Advanced Topics in Automata Exercise 2

Submission: April 8, 2003

Exercise

1. Prove that the $R_{i,j}^k$ construction yields (in the worst case) an exponential blow up.

Food for thought

2. Consider the languages:

$$L_n = \left\{ \{0, 1, \sharp\}^* \sharp w \sharp \{0, 1, \sharp\}^* \$ w \mid w \in \{0, 1\}^n \right\}$$

We have shown that a DFW accepting L_n has at least 2^{2^n} states. We gave the general idea of how to construct a concurrent AFW (an E, A, C machine) of size O(log(n)) that accepts L_n . Formalize, these ideas.

3. Let e be a regular expression and let $E = \{e_1, \ldots, e_k\}$ be a finite set of regular expressions over a common alphabet Σ . Let Σ_E be the alphabet $\{a_1, \ldots, a_k\}$. Intuitively, Σ_E consists of names for the regular expressions in E. Let f be a regular expression over Σ_E , the regular expression f(E) over the alphabet Σ is obtained by substituting e_i for a_i in f.

We say that f is an approximation of e with respect to E if L(f(E)) is contained in L(e). We say that f is a rewriting of e with respect to E if L(f(E)) is equal to L(e).

- (a) Given e and E, use the DFW for e and the NFW for the regular expressions in E (all over the alphabet Σ), to construct a DFW (over the alphabet Σ_E) that accepts some word iff there is a nonempty approximation of e with respect to E.
- (b) Replace every transition reading a_i in the automaton above by an automaton for e_i . Show that the resulting automaton accepts L(e) iff there is a rewriting of e with respect to E.