
Model Checking Linear Properties of Prefix-Recognizable Systems

Orna Kupferman
�

Hebrew University
Nir Piterman

�

Weizmann Institute of Science
Moshe Y. Vardi

�

Rice University

January 27, 2002

Abstract

We develop an automata-theoretic framework for reasoning about linear properties of infinite-state
sequential systems. Our framework is based on the observation that states of such systems, which carry
a finite but unbounded amount of information, can be viewed as nodes in an infinite tree, and transitions
between states can be simulated by finite-state automata. Checking that the system satisfies a temporal
property can then be done by an alternating two-way automaton that navigates through the tree. For
branching properties, the framework is known and the two-way alternating automaton is a tree automaton.
Applying the framework for linear properties results in algorithms that are not optimal. Indeed, the fact that
a tree automaton can split to copies and simultaneously read all the paths of the tree has a computational
price and is irrelevant for linear properties. We introduce path automata on trees. The input to a path
automaton is a tree, but the automaton cannot split to copies and it can read only a single path of the tree.
In particular, two-way nondeterministic path automata enable exactly the type of navigation that is required
in order to check linear properties of infinite-state sequential systems.

As has been the case with finite-state systems, the automata-theoretic framework is quite versatile.
We demonstrate it by solving several versions of the model-checking problem for LTL specifications and
prefix-recognizable systems. Our algorithm is exponential in both the size of (the description of) the
system and the size of the LTL specification, and we prove a matching lower bound. This is the first
optimal algorithm for solving the LTL model-checking problem for prefix recognizable systems. Our
framework also handles systems with regular labeling, and in fact we show that LTL model checking with
respect to pushdown systems with regular labeling is intereducible with LTL model checking with respect
to prefix-recognizable systems with simple labeling.
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1 Introduction

One of the most significant developments in the area of formal design verification is the discovery of algo-
rithmic methods for verifying temporal-logic properties of finite-state systems [CES86, LP85, QS81, VW86].
In temporal-logic model checking, we verify the correctness of a finite-state system with respect to a desired
behavior by checking whether a labeled state-transition graph that models the system satisfies a temporal
logic formula that specifies this behavior (for a survey, see [CGP99]). Symbolic methods that enable model
checking of very large state spaces, and the great ease of use of fully algorithmic methods, led to industrial
acceptance of temporal model checking [BLM01, CFF � 01].

An important research topic over the past decade has been the application of model checking to infinite-
state systems. Notable successes in this area has been the application of model checking to real-time and
hybrid systems (cf. [HHWT95, LPY97]). Another active thrust of research is the application of model
checking to infinite-state sequential systems. These are systems in which a state carries a finite, but un-
bounded, amount of information, e.g., a pushdown store. The origin of this thrust is the important result by
Müller and Schupp that the monadic second-order theory of context-free graphs is decidable [MS85]. As
the complexity involved in that decidability result is nonelementary, researchers sought decidability results
of elementary complexity. This started with Burkart and Steffen, who developed an exponential-time al-
gorithm for model-checking formulas in the alternation-free � -calculus with respect to context-free graphs
[BS92]. Researchers then went on to extend this result to the � -calculus, on one hand, and to more general
graphs on the other hand, such as pushdown graphs [BS99a, Wal96], regular graphs [BQ96], and prefix-
recognizable graphs [Cau96]. The most powerful result so far is an exponential-time algorithm by Burkart
for model checking formulas of the � -calculus with respect to prefix-recognizable graphs [Bur97b]. See also
[BCMS00, BE96, BEM97, BS99b, Bur97a, FWW97].

In [KV00], Kupferman and Vardi develop an automata-theoretic framework for reasoning about infinite-
state sequential systems. The automata-theoretic approach uses the theory of automata as a unifying paradigm
for system specification, verification, and synthesis [WVS83, EJ91, Kur94, VW94, KVW00]. Automata
enable the separation of the logical and the algorithmic aspects of reasoning about systems, yielding clean
and asymptotically optimal algorithms. Kupferman and Vardi use two-way alternating tree automata in order
to reason about branching properties of infinite state sequential systems. The idea is based on the observation
that states of such systems can be viewed as nodes in an infinite tree, and transitions between states can
be simulated by finite-state automata. Checking that the system satisfies a branching temporal property can
then be done by an alternating two-way automaton. The two-way alternating automaton starts checking the
input tree from the root. It then spawns several copies of itself that may go in different directions in the
tree. Each new copy can spawn other new copies and so on. The automaton accepts the input tree if all
spawned copies agree on acceptance. Thus, copies of the alternating automaton navigate through the tree
and check the branching temporal property. The method in [KV00] handles prefix-recognizable systems, and
properties specified in the � -calculus. The method appears to be very versatile, and it has further applications:
the � -calculus model-checking algorithm can be easily extended to graphs with regular labeling (that is,
graphs in which each atomic proposition � has a regular expression describing the set of states in which
� holds) and regular fairness constraints, to � -calculus with backward modalities, to checking realizability
of � -calculus formulas with respect to infinite-state sequential environments, and to computing the set �����

�

(���
	��
�
) of predecessors (successors) of a regular set of states. All the above are achieved using a reduction to

the emptiness problem for alternating two-way tree automata where the location of the alternating automaton
on the infinite tree indicates the contents of the pushdown store.

The � -calculus is sufficiently strong to express all properties expressible in the linear temporal logic LTL
(and in fact, all properties expressible by an 
 -regular language) [Dam94]. Thus, the framework in [KV00]
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can be used in order to solve the problem of LTL model-checking for prefix-recognizable systems. The
solution, however, is not optimal. This has to do both with the fact that the translation of LTL to the � -calculus
is exponential, as well as the fact that the framework in [KV00] is based on tree automata. A tree automaton
splits into several copies when it runs on a tree. While splitting is essential for reasoning about branching
properties, it has a computational price. For linear properties, it is sufficient to follow a single computation
of the system, and tree automata seem too strong for this task. For example, while the application of the
framework in [KV00] to pushdown systems and LTL properties results in a doubly-exponential algorithm, the
problem is known to be EXPTIME-complete [BEM97].

In this paper, we develop an automata-theoretic framework to reason about linear properties of infinite-
state sequential systems. We introduce path automata on trees. The input to a path automaton is a tree,
but the automaton cannot split to copies and it can read only a single path of the tree. In particular, two-
way nondeterministic path automata enable exactly the type of navigation that is required in order to check
linear properties of infinite-state sequential systems. We study the expressive power and the complexity of
the decision problems for (two way) path automata. The fact that path automata follow a single path in the
tree makes them very similar to two-way nondeterministic automata on infinite words. This enables us to
reduce the membership problem (whether an automaton accepts the tree obtained by unwinding a given finite
labeled graph) of two-way nondeterministic path automata to the emptiness problem of one-way alternating
weak automata on infinite words, which was studied in [KVW00]. This leads to a quadratic upper bound for
the membership problem for two-way nondeterministic path automata.

As usual, the automata-theoretic framework proves to be very helpful. We are able to solve the problem
of LTL model checking with respect to pushdown systems by a reduction to the membership problem of two-
way nondeterministic path automata. This is in contrast to [KV00], where the emptiness problem for two-way
alternating tree automata is being used. We note that both simplifications, to the membership problem vs. the
emptiness problem, and to path automata vs. tree automata are crucial: as we prove, the emptiness problem
for two-way nondeterministic Büchi path automata is EXPTIME-complete, and the membership problem for
two-way alternating Büchi automata is also EXPTIME-complete

�
. Our automata-theoretic technique match

the known upper bound for model checking LTL properties on pushdown systems [BEM97, EHRS00]. In
addition, the automata-theoretic approach provides the first solution for the case where the system is prefix
recognizable. Specifically, we show that we can solve the model-checking problem of an LTL formula � with
respect to a prefix-recognizable system � of size � in time and space ��� �	� ��
 �

 � . We also prove a matching
EXPTIME lower bound.

Our framework also handles regular labeling (in both pushdown and prefix-recognizable systems). The
complexity is exponential in the nondeterministic automata that describe the labeling, matching the known
bound for pushdown systems [EKS01]. The automata-theoretic techniques for handling regular labeling and
for handling the regular transitions of a prefix-recognizable system are very similar. This leads us to the
understanding that regular labeling and prefix recognizability have exactly the same power. Formally, we
prove that LTL model checking in a prefix-recognizable system can be reduced to LTL model checking in a
pushdown system with regular labeling, and vice versa. Since the latter problem is known to be EXPTIME-
complete [EKS01], our reductions suggest an alternative proof of the exponential upper and lower bounds for
the problem of LTL model checking in prefix-recognizable systems.

�
In contrast, the membership problem for one-way alternating B üchi tree automata can be solved in quadratic time. Indeed, the

problem can be reduced to the emptiness problem of the 1-letter alternating word automaton obtained by taking the product of the
labeled graph that models the tree with the one-way alternating tree automaton [KVW00]. This technique cannot be applied to two-
way automata, since they can distinguish between a graph and its unwinding. For a related discssion regarding past-time connectives
in branching temporal logics, see [KP95].
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2 Preliminaries

We consider finite or infinite sequences of symbols from some finite alphabet � . Given a word � �
����� � �����	�	��
�� ��
 ��� , we denote by by ����� the suffix of � starting at ��� hence ��������������� � � ��� � ���	�	� .
The length of � is denoted by � ��� and is defined to be 
 for infinite words.

2.1 Nondeterministic Automata

A nondeterministic automaton on words is ���! "�$#&%'#)(*�+#-,.#)/10 , where � is a finite alphabet, % is a finite
set of states, ( � 
2% is an initial state, 354�%768�79 �;: is a transition function, and /=<>% is a set of
accepting states. We can run � either on finite words (nondeterministic finite automaton or NFA for short)
or on infinite words (nondeterministic Büchi automaton or NBW for short). A deterministic automaton is an
automaton for which � 3@?A(�#)BDC	���FE for all (G
5% and BH
5� . We denote by �JI the automaton � with initial
state ( . A run of � on a finite word �K�L�D�*#	M	M	M+#-��NPO � is a finite sequence of states �Q�R# � � #	M	M	MS# �.N�
T% N � �
such that � � �U( � and for all VXWZYH[2\ , we have �D] � � 
^3@? ��];#-�_]+C . A run is accepting if �`N�
J/ . A run of
� on an infinite word �a�b�c�*#-� � #	M	M	M is defined similarly as an infinite sequence. For a run ��� �d�R# � � #	M	M	M ,
let e �gf�? �;C���hS(i
^%��*('� �j� for infinitely many e ’s k be the set of all states occurring infinitely often in the
run. A run � of an NBW is accepting if it visits the set / infinitely often, thus e �gf�? �;Cglm/on��p . A word �
is accepted by � if � has an accepting run on � . The language of � , denoted q$?A�rC , is the set of words
accepted by � . The size � �T� of a nondeterministic automaton � is the size of its transition function, thus
� �T�s�b� I&t : ��u t*v � ,w?A(�#)xgC	� .

We are especially interested in cases where �b� �@y.z , for some set {$| of atomic propositions {}| , and
in languages q~<F? � yjz C � definable by NBW or formulas of the linear temporal logic LTL [Pnu77]. For an
LTL formula � , the language of � , denoted q$? ��C , is the set of infinite words that satisfy � .

Theorem 2.1 [VW94] For every LTL formula � , there exists an NBW � � with � � � 
 �

 � states, such that
q}?A� � C���q$? ��C .

2.2 Labeled rewrite systems

A labeled transition graph is �2�U "��#&��#)q�#-�j# 	 � 0 , where � is a finite set of labels, � is a (possibly infinite) set
of states, q�4D��9�� is a labeling function, ��<���6H� is a transition relation, and 	@��
r�w� is an initial state.
When �`? 	s# 	S��C , we say that 	+� is a successor of 	 , and 	 is a predecessor of 	�� . For a state 	1
H� , we denote by
�����a "�$#&��#)q�#-��# 	*0 , the graph � with 	 as its initial state. An 	 -computation is an infinite sequence of states
	+�+# 	 � #	M	M	Mj
r� � such that 	+��� 	 and for all e���V , we have �`? 	+��# 	S� � � C . An 	 -computation 	R�R# 	 � #	M	M	M induces
the 	 -trace q$? 	+��C��Rq$? 	 � Cj�	�	� . The set � � is the set of all 	 -traces. We say that 	 satisfies an LTL formula � ,
denoted ?"��# 	RC�� � � , iff � � <L��? ��C . A graph � satisfies an LTL formula � , denoted ��� � � , iff its initial
state satisfies it; that is ?"��# 	 � C�� � � . The model-checking problem for a labeled transition graph � and an
LTL formula � is to determine whether � satisfies � . Note that the transition relation need not be total. There
may be finite paths but satisfaction is determined only with respect to infinite paths. In particular, if the graph
has only finite paths, its set of traces is empty and the graph satisfies every LTL formula (It is also possible to
consider finite paths. In this case, the NBW in Theorem 2.1 has to be modified so that it can recognize also
finite words. Our results are easily extended to consider also finite paths).

A rewrite system is �7�� "�$#&��#&%�#)q�#���#)(+�*#-�j�S0 , where � is a finite set of labels, � is a finite alphabet,
% is a finite set of states, q�4_%�68� � 9 � is a labeling function, � is a finite set of rewrite rules, to be
defined below, (�� is an initial state, and �`��
r� �

is an initial word. The set of configurations of the system is
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% 6�� �
. Intuitively, the system has finitely many control states and unbounded store. Thus, in a configuration

?A(�#-�`C�
Z%F65� �
we refer to ( as the control state and to � as the store. A configuration ?A(�#-�`C�
�%K6J� �

indicates that the system is in control state ( with store � . We consider here two types of rewrite systems. In
a pushdown system, each rewrite rule is  A(�#){1#-�g#)(;� 0�
Z%K65��65� � 65% . Thus, � <�%K65��65� � 6J% .
In a prefix-recognizable system, each rewrite rule is  A(@# � # � #���#)(;� 0�
8% 6 reg ?"��C�6 reg ?"�1C�6 reg ?"��C�6 % ,
where reg ?"��C is the set of regular expressions over � . Thus, �~<�%�6 reg ?"��C�6 reg ?"��C�6 reg ?"��C�6H% . For
a word ��
8� �

and a regular expression �X
 reg ?"�1C we write ��
 � to denote that � is in the language of
the regular expression � . We note that the standard definition of prefix-recognizable systems does not include
control states. Indeed, a prefix-recognizable system without states can simulate a prefix-recognizable system
with states by having the state as the first letter of the unbounded store. We use prefix-recognizable systems
with control states for the sake of uniform notation.

We consider two types of labeling functions, simple and regular. The labeling function associates with a
configuration ?A(@#-�wC$
5%L6 � �

a symbol from � . A simple labeling function depends only on the first letter
of � . Thus, we may write q�4@%26m?"� 
 h��	kRC�9=� . Note that the label is defined also for the case that � is the
empty word � . A regular labeling function considers the entire word � but can only refer to its membership in
some regular set. Formally, for every state ( there is a partition of � �

to �d��� regular languages � � #	M	M	M � 
 v 
 ,
and q}?A(�#-�`C depends on the regular set that � belongs to. We are especially interested in the cases where the
alphabet � is the powerset �syjz of the set of atomic propositions. In this case, we associate with every state (
and proposition � a regular language � I�� 	 that contains all the words � for which the proposition � is true in
configuration ?A(�#-�`C . Thus �H
Xq$?A(�#-�`C iff �H
 � I�� 	 .

The rewrite system � induces the labeled transition graph ��
��  "�$#&%!6�� � #)q_��#-��
�#S?A(S�*#-�j�SC-0 . The
states of �

 are the configurations of � and  -?A(�#��@C&#S?A( � #�� � C-0�
���
 if there is a rewrite rule ��
�� leading from
configuration ?A(�#��@C to configuration ?A( �A#�����C . Formally, if � is a pushdown system, then ��
�?-?A(�#){'����C&#S?A(R� #-������C-C
if  A(�#){1#-�g#)(R��0�
i� ; and if � is a prefix-recognizable system, then � 
 ?-?A(�#-� ����C&#S?A(R��#-�j�+����C-C if there are regular
expressions � ,

�
, and � such that �U
 � , ��
 �

, � � 
�� , and  A(�# � # � #�� #)( � 0�
�� . Note that in order to
apply a rewrite rule in state ?A(�#��@C�
 %�65� �

of a pushdown graph, we only need to match the state ( and
the first letter of � with the second element of a rule. On the other hand, in an application of a rewrite rule in
a prefix-recognizable graph, we have to match the state ( and we should find a partition of � to a prefix that
belongs to the second element of the rule and a suffix that belongs to the third element. A labeled transition
graph that is induced by a pushdown system is called a pushdown graph. A labeled transition system that is
induced by a prefix-recognizable system is called a prefix-recognizable graph. We say that a rewrite system
� satisfies an LTL formula � if ��
��� � . �

Example 2.2 The pushdown system
 ��� 	 � � 	���� #�hS{1#�� ks#�hS( � ks#)q�#��}#)( � #){�0 , with
��� h@ A(��*#){ #){��G#)(��S0&#S A(��*#){1#��s#)(��R0&#S A(��*#��G#��s#)(��S0Qk ,
and q defined by � I�� � 	 � � hS{1#�� k

� ����������hS{1#�� k �

and � I � � 	�� � { ��hS{1#�� k
�
, induces the labeled tran-

sition graph on the right.

	�� 	�� 	 � ��	�� 	 � ��	��

	 � 	 �

( I � ,AB) ( I � ,ABBB)

( !�"�#%$ ) ( I � ,B) ( I � ,BB) ( I � ,BBB)

( I � ,ABB)( I � ,A)

Consider a prefix-recognizable system �2�U "�$#&��#&%�#)q�#���#)( ��#-�j�S0 . For a rewrite rule ��� �U 	s# � ��# � ��#��@� # 	 � 0�

� , let &(' �� "��#&%)'D#)( �' #-,�'�#)/*'@0 , for +5
�h � ��# � ��#��@� k , be the nondeterministic automaton for the language of
the regular expression + . We assume that all initial states have no incoming edges and that all accepting states

� Some work on verification of infinite-state system (e.g., [EHRS00]), consider properties given by nondeterministic B üchi word
automata, rather than LTL formulas. Since we anyway translate LTL formulas to automata, we can easily handle also properties given
by automata.
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have no outgoing edges. We collect all the states of all the automata for � ,
�

, and � regular expressions.
Formally, %�� � �����

t�� %	�
�
, %	
 � �����

t�� %�

�
, and %�
'� �����

t�� %�

�
. We assume that we have an automaton

whose language is h��`�Rk . We denote the initial state of this automaton by � � and add all its states to %	
 . Finally,
for a regular labeling function q , a state (�
H% , and a proposition � 
X{}| , let & I�� 	 �U "��#&% 	 � I #)(

�
	 � I #-� 	 � I #)/ 	 � I 0

be the nondeterministic automaton for the language of � I�� 	 .

We define the size �-��� of � as the space required in order to encode the rewrite rules in � and the
labeling function. Thus, in a pushdown system, �-��������� I � y � � � I����At�� � ��� , and in a prefix-recognizable system,
�-��� ��� � I�� � � 
 � 
 � I � �At�� � &��g���L� &�
`����� & 
j� . In the case of a regular labeling function, we also measure the
labeling function �Qq����!� IQt : � 	*t*yjz � & I � 	 � .

Theorem 2.3 The model-checking problem for a pushdown system � and an LTL formula � is solvable

" in time # ?$�-���&%SC�� � � � 
 �

 � and space #�?$�-�'� � C�� � � � 
 �

 � in the case that q is a simple labeling function
[EHRS00].

" in time # ?$�-���&%SC � � � �)(+*,( ��
 �

 � and space #�?$�-��� � C � � � �-(+*.( ��
 � 
 � in the case that q is a regular labeling
function. The problem is EXPTIME-hard in �Qq	� even for a fixed formula [EKS01].

3 Two-way path automata on trees

Given a finite set / of directions, an / -tree is a set � <0/ �
such that if 1 �	�H
�� , where 1 
2/ and �H
3/ �

,
then also �H
i� . The elements of � are called nodes, and the empty word � is the root of � . For every 1 
3/
and �r
m� , the node � is the parent of 1i��� . If ��� �G� �X
m� then � is a descendant of � . Each node �Tn� �
of � has a direction in / . The direction of the root is the symbol 4 (we assume that 4>n
5/ ). The direction
of a node 1X�*� is 1 . We denote by 6se �D?��wC the direction of the node � . An / -tree � is a full infinite tree if
���7/ �

. A path 8 of a tree � is a set 8J<�� such that �1
98 and for every � 
:8 there exists a unique 1H
2/
such that 1'�&�r
:8 . Note that our definitions here reverse the standard definitions (e.g., when /b� hSVc#�ERk , the
successors of the node V are V�V and E	V , rather than V�V and VDE % .

Given two finite sets / and � , a � -labeled / -tree is a pair  ��#<;�0 where � is an / -tree and ; 4D�L9 �
maps each node of � to a letter in � . When / and � are not important or clear from the context, we call
 ��#<;�0 a labeled tree. A tree is regular if it is the unwinding of some finite labeled graph. More formally,
a transducer = is a tuple  +/�#&�$#&%'#)( � #-,j#)q�0 , where / is a finite set of directions, � is a finite set alphabet,
% is a finite set of states, ( � 
a% is a start state, , 4�%>6>/ 9 % is a deterministic transition function,
and q 4�%�9 � is a labeling function. We define ,�4�/ � 9 % in the standard way: ,`? �*Cr� (+� and
,w?AB;�wC��b,`?�,w?��`C&#)BDC . Intuitively, a transducer is a labeled finite graph with a designated start node, where the
edges are labeled by / and the nodes are labeled by � . A � -labeled / -tree  +/ � #<;�0 is regular if there exists a
transducer =K�K +/�#&��#&%�#)(S�*#-,.#)q�0 , such that for every �^
5/ �

, we have ; ?��`C��~q$?�,`?��wC-C . We then say that
the size of the regular tree  +/ � #<;�0 , denoted �&;?� , is �d% � , the number of states of = .

Path automata on trees are a hybrid of nondeterministic word automata and nondeterministic tree au-
tomata: they run on trees but have linear runs. Here we describe two-way nondeterministic Büchi path
automata. For a set / of directions, the extension of / is the set @&A�B	?+/�C��C/ 
 h��;#EDDk (we assume that
/~lTh��;#EDDk8� p ). A two-way nondeterministic Büchi path automaton (2NBP, for short) on � -labeled / -
trees is F �o "�$#)|�#Q3S# �.��#)/10 , where � , | , �.� , and / are as in an NBW, and 3r4�|765�K9 � �-GIH<J �LK ��M z � isN

As will get clearer in the sequel, the reason for that is that rewrite rules refer to the prefix of words.
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the transition function. A path automaton that visits the state � and reads the node �~
 � chooses a pair
?��i# ����C�
m3�? �g#<; ?��wC-C , and then follows direction � and moves to state �w� .

Formally, a run of a 2NBP F on a labeled tree  +/ � #<;�0 is a sequence of pairs �X�!?��`�*# �j��C&#S?�� � # � � C&#	M	M	M
where for all e$�2V , �.��
�/ �

is a node of the tree and �.��
5| is a state. The pair ?��g# �`C describes a copy of
the automaton that reads the node � of / �

and is in the state � . Note that many pairs in � may correspond to
the same node of / �

; Thus, F may visit a node several times. The run has to satisfy the transition function.
Formally, ?�� � # � � C��U? �s#)( � C and for all e���V there is ��
5@<A B�?+/ C such that ?��i# � � � � C�
m3�? � � #<; ?�� � C-C and

" If ��
 / , then �j� � � ���a���j� .
" If ��� � , then �j� � � � �j� ." If ����D , then �j�g� 1 ��� , for some 1 
 / and � 
3/ �

, and ��� � � � � .

Thus, � -transitions leave the automaton on the same node of the input tree, and D -transitions take it up to the
parent node. Note that the automaton cannot go up the root of the input tree, as whenever � ��D , we require
that �j��n� � . A run � is accepting if it visits / � 6H/ infinitely often. An automaton accepts a labeled tree if
and only if there exists a run that accepts it. We denote by ��?��'C the set of all � -labeled trees that � accepts.
The automaton � is nonempty iff �$?���C�n� p . We measure the size of a 2NBP by two parameters, the number
of states and the size, � 3��s�2� 	*tRz ��� t*v � 3�? 	s#)BDC	� , of the transition function.

Readers familiar with tree automata know that the run of a tree automaton starts in a single copy of
the automaton reading the root of the tree, and then the copy splits to the successors of the root and so on,
thus the run simultaneously follows many paths in the input tree. In contrast, a path automaton has a single
copy at all times. It starts from the root and it always chooses a single direction to go to. In two-way path
automata, the direction may be “up”, so the automaton can read many paths of the tree, but it cannot read
them simultaneously.

The fact that a 2NBP has a single copy influences its expressive power and the complexity of its nonempti-
ness and membership problems. We now turn to study these issues. One-way nondeterministic path automata
can read a single path of the tree, so it is easy to see that they accept exactly all languages � of trees such that
there is an 
 -regular language q of words and � contains exactly all trees that have a path labeled by a word
in q . For two-way path automata, the expressive power is less clear, as by going up and down the tree, the
automaton can traverse several paths. Still, a path automaton cannot traverse all the nodes of the tree. To see
that, we prove that a 2NBP cannot recognize even very simple properties that refer to all the branches of the
tree (universal properties for short).

Theorem 3.1 There are no 2NBP F � and F � over the alphabet hSVc#�ERk such that

" q$?-F � C�� h@ +/ � #<;�0�4�; ?��`C���V for all �H
���k .
" q$?-F �SC�� h@ +/ � #<;�0�4 for every path 8 <�� , there is �H
98 with ; ?��wC���V�k .
The proof of Theorem 3.1 follows from the fact that for every 2NBP F and an accepting run ?����*# �j��C&#S?�� � # � � C&#	M	M	M

of F , there exist VGW e�[8Y such that ��] is a descendant of � � in � , � � � �c] , and there is e�W��mW�Y such that
�	� 
 / . We can construct an alternative accepting run that repeats the movement of the 2NBP from ?���� # ��� C
to ?���� � � # ��� � � C and from ?��j� � � # ��� � � C to ?��j� � �*# ��� � �	C and so on until ?�� ] # � ] C and iterate ad infinitum. This
alternative run does not traverse all the nodes of the input tree, implying that the 2NBP accepts a tree that is
not in the language yet agrees with a tree on the language on some of its nodes.
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There are, however, universal properties that a 2NBP can recognize. Consider a language q <>��� of
infinite words over the alphabet � . A finite word ��
�� �

is a bad prefix for q iff for all �8
Z� � , we have
��� ��n
�q . Thus, a bad prefix is a finite word that cannot be extended to an infinite word in q . A language
q is a safety language iff every � n
�q has a finite bad prefix. A language qU<L� � is clopen if both q and
its complement are safety languages, or, equivalently, q corresponds to a set that is both closed and open in
Cantor space. It is known that a clopen language is bounded: there is an integer � such that after reading
a prefix of length � of a word � 
�� � , one can determine whether � is in q [KV01a]. A 2NBT can then
traverse all the paths of the input tree up to level � (given q , its bound � can be calculated), hence the following
theorem.

Theorem 3.2 Let qF< ��� be a clopen language. There is a 2NBP F such that q$?-F�C��!h@ +/ � #<;�0�4 for all
paths 8 < / �

, we have ; ?I8gC�
mq�k .
Given a 2NBP F , the emptiness problem is to determine whether F accepts some tree, or equivalently

whether ��?-F�C��bp . The membership problem of F and a regular tree  +/ � #<;�0 is to determine whether F accepts
 +/ � #<;�0 , or equivalently  +/ � #<;�0i
 ��?-F�C . The fact that 2NBP cannot spawn new copies makes them very
similar to word automata. Thus, the membership problem for 2NBP can be reduced to the emptiness problem
of one-way weak alternating automata on infinite words (1AWW) over a 1-letter alphabet (cf. [KVW00]). The
reduction yields a polynomial time algorithm for solving the membership problem. In contrast, the emptiness
problem of 2NBP is EXPTIME-complete.

In Appendix A, we give the exact definition of 1AWW and show a reduction from the membership prob-
lem of 2NBP to the emptiness problem of 1AWW with a 1-letter alphabet. The reduction is a generaliza-
tion of a construction that translates two-way nondeterministic Büchi automata on infinite words to 1AWW
[PV01a, PV01b, Pit00]. The emptiness of 1AWW with a 1-letter alphabet is solvable in linear time and space
[KVW00]. In the full version we also prove that the emptiness problem of 2NBP is EXPTIME-complete.
Formally, we have the following.

Theorem 3.3 Consider a 2NBP F��L "�$#)|�# �w�*#Q3�#)/�0 .
" The membership problem of the regular tree  +/ � #<;�0 in the language of F is solvable in time # ?)� | � � �
� 3c�*� �&;?� C and space # ?)� | � � � �&;?� C .

" The emptiness problem of F is EXPTIME-complete.

We note that the membership problem for 2-way alternating Büchi automata on trees (2ABT) is EXPTIME-
complete. Indeed, CTL model-checking of pushdown systems, proven to be EXPTIME-hard in [Wal00], can
be reduced to the membership problem of a regular tree in a 2ABT. The size of the regular tree is linear in the
size of the alphabet of the pushdown system and the size of the 2ABT is linear in the size of the CTL formula.
Thus, path automata capture the computational difference between linear and branching specifications.

4 LTL model checking

In this section we solve the LTL model-checking problem by a reduction to the membership problem of 2NBP.
We start by demonstrating our technique on LTL model-checking for pushdown systems. Then we show how
to extend it to prefix-recognizable systems and to systems with regular labeling. For an LTL formula � , we
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construct a 2NBP that navigates through the full infinite � -tree and simulates a computation of the rewrite
system that does not satisfy � . Thus, our 2NBP accepts the � -tree iff the rewrite system does not satisfy the
specification. Then, we use the results in Section 3: we check whether the given � -tree is in the language of
the 2NBP and conclude whether the system satisfies the property.

Consider a rewrite system �a�� "��#&��#&%'#)q�#���#)( � #-� � 0 . Recall that a configuration of � is a pair ?A(�#-�`C�

%�6 � �

. Thus, the store � corresponds to a node in the full infinite � -tree. An automaton that reads the tree
� �

can memorize in its state space the state component of the configuration and refer to the location of its
reading head in � �

as the store. We would like the automaton to “know” the location of its reading head in � �
.

A straightforward way to do so is to label a node �5
5� �
by � . This, however, involves an infinite alphabet,

and results in trees that are not regular. We show that it is possible to label � �
with a regular labeling that is

sufficiently informative to provide the 2NBP with the information it needs in order to simulate the transitions
of the rewrite system. For pushdown systems with a simple labeling function, we show that it is enough to
label a node � by its direction. For prefix-recognizable systems or systems with regular labeling, the label is
more complex and reflects the membership of � in the regular expressions that are used in the transition rules
and the regular labeling.

Pushdown systems. Recall that in order to apply a rewrite rule of a pushdown system from configuration
?A(�#-�`C , it is sufficient to know ( and the first letter of � . Let  "� � #<;�� 0 be the � -labeled � -tree such that for
every �5
5� �

we have ; � ?��`C�� 6se �D?��wC . Note that  "� � #<; � 0 is a regular tree of size �d�G���2E . We construct a
2NBP F that reads  "� � #<; � 0 . The state space of F contains a component that memorizes the current state of the
rewrite system. The location of the reading head in  "� � #<; � 0 represents the store of the current configuration.
Thus, in order to know which rewrite rules can be applied, F consults its current state and the label of the
node it reads (note that 6se �D?��wC is the first letter of � ). Formally, we have the following.

Theorem 4.1 Given a pushdown system � �  � y.z #&��#&%'#)q�#���#)(��*#-�.�S0 and an LTL formula � , there is a
2NBP F on � -trees such that F accepts  "� � #<;�� 0 iff � 
 n� � � . The automaton F has #�?)�d% �;�.�-��� C_� � � � 
 �

 �
states and the size of its transition function is # ?$�-��� C�� � � � 
 �

 � .
Proof: According to Theorem 2.1, there is an NBW

���
� �  � y.z #�� #-, � � #-� � #)/10 such that ��? ��� � C��? �*y.z�C �	����? ��C . The 2NBP F tries to find a trace in ��
 that satisfies 
 � . The 2NBP F runs

� �
� on a

guessed ?A(S�R#-�j�SC -computation in � . Thus, F accepts  "� � #<; � 0 iff there exists an ?A(+�R#-�j�SC -trace in �

 accepted
by
� �

� . Such a ?A(��R#-�.�SC -trace does not satisfy � , and it exists iff ��n� � � . We define F��7 "��#)|�# � �*#Q3�#)/ � 0 ,
where

" | ��� 6J%F6 ��B;e \ 	�? ��C , where ��B@e \ 	@? ��C <L� �
is the set of all suffixes of words ��
T� �

for which
there are states (�#)(*��
2% and { 
2� such that  A(@#){1#-�g#)(*��0G
 � . Intuitively, when F visits a node
�8
^� �

in state  ��1#)(�#��D0 , it checks that � with initial configuration ?A(�#��'�S�wC is accepted by
�
��

� . In
particular, when ��� � , then � with initial configuration ?A(@#-�wC needs to be accepted by

� � �
� . States of

the form  ��1#)(�#��R0 are called action states. From these states F consults , � � and � in order to impose
new requirements on  "� � #<; � 0 . States of the form  �� #)(�#���0 , for � 
�� � , are called navigation states.
From these states F only navigates downwards � to reach new action states.

" �.���U ����*#)(��R#-�j�S0 . Thus, in its initial state F checks that � with initial configuration ?A( �R#-�j�SC contains a
trace that is accepted by

�
with initial state ��� .

" The transition function 3 is defined for every state in  �� #)(�#-�`0�
���6�%�6 � B@e \ 	�? ��C and letter in {a
H�
as follows.
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– 3�?- �� #)(�# �&0&#){�C�� h@?- �� � #)( � #���0&#ED�C^4}� � 
�, � � ?��1#)q}?A(�#){�C-C and  A(�#){ #��.#)( � 0�
i� k .
– 3�?- �� #)(�#��L� ��0&#){�C_� h@?- ��1#)(@#���0&#���CQk .

Thus, in action states, F reads the direction of the current node and applies the rewrite rules of � in
order to impose new requirements according to , � � . In navigation states, F needs to go downwards
�~� � , so it continues in direction � .

" /����~h@ �� #)(�# �&0^4$�~
m/ and ('
m%�k . Note that only action states can be accepting states of F .

We show that F accepts  "� � #<; � 0 iff ��n� � � . Assume first that F accepts  "� � #<; � 0 . Then, there exists an
accepting run ? �.�R#-�.�SC&#S? � � #-� � C&#	M	M	M of F on  "� � #<; � 0 . Extract from this run the subsequence of action states
? ��� � #-��� � C&#S? ��� � #-��� � C&#	M	M	M . As the run is accepting and only action states are accepting states we know that this
subsequence is infinite. Let �)���'�> ������;#)(	���*#��R0 . By the definition of 3 , the sequence ?A( � � #-��� � C&#S?A(	� � #-��� � C&#	M	M	M
corresponds to an infinite path in the graph � 
 . Also, by the definition of /.� , the run � � � #-� � � #	M	M	M is an
accepting run of

� �
� on the trace of this path. Hence, � 
 contains a trace that is accepted by

� �
� , thus

��n� � � .

Assume now that � n� � � . Then, there exists a path ?A(*�+#-�.�SC&#S?A( � #-� � C&#	M	M	M in �)
 whose trace does not
satisfy � . There exists an accepting run ���*#-� � #	M	M	M of

� �
� on this trace. The combination of the two

sequence serves as the subsequence of the action states in an accepting run of F . It is not hard to extend this
subsequence to an accepting run of F on  "� � #<; � 0 .
Prefix-recognizable systems. We now turn to consider prefix-recognizable systems. Again the configuration
of a prefix-recognizable system �7�� "�$#&��#&%�#)q�#���#)(P�s#-�j��0 consists of a state in % and a word in � �

. So,
the store content is still a node in the tree � �

. However, in order to apply a rewrite rule it is not enough to
know the direction of the node. Recall that in order to represent the configuration ?A(�#-�wC�
H%�6 � �

, our 2NBP
memorizes the state ( as part of its state space and it reads the node ��
Z� �

. In order to apply the rewrite
rule � ���K A(�# � ��# � ��#��@��#)( � 0 , the 2NBP has to go up the tree along a word � 
 � � . Then, if � � �'� � , it has to
check that � 
 � � , and finally guess a word � ��
 ��� and go downwards �D� to ����� � . Finding a prefix � of �
such that �J
 � � , and a new word �c�_
 � � is not hard: the 2NBP can emulate the run of the automaton & � �
backwards while going up the tree and the run of the automaton & 
 � while going down the guessed � � . How
can the 2NBP know that ��
 � � ? Instead of labeling each node �5
5� �

only by its direction, we can label it
also by the regular expressions

�
for which ��
 �

. Thus, when the 2NBP run &�� � up the tree, it can tell, in
every node it visits, whether � is a member of

� � or not. If � 
 � � , the 2NBP may guess that time has come to
guess a word in ��� and run & 
 � down the guessed word.

Thus, in the case of prefix-recognizable systems, the nodes of the tree whose membership is checked are
labeled by both their directions and information about the regular expressions

�
. Let h � � #	M	M	MS# � � k be the set of

regular expressions
� � such that there is a rewrite rule  A(�# � ��# � ��#��@��#)( � 0�
i� . Let =�
 � �U "��# � 
 � #)( �
 � #-,�
 � #)/ 
 � 0

be the deterministic automaton for the language of
� � . For a word ��
8� �

, we denote by ,�
 � ?��wC the unique
state that =�
 � reaches after reading the word � . Let �7� � 6�� ��� � � � � 
 � . For a letter x 
~� , let x�� e
	 ,
for e1
 hSVc#	M	M	M ��k , denote the e -th element in x (that is, x�� V�	}
Z� and x�� e�	}
 � 
 � for e�
LV ). Let  "� � #<; 
�0
denote the � -labeled � -tree such that ;�
.? � C$�! +4�#)( �
 � #	M	M	M+#)( �
�� 0 , and for every node {b�*��
Z� � , we have
; 
.?A{L�;�`CG�� A{ #-,�
 � ?A{U�@�`C&#	M	M	M+#-,�
 � ?A{a���`C-0 . Thus, every node � is labeled by 6se ��?��wC and the vector of
states that each of the deterministic automata reach after reading � . Note that if ;�
.?��wC�� e�	�
r/ 
 � iff � is in the
language of

� � . Note also that  "� � #<; 
D0 is a regular tree whose size is exponential in the sum of the lengths of
the regular expressions

� � #	M	M	MS# � � .
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Theorem 4.2 Given a prefix-recognizable system �2�L "�$#&��#&%'#)q�#���#)(���#-�.�	0 and an LTL formula � , there is
a 2NBP F such that F accepts  "� � #<; 
c0 iff ��n� � � . The automaton F has #�?)�d% � �+?)�d% �g� ���d%�
j�dC.�R� �'�dC.� � � � 
 �

 �
states and the size of its transition function is # ?$�-��� C�� � � � 
 �

 � .

The proof resembles the proof for pushdown systems. This time, the application of a rewrite rule � � �
 A(�# � ��# � ��#���� #)( � 0 involves an emulation of the automata & � � (upwards) and &�
 � (downwards). Accordingly,
one of the components of the states of the 2NBP is a state of either &�� � or & 
 � . Action states are states
in which this component is a final state of &�
 � . From action states, the 2NBP chooses a new rewrite rule
� � � �  A(R� # � � � # � � � #�� � � #)(R� � 0 , and it applies it as follows. First, it chooses a final state of & � � � , and run & � �
backwards up the tree until it reaches the initial state. It then verifies that the current node is in the language
of

� � , in which case it moves to the initial state of & 
 � and runs it forward down the tree until it reaches a new
action state. The full details can be found in Appendix C.

Regular labeling. Handling regular labels for either pushdown systems or prefix-recognizable systems is
similar to the above. We add to the label of every node in the tree � �

also the states of the deterministic
automata that recognizes the languages of the regular expressions of the labels. The navigation through the
� -tree proceeds as before, and whenever the 2NBP needs to know the label of the current configuration (that
is, in action states, when it has to update the state of

� �
� ), it consults the labels of the tree.

Formally, let h � � #	M	M	M�# � � k denote the set of regular expressions � � such that there exist some state (�
 %
and proposition � 
H{$| with ����� � I�� 	 . Let = 
 � �  "��# � 
 � #)( �
 � #-, 
 � #)/ 
 � 0 be the deterministic automaton
for the language of � � . For a word �2
2� �

, we denote by , 
 � ?��wC the unique state that = 
 � reaches after
reading the word � . Let ���b��6 � ��� � � � � 
 � . For a letter x 
H� let x�� e�	 , for e�
rhSVc#	M	M	M+# ��k , denote the e -th
element of x . Let  "� � #<; � 0 be the � -labeled � -tree such that ; � ? � C��K +4�#)( �
 � #	M	M	MS#)( �
 � 0 and for every node
{ �	� 
 � � we have ; � ?A{ �	�`C��� A{ #-, 
 � ?A{��S�`C&#	M	M	MS#-, 
 �j?A{ ���wC-0 . The 2NBP F reads  "� � #<; � 0 . Note that if
the state space of F indicates that the current state of the rewrite system is ( and F reads the node � , then for
every atomic proposition � , we have that �^
 q}?A(�#-�wC iff ; � ?��wC�� e�	�
 / 
 � , where e is such that � � � � I�� 	 . In
action states, F needs to updates the state of

� �
� , which reads the label of the current configuration. Based

on its current state and ; � , the 2NBP F knows the letter with which
� �

� proceeds. Note that the way we
handle regular labeling is very similar to the way we handle prefix recognizability. We will get back this point
in Section 5.

If we want to handle a prefix-recognizable system with regular labeling we have to label the nodes of
the tree � �

by both the deterministic automata for regular expressions
� � and the deterministic automata

for regular expressions � I�� 	 . Let  "� � #<; 
 � * 0 be the composition of  "� � #<; 
D0 with  "� � #<; � 0 . Again note that
 "� � #<; 
 � * 0 is a regular tree of exponential size.

Theorem 4.3 Given a prefix-recognizable system �2�L "�$#&��#&%'#)q�#���#)(���#-�.�	0 and an LTL formula � , there is
a 2NBP F such that F accepts  "� � #<; 
 � * 0 iff ��n� � � . The automaton F has # ?)�d% � �Q?)�d% � � �5�d% 
 �dC@�&� ���dC@��� � � 
 � 
 �
states and the size of its transition function is # ?$�-��� C�� � � � 
 �

 � .

Note that Theorem 4.3 differs from Theorem 4.2 only in the labeled tree whose membership is checked.
Also, all the three labled trees we use are regular, with �&; � �X� #�?)�d�i�dC , �&; 
 ��� � � � 
 : � 
 � , and �&; 
 � * �i�� � � 
 : � 
 � (+*,( � . Combining Theorems 4.1, 4.2, 4.3, and 3.3, we get the following.

Theorem 4.4 The model-checking problem for a rewrite system � and an LTL formula � is solvable

" in time # ?$�-��� % C�� � � � 
 �

 � and space # ?$�-��� � C}� � � � 
 �

 � when � is a pushdown system with simple
labeling.
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" in time #�?$�-��� % Cj� � � � 
 �

 ��
 : � 
 � and space #�?)� �'� � Cj� � � � 
 �

 ��
 : � 
 � when � is a prefix-recognizable system
with simple labeling. The problem is EXPTIME-hard in �d% 
`� even for a fixed formula.

" in time # ?$�-��� % C�� � � � 
 �

 ��
 : � 
 � (+*.( � and space # ?)� ��� � C�� � � � 
 �

 ��
 : � 
 � (+*.( � when � is a prefix-recognizable
system with regular labeling q .

For pushdown systems with simple labeling (the first setting), our complexity coincides with the one
in [EHRS00]. In Appendix B, we prove the EXPTIME lower bound in the second setting by a reduction
from the membership problem of a linear space alternating Turing machine. An alternative proof is given in
Theorem 2.3. This, together with the lower bound in [EKS01], implies EXPTIME-hardness in terms of �d%'
 �
and �Qq�� in the the third setting. Thus, our upper bounds are tight.

5 Relating regular labeling with prefix-recognizability

Recall that the way we handle regular labeling is very similar to the way we handle prefix recognizability.
In both settings, the system has to be able to check the membership of the word in the store in a regular
expression. In prefix-recognizable systems, the check is done when the system follows a transition rule. In
systems with regular labeling, the check is done when the system needs to evaluate the labeling of the current
configuration. In this section we show that these checks are intereducible. We describe a reduction from
the LTL model-checking problem of a prefix-recognizable system with a simple labeling function to the LTL
model-checking problem of a pushdown system with a regular labeling function, and a reduction from the LTL
model-checking problem of a pushdown system with a regular labeling function to the LTL model-checking
problem of a prefix-recognizable system with a simple labeling function. We note that we cannot just replace
one system by another, but we also have to adjust the LTL formula. We start with the first direction.

Theorem 5.1 Given a prefix-recognizable system �2�U � y.z #&��#&%'#)q�#���#)(S�*#-�j�S0 and an LTL formula � , there
is a pushdown system ���j�� � yjz � #&��#&%���#)q_�A#���� #)(R�� #-� � 0 with a regular labeling function and an LTL formula
� � , such that � � � � iff � � � � � � . Furthermore, �d% � �w���d% �.6�� ���j6�?)�d%	�g� �a�d%�
.�dC , �-� � ��� #�?$�-��� C , and
�Qq	���L�d%�
w� . The reduction is computable in logarithmic space.

The idea is to add to the configurations of � labels that would enable the pushdown system to simulates
transitions of the prefix-recognizable system. Recall that in order to apply the rewrite rule  A(�# � # � #�� #)( ��0
from configuration ?A(�#-�`C , the prefix-recognizable system has to find a partition ����� of � such that the prefix
� is a word in � and the suffix � is a word in

�
. It then replaces � by a word �-��
 � . The pushdwon

system can remove the prefix � letter by letter, guess whether the remaining suffix � is a word in
�

, and add
� � letter by letter. In order to check the validity of guesses, the system marks every configuration where it
guesses that the remaining suffix is a word in

�
. It then consults the regular labeling function in order to

single out traces in which a wrong guess is made. For that, we add a new proposition, ����B �������	� , which
holds in a configuration iff it is not the case that pushdown system guesses that the suffix � is in the language
of some regular expression � and the guess turns out to be incorrect. The pushdown system also marks the
configurations where it finishes handling some rewrite rule. For that, we add a new proposition, 
�� - ��
�� @ ,
which is true only when the system finishes handling some rewrite rule and starts handling another.

The pushdown system � � has four modes of operation when it simulates a transition that follows a rewrite
rule  A(�# � # � #�� #)(R� 0 . In delete mode, ��� deletes letters from the store � while emulating a run of &�� � backward.
Delete mode starts from a final state of & � � , from which � � proceeds backward until it reaches the initial
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state of & � � . Once the initial state of & � � is reaches, � � transitions to change-direction mode, where it does
not change the store and just moves to the initial state of & 
 � , and transitions to write mode. In write mode,
� � guesses letters in � and emulates the run of & 
 � on them, while adding them to the store. From a final
state of & 
 � the pushdown system ��� transitions to change-rule mode, where it chooses a new rewrite rule
 A(R� # � � � # � � � #�� � � #)(R� ��0 and transitions to delete mode. Note that if delete mode starts in configuration ?A(�#-�wC it
cannot last indefinitely. Indeed, the pushdown system can remove only finitely many letters from the store. On
the other hand, since the store is unbounded, write mode can last foever. Hence, traces along which 
�� - ��
 ��@
occurs only finitely often should be singled out.

Singling out of traces is done by the formula ��� which restricts attention to traces in which ����B ����� � � is
always asserted and 
�� - � 
���@ is asserted infinitely often. Formally, � � has the following components

" {$|�����{$| 
 h ����B ��� � �	�.# 
 � - ��
�� @sk .
" %����b% 6���6m? h	
 � -

��� ��# 
�� - ��
 ��@sk 
�� � 
�� 
 C . A state  A(�# � # 	R0�
 %�� maintains the state (�
H% and the
rewrite rule � currently being applied. the third element 	 indicates the mode of � � . Change-direction
and change-rule modes are indicated by a marker. In delete and write modes, �'� also maintains the
current state of & � and & 
 .

" For every proposition �U
 {$| , we have �U
~q��A?A(�#-�wC iff �a
~q}?A(�#-�wC . We now describe the regu-
lar expression for the propositions 
�� - ��
�� @ and � ��B ��� � �	� . The proposition 
�� - ��
�� @ holds in all the
configuration in which the system is in change-rule mode. Thus, for every ( 
�% and � 
~� , we
have � � I �

�
���	� - 
���
 G � ���	� - 
���
 G �F� �

and � � I��
�
� �&� ����� - 
���
 G ��p for �8n� 
 � - ��
�� @ . The proposition ����B ����� � �

holds in configurations in which we are not in change-direction mode, or configuration in which we
are in change-direction mode and the store is in

�
, thus changing direction is possible in the configura-

tion. Formally, for every (H
8% and �$�7 A( � # � # � #�� #)(s0�
5� , we have � � I��
�
���	� - ����
 � ����� J � 
 ����� � �

and
� � I �

�
� �$� ����� J � 
 ����� �2� �

for ��n� 
�� -
��� � .

" ( �� �U A(��R# �&# 
 � - ��
�� @*0 for some arbitrary rewrite rule � .

The transition function of ��� includes four types of transitons according to the four operation modes. In
change-direction mode, in configuration ?- A(�# �&# 
 � -

��� �s0&#&A.C that applies the rewrite rule ���� A( � # � � # � � #�����#)(�0 ,
the system ��� does not change � , and moves to the initial state ( �
 � of & 
 � . In change rule mode, in configuration
?- A(�# �&# 
 � - � 
���@R0&#&A`C , the system ��� does not change � , it chooses a new rewrite rule �)���� A(�# � � � #

� � � #�� � � #)(R� 0 ,
changes the % component to ( � , and moves to the initial state ( �� � � of &�� � � . In delete mode, in configuration
?- A(�# �&# 	*0&#-�`C , for ���U A(R��# � � # � � #���� #)(s0 and 	1
m%�� � , the system ��� proceeds by either removing one letter from
� and continuing the run of & � � backward, or if 	 ��( �� � is the initial state of & � � then � � may also leave �
unchanged, and changes 	 to 
�� -

��� � . In write mode, in configuration ?- A(@# � # 	*0&#-�`C , for ���! A( ��# � ��# � ��#��@� #)(s0
and 	H
�% 
 � , the system ��� proceeds by either extending � with a guessed symbol from � and continuing
the run of & 
 � using the guessed symbol, or if 	�
r/ 
 � , then � � may also not change � and just replaces 	 by

�� - ��
 ��@ . Formally, �$�D���}��	� - 
���
 G 
 ������ - ����
 
 ���� 
 �}�
 , where

" � ��	� - 
���
 G � h�?- A(�# � # 
�� - � 
���@R0&#���#���#S � � # B � #"!+0-C�� B � �U � �# � � # � � #�� � ## � 0&#$! 
&% �(' and �b
*)Xk�M
" �}��	� - ����
 �,+w?- A(�# � # 
�� -

��� ��0&#���#���#S � �# B #"!+0-C.--- B��L � R��#
� � # � � #�� � ## s0&#$!$�/ 10
"' # and �b
2).3$M

Note that the same letter { is removed from the store and added again. Thus, the store content of the config-
uration does not change.
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" � �� � h@?- A(@# � # 	*0&#){ # ��#S A(@# � # 	S��0-Ci� ���U A(R� # � ��# � ��#��@��#)(s0&# 	1
H%��`# 	1
i� � � ? 	S��#){�C&# and { 
H� k 
� ?- A(�# � # 	R0&#){1#){ #S A(�# � # 
�� -
��� �s0-Ci��B��U � � # � � # � � #�� � ## s0&# !�
 � �`#$!$�  0�(' # and �2
2)��_M

" �}�
 � h@?- A(@# � # 	*0&#){ #){��G#S A(@# � # 	S��0-Ci� ���U A(R� # � � # � � #�� � #)(s0&# 	1
H% 
 # 	S�`
i� 
 � ? 	;#���C&# and { #��K
H�'k 

h@?- A(@# � # 	*0&#){ #){1#S A(�# �&# 
 � - � 
���@*0-CG� B��U � � # � � # � � #�� � ## s0&# ! 
 � 
D# ! 
&% 
"' and �b
2) k_M

Note that as initial states have no incoming edges, it is always the case that after a state  A(�#S A(D�A# � � # � � #�� � #)(s0&#)( �� � 0
we visit the state  A(�# �&# 
 � -

��� �s0 . Similarly, as final states have no outgoing edges, we always visit the state
 A(�# �&# 
 � - ��
�� @*0 after visiting a state  A(�#S A(��A# � � # � � #���� #)(s0&# 	*0 where 	1
�/ 
 � .

Finally, the formula � � is the implication � � � 9 � � � of two formulas. The formula � � � holds in computations
of ��� that corresponds to real computations to � . Thus, ��� � ��� ����B ��� � �	������� 
 � - � 
���@ . Then, � � � adjusts
� to the fact that a single transition in � corresponds to multiple transitions in �'� . Formally, �g�� �~f�? ��C , for
the function f defined below.

" f�? �wC�� � for a proposition �H
X{$|
" f�? 
�BcC�� 
�f�?ABcC , f�?AB
	��	C�� f�?ABDC
	�f�?��	C , and f�?AB
���	C�� f�?ABcC��if�?���C .
" f�?AB &��	C��a? 
 � - ��
�� @�9���?���C-C & ?���?��RC
� 
 � - ��
�� @*C
" f�?��TBcC����b?-? 
 
�� - � 
���@*C & ?���?��cC�� 
 � - � 
���@RC-C
In Appendix C, we prove that � � � � iff ��� � � �g� . If we use this construction in conjunction with

Theorem 2.3, we get an algorithm whose complexity coincides with the one in Theorem 4.4.

We note that since we end up with a pushdown system with regular labeling, it is easy to extend the
reduction to start with a prefix-regocnizable system with regular labeling. It is left to show the reduction in
the other direction.

Theorem 5.2 Given a pushdown system � �  � y.z #&��#&%�#��}#)q�#)( � #-� � 0 with a regular labeling function
and an LTL formula � , there is a prefix-recognizable system � � �  �*y.z � #&��#&% � #�� � #)q � #)( �� #-�j�S0 with sim-
ple labeling and an LTL formula ��� such that � � � � iff ����� � �g� . Furthermore, %���� # ?)�d% ���w� {$| �dC ,
�d% � � � �K�d% �
 ��� # ?$�-��� C , and �d% �
 ��� � (+*,( yet the automata for % �
 are deterministic. The reduction is
computable in polynomial space.

Let {}|>�7h � � #	M	M	MS# � � k be the set of atomic propositions. The idea behind the reduction is as follows.
The state space of ��� is %b6m? h�! B���� B&k 
 ��� C�6�h 4�#��1k . We replace a configuration ?A(�#-�`C in � by a sequence
 -?- A(�#"! B�� � B #$4�0&#&A`C&#S?- � �#! #"w#�+
"@0&#&A`C&#	M	M	MR#S?- � �#! � #�+ � 0&#&A.C-0 of �5�FE configurations in �j� , where + � � 4 if
�%$
 � I�� 	

�
and +i��� if �r
 � I�� 	

�
. Each of the last � states corresponds to one of the propositions in {}| . The

new rewrite rule checks that the marking of 4 and � is indeed correct by matching the regular expression
�

of the transition with the regular expression of the proposition. For that, we use two types of transition rules.
First, the transition rule  - A(@# �`� O � # ��0&# �	# � I�� 	 � # �	#S A(�# ����#���0-0 marks �j� as true and makes sure that ��
 � I � 	

�
.

Second,  - A(�# �j� O � # �@0&# ��#'&� I � 	 � # ��#S A(�# ����#$4�0-0 , where &� is the regular expression for the complement of � , marks
��� as false and makes sure that �Tn
 � I�� 	

�
. The automaton && I � 	

�
that recognizes the language of &� I�� 	

�
may be

exponentially larger than & I�� 	
�
. Thus, the system ��� may be exponentially larger than � . However, reasoning

about the correctness of � � requires the automata for the regular expressions to be deterministic, thus although
��� may be exponentially larger than � , the model-checking problem of ��� is only exponential in �Qq�� and not
doubly exponential. The full construction of the prefix-recognizable system � � is given in Appendix E.

13



In order to define the LTL formula � � we define the function f from LTL formulas to LTL formulas as
follows. Intuitively, f�? ��C adjusts � to the representation of a single state and its labeling by a chain of � {$| � � E
states (the function assumes that � {}| �;� � ).

" For the proposition �.��
X{$| we have f�? �j� C�� � � �j�
" f�? 
�BcC�� 
�f�?ABcC , f�?AB
	��	C�� f�?ABDC
	�f�?��	C , and f�?AB
���	C�� f�?ABcC��if�?���C .
" f�?AB &��	C��a? ! B�� � B�9���?��cC-C & ?���?��+C��&! B�� � B)C
" f�?��TBcC���� �

�
� f�?ABDC

The proof that �

��� � iff � 
 � � � f�? ��C resembles the one in Appendix D. If we use this construction in
conjunction with Theorem 4.4, we get an algorithm whose complexity coincides with the one in [EKS01].

References

[BCMS00] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite structures. Unpublished
manuscript, 2000.

[BE96] O. Burkart and J. Esparza. More infinite results. Electronic Notes in Theoretical Computer Science, 6,
1996.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Application to model-
checking. In Proc. 8th Conference on Concurrency Theory, volume 1243 of Lecture Notes in Computer
Science, pages 135–150, Warsaw, July 1997. Springer-Verlag.

[BLM01] P. Biesse, T. Leonard, and A. Mokkedem. Finding bugs in an alpha microprocessors using satisfiability
solvers. In Computer Aided Verification, Proc. 13th International Conference, volume 2102 of Lecture
Notes in Computer Science, pages 454–464. Springer-Verlag, 2001.

[BQ96] O. Burkart and Y.-M. Quemener. Model checking of infinite graphs defined by graph grammers. In Proc.
1st International workshop on verification of infinite states systems, volume 6 of ENTCS, page 15. Elsevier,
1996.

[BS92] O. Burkart and B. Steffen. Model checking for context-free processes. In Proc. 3rd Conference on Con-
currency Theory, volume 630 of Lecture Notes in Computer Science, pages 123–137. Springer-Verlag,
1992.

[BS99a] O. Burkart and B. Steffen. Composition, decomposition and model checking of pushdown processes.
Nordic J. Comut., 2:89–125, 1999.

[BS99b] O. Burkart and B. Steffen. Model checking the full modal � -calculus for infinite sequential processes.
Theoretical Computer Science, 221:251–270, 1999.

[Bur97a] O. Burkart. Automatic verification of sequential infinite-state processes. In G. Goos, J. Hartmanis, and
J. van Leeuwen, editors, Lecture Notes in Computer Science, volume 1354. Springer-Verlag, 1997.

[Bur97b] O. Burkart. Model checking rationally restricted right closures of recognizable graphs. In F. Moller, editor,
Proc. 2nd International workshop on verification of infinite states systems, 1997.

[Cau96] D. Caucal. On infinite transition graphs having a decidable monadic theory. In Automata, Languages, and
Programming, Proc. 23st ICALP, volume 1099 of Lecture Notes in Computer Science, pages 194–205.
Springer-Verlag, 1996.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent systems using
temporal logic specifications. ACM Transactions on Programming Languages and Systems, 8(2):244–263,
January 1986.

14



[CFF � 01] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M.Y. Vardi. Benefits of bounded
model checking at an industrial setting. In Computer Aided Verification, Proc. 13th International Confer-
ence, volume 2102 of Lecture Notes in Computer Science, pages 436–453. Springer-Verlag, 2001.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Association for Computing
Machinery, 28(1):114–133, January 1981.

[Dam94] M. Dam. CTL
�

and ECTL
�

as fragments of the modal � -calculus. Theoretical Computer Science, 126:77–
96, 1994.

[EHRS00] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model checking pushdown
systems. In Computer Aided Verification, Proc. 12th International Conference, 2000. To appear.

[EJ91] E.A. Emerson and C. Jutla. Tree automata, � -calculus and determinacy. In Proc. 32nd IEEE Symp. on
Foundations of Computer Science, pages 368–377, San Juan, October 1991.

[EKS01] J. Esparza, A. Kucera, and S. Schwoon. Model-checking LTL with regular valuations for pushdown sys-
tems. In Proc. 4th International Symposium on Theoretical Aspects of Computer Software, volume 2215
of Lecture Notes in Computer Science, pages 316–339, Sendai, Japan, October 2001. Springer-Verlag.

[EL86] E.A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional � -calculus. In
Proc. 1st Symp. on Logic in Computer Science, pages 267–278, Cambridge, June 1986.

[FWW97] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking pushdown automata.
In F. Moller, editor, Proc. 2nd International Workshop on Verification of Infinite States Systems, 1997.

[HHWT95] T.A. Henzinger, P.-H Ho, and H. Wong-Toi. A user guide to HYTECH. In Tools and algorithms for the
construction and analysis of systems, volume 1019 of Lecture Notes in Computer Science, pages 41–71.
Springer-Verlag, 1995.

[KP95] O. Kupferman and A. Pnueli. Once and for all. In Proc. 10th IEEE Symp. on Logic in Computer Science,
pages 25–35, San Diego, June 1995.

[Kur94] R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton Univ. Press, 1994.

[KV00] O. Kupferman and M.Y. Vardi. An automata-theoretic approach to reasoning about infinite-state systems.
In Computer Aided Verification, Proc. 12th International Conference, volume 1855 of Lecture Notes in
Computer Science, pages 36–52. Springer-Verlag, 2000.

[KV01a] O. Kupferman and M.Y. Vardi. On clopen specifications. In Proc. 8th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, volume 2250 of Lecture Notes in Computer Science,
pages 24–38. Springer-Verlag, 2001.

[KV01b] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. ACM Trans. on Computational
Logic, 2001(2):408–429, July 2001.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time model
checking. Journal of the ACM, 47(2):312–360, March 2000.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear specifi-
cation. In Proc. 12th ACM Symp. on Principles of Programming Languages, pages 97–107, New Orleans,
January 1985.

[LPY97] K. G. Larsen, P. Petterson, and W. Yi. UPPAAL: Status & developments. In Computer Aided Verification,
Proc. 9th International Conference, volume 1254 of Lecture Notes in Computer Science, pages 456–459.
Springer-Verlag, 1997.

[Lyn77] N. Lynch. Log space recognition and translation of parenthesis languages. Journal ACM, 24:583–590,
1977.

15



[MS85] D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata, and second-order logic. Theoretical
Computer Science, 37:51–75, 1985.

[Pit00] N. Piterman. Extending temporal logic with � -automata. M.Sc. Thesis, The Weizmann Institute of Science,
Israel, http://www.wisdom.weizmann.ac.il/home/nirp/public html/publications/msc thesis.ps, 2000.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp. on Foundation of Computer Science,
pages 46–57, 1977.

[PV01a] N. Piterman and M. Vardi. From bidirectionality to alternation. In 26th International Symposium on
Mathematical Foundations of Computer Science, volume 2136 of Lecture Notes in Computer Science,
pages 598–609. Springer-Verlag, August 2001.

[PV01b] N. Piterman and M. Vardi. From bidirectionality to alternation. Theoretical Computer Science, 2001. to
appear.

[QS81] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar. In Proc. 5th
International Symp. on Programming, volume 137 of Lecture Notes in Computer Science, pages 337–351.
Springer-Verlag, 1981.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In Proc. 1st
Symp. on Logic in Computer Science, pages 332–344, Cambridge, June 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computation, 115(1):1–
37, November 1994.

[Wal96] I. Walukiewicz. Pushdown processes: games and modal logic. In Computer Aided Verification, Proc. 8th
International Conference, volume 1102 of Lecture Notes in Computer Science, pages 62–74. Springer-
Verlag, 1996.

[Wal00] I. Walukiewicz. Model checking ctl properties of pushdown systems. In Proc. 20th Conference on Foun-
dations of Software Technology and Theoretical Computer Science, volume 1974 of Lecture Notes in Com-
puter Science, pages 127–138, New Delhi, India, December 2000. Springer-Verlag.

[WVS83] P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite computation paths. In Proc. 24th IEEE
Symp. on Foundations of Computer Science, pages 185–194, Tucson, 1983.

A The reduction from 2NBP to 1AWW

A.1 Definition of Alternating Automata on infinite words

For a set � , let � ��?"��C denote the set of all positive formulas over the set � with
�������

and �
	���
 � (i.e., for all
	�
 � , 	 is a formula and if f � and f*� are formulas, so are f � ��f*� and f � 	Xf*� ). We say that a subset ���`<��
satisfies a formula �J
 � ��?"��C (denoted ����� ��� ) if by assigning true to all members of �_� and false to all
members of �	��� � the formula � evaluates to true.

An alternating Büchi automaton on words (ABW for short) is {L�� "�$#&%'#)(*�*#-,j#)/�0 where � , % , (S� , and
/ are as in NBW and ,�4�%K65�L9 � � ? hSVc#�ERki65% C is the transition function. A run of { on an infinite
word � � ����� � M	M	M is a labeled IIN -tree ? ��# �;C where �'4;�b9 IIN 6H% . A node � labeled by ?�e)#)(sC describes
a copy of the automaton in state ( reading letter � � . The labels of a node and its successors have to satisfy
the transition function , . Formally, �X
�� and ��? �&C'� ?AVc#)(*�SC and for all nodes � with ��?��`C'� ?�eQ#)(�C and
,w?A(@#-��� C}��� there is a (possibly empty) set h@?�� � #)( � C&#	M	M	MS#S?�� � #)( � CQkX� ��� such that h�����E*#	M	M	M+#-��� ��kG< �
and for every ETW���W � we have , ��?�� ���	C�� ?�e � ����#)(��)C . Thus, a V -transition leaves the automaton
reading the same letter. Note that for 2NBP we call transitions that leave the automaton in the same location
� -transitions and for ABW we call them V -transitions.
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A run of an ABW is accepting if every infinite path visits the accepting set infinitely often. As before, a
word � is accepted by { if { has an accepting run on the word. We similarly define the language q}?A{�C of { .

We also consider weak alternating automata. A weak alternating automaton (AWW) is an ABW where
the set of states % is partitioned into disjoint sets, % � , such that for each set % � , either % � <�/ , in which case
%�� is an accepting set, or % �.lH/�� p , in which case %�� is a rejecting set. In addition there exists a partial
order W on the collection of the % � ’s such that for every (�
^% � and (R��
^% ] for which (R� occurs in 3�?A(�#)BcC ,
for some B 
 � , we have % ] W�%�� . Thus, transitions from a state in % � lead to states in either the same %1� or
a lower one. It follows that every infinite path of a run of an AWW ultimately gets “trapped” within some set
% � . The path then satisfies the acceptance condition / if and only if % � is an accepting set.

Again, the size of the automaton is determined by the number of its states and the size of its transition
function. The size of the transition function is � ,w�@�b� IQt : ��� t�v � ,`?A(�#)BDC	� where, for a formula in � � ? hSVc#�ERk�6
% C we define � ?��i#)(sC	�s�L� ������� ���L� � 	���
 � ���aE and � � � 	 �R�s���L� � � � �+�s���L� � � � �b� �R������E .

The emptiness of an AWW over 1-letter alphabet was considered in [KVW00]. The algorithm is based on
bottom up labeling of the states of the automaton while evaluating the formulas in the transitions of the states.
We note that the length of a formula in � � ? hSVc#�ERk'6 % C is at most exponential in �d% � and that such formulas
can be evaluated in logarithmic space [Lyn77]. Hence, the algorithm can be implemented in space linear in
�d% � . All it needs is to evaluate formulas in � ��? hSVc#�ERk�6H%1C and to record for each state whether its language
is empty or not.

Theorem A.1 [KVW00] Given an AWW over 1-letter alphabet { �U hSB�ks#&%�#)( � #-,j#)/�0 we can check whether
q}?A{�C is empty in time # ?)� ,w�dC and space # ?)�d% �dC .
A.2 The proof

We reduce the membership problem of a regular tree  +/ � #<;�0 in the language of a 2NBP to the emptiness
problem of a 1AWW with one letter alphabet.

Given a two-way nondeterministic Büchi automaton [PV01a] show how to construct a 1ABW that accepts
the same language. Their construction can be generalized so that given a 2NBP F we construct a 1ABW with
1-letter alphabet � such that ��?��'C�n��p iff  +/ � #<;�0�
m�$?-F�C . Then we use methods given in [PV01b, Pit00] to
convert this 1ABW into a 1AWW.

Theorem A.2 Given a 2NBP F��L "�$#)|�# �`�*#Q3S#)/10 and a regular tree  +/ � #<;�0 there exists a 1ABW on 1-letter
alphabet �L�U hSB�ks#&%�#)(S��#-,.#)/�� 0 such that �$?���C�n� p iff  +/ � #<;�0�
X��?-F�C and � has #�?)� | � � � �&;?� C states and
the size of the transition function is # ?)� 3����@� | � � � �&;?� C .

We use the fact that � is a one-way automaton and remember the state of the transducer that gives the label
to the current node in the tree  +/ � #<;�0 as part of the finite control of � . For better intuition of the construction
we refer the reader to [PV01a, PV01b].

Proof: Let  -= � #)q � 0 be the transducer that generates the labels of ; where = � �K +/�# � � #-� � #<6 �� #)/ � 0 is the
deterministic automaton and q � 4 � � 9�� is the labeling function. For a word �U
 / �

we denote by � � ?���C
the unique state that = � gets to after reading � . We construct the 1ABW �L�U hSB�ks#&%�#)(*��#-,.#)/ � 0 as follows.

" % �U?A| 
 ?A|L6X|1C-C�6 �
� 6 h 4�#��1k .

" (S���U �j�R#<6 �� #$4�0 .
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" / � �L?A/�6 �
� 6rh 41kRC 
 ?A|L6 �

� 6rh �1kRC .

In order to define the transition function we have the following defintions. Two functions f �Z4�|765|�9
h 4�#��1k where � 
rh 4�#��1k , and for every state �H
X| and alphabet letter x 
H� the set

� u
	 is the set of states

from which � is reachable by a sequence of � -transitions reading letter x and one final D -transition reading x .
Formally

f���? �g#)(sC��74
f���? � #)(�C_� � 4 if �H
�/ or (�
X/

� otherwise

� u
	 ������� ���	

� �
---------



�.�+# � � #	M	M	M+# � � 
m| � such that

�j��� ��� #�� � � �g#� V'[�e�[ ��#� �	# ���"0�
m3�? ��� O � #)xgC&# and
 )D�# � � 0�
m3�? � � O � #)xgC

�
���
����

Now , is defined for every state in % as follows.

,`? � #<6�# � C_��� � 	 � t*z � 
 t � � � � � ?- �g# � � #<6�# � 0&#)V;C � ?- � � #<6�# � 0&#)V;C
��� t K � � � � 	 � � t�� � 	 � *�� ��� � � ?- �j� #-� � ?I6�# 1`C&#$4�0&#�ESC
� ��� � 	 � �At�� � 	 � * � ��� � � ?- ���A#<6�#$4�0&#)V;C

,w? � � # �j�R#<6�# � C�� � � ��� � 	 ���At�� � 	 � � *�� ��� � � ?- � � # �j�*#<6�#Qf � ? � � # �j�SC-0&#)V;C� 	 � tRz � 
 � � 
 ��� � ?- � � # �j��#<6�#Qf 
 � ? � � # ����C-0&#)V;C��r?- ���A# �j�*#<6�#Qf 
 � ? �j� # �j�SC-0&#)V;C��� t K � � � � 	 � � t�� � 	 � � * � ��� � � � 	 � � t�! � �#"%$�&' � ?- ���A# ��� �A#-� � ?I6�# 1`C&#Qf � ? ���A# ��� �PC-0&#�ESC
Finally, we replace every state of the form h@ �g# �g#<6�# � 0$� either ��
5| and � � 4 or �^
5/ and � � �1k by����� �

.

Claim A.3 ��?��'C�n�bp iff  +/ � #<;�0�
X�$?-F�C
Proof: The proof is very similar to the proof in [PV01a]. It is included here for the sake of completeness.

Let � �� �.�*#-���S0��� � � #-� � 0��� �j�*#-���S0j�	�	� be an accepting run of F on  +/ � #<;�0 . We add the annotation of
the locations in the run  �w�R#-���*#)V;0��@ � � #-� � #�ES0��@ �j�R#-���*# �s0j�	�	� . We construct the run  � � # � � 0 of � . For every
node � 
m�}� , if � is labeled by a singleton state we add a tag to � some triplet from the run � . If � is labeled
by a pair state we add two tags to � , two triplets from the run � . The labeling and the tagging conform to the
following.

" Given a node � lebeled by state  �g#<6�# � 0 and tagged by the triplet  � �A#-� #-e�0 from � , we build ��� so that
�8� � � and 6r� � � ?���C . Furthermore all triplets in � whose third element is greater than Y have their
second element greater or equal to � ( / �

is ordered according to the lexical order on the reverse of the
words).

" Given a node � labeled by state  A(@# � #<6�# � 0 and tagged by the triplets  A(@�A#-� #-e 0 and  �j�A#-���A# Y@0 from � ,
we build �*� so that (��2(*� , �m� �j� , � �b�}� , 6 �2� � ?���C , and e�[TY . Furthermore all triplets in � whose
third element � is between e and Y , have their second element greater or equal to � . Also, if Y 
Ze � E
then � ] O � � 1 �S� ] for some 1r
3/ .
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Construct the run tree  � � # � � 0 of � as follows. Label the root of � � by  �j�*#<6 �� #$4�0 . Given a node � 
�� �
labeled by  � #<6�# � 0 tagged by  �.� #-����#-e 0 . Let  � ] #-� ] # Y�0 be the minimal Y 
Te such that � ] � ��� . If Y�� e ��E
then add one son to � , label it  � ] #<6�#$4�0 and tag it  � ] #-� ] # Y�0 . If Y�
Le?�~E , then � ] O � � 1H�R��� for some
1Z
 / and we add two sons to � , label them  �`� # � ] #<6�# � 0 and  � ] #<6�# � 0 . We tag  �j��# � ] #<6�# � 0 by  ��� #-����#-e 0
and  ��]*#-�_]s# Y@0 , and tag  �c]�#<6�# � 0 by  ��]*#-�_]s# Y@0 , �

is � if there is a visit to / between locations e and Y in
� . If there is no other visit to �}� then ��� � � � 1r�@� for some 1U
!/ . We add one son to � and label it
 ��� � � #-� � ?I6�# 1wC&#$4�0 . Obviously the labeling and the tagging conform to the asssumption.

Given a node � labeled by  �g#)(�#<6�# � 0 tagged by  �g#-�1#-e 0 and  A(@#-�1# Y@0 . Let  � �;#-�1# ��0 be the first visit to
� between e and Y . If �J� e �~E then add one son to � and label it  � �;#)(�#<6�#Qf � ? �	�;#)(sC-0 . If � 
ae � E then
add two sons to � and label them  �g# � �@#<6�#Qf 
 � ? �g# �	�*C-0 and  �	�;#)(@#<6�#Qf 
 � ? �	�s#)(sC-0 where

� � # � � are determined
according to the visits to / between e and Y . We tag  �g# � �@#<6�#Qf 
 � ? �g# �	�*C-0 by  �g#-�1#-e 0 and  � �@#-� # ��0 and tag
 �	�@# �&#<6�#Qf 
 � ? �	�;#)(sC-0 by  � �;#-�1# ��0 and  A(�#-�}� # Y@0 .

If there is no visit to � between e and Y it must be the case that all triplets in � between e and Y have the same
suffix 1g�d� for some 1r
 / (otherwise � is visited). We add one son to � labeled  � � � � #)( ] O � #-� � ?I6�# 1wC&#Qf � ? ����#)(R��C-0
and tagged by  �j� � � # 1J�@�1#-e ��ES0 and  � ] O � # 1J��� # Y��~ES0 . We are ensured that � ] O � 
 � * � � � � ��� � � � �I as
?)D�# � ] C�
m3�? � ] O � #<; ?-1G�	��C-C .

Given an accepting run  � � # � � 0 of � we use the recursive algorithm in Figure 1 to construct a run of F on
 +/ � #<;�0 .

A node �m�*B in �}� is advancing if the transition from � to �X��B results from an atom ? ��� ?��X�sBDC&#�ESC that
appears in ,w? � � ?��wC-C . An advancing node that is the immediate successor of a singleton state satisfies the
disjunct � � t K � � � � 	 � � t�� � 	 � * ��� � � ?- ���A#-� � ?I6�# 1`C&#$4�0&#�ESC in , . We tag this node by the letter 1 that was used to
satisfy the transition. Similarly, an advancing node that is the immediate successor of a pair state satisfies the
disjunct � � t K � � � � 	 � �At�� � 	 � � *�� ��� � � � 	 � � t�! � �#"%$�&' � ?- �j��# �j� �A#-� � ?I6�# 1`C&#Qf �g? ���A# ��� � C-0&#�ESC in , . We tag this node by the

letter 1 that was used to satisfy the transition. We use these tags in order to build the run of F . When handling
advancing nodes we update the location on the tree / �

according to the tag. For an advancing node � we
denote by � B��.?��`C the letter in / that tags it. A node is non advancing if the transition from � to �G�+B results
from an atom ? � � ?�� �+BcC&#)V;C that appears in ,w? � � ?��`C-C .

The function build run uses the variable � to hold the location in the tree  +/ � #<;�0 . Working on a singleton
 �g#<6�# � 0 the variable B 6 6@N is used to determine whether � was already added to the run. Working on a pair
 �g#)(�#<6�# � 0 the variable B 6 6@N is used to determine whether � was already added to the run and the variable
B 6 6�� is used to determine whether ( was already added to the run.

The intuition behind the algorithm is quite simple. We start with a node � labeled by a singleton  �g#<6�# � 0 .
If the node is advancing we update � by ��B��.?��wC . Now we add � to � (if needed). The case where � has one
son matches a transition of the form  ��i# � � 0$
J3@? �g#)q � ?I6�C-C . In this case we move to handle the son of � and
clearly �j� has to be added to the run � . In case ��� � the son of � is non advancing and �g� reads the same
location � . Otherwise, � is updated by � and �w� reads � ��� . The case where � has two sons matches a guess
that there is another visit to � . Thus, the computation splits into two sons  �g#)(�#<6�# � 0 and  A(�#<6�# � 0 . Both sons
are non advancing. The state � was already added to � and ( is added to � only in the first son.

With a node � labeled by a pair  �g#)(�#<6�# � 0 , the situation is similar. The case where � has one non
advancing son matches a transition of the form  ��# 	*��01
T3@? � #){�C . Then we move to the son. The state �`� is
added to � but ( is not. The case where � has two non advancing sons matches a split to  �g# � � #<6�# � � 0 and
 ����#)(�#<6�# � �+0 . Only �j� is added to � as � and ( are added by the current call to build run or by an earlier call
to build run. The case where � has one advancing son matches the move to the state  � �A#)(R��#-� � ?I6�# 1wC&# � 0 and

checking that ( � 
 � *�� � � � ��� � � � �I . Both � � and ( � are added to � .
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It is quite simple to see that the resulting run is a valid and accepting run of F on  +/ � #<;�0 .

build run ( �g# ���A?��wC��U �g#<6�# � 0&#-�1#)B 6 6;N�#)B 6 6�� ) build run ( �g# ���"?��`C��L �g#)(�#<6�# � 0&#-� #)B 6 6;N�#)B 6 6�� )
if (advancing( � )) if (advancing( � ))
�~4 � ��B��`?��`C��	��� � 4 � � B��.?��`C������

if ( B 6 6;N ) if ( B 6 6@N )
��4 � ���; �g#-��0�� ��4 � ���; �g#-��0��

if ( � has one son � ��B ) if ( � has one son � �SB )
build run ( � �SBj# � � ?��G��BDC&#-� #�E*#)V ) build run ( � �SB�# � � ?�� �SBDC&#-� #�E*#)V )

if ( � has two sons � �SB and � � � ) if ( � has two sons � ��B and � � � both non advancing)
build run ( � �SBj# � � ?��G��BDC&#-� #)Vc#�E ) build run ( � �SB�# � � ?�� �SBDC&#-� #)Vc#�E )
build run ( � � �+# ��� ?�� � �	C&#-� #)Vc#)V ) build run ( � � �+# �*� ?�� � ��C&#-�1#)Vc#)V )

if ( � has two sons � ��B and � � � both advancing)
build run ( � �SB�# � � ?�� �SBDC&#-� #�E*#�E )

if ( B 6 6�� )
��4 � ���; A(@#-��0��

Figure 1: Converting a run of A into a run of S

The emptiness of a 1ABW can be determined in linear space [EL86]. For a 1ABW with one letter alphabet,
we can convert the 1ABW into a 1AWW [KV01b] and then use Theorem A.1. However, the construction in
[KV01b] results in a quadratic blow up. Piterman and Vardi show that given a 1ABW as above, they can use
the special structure of the automaton to construct an equivalent 1AWW with only a minor increase in the size
of the transition function and the number of states [PV01b, Pit00].

Theorem A.4 Given a 2NBP FT�U "�$#)|�# � � #Q3�#)/�0 and a regular tree  +/ � #<;�0 there exists a 1AWW on 1-letter
alphabet � �� hSB�ks#&%�#)(S��#-,.#)/ � 0 such that ��?��'C�n�2p iff  +/�#<;�0�
 ��?-F�C and � has #�?)� | � � � �&;?� C states and
the size of the transition function is # ?)� 3����@� | � � � �&;?� C .
B Lower Bund

It was shown by [BEM97] that the problem of model checking an LTL formula with respect to a pushdown
graph is EXPTIME-hard in the size of the formula. The problem is polynomial in the size of the pushdown
system inducing the graph. Our algorithm for model checking an LTL formula with respect to a prefix-
recognizable graph is exponential both in the size of the formula and in �d% 
`� .

As prefix-recognizable systems are a generalization of pushdown systems the exponential resulting from
the formula cannot be improved. We show that also the exponent resulting from % 
 cannot be removed. We
use the EXPTIME-hard problem of whether a linear space alternating Turing machine accepts the empty tape
[CKS81]. We reduce this question to the problem of model checking a fixed LTL formula with respect to the
graph induced by a prefix-recognizable system with a constant number of states and transitions. Furthermore
%	� and %�
 depend only on the alphabet of the Turing machine. The component % 
 does ‘all the hard work’.
Combining this with the above algorithm we get the following.
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Theorem B.1 The problem of model checking the graph induced by the prefix-recognizable system � �
 � y.z #&��#&%�#)q�#���#)(���#-�.�S0 is EXPTIME-complete in �d%�
w� .
Proof: Consider an alternating linear-space Turing machine � �� ���#&����#&����#��9 # 	 � #)/ � � � #)/ � �A]+0 , where the
four sets of states , � � , � � , / � � � , and / � �A] are disjoint, and contain the universal, the existential, the accept-
ing, and the rejecting states, respectively. We denote their union (the set of all states) by � . Our model of
alternation prescribes that �9�<a��6	�T6r��6
��6^hSq�# ��k has a binary branching degree. When a universal
or an existential state of � branches into two states, we distinguish between the left and the right branches.
Accordingly, we use ? 	;#)BDC��9 N ? 	SN"# �&N"# �'N C and ? 	s#)BDC�� 9 � ? 	 � # � � # � � C to indicate that when � is in state
	�
H� � 
 � � reading input symbol B , it branches to the left with ? 	sN # � N # �'NAC and to the right with ? 	 �S# � �*# � �	C .
(Note that the directions left and right here have nothing to do with the movement direction of the head; these
are determined by � N and � � .)

Let fL4 IIN 9 IIN be the linear function such that � uses f�? � C cells in its working tape in order to
process an input of length � . We encode a configuration of � by a string 	 � � ����M	M	M+?
��#���� CjM	M	M���� �	� � . That
is, a configuration starts with the state of � , all its other letters are in � , except for one letter in h��Dk 6�� .
The meaning of such a configuration is that the Y th cell in the configuration, for EXW Y^W f�? � C , is labeled
� ] , the reading head points at cell e , and � is in state 	 . For example, the initial configuration of � is
	+�*?
��# �	C � �	�	� � (with f�? � C �bE occurrences of � ’s) where � stands for an empty cell. A configuration �P� is a
successor of configuration � if � � is a left or right successor of � . We can encode now a computation of � by
a tree whose branches describe sequences of configurations of � . The computation is legal if a configuration
and its successors satisfy the transition relation.

Note that though � has an existential (thus nondeterministic) mode, there is a single computation tree that
describes all the possible choices of � . Each run of � corresponds to a pruning of the computation tree in
which all the universal configurations have both successors and all the existential configurations have at least
one successor. The run is accepting if all the branches in the pruned tree reach an accepting configuration.

In order to make sure that � does not accept the empty tape, we have to check that every legal pruning
of the computation tree of � contains one rejecting branch.

Given an alternating linear-space Turing machine � as above, we construct a prefix-recognizable system
� and an LTL formula � such that � 
 � � � iff � does not accept the empty tape. The system � has a constant
number of states and rewrite rules. For every rewrite rule  A(�# � � # � � #���� #)( � 0 we have that the languages of the
regular expressions � � and �@� are subsets of � 
 ? h��Dk�6���C 
 � 
 h���k . The language of the regular expression� � , can be encoded by a nondeterministic automaton whose size is linear in � . The LTL formula � does not
depend on the structure of � .

The graph induced by � has one infinite trace. This trace searches for rejecting configurations in all
the pruning trees. The trace first explores the left son of every configuration. If it reaches an accepting
configuration, the trace backtracks until it reaches a universal configuration for which only the left son was
explored. It then goes forward again and explores under the right son of the universal configuration. If the trace
returns to the root without finding such a configuration then the currently explored pruning tree is accepting.
Once a rejecting configuration is reached, the trace backtracks until it reaches an existential configuration for
which only the left son was explored. It then explores under the right son of the existential configuration. In
this mode, if the trace backtracks all the way to the root, it means that all pruning trees were checked and that
there is no accepting pruning tree for � .

Let �F��?"��65hS\ # ��kRC 
 � 
 ?���6Jh��DkRC and let ? 	s#)\"C��*x � M	M	MQx � �	� � �c? 	S��#<6�C x N� M	M	M x N� � � � be a configuration

of � and its left successor. We also set xw� to ? 	s#)\"C and x N� to ? 	 � #<6cC . Given 	 , xj� and the unique x ] for which
x ] �U?
��#��wC for some � 
�� , we know, by the transition relation of � , what x N� should be. In addition a symbol

21



from �H6GhS\ # ��k should repeat exactly every f�? � C �8E letters. Let � �����&N"?- 	;#)x���#)x ] 0-C denote our expectation for
x N� . That is, � �	����N"?- 	;#S? 	s#)\"C&#S?
��#�� ] C-0-C_�U? 	���#<6�C where ? 	s#�� ] C�9 N ? 	S� #��.�] # � C , and

� ������N ?- 	s#���� #S?
��#�� ] C-0-C��
��������� �������	

�@� Y $
rh�e ��E*#-eQ#-e ��ERk
�@� Y�� e ��E and ? 	;#���� � � C_9

N ? 	S� #��.�� � � # � C?
��#�� � CoY�� e ��E and ? 	;#�� � � � C_9
N ? 	S� #��.�� � � #)q�C�@� Y�� e ��E and ? 	;#���� O � C_9 N ? 	 � #�� �� O � #)q�C

?
��#��@� CoY�� e ��E and ? 	;#���� O � C_9 N ? 	S� #��.�� O � # � C
� �� e���Y and ? 	;#��@� C�9 N ? 	 � #�� �� # � C

The expectation � �	��� � ?- 	s#)x � #)x�]+0-C for the letter x �� , which is the e th letter in the right successor of the config-
uration is defined analogously (the state component is augmented with � instead of \ ). Consistency with � �	����N
and � �	��� � now gives us a necessary condition for a sequence in � �

to encode a branch in the computation
tree of � .

The prefix-recognizable system starts from the initial configuration of � . It has two main modes, a
forward mode and a backward mode. In forward mode, the system guesses a new configuration. The con-
figuration is guessed one letter at a time, and this letter should match the functions � �	��� N or � ����� � . If the
computation reaches an accepting configuration, this means that the currently explored pruning tree might
still be accepting. The system moves to backward mode and remembers that it should explore other universal
branches until it finds a rejecting state. In backward universal mode, the system starts backtracking and re-
moves configurations. Once it reaches an universal configuration that is marked by \ , it replaces the mark by
� and moves to forward mode and explores the right son. If the root is reached (in backward universal mode),
the computation enters a rejecting sink. If in forward mode, the system reaches a rejecting configuration, then
the currently explored pruning tree is rejecting. The system moves to backward mode and remembers that it
has to explore existential branches that were not explored. Hence, in backward existential mode, the system
starts backtracking and removes configurations. Once it reaches an existential configuration that is marked
by \ , the mark is changed to � and the system returns to forward mode. If the root is reached (in backward
existential mode) all pruning trees have been explored and found to be rejecting. Then the system enters an
accepting sink. All that the LTL formula has to check is that there exists an infinite computation of the system
and that it reaches the accepting sink. Note that the prefix-recognizable system accepts, when the alternating
Turing machine rejects and vice versa.

More formally we have the LTL formula is �����QY ��� � and the rewrite system is �2�U � y.z #&��#&%'#)q�#���#)( � #-� � 0
where

" {$|~�~h��
�&Y ��� �&k
" �a�U?"�T6rhSq�# ��kRC 
 � 
 ? h��Dk�6���C
" % � h�� � � � ��� � # � � 
 � � � � ��� # ��� 
 � � � � ��� #"! � � ��� #"! � � � 
 k
" q$?A(�# � C��

�
p (in� 	�e�� � �
h����&Y ��� �&k (�� 	�e�� � �

" ( � � ����� � � � �
" �.���74 �;? 	+�*#)\"C��;?
��# �	C�� � M	M	M �

In order to define the transition relation we use the following languages.
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" q ���� � N �
�
? 	s#<6cC�� � � � �G� � ] �@?
��#�� � C�� � � �	� � O � O ] O � �;? 	 � #<6 � C�� � � � � � � -----

� � � � � ����� � ?- 	s#���#S?
��#�� � C-0-C
and 6�#<6;� 
rhS\ # ��k

�

q ���� � N �
�
? 	s#<6cC�� � � �@?
��#�� � C�� � ] � �G� � � �	� � O � O ] O � �;? 	 � #<6 � C�� � � � ] � � � � � � -----

�j� ��� � �	��� � ?- 	;#�� #S?
��#��.��C-0-C
and 6�#<6 � 
rhS\ # ��k

�

q %��� � N �
�
? 	s#<6cC�� � � �@?
��#��.��C�� � � � � � O � O � �;? 	���#<6s��C�� � � � �j� � -----

�.� ��� � �	��� � ?- 	;#�� #S?
��#��j�AC-0-C
and 6�#<6 � 
rhS\ # ��k

�

q�� ��� � N �
�
? 	s#<6cC�� � � �@?
��#��.��C�� � � � � � O � O � �;? 	���#<6s��C -----

	 � � � �	��� � ?- 	;#S? 	s#<6cC&#S?
��#�� � C-0-C
and 6�#<6;� 
rhS\ # ��k

�

q ��� � N.�~h 41k��R� � �;?Aq ���� � N 
 q ���� � N 
 q %��� � N 
 q � ��� � N C
Thus, this language contains all words whose last letter is the � �	����N or � ����� � correct successor of the
previous configuration.

" { � � � 	
� � h 41k}�+� � �*hS/ � � ��6rhS\ # �@k�k

Thus, this language contains all words whose final letter is an accepting state.

" � �A] � � � � h 41k��*� � �*hS/ � ��] 6rhS\ # �@k�k
Thus, this language contains all words whose final letter is a rejecting state.

" ���	� M � N ���
���
 � � � 
 ? h��Dk�6���C 
 ?-?"����� � C�6rhS\ kRC 
 ?"�T6rh���kRC
Thus, this language contains all the letters that are not universal states marked by \ .

" � �	� M � N ���
���
 � � � 
 ? h��Dk�6���C 
 ?-?"�	��� � C�6rhS\ kRC 
 ?"��6rh���kRC
Thus, this language contains all the letters that are not existential states marked by \ .

Clearly the languages q ��� � N , { �
� � 	 � , and � ��]�� � � can be accepted by nondeterministic automata whose size is
linear in f�? � C .

The transition relation includes the following rewrite rules:

1.  �� � ��� � � � #�h��	ks#�� G � � 
 # ) �1?���65h �@kRC&#�� � � � ��� � 0 - guess a new letter and put it on the store. States are
guessed only with direction \ . The fact that q ��� � N is used ensures that the currently guessed configuration
(and in particular the previously guessed letter) is the successor of the previous configuration on the
store.

2.  �� � ��� � � � #�h��	ks#�� � � G�� J #�h���ks# � � 
 � � � � ��� 0 - reached an accepting configuration. Do not change the store
and move to backward universal mode.

3.  �� � ��� � � � #�h��	ks#�� G��+G � J #�h��	ks# ��� 
 � � � � � � 0 - reached a rejecting configuration. Do not change the store and
move to backward existential mode.

4.  �� B � ���$B ��6 � # � � � M � N ���
���
�� #&� � #�h��	ks# � B � ���}B ��6 � 0 - remove one letter that is not in � � 6 hS\ k from the store.

5.  �� B � ���$B ��6 � #&� � 6JhS\ ks#&� � #&� � 6 h���ks#������ � � � � 0 - replace the marking \ by the marking � and move to
forward mode. The state 	 does not change � .�

Actually, we guess all states in � � . As we change state into �������! ��#" , the next transition verifies that indeed the state is the same
state.
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6.  �� B � ���$B ��6 � # �	#�h 41ks# ��# 	�e�� � �+0 - when the root is reached in backward universal mode enter the rejecting
sink

7.  �� B � ���$B ��6 � # ��� � M � N ���
���
�� #&� � #�h���ks# � B � ���}B � 6 � 0 - remove one letter that is not in � � 6rhS\ k from the store.

8.  �� B � ���$B ��6 � #&� � 6 hS\ ks#&� � #&� � 6Jh���ks#�� � ��� � � � 0 - replace the marking \ by the marking � and move to
forward mode. The state 	 does not change.

9.  �� B � ���$B ��6 � # �	#�h 41ks# ��# 	�e�� � �s0 - when the root is reached in backward existential mode enter the ac-
cepting sink

10.  	Se � � �s# �	#�h 4�ks# �	# 	Se � � �s0 - remain in accepting sink

11.  	Se � � � # ��#�h 41ks# �	# 	Se � � � 0 - remain in rejecting sink

C Reduction from model-checking of prefix-recognizable systems to membership of 2NBP

We prove Theorem 4.2

Proof: As before we use the NBW
� �

� �U �*y.z�#�� #-,
�
� #-���*#)/10 .

We define F��U "�$#)|�# �-�*#Q3�#)/�� 0 as follows.

" �Z�b� 6 �
�
� � � � 
 � ." |a�2h@ �� #)(�# 	;# � � 0���� 
��J#�(�
 %�# � � �U A(R� # � ��# � ��#��@��#)(s0�
G��# and 	 
 %	� � 
 %�
 � k

Thus, � holds in its state a state of
�

, a state in % , the current state in % � or %�
 , and the current
rewrite rule being applied. A state  ��1#)(�# 	s#S A(s� # � � # � � #�� � #)(�0-0 is an action state if 	 is an accepting state
of & 
 � , that is 	X
T/ 
 � . In action states, F chooses a new rewrite rule � � � �� A(�# � � � #

� � � #�� � � #)(R� 0 . Then
F updates the

�
component according to the current location in the tree and moves to a state in / � � � ,the set of accepting states of & � � � . Other states are navigation states. If 	�
H% 
 � is a state in & 
 � (that is

not accepting), then F chooses a direction in the tree, a successor of the state in % 
 � reading the chosen
direction, and moves in the chosen direction. If 	r
b% � � is a state of & � � then F moves up the tree
(towards the root) while updating the state of & � � . If 	$� ( �� � is the initial state of & � � and ; ?��`C�� e�	�
�/ 
 �
marks the current node � as a member of the language of

� � then F moves to the initial state ( �
 � of & 
 �
(recall that initial states and accepting states have no incoming / outgoing edges respectively).

" � � �U �� � #)( � #-� � # � #&0 where � is an arbitrary rewrite rule.

Thus, F navigates down the tree to the location �g� . There, it chooses a new rewrite rule and updates the
state of

�
and the % component accordingly.

24



" The transition function 3 is defined for every state in | and letter in ���2�L6 �
�
� � � � 
 � as follows.

3@?- ��1#)(@# 	;# �)0&#)xgC��

�������������������������� ������������������������	

�
?- ��1#)(�# 	 � # � � 0&#ED�C -----

� � �U A(R�A# � � # � ��#��@��#)(s0
	 
X,�� � ? 	 � #)x�� V�	�C

� �

��� �	
?- �� #)(�# 	+��# � � 0&# � C

- ------
� � �U A(R�A# � � # � ��#��@��#)(s0&#
	$��( �� N 	�� �

� # 	S����( �
 � #
and x�� e�	 
m/ 
 �

�
�
��

	1
H%��

�
?- ��1#)(�# 	 � # � � 0&#��'C -----

� �g�U A(R� # � ��# � ��#��@��#)(s0
	S�w
i, 
 � ? 	;#��'C and �K
H�

� �

����� ���	
?- �� � #)( � � # 	 � # � � � 0&# �&C

- --------

� �w�U A( � # � � # � ��#���� #)(s0&#
� � � �U A(�# � � � #

� � � #�� � � #)(+� ��0&#���w
�, � � ?�� #)q$?A(@#)x�� V�	�C-C&#
	1
X/ 
 � and 	 � 
m/ � � �

�
���
����

	1
H%�


Thus, when 	�
5% � the 2NBP F either chooses a predecessor 	 � of 	 and goes up the tree or in case 	
is the initial state of & � � and x�� e�	 
m/ 
 � then F chooses the initial state ( �
 � of & 
 � .
When 	G
�%�
 the 2NBP F either guesses a direction � and chooses a successor 	 � of 	 reading � or
in case 	m
T/ 
 � is an accepting state of &�
 � , the automaton F updates the state of

�
, chooses a new

rewrite rule � � � �U A(�# � � � #
� � � #�� � � #)( � � 0 and moves to an accepting state in / � � � of & � � � ." /����~h@ �� #)(�# 	s# � � 0��	�a
X/�#�(�
H%�# � � �U A(R��# � ��# � ��#��@��#)(s0&# and 	1
X/ 
 � k

Only action states may be accepting. As accepting states have no outgoing edges, in an accepting run,
no navigation stage can last indefinitely.

As before we can show that a trace that violates � and the rewrite rules used to create this trace can be used
to produce a run of F on  "� � #<; 
D0 .

Similarly, an accepting run of F on  "� � #<; 
�0 is used to find a trace in � 
 that violates � .

D Proof that the reduction works

Claim D.1 �

8�� � iff � 
 � � � �g�

We first need some definitions and notations. We define a partial function � from traces in � 
 � to
traces in �

 . Given a trace 8w� in � 
 � , if 8`�r� � �g� � then �.?I8`� C is undefined. Otherwise, denote 8��G�
? � � � #-����C&#S? � � � #-� � C&#	M	M	M and

�.?I8 � C��
�
? �g#-� � C&# �.?I8`�� � C ���� �a �g# � # 
�� - � 
���@*0
�.?I8`�� � C ���� �a �g# � # � 0 and � n� 
 � - � 
���@

Thus, � picks from 8 � only the configurations marked by 
 � - ��
�� @ , it then takes the state from % that marks
those configurations and the store. Furthermore given two traces 8 � and �.?I8 � C we define a matching between
locations in 8w� in which the configuration is marked by 
 � - ��
�� @ and the locations in �`?I8	� C . Given a location e
in �`?I8 � C we denote by � � ?�e C the location in 8 � of the e -th occurrence of 
 � - ��
�� @ along 8 � .

25



Lemma D.2 1. For every trace 8 � of � 
 � , �`?I8 � C is either not defined or a valid trace of � 
 .

2. The function � is a bijection between 6 ���XB;e��_? �cC and the traces of � 
 .

3. For every trace 8 � of � 
 � such that �.?I8w� C is defined, we have ?I8w�A# � � ?�e�C-C}� � f�? ��C iff ? �.?I8`��C&#-e C}� � �

Proof: 1. Suppose �.?I8 ��C is defined, we have to show that it is a trace of � 
 . The first pair in 8&� is
?- A(S�*# �&# 
 � - ��
�� @*0&#&A 0 C . Hence �.?I8 � C starts from ?A(S�R#-�j�SC . Assume by induction that the prefix of �.?I8 � C up
to location e is the prefix of some computation in � 
 . We show that also the prefix up to location e � E
is a prefix of a computation. Let ?- A(@# � # 
�� - ��
 ��@*0&#&A.C be the e -th 
�� - � 
���@ appearing in 8 � , then the e -th
location in �.?I8w��C is ?A(�#-�`C . The computation of ��� chooses some rewrite rule �-�g�U A(�# � ��# � ��#��@� #)(R��0�
i�
and moves to state  A(*�A# �&# 	*0 where 	1
X/ � � . It must be the case that a state  A(���# � # 
�� -

��� ��0 appears in the
computation of � � after location � � ?�e C . Otherwise, the computation is finite and does not interest us.
The system ��� can move to a state marked by 
�� -

��� � only from ( �� � , the initial state of & � � . Hence, we
conclude that �8� � � � where �5
 � � . As ����B ��� � �	� is asserted everywhere along 8 � we know that
� 
 � � . Now ��� adds a word �c� in ��� to � and reaches state ?- A(*��# � ��# 
 � - ��
�� @*0&#��@�*���@C . Thus, the transition
� is possible also in � and can lead from ?A(@#������@C to ?A(;��#����c� �@C .

2. It is quite clear that � is an injection. As above, given a trace 8 in ��
 we can construct the trace 8 � in
� 
 � such that �.?I8 � C�� 8 .

3. We prove that ?I8�#-e C�� � � iff ?I8w�A# � � ?�e�C-C}� � � by induction on the structure of � .

" For a boolean combination of formulas the proof is immediate." For a proposition ��
T{$| , it follows from the proof above that if in location e in �.?I8 � C appears
state ?A(�#-�`C then in location � � ?�e C in 8g� appears state ?- A(�# �&# 
 � - � 
���@*0&#&A.C . By definition �H
Xq$?A(@#-�wC
iff � 
�q � ?- A(�# � # 
�� - � 
���@R0&#&A`C ." For a formula �a��� � &���� . Suppose ? �.?I8 � C&#-e Cm� � � . Then there exists some YZ�Ke such that
? �`?I8`� C&# Y@C � �	��� and for all e W ��[ Y we have ? �.?I8 � C&# ��C�� �	� � . By the induction assumption
we have that ?I8w�A# � � ?PY@C-C�� �>f�?
� � C (and clearly, ?I8 ��# � � ?PY@C-C�� � 
�� - ��
�� @ ), and for all e'W Y�[ �
we have ?I8 � # � � ?���C-Ci� ��� � . Furthermore, as every location marked by 
�� - � 
���@ is associated by
the function � � to some location in �.?I8g��C all other locations are marked by 
 
 � - ��
�� @ . Hence,
?I8 � # � � ?�e�C-C}� �U? 
 � - ��
�� @�9���?
� " C-C & ?���?
�
��C�� 
�� - � 
���@RC .
The other direction is similar." For a formula � � ��� the argument resembles the one above for & .

We note that for every trace 8g� and �.?I8`� C we have that � � ?AV;C_��V . Claim D.1 follows immediately.

E The construction of the prefix-recognizable system

Given a pushdown system � �� � yjz #&��#&%�#���#)q�#)(��*#-�j�S0 with a regular labeling function, we construct a
prefix-recognizable system �.���U � yjz � #&��#&%��A#���� #)q_�A#)(+�� #-� � 0 with simple labeling as follows.

" {$| � ��{$| 
 h�! B�� � B&k . The proposition ! B���� B marks the beginning of the sequence of length ���rE states
of � 
 � that relates to one state of � 
 .
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" % � �U?"% 6�{}|�6 h 4�#��1kRC 
 ?"% 6 h�! B�� � BQkRC . A state ?A(�#-�`C in �

 relates to the sequence that starts with
?- A(�# 	 � B � �-0&#-�wC , continues to ?- A(@# � � #�+ � 0&#-�`C where + � is as before, and then proceeds to ?- A(�# �w�*#�+��S0&#-�wC
and forward until ?- A(�# � � #�+ � 0&#-�`C .

" q_�A?-?A(�# 	 � B � �-C&#-�wC_� h 	 ��B � �&k .
q_�A?-?A(�# �g#�� C&#-�`C�� h � k .
q_�A?-?A(�# �g#$4 C&#-�`C�� p .

" �}�� � h@?- A(�#"! B���� B)0&# �	#���� � ��� # ��#S � �#! #"�#���0-C&#S?- � �#"! B�� � B-0&# ��# &��� � ��� # �	#S � �#! #"�#$4�0-C��( �
 � k
For E�WTe_[ � we have

�}�� � + ?- A(�# ����# � 0&# ��# � I�� 	 � � � # ��#S A(@# �j� � � #�� 0-C&#S?- A(@# �j�-# � 0&# ��#
&� I�� 	 � � � # ��#S A(@# �j� � � #$4 0-C ��(�
H% and � 
 h 4�#��1k 3
� �� � h@?- A(�# � � # � 0&#){1#&� � #�h�� ks#S A( � #"! B�� � B)0-C��( �
 � # � 
rh 4�#��1ks# and  � �#���#&Ag## � 0�
 � k
Finally, we have � � � � �

� � � � �� . Thus, from a configuration marked by �Q� we move to a state marked
by ��� � � without changing the store. We mark �`� � � as true or false according to the store. From a
configuration marked by � � we apply a new rewrite rule according to the first letter in the store.

" (R�� �U?A(��R# 	���B � �)C .
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