Advanced Topics in Automata
Exercise 7

Submission: June 17, 2003

Exercise

A weak alternating automaton is an alternating Biichi automaton that in
addition has the following structure. There is a partial order on the states
of the automaton such that the transition of a state can go only to states
that are lower in the partial order. Furthermore, every equivalence class of
the partial order is either contained in the set of accepting states or disjoint
from the set of accepting states. A weak alternating automaton where every
equivalence class of the partial order contains exactly 1 state is called 1-weak.
These limitations make weak alternating automata very interesting. For
one, complementation of weak alternating automata is linear. Checking the
emptiness of an AWW with 1-letter input alphabet is linear (not quadratic).

It turns out that the alternating automaton that results from the transla-
tion of an L'TL formula is 1-weak. The alternating Biichi automaton that we
constructed in the last class is weak. More formally, we have the following.

Consider an alternating Biichi automaton A = (X, @, qo, p, F'). We say
that A is weak if there exists a partition @1, . .. Q,, of and there is a partial
order < on the sets such that ¢’ may appear in transitions of ¢ only if [¢'] < [¢]
(where [¢] denotes the set @); such that ¢ € @;). Furthermore, we demand
that forall ¢ either @Q; C F or @Q; N F = (). We say that A is I-weak if every

set (; contains exactly one state.
70% Prove that complementation of alternating weak automata is linear.

15% Show that the automaton that is the result of the translation from LTL
to alternating automata is 1-weak.

15% Show that the automaton that is the result of the complementation
construction of Kupferman and Vardi (taught last lecture) is weak.

0% Food for thought. Give a linear algorithm for checking the emptiness
of AWW with 1-letter input alphabet.

Food for thought

A deterministic automaton, has exactly one run over every word. We
determine whether the word is accepted or not by checking whether this run
is fair or not. A backward deterministic automaton has exactly one fair run
over every word. We determine acceptance by checking whether this run
starts from an initial state or not.

Consider, a (presumably) NBW N = (¥, Q, Qo, 6, F'). We say that N is
backward deterministic if for every word w = wy, wy,... € X* there exists
exactly one sequence r = ty,11,... € Q¥ such that:

e Forall i we have t;41 € 0(t;, w;).
o inf(r)NF #0.

We say that a run r = t;,... of a backward deterministic automaton A
accepts a word w iff ty € Q.

Apparently, the NBW constructed for an LTL formula (not in the method
that we studied in class) is backward deterministic.

Use the following facts to show that for every NBW we can construct a
backward deterministic automaton accepting the same language.

e For every NBW we can construct a weak alternating automaton accept-
ing the same language and another that accepts the complementary
language.

The connection between the two should be established as part of the
homework.

e For an ABW A let A denote ACW complement of A. Let () denote the
set of states of A and @ = {g | ¢ € Q} denote the set of states of Q.
Every word is either accepted by A, or A7 where A4, is the automaton
A with ¢ as initial state. It is never the case that some word is accepted

by both 4, and Aj.

e We can represent a subset of the states of A as {0,1}?9. A 0 stands
for the state is not in the subset and a 1 stands for the state is in
the subset. Having a nondeterministic automaton in state @' C @
means that the suffix should be accepted from all the states in @'.
Equivalently consider the set {—1,1}9 where —1 stands for g should
accept the suffix and 1 stands for ¢ should accept the suffix.

