

We now define formally the range of the ranking functions and the ranking functions
themselves. We denote by |Pi−Qj | the number of states in Pi−Qj . For j ∈ [k], let |j| =
maxi{|Pi−Qj |}. We set Dj = ([0..|j|]× [1..k])∪{∞}. We order Dj according to the
lexicographic order with∞ as maximal element. This induces a well order on Dj and
we define increment by one in the natural way according to this order. Namely (r, i)+1
is (r, i+1) if i < k and (r+1, 1) if i = k and r < |j|. We set (|j|, k)+1 =∞ =∞+1.
Let j ⊕ 1 denote (j mod l)+1. Consider a set of ranking functions R = 〈r1, . . . , rl〉
such that rj : V → Dj . We define bestj(v) to be the rank of the minimal successor
of v in case v ∈ V0 and the maximal successor in case v ∈ V1. If v ∈ Qj we take the
minimal / maximal according to rj⊕1, otherwise according to rj . Formally,

bestj(v) =

min(v,w)∈ρ{rj⊕1(w)} v ∈ V0 and v ∈ Qj

min(v,w)∈ρ{rj(w)} v ∈ V0 and v /∈ Qj

max(v,w)∈ρ{rj⊕1(w)} v ∈ V1 and v ∈ Qj

max(v,w)∈ρ{rj(w)} v ∈ V1 and v /∈ Qj

A ranking is good if for every v ∈ V and for every j ∈ [1..l] all the following hold.
– If v ∈ Qj and bestj(v) <∞ then rj(v) = (0, 1).

7

– If v /∈ Qj , bestj(v) = (r, i), and v ∈ Pi then rj(v) > bestj(v).
– Otherwise rj(v) ≥ bestj(v).

Notice that there is a circular dependency between all the rankings through the defini-
tion of bestj(v) when v ∈ Qj . We claim that given a good ranking, every state v such
that r1(v) <∞ is winning for player 0.

The ranking defines a winning strategy for player 0. More accurately, every rank-
ing ([1..l]) defines a different strategy. Player 0 chooses one such strategy and tries to
decrease it. When playing according to strategy j and the play reaches a state v for
which rj(v) = (0, 1) and v ∈ Qj she starts playing according to the j⊕1 strategy. If
player 0 changes her strategy infinitely often then forall 1 ≤ i ≤ l we have Qi is visited
infinitely often and player 0 wins. If player 0 eventually plays according to some fixed
strategy i, it follows that the rank eventually remains constant (r, i). It follows that Pi

is not visited again and player 0 wins.
We say that a ranking is tight if it is good and in addition for every winning state v of

player 0 we have r1(v)<∞. In [KPP05] we give a symbolic algorithm for the solution
of generalized Streett[1] games. The algorithm consists of a µ-calculus formula that
characterizes the set of winning states of player 0. In Appendix A we prove that the
strategy proposed above is winning and use the algorithm of [KPP05] to prove that
whenever there exists a winning strategy for player 0 a tight ranking system exists.

If we can produce a tight ranking system, it provides a partition of the states of the
game to W0 and W1. In order to efficiently compute tight ranking system, we gener-
alize Jurdziński’s rank lifting algorithm [Jur00] to our case. For a state v ∈ V and a
ranking function rj : V → Dj , let incrj

v(i, o) be (0, 1) in the case that v ∈ Qj and
(i, o) < ∞, (i, o) + 1 in the case that v /∈ Qj and v ∈ Po, and (i, o) otherwise3. Let
updatej(rj , v) be the ranking r′j such that r′j(v

′) = rj(v′) for v′ 6= v and r′j(v) =
max{rj(v), incrj

v(best(v))}. The lifting algorithm that computes the good ranking is:

1 Let R := ∀v, j : rj(v) = (0, 1)
2 While (∃v, j s.t. rj(v) 6= updatej(rj , v)) do
3 Let rj := updatej(rj , v)

Theorem 1. Given a generalized Streett[1] game G, player 0 wins from a location v
iff after the lifting algorithm r1(v) 6=∞.

Etessami et al. give an efficient implementation that computes Jurdziński’s ranking
for parity[3] games [EWS01]. We generalize their approach to our ranking.

Theorem 2. We can solve a generalized Streett[1] game in time O(tgkl) where t is the
number of transitions, g the number of locations, k = |P |, and l = |Q|.

When we use this algorithm to compute the fair simulation relation (i.e., solve
GN,N) we get the bounds stated in the following corollary.

Corollary 1. We can compute the fair simulation on an NBW N in time proportional
to O(mn3k2) where m is the number of transitions of N , n is the number of states of
N , and k is the size of F .

3 Notice that in the case that v ∈ Qj and (i, o) = ∞ then incrj
v(i, o) = ∞

8

We note that if P and Q are singletons then our ranking and Jurdziński’s ranking
for parity[3] are one and the same. In this case the two algorithms are identical.
Generalized Response Games. In [EWS01], delayed games with one pair are solved
using a reduction to parity[3] games. In order to remember whether the play owes a
visit to the acceptance set they add a Boolean flag. We prefer to take the view of player
1. This allows us to remove the Boolean flag. The treatment of delayed games becomes
completely different from the treatment of fair games.

Let G = 〈V, V0, V1, ρ, W 〉 be the delayed game over P = {〈P1, Q1〉, . . . , 〈Pk, Qk〉}.
In Fig. 1 we give an algorithm that solves delayed games. Intuitively, player 1 wins
‘immediately’ from Pi states from which player 1 can avoid Qi states. Additional win-
ning states are states from which player 1 can force the game to immediate wins or to
previously recognized winning states. The algorithm computes the immediate winning
according to some pair and the states from which player 1 can force visits to them. Then
it proceeds to do the same thing for other pairs until no new winning states for player
1 are discovered. Here 	 and ⊕ denote cyclic subtraction and addition in [1..k]. The
function back reach(X) computes the set of states from which player 1 can force the
play to X . The function avoid set(X, Y) computes the set of states from which player
1 can avoid X or reach Y .

1 foreach 〈Pi, Qi〉 ∈ P do
2 wini = ∅; old wini = V ;
3 i := 1;
4 while wini 6= old wini do
5 old wini := wini	1;
6 avoid := avoid set(Qi, old wini);
7 imm win := (avoid ∩ Pi) ∨ old wini;
8 wini := back reach(imm win);
9 i := i⊕ 1;
10 endwhile

Fig. 1. Efficient solution of generalized response games

Theorem 3. The algorithm in Fig. 1 computes W1 in generalized response games.

We prove soundness by showing that every state collected by the algorithm has some
winning strategy for player 1. We prove completeness by showing that the winning
region of player 1 can be partitioned to regions winning by each of the pairs. The full
proof is given in Appendix B.

Theorem 4. We can solve generalized response games in time proportional to O(tgk)
where t is the number of transitions, g the number of locations, and k the size of P .

When we use this algorithm to compute the delayed simulation relation we get the
bounds stated in the following corollary.

9

Corollary 2. We can compute the delayed simulation on an NBW N in time propor-
tional to O(mn3k) where m is the number of transitions of N , n is the number of states
of N , and k is the size of F .

4 Simulation Minimization
Modifications to NBW and Games. Given an automaton N = 〈Σ, S, S0, δ, T,F〉 and
two states s, t ∈ S we would like to merge states s and t. We denote by N(t← s) the
automaton N where state s is merged with state t. That is, we remove state s from the
automaton, replace every occurrence of s in S0, δ, and F by t. Formally, N(t← s) =
〈Σ, S′, S′

0, δ
′, T,F ′〉 with the following components.

– S′ = S − {s} - remove s from the set of states.
– If s ∈ S0 then S′0 = (S0 ∪ {t}) − {s}, otherwise S′0 = S0 - replace s by t in the

set of initial states if necessary.
– δ′ = (δ∪{(t, s′) : (s, s′) ∈ δ}∪{(s′, t) : (s′, s) ∈ δ})−(δ∩({s}×S∪S×{s}))

- replace every transition entering or leaving s by the respective transition from / to
t.

– For every F ∈ F , if s ∈ F add (F ∪ {t})− {s} to F ′, otherwise add F to F ′.
In the case where |F| = 1, Etessami et al. use delayed simulation to merge states

[EWS01]. They show that if s and t are delayed equivalent then N and N(t← s) agree
on their languages. Formally, we have the following.

Theorem 5. [EWS01] For an NBW N such that |F| = 1, and s, t such that s=dt we
have L(N) = L(N(t← s)).

Etessami et al. show that in the case of NBW with one acceptance set, delayed
simulation can be used for minimization. We show that this is the case also with our
definition and NBW with multiple acceptance sets.

Merging two fair-equivalent states may result in automata that are not equivalent
[EWS01]. Gurumurthy et al. show that it is still worthwhile to try and merge fair-
equivalent states, however, every such merge has to be verified to make sure that it has
not changed the automaton [GBS02]. We show how to extend the efficient algorithm
for computing fair-simulation to the case of NBW with multiple acceptance sets.

Let N = 〈Σ, S, S0, δ, T,F〉 and N ′ = 〈Σ, R,R0, η, L,F ′〉 be two NBW such that
R = S. Let ∆ ⊆ S × S be a set of transitions. We define rem(N,∆) = 〈S, S0, δ −
∆, T,F〉 and add(N,∆) = 〈S, S0, δ∪∆, T,F〉. Let GN,N ′ = 〈V, V0, V1, ρ, W 〉 be the
simulation game for N and N ′. We define rem(GN,N ′ ,∆) = 〈V, V0, V1, ρ

′,W 〉 where
ρ′ = ρ − {((s, t, 0), (s, t′, 1)) | (t, t′) ∈ ∆}. That is, we restrict the moves of player 0
by removing the moves in ∆. We define add(GN,N ′) = 〈V, V0, V1, ρ

′′,W 〉 where ρ′′ =
ρ ∪ {((s, t, 1), (s′, t, 0)) | (s, s′) ∈ ∆}. That is, we add options to player 1 by adding
the moves in ∆. Intuitively, if we add transitions to an automaton we know that the new
automaton simulates the old one. We only check that the old automaton simulates the
new one. Dually, when we remove transitions we know that the old automaton simulates
the new one. We have to check only the other direction.

Theorem 6. [GBS02] For an NBW N , a set of transitions ∆, and σ ∈ {add, rem} we
have GN,σ(N,∆)=σ(GN,N ,∆) and σ(σ(GN,N ,∆),∆′)=σ(GN,N ,∆ ∪∆′)

10

According to this theorem it does not matter whether we handle the game graph directly
or build it from scratch from the modified automata. Furthermore, a series of transitions
can be removed one at a time without rebuilding the game. This theorem is used to
efficiently check whether merging of fair equivalent states is allowed [GBS02].
Fair-Simulation Minimization. As mentioned fair simulation cannot be used for
merging states. Gurumurthy et al. show that it is still worthwhile to try to merge us-
ing fair simulation provided that all merges are checked [GBS02]. Their algorithm is
efficient in the sense that it does not start the fair simulation computation anew for every
merge. In a similar way, if there exists a state s such that s has transition to both t and t′

where t≤f t′ they try to remove the transition from s to t. In such a case, they say that t
is a little brother of t′. Again, they show how to check efficiently all the edge removals.
In this section we extend their approach to the case of generalized Büchi automata.

In order to use fair-simulation for minimization we have to check whether the
changes done to the automaton are sound, i.e., the new automaton accepts the same
language. We change the automaton by adding or removing transitions. In order to
check soundness of changes we try to prove that the original automaton and the modi-
fied automaton are fair-simulation equivalent. In order to check a series of additions /
removals efficiently, we show how to reuse the ranks computed in previous stages.

Consider an NBW N = 〈Σ,S, S0, δ, T,F〉. It induces the fair game GN,N =
〈V , V0, V1, ρ, W 〉. Let R = {r1, . . . , rk} be the ranking computed by the algorithm
in Section 3. We say that R is the ranking of a game G when R is the result of applying
the rank computation algorithm. Given two ranking systems R and R′, we say that R
is at least R′ if for every location v and every 1 ≤ j ≤ k we have rj(v) ≥ r′j(v). The
following lemma is stated and proved in [GBS02] for NBW with |F| = 1. The lemma
and its proof are identical for the case of NBW where |F| > 1.

Lemma 1. For every set of transitions ∆, the ranking of rem(GN,N ,∆) is at least the
ranking of GN,N and the ranking of add(GN,N ,∆) is at least the ranking of GN,N .

Intuitively, if we want to add transitions to the automaton, we add these transitions
to the locations of player 1. If we want to remove transitions we remove these transitions
from the locations of player 0. When we do that, the game becomes easier for player 1
and harder for player 0. It follows that the ranking in the modified game increases. This
means, that if we start from the ranks computed in previous stages and only increase
them we are safe. However, the ranks are bounded by values that are not changed by
addition / removal of edges. When we measure the amount of work done in all stages
of the algorithm (that include several lifting rounds) it cannot be more than O(mn3k2)
total. Essentially, we do the extra lifting rounds for free.

We would like to be able to merge fair equivalent states of N and check if the
resulting automaton is equivalent to the original. We would like to use only addition /
removal of transitions to do that. In order to check if a merge is possible, we create an
automaton with two states with the same predecessors and the same successors. That
is, if s=f t we add all outgoing / incoming transitions from /to s to t and vice versa. We
show now that if we have two states with equivalent incoming / outgoing transitions,
one of them can be removed.

11

Theorem 7. Let N = 〈Σ,S, S0, ρ, T,F〉 be an NBW. Given s and t in S such that
ρ(s) = ρ(t) and ρ−1(s) = ρ−1(t) then L(N) = L(N(t← s)).

Suppose that we have the game GN,N and the ranking R resulting from running
our algorithm. This gives us the fair-simulation relation H . Consider two states s and
t such that s=f t. We would like to check whether we can merge s and t. In order to
do that we make s and t have the same incoming edges and the same outgoing edges.
Formally, let ∆ = {(v, t) | (v, s) ∈ δ} ∪ {(v, s) | (v, t) ∈ δ} ∪ {(t, v) | (s, v) ∈
δ}∪{(s, v) | (t, v) ∈ δ}. We consider the game add(GN,N ,∆). We update the ranking
according to the addition. If the new automaton fair simulates the old automaton we
conclude the merge to be successful and continue. If the new automaton does not fair
simulate the old automaton we conclude the merge to be unsuccessful and revert to the
ranking before considering add(GN,N ,∆). We then proceed to the next pair of candi-
dates to merge. As explained we can now consider the game add(add(GN,N ,∆),∆′)
where ∆′ is the set of transitions that relate to the new pair of states to be merged. Little
brothers are handled similarly.
Delayed-Simulation Minimization. Delayed simulation as defined for NBW with sin-
gle acceptance condition can be used for minimization [EWS01]. That is, if s=dt then
L(N(t← s)) = L(N). Our definition extends delayed simulation for the case of NBW
with multiple acceptance conditions. We show that also under our definition s=dt im-
plies L(N(t← s)) = L(N). Although our definition is weaker than the straight for-
ward extension of delayed simulation it is strong enough. When considering an infinite
fair computation of one automaton, there are infinitely many visits to every one of the
acceptance sets. We use delayed simulation on every set separately. When the first au-
tomaton visits some acceptance set we force a visit to the same acceptance set in the
second automaton. Until this goal is achieved we ignore accepting states belonging to
other sets. Once this goal is achieved we consider the next acceptance set in cyclic order.

Theorem 8. Given an NBW N and states s, t s.t. s=dt then L(N(t← s)) = L(N).

We show that if there exists a run r of N(t← s) that starts with a fair state according
to Fi we can find a run segment r′ or N that simulates the prefix of r and ends with a
fair state from Fi. Given an accepting run of N(t← s) every fair set is visited infinitely
often. So we create a run of N that visits each fair set in turn. While going for a visit in
Fi we ignore other sets in F . The full proof is given in Appendix C.

In a similar way we can prove that delayed simulation implies fair simulation
(which in turn implies trace containment). As delayed simulation implies fair simu-
lation, every delayed equivalent states are also fair equivalent. This means, that if we
try delayed minimization after fair minimization, the only candidates for merging are
the states that we try merging but fail to pass the fair simulation test.

5 Experimental Results
In this section, we present experimental results for our algorithms. We have imple-
mented the approach described in Section 4 in Wring [SB00]. In order to test the effi-
ciency of our application we tested it on randomly generated LTL formulas.

12

In Wring, the sequence of optimization steps applied to an NBW starts with a prun-
ing step that removes states that cannot reach a fair cycle. This is followed by a min-
imization step that includes direct, reverse, fair, and delayed simulation minimization.
Finally, there is another pruning step. Obviously, on NBW with multiple acceptance
conditions only direct and reverse simulation are applied (in the original Wring).

We compare our extension to generalized Büchi automata, with the previously im-
plemented algorithms. We have generated 537 random LTL formulas which produce
NBW with more than one acceptance condition (that is, for these formulas direct and
reversed simulation leave an NBW with more than one acceptance set). We report on
the results of running our application on these formulas. We compare the original ver-
sion of Wring, which applies direct and reverse minimization, to our version, which
adds fair minimization, delayed minimization, or both fair and delayed minimization.
The results are given in Table 1. For each option we give the total number of states,
transitions, initial states, fairness conditions, and CPU time.

Method States Trans Fair Init Time
original 26836 104605 1213 3586 3006
fair 26262 100912 1153 3518 6107

Method States Trans Fair Init Time
delayed 26776 104236 1204 3585 3732
fair+delayed 26070 99672 1141 3518 6666

Table 1. Experimental results for 537 random LTL formulae.

The results above show that our algorithm can improve generalized Büchi automata
that have already undergone optimization. We save approximately 3% of the states of
the automata, which is comparable to the 1% saved by the original implementation of
fair and delayed simulation to NBW with one acceptance set [GBS02]. In the case of
fair simulation the CPU time is considerable. We note that our automata are larger by
a factor of 10 than the automata used in [GBS02] (where in average an NBW has 55
states and 100 transitions). When combined, delayed and fair simulation may produce
better results. On one example (not included above), starting from 183 states, each sep-
arately hardly reduced the automaton while together they reduced about 90 states. On
this example alone, our application requires about 2000 seconds while original Wring
requires about 200. Out of 537 NBW, only on 70 our algorithm saves more than 2 states.
On these automata it reduced the number of states from 4234 to 3572 and the number
of transitions from 17029 to 13077 (about 15% of the states and 25% of the transitions).

6 Acknowledgments
We thank F. Somenzi and R. Bloem for the opportunity to use Wring and for supplying up to date
sources, S. Toneta for help with lbtt, and C. Fritz for spotting an error in an earlier version.

References
[AFF+02] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver,

S. Mador-Haim, E. Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar. The ForSpec

13

temporal logic: A new temporal property-specification logic. In 8th TACAS, LNCS
2280, pp. 296–211, 2002.

[BCC+99] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking
using SAT procedures instead of BDDs. In 36th DAC, pp. 317–320. IEEE, 1999.

[BLM01] P. Biesse, T. Leonard, and A. Mokkedem. Finding bugs in an alpha microprocessors
using satisfiability solvers. In 13th CAV, LNCS 2102, pp. 454–464. 2001.

[BRS99] R. Bloem, K. Ravi, and F. Somenzi. Efficient decision procedures for model checking
of linear time logic properties. In 11th CAV, LNCS 1633. Springer-Verlag, 1999.

[CFF+01] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M.Y. Vardi.
Benefits of bounded model checking at an industrial setting. In 13th CAV, LNCS
2102, pp. 436–453. Springer-Verlag, 2001.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[CVWY92] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient

algorithms for the verification of temporal properties. FMSD, 1:275–288, 1992.
[DHW91] D.L. Dill, A.J. Hu, and H. Wong-Toi. Checking for language inclusion using simu-

lation relations. In 3rd CAV, LNCS 575, pp. 255–265. Springer-Verlag, 1991.
[EH00] K. Etessami and G. Holzmann. Optimizing büchi automata. In 11th Concur, LNCS

1877, pp. 153–167. Springer-Verlag, 2000.
[EJ91] E.A. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In Proc.

32nd FOCS, pp. 368–377, 1991.
[Eme90] E.A. Emerson. Temporal and modal logic. In Handbook of TCS, 1990.
[EWS01] K. Etessami, Th. Wilke, and R. A. Schuller. Fair simulation relations, parity games,

and state space reduction for Büchi automata. In 28th ICALP, LNCS 2076, 2001.
[GBS02] S. Gurumurthy, R. Bloem, and F. Somenzi. Fair simulation minimization. In 14th

CAV, LNCS 2404, pp. 610–623. Springer-Verlag, 2002.
[GH82] Y. Gurevich and L. Harrington. Trees, automata, and games. In 14th STOC, 1982.
[GL94] O. Grumberg and D.E. Long. Model checking and modular verification. ACM

TOPLAS, 16(3):843–871, 1994.
[GO01] P. Gastin and D. Oddoux. Fast LTL to büchi automata translation. In 13th CAV,

LNCS 2102, pp. 53–65. Springer-Verlag, 2001.
[GPVW95] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verifi-

cation of linear temporal logic. In PSTV, pp. 3–18, 1995.
[HKR97] T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. In 8th Concur,

LNCS 1243, pp. 273–287. Springer-Verlag, 1997.
[IEE05] IEEE. IEEE standard for property specification language (PSL), October 2005.
[Jur00] M. Jurdzinski. Small progress measures for solving parity games. In 17th STACS,

LNCS 1770, pp. 290–301. Springer-Verlag, 2000.
[KPP05] Y. Kesten, N. Piterman, and A. Pnueli. Bridging the gap between fair simulation and

trace containment. IC, 200(1):35–61, 2005.
[KPV05] O. Kupferman, N. Piterman, and M.Y. Vardi. Personal communication, 2005.
[KV04] O. Kupferman and M.Y. Vardi. From complementation to certification. In 10th

TACAS, LNCS 2988, pp. 591–606. Springer-Verlag, 2004.
[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.
[Mil71] R. Milner. An algebraic definition of simulation between programs. In Proc. 2nd

International Joint Conference on Artificial Intelligence, pp. 481–489. 1971.
[Pnu77] A. Pnueli. The temporal logic of programs. In 18th FOCS, pages 46–57, 1977.
[SB00] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In 12th

CAV, LNCS 1855, pp. 248–263. Springer-Verlag, 2000.
[Str82] R.S. Streett. Propositional dynamic logic of looping and converse. IC, 54, 1982.
[Var96] M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for

Concurrency: Structure versus Automata, LNCS 1043, Springer-Verlag, 1996.
[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. IC, 115(1), 1994.

14

A Proof of Generalized Streett[1] ranking
Claim. A good ranking induces a winning strategy for player 0 from every state v such
that r1(v) <∞.

Proof. We define k strategies based on the ranking r1, . . . , rk. The ith strategy tries
to minimize ri. The strategy of player 0 combines these k strategies in the following
way. Player 0 maintains a counter in the range 1, . . . , k. If while playing according to
strategy i, the play reaches a state v such that v |= qi, player 0 increases the counter to
i⊕ 1 and in case v ∈ V0 she chooses some successor w of v such that ri⊕1(w) <∞.

We show that the resulting strategy is winning for player 0. Suppose that the counter
is increased infinitely often. It follows that for every i we have qi-states are visited
infinitely often and player 0 is winning. Suppose that from some point onwards the
counter is constant. It follows that player 0 plays according to strategy i indefinitely. As
the ranking is good, along the play ri does not increase. As ri cannot decrease infinitely
often, it must be the case that from some point onwards ri is constant (k, l). It follows
that pi-states are never visited after this point and that player 0 wins.

Claim. For every generalized Streett[1] game there exists a good ranking such that for
every state v ∈W0 we have r1(v) <∞.

Proof. The µ-calculus formula in Equation (1) computes the set of states winning
for player 0 in a generalized Streett[1] game [KPV05]. For the exact definition of µ-
calculus and the notation we refer the reader to [KPV05].

ϕ = ν

Z1

Z2

...

...

Zn

µY

 m∨
j=1

νX(q1 ∧2Z2 ∨ 2Y ∨ ¬pj ∧2X)

µY

 m∨
j=1

νX(q2 ∧2Z3 ∨ 2Y ∨ ¬pj ∧2X)

...
...

µY

 m∨
j=1

νX(qn ∧2Z1 ∨ 2Y ∨ ¬pj ∧2X)

(1)

We show that by analyzing the computation of this fixpoint we can deduce a tight
ranking on W0. The fixpoint computing Zi is used to define the ranking ri. As usual,
we follow the computation of the minimal fixpoints Yj . The states that are included in
the first approximation of Yj get rank (1, ·), the states that are included in the second
approximation of Yj get the rank (2, ·), and so on. The values of the X variables are
used to define the second entry in the rank. For simplifying presentation we define only
the ranking r1.

Let Z1 and Z2 denote the fixpoints computed for the variables Z1 and Z2. We define
Y 0 = ∅ and Y i =

∨m
k=1 Xi

k where

Xi
k = νX(q1 ∧2Z2 ∨ 2Y i−1 ∨ ¬pk ∧2X)

15

We define the ranking r1 based on the values of {Xi
1, . . . , X

i
m}. For a state s /∈ Z1

set r1(s) = ∞. For a state s ∈ Z1 set r1(s) to the minimal value (i, l) in D such that
s ∈ Xi

l . This completes the definition of the ranking. Clearly, r1 is defined for every
state s ∈ Z1.

We show that r1 is a good ranking. By definition we have

Xi
k = νX(q1 ∧2Z2 ∨ 2Y i−1 ∨ ¬pk ∧2X)

It follows that if the rank of s is (i, k) then one of the following condition holds.
– s |= q1 and either s ∈ V0 and s has some successor in Z2 or s ∈ V1 and all

successors of s are in Z2.
– either s ∈ V0 and s has some successor with rank (i − 1, ·), or s ∈ V1 and all

successors of s have rank (i− 1, ·).
– s does not satisfy pk, and either s ∈ V0 and s has some successor with rank (i, k′)

for k′ ≤ k or s ∈ V1 and all successors of s have rank (i, k′) for k′ ≤ k.
It follows that r1 is a good ranking.

B Proofs from Section 3
We prove Theorem 2

Proof. Every iteration of the while loop handles one value (v, j) ∈ L. The loop body
increments rj(v). The maximal number of increments is gk. It follows that every loca-
tion can be handled at most gkl times. Handling a location takes time proportional to
the in-degree of this location.

We prove Theorem 3.

Proof. We prove that every state in wini is winning by induction on the number of
iterations in the while loop. In the first iteration wini is empty. Suppose that all the
locations in w = wini	1 are winning for player 1. From every state included in avoid
player 1 has a strategy to either reach w or avoid Qi locations forever. Every state in
imm win is either in w or it is a Pi state from which player 1 either avoids Qi forever
or reaches w. It follows that the next approximation of wini contains winning states for
player 1.

We have to show that every winning state is returned by the algorithm. Obviously,
the winning region for player 1 is backward closed. That is, if from location v player
1 can force the game to reach winning states then v is winning for player 1. We show
that as long as the set computed by the algorithm does not contain all the winning
states of player 1 there exists some pair 〈Pi, Qi〉 and some location v such that player 1
wins from v when considering only the pair 〈Pi, Qi〉 (or reaching previously computed
winning states). Suppose that W is the set of states computed by the algorithm and that
W is backward closed. Suppose that there exists v /∈ W such that v is winning for
player 1. Then there exists some strategy f for player 1 winning from v. We restrict our
attention to the f -conform plays from v. We show that there exists some state v′ and
some pair 〈Pi, Qi〉 such that player 1 can force the play from v′ to reach Pi states and
avoid Qi states forever. Assume to the contrary. Consider the pair 〈P1, Q1〉, either all

16

f conform plays do not reach P1 or there exists some f conform play that reaches v1

such that v1 ∈ Q1. By induction we build a play that is f -conform and for every pair
〈Pi, Qi〉 ∈ P it either does not visit Pi or visits Qi infinitely often. This play cannot be
winning for player 1. We conclude there exists such a pair and such a location and the
algorithm computes the winning region for player 1.

We prove Theorem 4

Proof. We can construct the functions avoid set and back reach so that they work
in time proportional to the number of transitions of the game. In order to find one
additional location the while loop may need to cycle through all the pairs in P . Hence,
the while loop may repeat gk times. The overall run time is O(tgk).

C Proofs from Section 4
We prove Theorem 7

Proof. We show that N(t← s) simulates N . Player 1 follows player 0. Whenever
player 0 enters either s or t player 1 goes to t.

Similarly, N fair simulates N(t← s). The strategy includes a one bit memory.
Player 0 follows exactly what player 1 does. The only problem is when player 1 en-
ters the state t. In this case, if the memory bit is set player 0 enters s and flips the bit, if
the memory bit is unset player 0 enters t and flips the bit. It is simple to see that player
0 wins. We alternate between s and t because in N(t← s) the state t belongs to all the
fairness sets which both s and t belong to in N .

We prove Theorem 8.

Proof. Clearly, L(N) ⊆ L(N(t← s)). Consider an accepting run of L(N). Replace
every occurrence of s in this run by t. The resulting run is a valid and accepting run of
N(t← s).

We now show that L(N(t← s)) ⊆ L(N). For two sequences of states r = s0s1 · · ·
and r′ = p0p1 · · · we write r≤dr

′ to denote that forall l we have sl≤dpl. In the case
that r′ is finite we consider l in the range 0 ≤ l < |r′|. Consider a run r = s0s1 · · ·
of N(t← s) such that s0 ∈ Fi (i.e., s0 ∈ Fi or s0 = t and s ∈ Fi). We show that
for every q0 such that s0≤dq0 we can construct a finite run r′ = q0q1 · · · qp such that
r≤dr

′ and qp ∈ Fi. The construction proceeds in two phases. First, as r is a run of
N(t ← s) it may have transitions to t that are not allowed in N . We convert r to a
run r′′ = p0p1 · · · of N such that r≤dr

′′ and p0 ∈ Fi. Then, we construct r′ such that
r′′≤dr

′. From transitivity of≤d we conclude that r≤dr
′. We start with the construction

of r′′. If s0 6= t or s0 = t and t ∈ Fi then we set p0 = s0. If s0 = t and s ∈ Fi

then we set p0 = s. Clearly, s0 ≤ p0 and p0 ∈ Fi. Consider a prefix p0 · · · pl of r′′

such that r≤dr
′′. Consider the state sl+1. If the transition (sl, sl+1) is a transition of

N then as sl≤dpl we can find pl+1 such that sl+1≤dpl+1. If the transition (sl, sl+1) is
not a transition of N , then it must be the transition (sl, t) in N(t ← s) and in N the
transition (sl, s) exists. However, as sl≤dpl there exists a successor pl+1 of pl such that
s≤dpl+1. As t≤ds we conclude that t≤dpl+1. This completes the construction of r′′.

17

We now turn to r′. As p0=ds0 it follows that p0≤dq0. However, r′′ is a run of N so we
use directly the strategy of player 0 that wins from (p0, q0, 1) in GN,N according to the
pair i to produce r′′ = q0q1 · · ·. As p0 ∈ Fi, it follows that there exists some p such that
qp ∈ Fi.

We are now ready to complete the proof. Consider an accepting run r = s0 · · · of
N(t← s). We construct an accepting run r′ of N such that r≤dr

′. Let sl be the first
visit to F1 in r. We construct r′ = q0 · · · ql some run of N such that r≤dr

′. Consider
now the suffix π = slsl+1 · · · of r. We use the claim to construct a run π′ of N such
that π≤dπ

′ and π′ visits F1 in location p. We concatenate p′ to r′. We now proceed by
induction, as r is accepting it visits Fi⊕1 after |r′|. We extend r′ until a visit to Fi⊕1.
It follows that r′ is an accepting run of N such that r ≤d r′. Local requirement of
abstraction now gives language containment.

