Advanced Topics in Automata — Final Exam

Submission: August 8th, 2003

1. Give the best algorithm you can find for the membership problem for NBWs. That is,
given an NBW A and a word w = af8% (where «, 5 € ¥*), devise an algorithm that
decides whether w € L(A).

Analyze the time and space complexity of your algorithm.

2. A deterministic automaton has exactly one run over each word. We determine whether
the word is accepted or not by checking whether this run is fair or not. A full automaton
has at least one fair run over each word. We determine acceptance by checking whether
these runs start in an initial state or not.

Consider, a (presumably) NBW N = (¥, Q, Qo, d, F'). We say that N is full if it satisfies
two conditions.

(a) For every word w = wy,ws,... € X¥, there exists at least one sequence r =
to,t1,... € %, such that:

e For all ¢ we have t;.1 € §(t;, w;)-
o inf(r)NF #0.
We call sequences that satisfy these two conditions uninitialized runs over w.

(b) There exists a partition @Q = Qo U @; such that for every word w, all the unini-
tialized runs of N over w start either in states from)y or in states from (); and
not both.

We say that a word w is accepted by N if the uninitialized runs over w start in Q).

Full automata are interesting because when we follow a run of such an automaton at
every stage we can determine whether the suffix is in the language of the automaton
or not. Furthermore, when we consider the product of a full automaton and another
automaton, the result has the language of the second. The full automaton is an observer
that gives information on the rest of the run of the second automaton.

Use the following facts to show that for every NBW we can construct a full automaton
accepting the same language.

e For every NBW we can construct a weak alternating automaton accepting the
same language and another that accepts the complementary language.

In Exercise 7 we established that the two weak alternating automata are the duals
of each another.

e For an ABW A, let A denote ACW complement of A. Let denote the set of
states of A and @ = {q | ¢ € Q} denote the set of states of A. Every word is
accepted either by A, or by Az, where A, is the automaton A with ¢ as initial
state. It is never the case that some word is accepted by both 4, and Ag.

e We can represent a subset of the states of A as {0,1}9 (namely, a function f :
@ — {0,1}). A 0 stands for ‘the state is not in the subset’ and a 1 stands for
‘the state is in the subset’. Having a nondeterministic automaton in state ' C @
means that the suffix should be accepted from all the states in Q. Equivalently,
consider the set {—1,1}%, where —1 stands for ‘g should accept the suffix’ and 1
stands for ‘g should accept the suffix’.

3. We are familiar with the Biichi, co-Biichi, and Miiller acceptance conditions. There are
also ‘strong’ acceptance conditions that restrict both the set of states occurring finitely
often and the set of states occurring infinitely often, while avoiding the exponential
blow up incurred by using the Miiller condition.

A Streett condition consists of a set of pairs of sets of states. We require that for every
pair, if the first set is visited infinitely often then so is the second set. Formally, we
have the following.

A nondeterministic Streett automaton is A = (X, Q, Qo, 6,), where 3 is the alphabet,
Q is the set of states, Qo C @ is the set of initial states, p : @ x ¥ — 29 is the

transition relation and o = {(L1,Uy), ..., (Lk, Uk)} is a Streett acceptance condition,
where L; C) and U; C @ are sets of states.
A run of A on a word w = wqwy - - - is a sequence of states ¢oq; - - -, such that ¢o € Qo

and for all i we have ¢;1 € §(¢g;, w;). A run is accepting if for every 1 < j < k we have
inf(r)N L; # 0 implies inf(r)NU; # O (or, in LTL format, A¥_, (O O Li — O O Uy))-

Use the following family of languages to show that Streett automata are exponentially
more succinct than Biichi automata. For every language L,, describe a (small) Streett
automaton that accepts the language. Show that every Biichi automaton that accepts
L,, must have at least 2" states.

Let ¥ = {0,1,2}. Every word in ¥“ can be viewed as a word in (X")¥, that is, an
infinite sequence of n-vectors over . Let u = ag,...,a,_1 € X". We say that 7 is
0-active (resp. I-active) in u, for 0 < i < n if a; = 0 (resp. a; = 1). Let w € X¥, then
w = ugu; - - -, where u; € X" forall j > 0. We say that i is 0-active (resp. I-active) in
u; for 0 < ¢ < n, if 7 is O-active (resp. l-active) in u; for infinitely many j’s. Let L,
be the set of words in X with a symmetric activity record. Formally,

L, ={w e X¥ | iis 0-active in w iff 7 is 1 active in w}

You can try thinking first about the problem where the alphabet is {0,1} x o{Lm}
and for which a letter (0, N) with N C {1,...,n} represents the word aq, ..., a, such
that a; = 0if s € N and a; = 2 otherwise. Similarly for (1, N). Now show that over
this large alphabet a Biichi automaton cannot have less than 2" states. Extend your
result to the constant alphabet above.

Remember that in every run over an infinite word, from some point on all the states
that appear in the run are states that appear infinitely often.

4. A Dyck set over the alphabet ¥ = {(; ,); | ¢ € I}, for some set I, is the set of
words where the parentheses are balanced in the usual sense. That is, the opening
parenthesis (; is an obligation that); will be found later in the word in a legal position
with respect to balancing. (In particular, a word in a Dyck set cannot start with
a closing parenthesis.) We can define a sym-Dyck set over the same alphabet by
allowing balancing in a symmetric fashion: not only does a closing parenthesis balance
an opening one, but also an opening parenthesis balances a closing one.

e Define formally sym-Dyck sets.
e Show that sym-Dyck sets are context free.

e Prove the parentheses theorem we proved in class using sym-Dyck sets instead of
Dyck sets. Give the full proof of the theorem, and mark accurately (in some typo-
graphical way: e.g., shading, underline, boldface, coloring, etc.) all the locations
where your proof differs from the proof given in class.

5. Good Luck.

