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Abstract. Equivalence between designs is a fundamental notion in verification.
The linear and branching approaches to verification induce different notions of
equivalence. When the designs are modeled by fair state-transition systems, equiv-
alence in the linear paradigm corresponds to fair trace equivalence, and in the
branching paradigm corresponds to fair bisimulation.

In this work we study the expressive power of various types of fairness condi-
tions. For the linear paradigm, it is known that the Biichi condition is sufficiently
strong (that is, a fair system that uses Rabin or Streett fairness can be translated
to an equivalent Bichi system). We show that in the branching paradigm the
expressiveness hierarchy depends on the types of fair bisimulation one chooses
to use. We consider three types of fair bisimulation studied in the literature: 3-
bisimulation, game-bisimulation, and V-bisimulation. We show that while game-
bisimulation and V-bisimulation have the same expressiveness hierarchy as tree
automata, 3-bisimulation induces a different hierarchy. This hierarchy lies be-
tween the hierarchies of word and tree automata, and it collapses at Rabin condi-
tions of index one, and Streett conditions of index two.

1 Introduction

In formal verification, we check that a system is correct with respect to a desired behav-
ior by checking that a mathematical model of the system satisfies a formal specification
of the behavior. In a concurrent setting, the system under consideration is a compaosition
of many components, giving rise to state spaces of exceedingly large size. One of the
ways to cope with this state-explosion problem is abstraction [BCG88,CFJ93,BG00].
By abstracting away parts of the system that are irrelevant for the specification being
checked, we hope to end up with manageable state-spaces. Technically, abstraction may
cause different states s and s’ of the system to become equivalent. The abstract system
then has as its state space the equivalence classes of the equivalence relation between
the states. In particular, s and s’ are merged into the same state.

We distinguish between two types of equivalence relations between states. In the
linear approach, we require s and s’ to agree on linear behaviors (i.e., properties satis-
fied by all the computations that start in s and ). In the branching approach, we require
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s and s’ to agree on branching behaviors (i.e., properties satisfied by the computation
trees whose roots are s and s’). When we model systems by state-transition systems,
two states are equivalent in the linear approach iff they are trace equivalent, and they
are equivalent in the branching approach iff they are bisimilar [Mil71]. The branching
approach is stronger, in the sense that bisimulation implies trace equivalence but not
vice versa [Mil71,Pnu85].

Of independent interest are the one-way versions of trace equivalence and bisim-
ulation, namely trace containment and simulation. There, we want to make sure that
s does not have more behaviors than s’. This corresponds to the basic notion of ver-
ification, where an implementation cannot have more behaviors than its specification
[AL91]. In the hierarchical refinement top-down methodology for design development,
we start with a highly abstract specification, and we construct a sequence of “behavior
descriptions”. Each description refers to its predecessor as a specification, and the last
description is sufficiently concrete to constitute the implementation (cf. [LT87,Kur94]).

The theory behind trace equivalence and bisimulation is well known. We know that
two states are trace equivalent iff they agree on all LTL specifications, and the problem
of deciding whether two states are trace equivalent is PSPACE-complete [MS72,K\V98b].
In the branching approach, two states are bisimilar iff they agree on all CTL* formulas,
which turned out to be equivalent to agreement on all CTL and wu-calculus formulas
[BCG88,JW96]. The problem of deciding whether two states are bisimilar is PTIME-
complete [Mil80,BGS92], and a witnessing relation for bisimulation can be computed
using a symbolic fixpoint procedure [McM93,HHK95]. Similar results hold for trace
containment and simulation. The computational advantage of simulation makes it a
useful precondition to trace containment [CPS93].

State-transition systems describe only the safe behaviors of systems. In order to
model live behaviors, we have to augment systems with fairness conditions, which par-
tition the infinite computations of a system into fair and unfair computations [MP92,Fra86].
It is not hard to extend the linear approach to account for fairness: s and s’ are equiv-
alent if every sequence of observations that is generated along a fair computation that
starts in s can also be generated along a fair computation that starts in s’, and vice versa.
Robustness with respect to LTL, and PSPACE-completeness extend to the fair case. It is
less obvious how to generalize the branching approach to account for fairness. Several
proposals for fair bisimulation can be found in the literature. We consider here three: 3-
bisimulation [GL94], game-bisimulation [HKR97,HR00], and V-bisimulation [LT87].
In a bisimulation relation between & and S’ with no fairness, two related states s and
s' agree on their observable variables, every successor of s is related to some successor
of s, and every successor of s’ is related to some successor of s. In all the definitions
of fair bisimulation, we require related states to agree on their observable variables. In
3-bisimulation, we also require every fair computation starting at s to have a related fair
computation starting at s’, and vice versa. In game-bisimulation, the related fair com-
putations should be generated by strategies that depend on the states visited so far, and
in V-bisimulation, the relation is a bisimulation in which related computations agree on
their fairness (we review the formal definitions in Section 2).

The different definitions induce different relations: V-bisimulation implies game-
bisimulation, which implies 3-bisimulation, but the other direction does not hold [HKR97].



The difference in the distinguishing power of the definitions is also reflected in their
logical characterization: while 3-bisimulation corresponds to fair-CTL* (that is, two
systems are 3-bisimilar iff they agree on all fair-CTL* formulas, where path quanti-
fiers range over fair computations only [CES86]), game-bisimulation corresponds to
fair-alternation-free u-calculus®. Thus, unlike the non-fair case, where almost all modal
logics corresponds to bisimulation, here different relations correspond to different log-
ics [ASB*94] 2. Finally, the different definitions induce different computational costs.
The exact complexity depends on the fairness condition being used. For the case of
the B uchi fairness condition, for example, the problem of checking whether two sys-
tems are bisimilar is PSPACE-complete for 3-bisimulation [K\VV98b], NP-complete for
V-bisimulation [Hoj96], and PTIME-complete for game-bisimulation [HKR97,HR00].

There are various types of fairness conditions with which we can augment labeled
state-transition systems [MP92]. Our work here relates fair transition systems and au-
tomata on infinite objects, and we use the types and names of fairness conditions that
are common in the latter framework [Tho90]. The simplest condition is Buchi (also
known as unconditional or impartial fairness), which specifies a set of states that should
be visited infinitely often along fair computations. In its dual condition, co-Blichi, the
specified set should be visited only finitely often. More involved are Streett (also known
as strong fairness or compassion), Rabin (Streett’s dual), and parity conditions, which
can restrict both the set of states visited infinitely often and the set of states visited
finitely often. Rabin and parity conditions were introduced for automata and are less
frequent in the context of state-transition systems. Rabin conditions were introduced by
Rabin and were used to prove that the logic S2S is decidable [Rab69]. Parity conditions
can be easily translated to both Rabin and Streett conditions. They have gained their
popularity as they are suitable for modeling behaviors that are given by means of fixed-
points [EJ91]. As we formally define in Section 2, Rabin, Streett, and parity conditions
are characterized by their index, which is the number of pairs (in the case of Rabin and
Streett) or sets (in the case of parity) they contain. When we talk about a type of a sys-
tem, we refer to its fairness condition and, in the case of Rabin, Streett, and parity, also
to its index. For example, a Rabin[1] system is a system whose fairness condition is a
Rabin condition with a single pair.

The relations between the various types of fairness conditions are well known in the
linear paradigm. There, we can regard fair transition systems as a notational variant of
automata on infinite words, and adopt known results about translations among the vari-
ous types and about the complexity of the trace-equivalence and the trace-containment
problems [Tho90]. In particular, it is known that the B lchi fairness condition is suffi-
ciently strong, in the sense that every system can be translated to an equivalent B lchi
system, where equivalence here means that the systems are trace equivalent.

In the branching paradigm, tight complexity bounds are known for the fair-bisimulation
problem with respect to the three definitions of fair bisimulation and the various types
of fairness conditions [Hoj96,HKR97,KV98b], but nothing is known about their ex-
pressive power, and about the possibilities of translations among them. For example,

1 A semantics of fair-alternation-free p-calculus is given in [HROO].
2 As shown in [ASB194], the logic CTL induces yet another definition, strictly weaker than
3-bisimulation. Also, no logical characterization is known for V-bisimulation.



it is not known whether every system can be translated to an equivalent B uchi system,
where now equivalence means fair bisimulation. In particular, it is not clear whether
one can directly apply results from the theory of automata on infinite trees in order to
study fair-bisimulation, and whether the different definitions of fair bisimulation induce
different expressiveness hierarchies.

In this paper, we study the expressive power of the various types of fairness condi-
tions in the context of fair bisimulation. For each of the three definitions of fair bisimu-
lation, we consider the following question: given types « and +' of fairness conditions,
is it possible to translate every y-system to a fair-bisimilar v'-system? If this is indeed
the case, we say that 4’ is at least as strong as ~. Then, « is stronger than +' if « is
at least as strong as +', but ' is not at least as strong as . When + is stronger than
~', we also say that +' is weaker than «. We show that the expressiveness hierarchy for
game-bisimulation and V-bisimulation is strict, and it coincides with the expressiveness
hierarchy of tree automata. Thus, B Uchi and co-B Gichi systems are incomparable and are
the weakest, and for all 7 > 1, Rabin[i + 1], Streett[i + 1], and parity[i + 1], are stronger
than Rabin[z], Streett[z], and parity[:], respectively [Rab70,DJW97,Niw97,NW98]. In
contrast, the expressiveness hierarchy for 3-bisimulation is different, and it is not strict.
We show that B lchi and co-B “lchi systems are incomparable, and they are both weaker
than Streett[1] systems. Streett[1] systems are in turn weaker than Streett[2] and Ra-
bin[1] systems, which are both at least as strong as Rabin[:] and Streett[s], forall ¢ > 1.

Our results imply that the different definitions of fair bisimulation induce differ-
ent expressiveness relations between the various types of fairness conditions. These
relations are different than those known for the linear paradigm, and, unlike the case
there, they do not necessarily coincide with the relations that exist in the context of
automata on infinite trees. A decision of which fairness condition and which type of
fair-bisimulation relation to use in a modeling and verificatiuon process should take
into an account all the characteristics of these types, and it cannot be assumed that what
is well known for one type is true for another.

Due to space limitations, most of the proofs are omitted. A full version can be found
in the homepages of the authors.

2 Definitions

A fair state-transition system (system, for short) S = (X, W, R, Wy, L, a) consists of
an alphabet 3, a finite set W of states, a total transition relation R C W x W (i.e.,
for every w € W there exists w' € W such that R(w, w")), a set Wy of initial states, a
labeling function L : W — X, and a fairness condition «.. We will define several types
of fairness conditions shortly. A computation of S is a sequence m# = wg,ws, W2, . ..
of states such that for every ¢ > 0, we have R(w;,w;4+1). Each computation 7 =
wo, w1, Wa, . - . induces the word L(w) = L(wp) - L(wi) - L(wz) --- € X*. In order
to determine whether a computation is fair, we refer to the set in f () of states that
« visits infinitely often. Formally, inf(r) = {w € W : forinfinitely manyi >
0, we have w; = w}. The way we refer to in f (7) depends on the fairness condition of
S. Several types of fairness conditions are studied in the literature:

— Biichi (unconditional or impartial), where o C W, and = is fair iff in f(7) Na # 0.



— co-Biichi, where a C W, and = is fair iff in f (7) N a = 0.

— Parity, where « is a partition of W, and = is fair in o = {Fy, Fa,..., Fy} if the
minimal index 7 for which in f(r) N F; # @ exists and is even.

— Rabin, where o C 2% x 2W and 7 is fair in o = {(G1, B1),---,{Gg, B)} if
thereisa 1l <7 < ksuch thatinf(r) NG; # 0 and inf(m) N B; = 0.

— Streett (compassion or strong fairness), where « C 2% x 2% and r is fair in
a = {(G1,B1),...,{Gy, By)} ifforall 1 <4 < k, we have that inf(7) N G; # 0
implies inf(7) N B; # 0.

The number & of sets in a parity fairness condition or of pairs in a Rabin or Streett
fairness condition is the index of a.. When we talk about the type of a system, we refer
to its fairness condition and, in the case of Rabin, Streett, and parity, also to its index. For
example, a Rabin[1] system is a system whose fairness condition is a Rabin condition
with a single pair. For a state w, a w-computation is a computation wq, w1, wa, . . . With
wo = w. We use 7 (%) to denote the set of all traces oq - o1 - - - € X for which there
exists a fair w-computation wg, w, ... in S with L(w;) = o; forall 2 > 0. The trace
set 7(S) of S is then defined as{J,, ¢y, 7(S").

We now formalize what it means for two systems (or two states of the same system)
to be equivalent. We give the definitions with respect to two systems S = (X, W, R, Wy, L, o)
and 8" = (X, W', R, W}, L', '), with the same alphabet.> We consider two equiv-
alence criteria: trace equivalence and bisimulation. While the first criterion is clear
(T(S) = T(8")), several proposals are suggested in the literature for bisimulation in
the case of systems with fairness. Before we define them, let us first recall the definition
of bisimulation for the non-fair case.
Bisimulation [Mil71] Arelation H C W x W' is a bisimulation relation between S
and S’ iff the following conditions hold for all {(w,w') € H.

1. L(w) = L'(w'").
2. Forall s € W with R(w, s), there is s' € W' such that R'(w', s") and H(s, s').
3. Forall s € W with R'(w', s"), there is s € W such that R(w, s) and H (s, s').

We now describe three extensions of bisimulation relations to the fair case. In all
definitions, we extend a relation H C W x W', over the states of S and S’, to a relation
over infinite computations of S and .9': for two computations * = wg, ws, ... in .S, and
' =wj,wy,...inS’, we have H (m, 7') iff H(w;,w}), forall ¢ > 0.
3-bisimulation [GL94] Arelation H C W x W' is an 3-bisimulation relation between
S and §’ iff the following conditions hold for all {(w,w') € H.

1. L(w) = L'(w'").
2. Each fair w-computations r in S has a fair w’-computation =’ in S’ with H (m, 7).
3. Each fair w'-computations 7’ in S” has a fair w-computation 7 in S with H (, 7).

Game bisimulation [HKR97,HR00] Game bisimulation is defined by means of a
game between a protagonist against an adversary. The positions of the game are pairs

3 In practice, S and S’ are given as systems over alphabets 247 and 247", when AP and AP’
are the sets of atomic propositions used in S and S’, and possibly AP # AP'. When we
compare S with S’, we refer only to the common atomic propositions, thus X = 9APNAP!



in W x W'. A strategy 7 for the protagonist is a partial function from (W x W')* x
(WuWw')to(WUW),suchthatforall p e (W x W')*, we W,andw' € W', we
have that 7(p - w) € W' and 7(p - w') € W. Thus, if the game so far has produced the
sequence p of positions, and the adversary moves to w in S, then the strategy 7 instructs
the protagonist to move to w’ = 7(r - w), resulting in the new position (w,w’). If the
adversary chooses to move to w’ in S’, then 7 instructs the protagonist to move to
w = 7(7 - w'), resulting in the new position (w,w’). A sequence w = (wg,wy) -
(wy,wy)--- € (W x W')¥ is an outcome of the strategy 7 if for all 7 > 0, either
wipy = 7((wo, wp) - - - (Wi, w;) - Wit1), OF wiy1 = 7({wo, wp) - - - (Wi, i) - Wiyy).

A binary relation H C W x W' is a game bisimulation relation between S and .S’
if there exists a strategy 7 such that the following conditions hold for all (w,w’) in H.

1. L(w) = L(w").

2. Every outcome w = (wo, wg) - (w1, wy) - -- of 7 with wg = w and wjj = w’ has
the following two properties: (1) for all : > 0, we have (w;,w}) € H, and (2) the
projection wg - wy --- of w to W is a fair we-computation of S iff the projection
wg - wy - -- of w to W' is a fair wg-computation of S’

V-bisimulation [LT87,DHW91] A binary relation H C W x W' is a V-bisimulation
relation between S and S’ if the following conditions hold:

1. H is a bisimulation relation between S and S’.

2. If H(w,w'"), then for every fair w-computation = of S and for every w’-computation
w' of §',if H(m,n'"), then 7' is fair.

3. If H(w, w'), then for every fair w'-computation =’ of S” and for every w-computation
m of S, if H(m,n'), then x is fair.

It is not hard to see that if H is a V-bisimulation relation, then H is also a game-
bisimulation relation. Also, if H is a game-bisimulation relation, then H is also an
3-bisimulation relation. As demonstrated in [HKR97], the other direction is not true.

For all types 3 of bisimulation relations (that is 8 € {3, game, V}), a 8-bisimulation
relation H is a B-bisimulation between S and S’ if for every w € W, there exists
w' € W{ such that H(w,w'), and for every w' € W{ there exists w € Wy such that
H(w,w'). If there is a 8-bisimulation between S and S’, we say that S and S’ are 8-
bisimilar. Intuitively, bisimulation implies that S and S’ have the same behaviors. For-
mally, two bisimilar systems with no fairness agree on the satisfaction of all branching
properties that can be specified in a conventional temporal logic (in particular, CTT*
and p-calculus) [BCG88,JW96]. When we add fairness, the logical characterization
becomes less robust: 3-simulation corresponds to fair-CTL*, and game-simulation cor-
responds to fair-alternation-free u-calculus [ASB*94,GL.94,HKR97,HR00].

For 3-bisimulation and V-bisimulation, a relation H C W x W' is a 8-simulation
relation from S to S’ if conditions 1 and 2 for H being a 8-bisimulation relation hold.
For game-bisimulation, a relation H is a game-simulation relation from S to S’ if we
restrict the moves of the adversary to choose only states from S. A g-simulation relation
H is a g-simulation from S to S" iff for every w € Wy there exists w' € W{ such that
H(w,w'"). If there is a B-simulation from S to S’, we say that S’ g-simulates S, and
we write S <g S'. Intuitively, while bisimulation implies that .S and .S’ have the same
behaviors, simulation implies that S has less behaviors than S’.



It is easy to see that bisimulation implies trace equivalence. The other direction,
however, is not true [Mil71]. Hence, our equivalence criteria induce different equiva-
lence relations. When attention is restricted to trace equivalence, it is known how to
translate all fair systems to an equivalent B lchi system. In this paper we consider the
problem of translations among systems that preserve bisimilarity.

3 Expressiveness with 3-bisimulation

In the linear case, it follows from automata theory that co-B Uchi systems are weaker
than B-lchi systems, which are as strong as parity, Rabin, and Streett systems. In the
branching case, nondeterministic B uchi and co-B uchi tree automata are both weaker
than Rabin tree automata, and, for all s > 1, parity[¢], Rabin[z], and Streett[s] are weaker
than parity[:+1], Rabin[i+1], and Streett[:+1], respectively [Rab70,DJW97,Niw97,NW98].
In this section we show that the expressiveness hierarchy in the context of 3-bisimulation
is located between the hierarchies of word and tree automata.

We first show that B lchi and co-B uchi systems are weak. The arguments we use
are similar to these used by Rabin in the context of tree automata [Rab70]. Our proofs
use the notion of maximal models [GL94,KV98c]. A system M, is a maximal model
for an VCTL* formula ¢ if My, = ¢ and for every module M we have that M <35 My
iff M |= 4. It can be shown that there is no B uchi system that is 3-bisimilar to the
maximal model of the formula Y& Op and that there is no co-Btchi system that is 3-
bisimilar to the maximal model of the formula YOOp. Hence, we have:

Theorem 1. Biichi is not at least as 3-strong as co-Biichi and co-Bichi is not at least
as 3-strong as Bichi.

Note that Theorem 1 implies that the B uchi condition is too weak for defining max-
imal models for VCTL* formulas. On the other hand, the B tGchi condition is sufficiently
strong for defining maximal models for VCTL formulas [GL94,KV98a]. Since par-
ity, Rabin, and Streett are at least as 3-strong as B lchi and co-Blchi, it follows from
Theorem 1 that parity, Rabin, and Streett are all 3-stronger than B uchi and co-B “Uchi.

So far things seem to be very similar to tree automata, where B Gchi and co-BUchi
conditions are incomparable [Rab70]. In particular, the ability of the B uchi condition
to define maximal models for VCTL and its inability to define maximal models for
VYCTL* seems related to the ability to translate CTL formulas to B Uchi tree automata
and the inability to translate CTL* formulas to B tchi tree automata (as follows from
Rabin’s result [Rab70]). In tree automata, the hierarchy of expressive power stays strict
also when we proceed to parity (or Rabin or Streett) fairness condition with increasing
indices [DJW97,Niw97,NW98]. We now show that, surprisingly, in the context of 3-
bisimulation, Rabin conditions of index one are at least as strong as parity, Rabin, and
Streett conditions with an unbounded index. In particular, it follows that maximal mod-
els for VCTL* can be defined with Rabin[1] fairness. The idea behind the construction
is similar to the conversion of Rabin and Streett automata on infinite words to B uchi
automata on infinite words.

% Here and in the sequel, we use terms like ~ is 3-stronger than ~' to indicate that ~ is stronger
than 4/ in the context of 3-bisimulation.



Lemma 1. Every Rabin system with n states and index & has an 3-bisimilar Rabin
system with O(nk) states and index 1.

Proof: LetS = (X, W, Wy, R, L, &) be a Rabinsystemwitha = {(G1, B1), ..., {(Gk, B)}.
We define S = (X, W', W{§, R', L', o) as follows.

— Foreveryl < ¢ < k, let W; = (W \ B;) x {i}. Then, W' = (W x {0}) U
Us<ici Wi and Wo = Wy x {0}.

- RI :—U0<i§k{<(w70)a (wlai»’ <(wal)7 (’U)I,O)), <(w77’)7 (wl77’)> : <w’wl> € R} n
(W' x W'"). Note that R’ is total.

— Forallw e Wand0 <i <k, we have L' ((w, 1)) = L(w).

- o' = {{Uicicp Gi x {i}, W x {0})}.

Thus, S’ consists of k + 1 copies of S. One copy (“the idle copy”) contains all the
states in W, marked with 0. Then, & copies are partial: every such copy is associated
with a pair (G;, B;), its states are marked with 4, and it contains all the states in W'\ B,;.
A computation of S’ can return to the idle copy from all copies, where it can choose
between staying in the idle copy or moving to one of the other & copies. The acceptance
condition forces a fair computation to visit the idle copy only finitely often, forcing the
computation to eventually get trapped in a copy associated with some pair (G, B;).
There, the computation cannot visit states from B; (indeed, W; does not contain such
states), and it has to visit infinitely many states from G;. It is not hard to see that the
relation H = {(w, (w,3)) : w € Wand0 < ¢ < k} is an 3-bisimulation between S
and S’, thus S and S’ are 3-bisimilar. O

In the case of transforming Rabin[k] word automata to Rabin[1] (or Bchi) au-
tomata, runs of the automaton on different computations are independent of each other,
so there is no need for the automaton to “change its mind” about the pair in o with
respect to which the computation is fair. Accordingly, there is no need to return to an
idle copy. In the case of tree automata, runs on different computations of the tree de-
pend on each other, and the run of the automaton along a computation may need to
postpone its choice of a suitable pair in « ad infinitum, which cannot be captured with a
Rabin[1] condition. The crucial observation about 3-bisimulation is that here, if 7y and
o are different fair w-computations, then the fair computations «{ and 74 for which
H(my, ) and H (2, wh) are independent. Thus, each computation eventually reaches
a state where it can stick to its suitable pair in a. Accordingly, a computation needs to
change its mind only finitely often. A visit to the idle copy corresponds to the computa-
tion changing its mind, and the fairness condition guarantees that there are only finitely
many visits to the idle copy.

We now describe a similar transformation for Streett systems. While in Rabin sys-
tems each copy of the original system corresponds to a guess of a pair (G;, B;) for
which G; is visited infinitely often and B, is visited only finitely often, here each copy
would correspond to a subset I C {1, ..., k} of pairs, where the copy associated with
I corresponds to a guess that B; and G; are visited infinitely often for all € I, and G;
is visited only finitely often for all i & 1.

Lemma 2. Every Streett system with n states and index k& has an 3-bisimilar Rabin
system with O(n - 20(k)) states and index 1.



Note that while the blow up in the construction in Lemma 1 is linear in the index
of the Rabin system, the blow up in the construction in Lemma 2 is exponential in
the index of the Streett system. The above blow ups are tight for the linear paradigm
[SV89]°. Since 3-bisimulation implies trace equivalence, it follows that these blow ups
are tight also for the 3-bisimulation case.

Since the parity condition is a special case of Rabin, Lemma 1 also implies a trans-
lation of parity systems to 3-bisimilar Rabin[1] systems. Also, a Rabin[1] condition
{{(G, B)} can be viewed as a parity condition {B,G \ B,W \ (G U B)}. Hence, par-
ity[3] is as 3-strong as Rabin[1] ©. A Rabin[1] condition {(G, B)} is equivalent to the
Streett[2] condition {{W, G), (B, 0)}. So, Streett[2] is also as 3-strong as Rabin[1]. It
turns out that we can combine the arguments for B lichi and co-BUchi in Theorem 1 to
prove that Streett[1] is 3-weaker than Streett[2]. To sum up, we have the following.

Theorem 2. For every fairness type -y, the types Rabin[1], Streett[2], and parity[3] are
all at least as 3-strong as +.

Note that the types described in Theorem 2 are tight, in the sense that, as discussed
above, B uchi, co-B uchi, Streett[1], and parity[2] may be 3-weaker than -.

In the full version, we also show that a system with a generalized Biichi condition
or with a justice condition [MP92] can be translated to an 3-bisimilar B uchi system,
implying that generalized B Uchi and justice conditions are also too weak.

4 Expressiveness with Game-bisimulation and V-bisimulation

We now study the expressiveness hierarchy for game-bisimulation and V-bisimulation.
We show that unlike 3-simulation, here the hierarchy coincides with the hierarchy of
tree automata. Thus, Rabin[i+1] is stronger than Rabin[i], and similarly for Streett and
parity. In order to do so, we define game-bisimulation between tree automata, and define
transformations preserving game-bisimulation between tree automata and fair systems.
We show that game-bisimilar tree automata agree on their languages (of trees), which
enables us to relate the expressiveness hierarchies in the two frameworks.

Due to lack of space we only give an outline of the proof. We define a special
type of tree automata, called loose tree automata. Unlike conventional tree automata
[Tho90], the transition function of loose tree automata does not distinguish between the
successors of a node, it does not force states to be visited, and it only restricts the set
of states that each of the successors may visit. When A runs on a labeled tree (T, V')
and it visits a node z with label ¢ at state ¢, then §(g,o) = S (where S is a subset of
the states of .4) means that .A should send to all the successors of x copies in states in
S. Loose tree automata can use all types of fairness. A run of a loose tree automaton is
accepting if all the infinite paths of the run tree satisfy the fairness condition.

5 [SV89] shows that the transition from Streett word automata to Biichi word automata is ex-
ponential in the index of the Streett automaton. Since the transition from Rabin[1] to Biichi is
linear, a lower bound for the transition from Streett to Rabin[1] follows.

5 Recall that a parity fairness condition is a partition of the state set. Hence, a parity[2] condition
can be translated to an equivalent co-Biichi fairness condition and vice versa, implying that
Rabin[1] is 3-stronger than parity[2].



We can define game-bisimulation for loose tree automata. Given two loose tree au-
tomata, we define a game whose positions are pairs of states. A strategy for the game is
similar to the strategy defined for systems, but this time the adversary gets to choose an
alphabet letter and a successor corresponding to this letter. The protagonist has to follow
with a successor corresponding to the same letter in the other automaton. A relation is
a game-bisimulation relation if all the outcomes of such plays starting at related states
have both projections fair or have both projections unfair. Two loose tree automata are
game-bisimilar if there exists a game-bisimulation between them that relates the starting
states of each one of the automata to starting states of the other.

Recall that game-bisimulation between systems implies trace equivalence. Game-
bisimulation between loose tree automata implies not only agreement on traces that may
label paths of accepted trees, but also agreement on the accepted trees! The idea is that
given an accepting run tree of one automaton, we use the strategy to build an accepting
run tree of its game-bisimilar counterpart. This property of game-bisimulation between
loose tree automata enables us to relate the hierarchy of loose tree automata with that
of game-bisimulation. Formally, we have the following.

Theorem 3. Let y and 4’ be two types of fairness conditions. If «y is at least as strong
as ' in the context of game-bisimulation or V-hisimulation, then v is at least as strong
as +' also in the context of loose tree automata.

While loose tree automata are weaker than conventional tree automata [Tho90],the
expressiveness hierarchy of loose tree automata coincides with that of tree automata
(this is beacause the latter coincides with the hierarchy of deterministic word automata
[Wag79,Kam85], and is proven in [KSV96,DJW97,Niw97,NW98] by means of lan-
guages that can be recognized by loose tree automata). It follows that the expressive-
ness hierarchy in the context of game-bisimulation and V-bisimulation coincides with
that of tree automata.

5 Discussion

We considered two equivalence criteria — bisimulation and trace equivalence — be-
tween fair state-transition systems. We studied the expressive power of various fairness
conditions in the context of fair bisimulation. We showed that while the hierarchy in
the context of trace equivalence coincides with the one of nondeterministic word au-
tomata, the hierarchy in the context of bisimulation depends on the exact definition of
fair bisimulation, and it does not necessarily coincide with the hierarchy of tree au-
tomata. In particular, we showed that Rabin[1] systems are sufficiently strong to model
all systems up to 3-bisimilarity.

There is an intermediate equivalence criterion: two-way simulation (that is § < S’
and S’ < 9) is implied by bisimulation, it implies trace equivalence, and it is equal
to neither of the two [Mil71]. Two-way simulation is a useful criterion: S and S’ are
two-way similar iff for every system S we have S” < Siff $” < S"and § < §”
iff S’ < S". Hence, in hierarchical refinement, or when defining maximal models for
universal formulas, we can replace S with S’. A careful reading through our proofs
shows that all the results described in the paper for bisimulation hold also for two-way
simulation.



Finally, the study of 3-bisimulation in Section 3 has led to a simple definition of
parallel compositions for Rabin and parity systems, required for modular verification
of concurrent systems. In the linear paradigm, the composition S = 91 ||S» of S and
S5 is defined so that 7(S) = T(S) N T(S2) (cf. [Kur94]). In the branching paradigm
[GL94], Grumberg and Long defined the parallel compositions of two Streett systems.
As studied in [GL94,KV98a], in order to be used in modular verification, a definition
of composition has to satisfy the following two conditions, for all systems S, S, and
S". First, if S' <5 S, then S||S" <5 §||S". Second, S <3 §'||S" iff S <3 S’ and
S <3 8", In particular, it follows that S||.S’ <5 §’, thus every universal formula that is
satisfied by a component of a parallel composition, is satisfied also by the composition.
When S; and S, are Streett systems, the definition of §||.S2 is straightforward, and
is similar to the product of two Streett word automata. When, however, S; and S» are
Rabin systems, the definition of product of word automata cannot be applied, and a
definition that follows the ideas behind a product of tree automata is very complicated
and complex. In the full paper we show that the fact that 3-bisimulation is located
between word and tree automata enables a simple definition of parallel composition
that obeys the two conditions above.
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